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In search-and-matching models, the nonlinear nature of search frictions increases average 

unemployment rates during periods with higher volatility. These frictions are not, however, 

by themselves sufficient to raise unemployment following an increase in perceived uncer- 

tainty; though they may do so in conjunction with the common assumption of wages be- 

ing determined by Nash bargaining. Importantly, option-value considerations play no role 

in the standard model with free entry. In contrast, when the mass of entrepreneurs is fi- 

nite and there is heterogeneity in firm-specific productivity, a rise in perceived uncertainty 

robustly increases the option value of waiting and reduces job creation. 
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1. Introduction 

There is a large empirical literature which demonstrates that economic volatility is time-varying and that heightened 

uncertainty negatively affects labor markets and macroeconomic activity, even when the rise in uncertainty is merely per- 

ceived. 1 Thus, increased uncertainty has been identified as one of the key contributors to historically significant increases in 

cyclical unemployment such as those occurring in during the COVID-19 pandemic ( Baker et al., 2020; Leduc and Liu, 2020a )

and the Global Financial Crisis ( Baker et al., 2012 ). 2 Yet, several theoretical models and mechanisms predict the opposite.
� We thank Nicholas Petrosky-Nadeau, Johannes Pfeifer, Edouard Schaal, Stephen Terry, the editor, Urban Jermann and two anonymous referees, as well 

as seminar participants at the LSE and the RES 2021 Conference for constructive comments. We are also indebted to Sylvain Leduc and Zhang Liu as well as 

Stefano Fasani and Lorenza Rossi for generously sharing their codes at a very early stage of this project. Freund gratefully acknowledges financial support 

from Gates Cambridge Trust (BMGF OPP1144). First version: April 2020. 
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E-mail addresses: w.denhaan@lse.ac.uk (W.J. Den Haan), lbf25@cam.ac.uk (L.B. Freund), pre.eco@cbs.dk (P. Rendahl). 
1 For excellent surveys of the literature, see Bloom (2014) and Fernández-Villaverde and Guerrón-Quintana (2020) . Also see, however, Berger et al. 

(2020) for an argument that it is realized volatility, rather than the perception of a more uncertain future, that matters for adverse economic consequences. 
2 Key references on the empirical effects of uncertainty are Jurado et al. (2015) and Baker et al. (2016) . Regarding the effects of uncertainty on 

(un-)employment specifically, see Caggiano et al. (2014) and Leduc and Liu (2016) . Freund and Rendahl (2020 , Appendix A) document that elevated uncer- 

tainty causes not only the unemployment rate but also vacancies to respond in a manner that is consistent with the predictions of the search-and-matching 

frameworks explored in this paper. 
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Precautionary motives call forth a rise in savings, which would be associated with increased investment. Also, limited liabil- 

ity means that firm owners’ payoff function is convex, which implies that uncertainty increases firm equity value and makes 

investment more attractive. The famous “option-value-of-waiting” mechanism, however, does predict a negative relationship 

between elevated uncertainty and economic activity because higher (anticipated) uncertainty makes it more attractive to 

wait and postpone investment (cf. Bernanke (1983) ). 

The aim of this paper is to clarify the transmission mechanisms of uncertainty, and specifically the role of option-value

considerations, in the canonical search-and-matching (SaM) model of the labor market. We build on Leduc and Liu (2016) ,

who, in an important contribution, demonstrate that in a standard SaM model an increase in perceived uncertainty leads to 

an increase in the unemployment rate. In fact, they show that such a model can qualitatively match the empirical move-

ments even under flexible prices and with prudent agents, a combination that, by itself, typically pushes economic activity 

in the opposite direction. 3 Leduc and Liu (2016) do not bring to the surface what mechanism lies behind this result. But

they conjecture that search frictions in the labor market produce an option-value channel that helps rationalize the adverse 

effects on economic activity of elevated uncertainty. 

The first contribution of this paper is to provide an in-depth analysis of the effects of increased volatility in SaM models,

examining in particular whether there is an option-value channel. Since job creation is very much like an irreversible invest- 

ment, as the associated costs are not refundable, the option-value channel is a sensible candidate to consider. Nonetheless, 

the nonlinear aspects of the standard SaM model themselves do not lead to any option value of waiting. The reason is that

the free-entry assumption implies that the expected value of vacancy posting is, and will always remain, equal to zero. 

Hence, there is no point in waiting. 

We show that Leduc and Liu ’s (2016) result, that an increase in perceived uncertainty leads to an increase in the unem-

ployment rate in a standard SaM model with flexible prices, depends crucially on the assumption that wages are determined 

by Nash bargaining, an assumption that is often adopted in the SaM literature. However, many other types of wage setting

assumptions are possible. Specifically, we show that changes in perceived uncertainty have no effect on job creation when 

wages are linear in productivity. Nonlinear matching frictions do imply that the average value of labor market tightness –

the number of vacancies relative to the number of unemployed workers searching for a job – is elevated during periods of

higher realized volatility. Under Nash bargaining, this improves workers’ bargaining position and raises the average wage. 

Even if higher volatility is not realized, the increase in wages is driven by what agents expect to happen when perceived

uncertainty increases. As a result, the firm value falls, which reduces job creation. 

The literature often focuses on the impact of an increase in perceived uncertainty; that is, the impact that is solely due to

beliefs, not to an actual increase in volatility. Our second contribution is to highlight the importance of analyzing the impact

of realized increases in volatility (measured as the impact averaged over all possible realizations). As mentioned above, 

how perceived uncertainty affects the economy depends on what agents expect to happen during the period of heightened 

volatility. Furthermore, both in the standard SaM framework and in the modifications we consider, we find that even if the

anticipation of uncertainty itself does have a non-zero impact on the economy, these effects are small compared to those 

induced by realized volatility. In addition, the effects of realized and perceived volatility can differ in sign along the Impulse

response function (IRF) over at least some horizons. 

Our third contribution is to demonstrate how wait-and-see considerations can be introduced into the SaM framework. 

Our starting point is to observe that virtually all SaM models assume that there are always enough potential entrepreneurs 

available to drive the expected profits of job creation to zero. We first highlight that an option-value channel is in prin-

ciple possible by relaxing the free-entry condition and assuming that the mass of entrepreneurs is finite. 4 However, the 

resulting channel is only operative under restrictive assumptions. In particular, the free-entry condition must be binding in 

some states, such that firms make zero profits, but not in others, such that firms make positive profits. In a second step, we

therefore add heterogeneity in idiosyncratic firm-productivity alongside the assumption of a finite mass of entrepreneurs. In 

the resulting SaM framework, there is a time-varying measure of entrepreneurs that expect to make strictly positive profits 

when they post a vacancy, namely those with a sufficiently high productivity draw. With this relatively simple modification, 

the model robustly predicts that perceived uncertainty leads to a postponement of job creation. The reason is that an ex- 

pected increase in future volatility increases an unmatched entrepreneur’s (future) chance of having a productivity draw for 

which expected profits of vacancy-posting are strictly positive, whereas the downside risk is not affected since unmatched 

entrepreneurs can always choose to stay out of the market. Our proposed model remains tractable and can be solved by

(higher-order) perturbation methods. 

Our study is connected to two broad strands of the economic literature, namely, analyses considering frictional labor 

market models and the effects of uncertainty, respectively. While each of these literatures is vast in scope, we briefly com-
3 The decline in demand for consumption goods induced by elevated uncertainty leads to reduced economic activity when prices are sticky (cf. Basu and 

Bundick (2017) ). In fact, an additional contribution of Leduc and Liu (2016) is to show the importance of embedding their SaM model into a New Keynesian 

framework with price rigidities. Together with nonlinear household utility, these give rise to an aggregate demand channel which ensures that the model 

can generate quantitatively substantial effects following uncertainty shocks. To make our analysis more transparent, we abstract from price stickiness and 

associated demand effects. 
4 We share with Coles and Kelishomi (2018) and Leduc and Liu (2020b) an emphasis on the restrictive nature of the standard free-entry condition in the 

SaM model. We differ from these papers in that we concentrate on the implications of free entry for the effects of uncertainty shocks and, in particular, 

the presence or absence of option-value effects. 
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ment on the most closely related studies. In particular, Bloom (2009) offers a seminal examination of the sort of real-options

effects analyzed also in this paper. His model incorporates option-value considerations in hiring and (physical) investment 

due to non-convex adjustment costs. We consider a particularly prominent variant of adjustment costs, namely search fric- 

tions in the labor market, and identify the conditions under which an option-value effect materializes, and when it does 

not. 

Considering studies that share this focus beyond Leduc and Liu (2016) , the most closely related paper is Schaal (2017) .

That paper develops a model with multi-worker firms that are heterogeneous in productivity and which are subject to an 

endogenous linear hiring cost at the firm level. 5 In similarity to our proposed model, the resulting irreversibility gives rise to

an option value of waiting. In contrast to our approach, the free-entry condition binds in every state of the world. The reason

that the value of vacancy posting nonetheless varies over time in Schaal ’s (2017) setup is that firms operate a decreasing

returns to scale technology, and the free-entry condition obtains at the level of the (multi-worker) firm rather than at the

vacancy level. We, by contrast, stay as close as possible to the canonical Diamond-Mortensen-Pissarides assumptions of 

constant returns to scale in production and random search, while restoring an option-value channel. 6 

The next section lays out a standard SaM model and its calibration. Section 3.1 reports the effects on the economy both to

an increase in perceived and realized uncertainty, respectively. Sections 3.2 –3.4 analyze these results in detail. Section 4 dis-

cusses our modifed SaM model in which there is an option value of postponing job creation. The last section concludes. 

2. Theoretical framework 

We begin by summarizing a basic search-and-matching (SaM) framework. This is the same model as studied by Leduc 

and Liu (2016) , except that we restrict ourselves to the flexible-price version and assume the representative household to be

risk neutral. Both assumptions are common in the matching literature. For us they have the benefit of making the analysis

more transparent. Specifically, as shown in Bernanke (1983) and our example in Section 3 , the option value of waiting does

not rely on risk aversion. 7 Nor are sticky prices necessary. 

Model equations. The model is characterized by four equations in four unknown variables, J t , w 

N 
t , θt , and n t . 

J t = x z t − w 

N 
t + βE t [ J t+1 (1 − δ) ] , (1) 

w 

N 
t = ω 

(
x z t + β(1 − δ) κE t [ θt+1 ] 

)
+ (1 − ω) χ, (2) 

κ = h (θt ) J t , (3) 

n t = (1 − n t−1 + δn t−1 ) f (θt ) + (1 − δ) n t−1 . (4) 

Here, J t denotes firm value; z t the (exogenous) labor productivity; w 

N 
t the wage rate based on Nash bargaining; θt labor

market tightness; and n t the mass of productive relationships (or employment). 8 

The firm value, J t , is simply the present-discounted value of firm profits, using the household’s discount factor, β , and

taking into account that firms separate at the exogenous rate δ. The parameter χ in the wage expression represents the 

benefit that accrues to workers if they are not employed. If the bargaining weight of the worker, ω, is equal to zero, wages

are simply equal to χ , which therefore serves as a floor on wages. If the bargaining weight of the worker, ω, exceeds zero,

however, the wage rate increases with the firm’s marginal revenues, x z t , as well as with the expected value of future market

tightness. 9 

The job finding rate, f (θt ) , and the hiring rate, h (θt ) , are determined in the matching market. The number of matches

in period t is determined by the matching function m t = ψv 1 −α
t 

(
u s t 

)α
, where v t denotes the number of vacancies and u s t the

measure of workers searching for a job; that is, u s t = 1 − n t−1 + δn t−1 . This functional form implies that h t = 

m t 
v t = ψθ−α

t and

f t = 

m t 
u s t 

= ψθ1 −α
t , where θt indicates labor market tightness, θt = 

v t 
u s t 

. 

The cost of posting a vacancy is equal to κ and its expected benefit is equal to the product of the hiring rate, h t , and

the value that accrues to a successful entrepreneur, J t . The standard assumption of SaM models is that there is a potentially

infinite number of entrepreneurs. This means that κ has to equal h t J t , as indicated by the free-entry condition in equation

(3) . The free-entry condition implies that an increase in J t leads to a lower value of h t , which is accomplished by an inflow

of additional entrepreneurs into the matching market, i.e., an increase in v t and a reduction in θt . 
5 For a related approach, see Riegler (2019) . 
6 While in the main text we interpret our model as describing one-worker firms, in online appendix OE we show that there exists an equivalent repre- 

sentative multi-worker firm representation – just as it does for the standard SaM model. 
7 Freund and Rendahl (2020) explain how risk aversion can lead to a larger impact of uncertainty shocks through changes in the required risk premium. 

We further discuss the role of risk aversion in online appendix OB. 
8 In the model of Leduc and Liu (2016) , final good producers earn a markup, which means that the relative price of intermediate goods, x , is less than 

one. In this version with flexible prices, the level of the markup is not relevant, but we retain the parameter x , so that our calibration is as close as possible 

to Leduc and Liu ’s (2016) . 
9 See online appendix OA.1 for a derivation. 
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Finally, the value of the exogenous variable z t is determined by the following process 

z t = (1 − ρz ) z + ρz z t−1 + σt−1 ε z,t , (5) 

ln (σt ) = (1 − ρσ ) ln (σ ) + ρσ ln (σt−1 ) + σσ ε σ,t , (6) 

where ε z,t and ε σ,t are iid standard Normal processes. The steady-state value of productivity, z , is normalized to unity. Uncer-

tainty shocks are associated with changes in ε σ,t . This specification of the stochastic processes is common in the literature

but deviates from Leduc and Liu (2016) in two respects. First, the process for z t is in levels rather than in logarithms to

prevent the expected value of productivity to differ from its steady-state through a Jensen’s inequality effect. Second, we 

use the timing assumption common in the uncertainty literature according to which volatility shocks have a delayed impact 

on the distribution of productivity shocks (e.g., Bloom (2009) ). We do so to underscore that real options effects are absent

even under a timing assumption that is, in principle, favorable to wait-and-see effects (cf. Schaal (2017 , footnote 12)). As in

Leduc and Liu (2016) , we specify the process for σt in logs to ensure that the standard deviation remains positive. 

Calibration and solution method. The calibration follows Leduc and Liu (2016) as closely as possible. The calibrated pa- 

rameter values and the associated targets/outcomes are reported in Table 1 . We also use the same solution method, that is,

third-order pruned perturbation. 

3. Volatility in the standard search-and-matching model 

The main objective of this section is to present and analyze the effect of volatility shocks in the standard search-and-

matching (SaM) model. We proceed in four steps. First, we illustrate IRFs of the baseline model, and outline a distinction

between the total volatility effects and those that arise purely from anticipation. As we will see, increased uncertainty gen- 

erally leads to a decline in firm value and a rise in unemployment. However, the results are more complex with respect to

variables such as labor market tightness and wages. Next, we provide a simple two-period version of the model to illustrate

when an option-value channel may emerge, and show that these conditions are not met in the SaM framework. Thus, the

decline in economic activity revealed by the IRFs is not due to an option-value effect. Third, we show that all anticipation

effects disappear once we replace Nash bargaining with a wage rule that is linear in productivity. Lastly, we explain why

Nash bargaining can have non-trivial implications for the transmission of uncertainty shocks. 

3.1. Impulse response functions 

Fig. 1 plots the IRFs for an uncertainty shock, that is, an increase in ε σ,t . We plot two different types of IRFs. The first,

the total volatility IRF, of variable x t is the standard IRF that plots E τ [ x τ+ j ] , where τ is the period the shock occurs and

j = 0 , 1 , · · · . These IRFs describe what happens on average (or, equivalently, in expectation ) during periods of heightened

volatility. Whereas in linear models the impact of a period- τ shock on variables in subsequent periods does not depend 

on realizations of future shocks, in nonlinear models it does. This means that one has to integrate over all possible future

realizations to calculate this expected impact of a period- τ shock. 10 

The second type of IRFs, the pure uncertainty IRF, plots the response of the economy when agents perceive an increase

in future volatility, but this increase never materializes. For an IRF that uses the stochastic steady state as the starting

point, this means that agents think σt is higher than normal during the periods following the shock and act accordingly, 

but productivity, z t , remains at its steady-state value. Thus, the pure uncertainty IRF measures the effects of an increase in

purely anticipated uncertainty, as examined also by Leduc and Liu (2016) . These effects arise solely due to agents’ responses

to changed expectations about the future as described by the total volatility IRF. Thus, the latter type of IRFs is essential to

understand the first kind. 11 

The key observations about Fig. 1 are as follows. First, the value of a firm falls and the unemployment rate increases. This

is true for both types of IRFs. Second, there are important qualitative differences between the two types of IRFs. Whereas the

pure uncertainty IRFs follow the usual monotone pattern, the total volatility IRFs display an inverted u-shape. Moreover, for 

the wage rate and tightness variable, the two types of IRFs even have different signs at some horizons. 12 Both types of IRFs

take on negative values initially for these two variables, but total volatility IRFs turns positive soon after the shock occurs 

whereas this is not the case for the pure uncertainty IRFs. As explained in the next section, this observation is important to

understand why the firm value drops in the matching model with Nash bargaining when volatility increases or is anticipated 

to do so. 
10 The starting point does potentially matter in a nonlinear model. Here we follow the literature and suppose that the shock occurs after a long period 

during which no shocks have materialized at all (cf. Born and Pfeifer (2014) ). The total volatility IRFs are calculated using the technique of Andreasen et al. 

(2018) . 
11 This relationship is also important to understand first-order moment “news” shocks, that is, how the economy responds in period t to news that 

productivity will be higher in the future requires understanding how the economy is expected to respond to such an increase in productivity. 
12 By construction, the two IRFs take on the same value in the period when the shock occurs, since our timing assumption implies that uncertainty 

shocks have no effect in that period. Thus, the impact-period responses for both types of IRFs are purely based on expectations on what will happen and 

those expectations are the same. 
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Fig. 1. IRFs for uncertainty shock in standard SaM model under Nash Bargaining. Notes: The “total volatility” IRFs plot the change in the period-0 expected 

values of the indicated variables in response to a unit-increase in ε σ,t . The “pure uncertainty” IRFs display how the economy responds when agents think 

volatility will increase, but the higher volatility actually never materializes. 

 

3.2. The evasive option value 

To understand the IRFs presented in the last section, we make use of a simple example to illustrate why and when an

increase in uncertainty increases the option value of postponing workforce investment. As we will see, there cannot be an 

option-value channel operating within the standard SaM framework, and the example developed here is useful to make this 

clear. 

Option value of postponing investment. The option value to wait is most transparent under risk neutrality, as risk aversion 

will add additional aspects to the analysis, such as precautionary savings and changes in risk premia. Hence, we consider 
5 
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a risk neutral agent. This agent can choose between the following two investment paths. The first possibility consists of 

investing immediately and earning a known return R 1 in the first period and a stochastic return R 2 in the second period.

The latter return will only become known in period 2. Alternatively, the agent can postpone making a decision. In this case,

she would instead bring the money to the bank in the first period and earn a return equal to R ∗ < R 1 . In the second period,

the agent will invest in the project only if R 2 > R ∗ ≥ 0 . The expected values of the two strategies – commit and wait – are

given by 

J commit = R 1 + βE[ R 2 ] , (7) 

J wait = R 

∗ + βE[ max { R 2 , R 

∗} ] . (8) 

How does increased volatility, i.e., an increase in the variance of R 2 , affect the entrepreneur’s choice when we keep the

expected value of R 2 the same? It does not affect the value of J commit . However, it does increase the value of J wait . The reason

is that by waiting the entrepreneur is ensured of a minimum return, R ∗, but she benefits from the higher upward potential

of the investment project. 

We want to highlight two features that are important. First, the decision is irreversible . That is, if the entrepreneur starts

the project in period 1, then she cannot unwind the project in period 2 and get a refund. Second, the projects are mutually

exclusive . That is, the entrepreneur has to adopt either the commit or the wait strategy. 

Option value of waiting in search-and-matching models. For comparison purposes, consider a two-period version of the 

standard SaM model. 13 An entrepreneur who invests by creating a vacancy in period 1 faces the cash flow 

−κ + h 1 (R 1 + βE[ R 2 ]) ︸ ︷︷ ︸ 
J 1 

, (9) 

where R t is now equal to profits net of wages. An entrepreneur who waits has no income in period 1 and we get 

0 + βE[ max {−κ + h 2 R 2 ︸︷︷︸ 
J 2 

, 0 } ] . (10) 

Investments are irreversible in the SaM model, since κ is paid upfront. Does this mean that individual entrepreneurs in SaM 

models have a benefit of waiting when the expected volatility of period-2 profits increases keeping their expected value 

constant? The answer is no. The free-entry condition implies that expected profits are equal to zero in every time period

and in every state of the world; that is, −κ + h t J t = 0 , t = 1 , 2 . Since profits from vacancy-posting are expected to always be

equal to zero, the upward potential that increased the value of waiting in the example discussed above does not exist here.

That is, with free entry the last two equations can be written as 

−κ + h 1 J 1 = 0 , (11) 

βE[ max {−κ + h 2 J 2 , 0 } ] = βE[ max { 0 , 0 } ] = 0 . (12) 

Thus, although job creation is irreversible, it is not sufficient to generate an option-value channel. 14 

Key for the result that the expected value of vacancy posting is zero is that investing now and waiting are not mutually

exclusive. That is, posting a vacancy this period does not prevent vacancies from being posted next period. It would not

make a difference if these choices were mutually exclusive for the entrepreneur herself, that is, if one assumed that each

entrepreneur can be involved in one project only. The reason is that there are always other entrepreneurs who can pursue

the alternative choices, exhausting all positive profits. Thus, mutual exclusivity applies – respectively, does not apply – to 

the economy as a whole , and not to individual agents. 

In Section 4 , we will show that it is possible for the SaM model to have an option-value mechanism if one assumes that

each matched entrepreneur cannot be involved in more than one project and the mass of entrepreneurs is finite. This is

sufficient to create an environment in which projects are mutually exclusive and expected profits are potentially positive. 

Fig. 1 demonstrates that there is one aspect of the properties of the SaM model developed in Section 2 that is quite

different from the analysis based on the simple two-period setup. Specifically, Fig. 1 documents that the value of a match,
13 What matters for economic activity in a standard SaM model with exogenous separation are the expected profits from posting a vacancy, not those of 

an existing match. Thus, we consider the decision of an unmatched entrepreneur. 
14 Irreversibility refers to the posting costs. Here, we have assumed that the entrepreneur who invests in period 1 will have some positive cash flow in 

period 2 for sure ( R 2 ≥ 0 ). That is, there is no incentive to end the relationship early endogenously. But R 2 could be negative, for example, with sticky 

wages. Allowing for endogenous discontinuation means that the net present value of the surplus accruing to the entrepreneur investing in period 1 is 

given by 

−κ + h 1 R 1 + βE[ max { R 2 , 0 } ] = −κ + h 1 J 1 = 0 . 

The convexity introduced by endogenous job destruction implies that an increase in anticipated uncertainty would raise the value of J 1 , which in turn 

would lead to an increase in vacancies in period 1. That is, the outcome is the opposite of that predicted by an option value of waiting mechanism. 

6 
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J t , declines in response to an anticipated uncertainty shock, whereas the value of investing early in the two-period model,

J 1 , remains unaffected. 

One might conjecture that the reason behind this decline in J t is an increase in the option value of waiting ( Leduc and

Liu, 2016 , p. 21). But J t in the matching model corresponds to J commit in the simple model; that is, to the value of investing

now . In contrast, the idea of the option value to wait is that the value of waiting and potentially investing later increases.

In the terminology of our stylized setup, an increase in uncertainty leads to an increase in J wait , not to a decrease in J commit .

3.3. If it is not an option value, what is it? 

Our discussion above made clear that the environment of the standard SaM model does not satisfy the conditions that 

generate an option value of postponing job creation. But it is still the case that volatility shocks lower the match value and

increase the unemployment rate. The question is why does this happen, and can the reason still be given some option-value

interpretation? 

Note that in the two-period model, we assumed that E[ R 2 ] , i.e., expected profits, remain the same when we increased

the expected volatility. The same is true for expected values of future productivity in the full dynamic models. Thus, it must

be the case that the behavior of wages is essential for understanding the results in Fig. 1 . 

The Nash bargaining assumption adopted in Leduc and Liu (2016) is just one of many possibilities and it is not an

essential characteristic of the matching mechanism. Those essentials are, firstly, that neither workers nor entrepreneurs find 

a match with probability one. And secondly, that both sides face congestion effects, so that the probability of finding a match

decreases if more of your ypre are searching; the matching function is concave in both arguments. To better understand the

role of uncertainty in SaM models, we first consider the case in which not only the expected value of productivity but also

the expected value of profits remains unchanged when volatility increases. This can be easily accomplished if one assumes 

that wages are a linear function of current productivity, z t , only. 15 Specifically, 

w t = ω x z t + (1 − ω) χ. (13) 

Matching frictions and anticipated volatility changes Under this wage rule one can derive a useful, analytical expression for J t .

Proposition 1. Suppose that wages are set by the linear wage rule given in equation (13) , then 

J t = 

(1 − ω) x 

1 − β(1 − δ) ρz 
z t − (1 − ω) χ

1 − β(1 − δ) 
+ 

β(1 − δ)(1 − ω)(1 − ρz ) x 

(1 − β(1 − δ))(1 − β(1 − δ) ρz ) 
. (14) 

Proof. See online appendix OA. �

Thus, J t is a linear function of z t . The formula immediately makes clear that an increase in anticipated volatility has no

effect on J t . If the anticipated increase in volatility does not materialize, then J t will not change in subsequent periods either

even when agents continue to anticipate higher uncertainty in the future. Consequently, none of the other variables will be 

affected either, as is documented in Fig. 2 which plots the two types of IRFs for an increase in uncertainty under the linear

wage rule. 16 

The fact that the IRFs associated with an anticipated increase in volatility are zero in every period allows us to draw a

strong conclusion. That is, the nonlinearity of the matching function by itself does not generate an employment effect in 

response to an increase in anticipated uncertainty. Consequently, there is also no option-value channel associated with the 

pure anticipation effect of an increase in uncertainty. 

Still, increased volatility in productivity will make J t more volatile, which in turn renders matching probabilities more 

volatile as well. We therefore explore next whether the nonlinearities of the matching function could be such that increases 

in volatility affect the expected values of employment during the period of elevated volatility. 

Matching frictions and realized volatility changes. How can we expect an increase in the standard deviation of productivity 

shocks to affect values of key variables in the model during the period of higher volatility? Given the linearity of J t , the

total volatility IRF of J t will also be zero. However, as demonstrated by Fig. 2 , there are increases in the expected values of

market tightness, θt , the hiring rate, h t , and the unemployment rate, u t . But the expected values of the job finding rate, f t ,

are unaffected. To understand these results recall the expressions for θt , h t , and f t , 

h t = 

κ

J t 
, θt = 

(
ψ 

κ
J t 

) 1 
1 −α

, and f t = ψ 

(
ψ 

κ
J t 

) 1 −α
α

, 
15 This linear specification can be motivated by an alternating-offers game ( Freund and Rendahl, 2020; Hall and Milgrom, 2008 ). A key aspect of this 

game is that separation is not a credible threat. Consequently, agreement is reached within the period and market tightness does not affect the outcome. 

As long as agreement has not been reached, the worker is not working. The parameter χ captures the utility of not working during the negotiations. This 

wage coincides exactly with that of Jung and Kuester (2011) , in which the Nash product, (w t − χ) ω ( x z t − w t ) 1 −ω , is maximized. 
16 The parameters of the version with linear wages are chosen to make it comparable to that with Nash bargaining. Specifically, the outside option χ

is set such that the elasticity of labor market tightness with respect to productivity is unchanged relative to Nash bargaining. To this end, we exploit the 

close relationship between that elasticity and the fundamental surplus, x z − χ , as defined by Ljungqvist and Sargent (2017) . Given the other parameters, 

the bargaining weight ω is then pinned down by the steady-state version of equation (13) . Parameter values are given in Table 1 . 
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Fig. 2. IRFs for uncertainty shock in standard SaM model with linear wage rule. Notes: The “total volatility” IRFs plot the change in the period-0 expected 

values of the indicated variables in response to a unit-increase in ε σ,t . The “pure uncertainty” IRFs display how the economy responds when agents think 

volatility increases, but the higher volatility actually never materializes. 

 

 

 

 

where α is the curvature parameter in the matching function. The hiring rate, h t , is a convex function of J t , for any value of

α ∈ (0 , 1) . For our linear wage function this means that it is also convex in z t . Consequently, a rise in volatility then leads

to an increase in expected values. 

Tightness, θt , is also a convex function of z t for any value of α ∈ (0 , 1) . When J t is small, for instance, an increase in J t 
leads to small increases in vacancies. The reason is that small values of J t are associated with low values of v t . This implies

a high marginal “productivity” of the matching function, so that small changes in the level of v t are sufficient to restore the

equilibrium conditions. 
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By contrast, f t can either be a convex or a concave function of z t depending on the value of α. Our results are based on

α = 1 / 2 in which case the job finding rate is linear in J t and, thus, in z t . This explains why the total volatility IRF for f t is

zero at all forecast horizons. The reason for the ambiguity and the dependence on the value of α is that the hiring rate is

inversely related to J t yet the job finding rate is inversely related to the hiring rate. 

We now turn our attention to the effect of uncertainty on the employment rate, n t . We repeat its law of motion for

convenience. 

n t = (1 − δ) n t−1 + (1 − (1 − δ) n t−1 ) f t . 

Although f t always becomes more volatile, its expected value remains the same when α = 1 / 2 . But the total volatility IRFs

indicate that this higher volatility is associated with a higher unemployment rate and, thus, lower employment rates. Why 

does an increase in the volatility of f t reduce the expected future values of n t ? The reason is that the higher values of the

job finding rate are expected to occur during expansions when fewer workers are searching for a job. Consequently, the 

impact on the employment rate will be smaller. By contrast, the lower values of the job finding rate will have a bigger

impact because they are expected to occur during recessions when lots of workers are searching for a job. 17 In the period

of the shock, the mass of searching workers, 1 − (1 − δ) n t−1 , is fixed and, hence, a higher volatility of f t has no effect

on expected employment. In the next few periods, this mass is still close to its steady-state value. But as time goes on,

the asymmetric effect becomes more important when z t shocks push unemployment either up or down. This explains the 

gradual increase for the unemployment IRF. 

Why increased uncertainty might reduce unemployment due to matching frictions. When α = 1 / 2 , then the increased volatily

has no effect on the average value of f t . However, when α < 1 / 2 , then f t is a convex function of z t , which implies that the

expected values of the job finding rate increases. Fig. 3 plots the results when α = 0 . 2 . Since f t is now a convex function of

z t , the period of higher volatility correspond to higher average job finding rates. Initially – as the unemployment rate is still

close to its steady-state value – this pushes the unemployment rate down. This result illustrates that matching frictions by 

themselves can even lead to decreases in the unemployment rate during periods of heightened volatility, although the value 

of α has to be substantially lower than values typically assumed in the literature (cf. Petrongolo and Pissarides (2001) ). Of

course, an anticipated increase in volatility will still have no effect when α < 1 / 2 . This is another example that illustrates

how the two types of higher volatility experiments generate quite different outcomes. 

3.4. The non-trivial implications of Nash bargaining 

As shown in Section 3.1 , an anticipated increase in uncertainty does lead to a reduction in the match value and a reces-

sion with Nash bargaining. So why are the results with Nash bargaining different from those with a linear wage rule? The

answer actually follows quite directly from these results for the linear wage rule and the expression of the Nash-bargained

wage rate, which we repeat here for convenience. 

w 

N 
t = ω x z t + (1 − ω) χ + ωβ(1 − δ) E t [ κθt+1 ] 

This expression makes clear that the wage does not only increase with the period- t benefits of not working, χ , and with

current-period firm revenues, x z t . A higher expected value of future tightness likewise implies a higher wage rate this pe-

riod. 18 

As discussed above, search frictions, and specifically the convexity of tightness, mean that the higher volatility in J t 
increases the expected values of future tightness. With Nash bargaining, this expectation translates into higher current wage 

rates. 19 Higher current wages lead to a reduction in match value. The following proposition proves more formally that the 

match value J is concave in productivity under Nash bargaining. 

Proposition 2. Suppose that productivity is constant, z t = z t+1 = · · · = z, and wages are set by Nash bargaining, then J(z) is a

strictly concave function, and θ (z) is a strictly convex function. 

Proof. See online appendix OA. �

Intuitively, the free-entry condition together with the nonlinearity of the matching function ensures that θ is a convex 

function of J. Moreover, as the Nash bargained wage depends positively and linearly on tightness, the wage function is also

convex in J. The concavity of J then follows from the convexity of the wage function. 20 
17 See Hairault et al. (2010) and Jung and Kuester (2011) . 
18 To gain intuition for why this is the case, notice that using the free-entry condition, we can write 

κθt+1 = κ
v t+1 

u s 
t+1 

= κ
f t+1 

h t+1 

= f t+1 J t+1 . 

That is, what matters for wage setting in terms of forward-looking behavior is the expected value of the product of next period’s job finding rate and next 

period’s firm value. 
19 In online appendix OB we show that if households are risk averse, then additional interaction effects come into play. In particular, whenever the 

marginal utility of consumption is elevated, this lowers the Nash-bargained wage rate. 
20 The above reasoning relies on the properties of J rather than productivity z. To complete the argument, notice that tightness will always be a convex 

function of z unless J is sufficiently concave. However, if this is the case, labor market tightness as well as wages are concave functions of z. Since w enters 
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Fig. 3. IRFs for uncertainty shock in standard SaM model with linear wage rule & low α. Notes: The “total volatility” IRFs plot the change in the period-0 

expected values of the indicated variables in response to a unit-increase in ε σ,t . The “pure uncertainty” IRFs display how the economy responds when 

agents think volatility increases, but the higher volatility actually never materializes. The value of α is equal to 0.2. 

 

 

 

 

The concavity of J(z t ) implies that its expected value should decrease if z t becomes more volatile. But the story does not

end here. The reduction in J t leads to an immediate reduction in vacancy posting, which in turn puts an immediate down-

ward effect on tightness and a reduction in the job finding rate. If one considers a period with an anticipated increase in

volatility that never materializes, then the expected increase in tightness due to higher volatility of J t will never materialize

either. Consequently, there is just downward pressure on firm value, tightness, and the wage rate, consistent with the IRFs 
the match value negatively, this would imply that J must be convex, which is a contradiction. Thus J is concave in z. See Section 3.3 for a discussion of a 

similar relationship between θ and z even when J is a linear function of z. 
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given in Fig. 1 . There will be an instantaneous jump down in these variables and a gradual return towards the (stochastic)

steady state. What about the total volatility effect? For tightness we have the effect that works through the wage rate, that

is, tightness drops because of the expected increase in the wage rate. This channel is strongest just after the shock and then

leads to a monotonically declining effect. But we also have the effect arising from the nonlinearity of the matching function,

which implies that tightness is a convex function. This latter feature gives rise to an upward effect on average tightness

during periods of heightened volatility. The result is a non-monotone effect that is small at first. 21 Initially, the negative ef-

fect must dominate, but expected tightness becomes positive after two periods when it is overturned by the effect working 

through the nonlinearity of the matching function. The wage rate IRF leads the change in the expected value for tightness

which follows directly from equation (2) . The firm value is simply the mirror image of the wage rate since expected pro-

ductivity actually does not change. Note that it must be the case that the total volatility IRF for tightness turns positive at

some point. If it never did, then the wage response would not turn positive either, which means that firm value would not

have dropped; but then tightness should not have fallen in the first place. 

4. A search-and-matching model with option value 

Section 3.2 showed that even though job creation is an irreversible investment, the standard search-and-matching (SaM) 

model does not have the other ingredient needed to generate an option-value channel – the mutual exclusivity of investment 

projects – since the choice to create a job this period does not restrict job creation in the future. In this section we propose

an amended SaM model according to which elevated uncertainty does raise the value of waiting. Before specifying that 

model, we briefly discuss a simple experiment which demonstrates that an option-value channel is possible, in principle, 

simply by assuming that the mass of available entrepreneurs is finite . This example clarifies the crucial role of the free-entry

condition in eliminating the option-value channel. It also serves as a stepping stone to understanding our proposed model. 

Consider the model of Section 2 with a linear wage rule. Productivity is constant and the economy starts out in steady

state. We assume that the mass of entrepreneurs, while finite, is large enough for the steady state to be unaffected. In

period t , the economy encounters the following increase in anticipated volatility. Aggregate productivity in some state of 

period t + 1 is sufficiently great for the profits associated with posting a vacancy in that state to be strictly positive. In

particular, there are simply not enough unmatched entrepreneurs available in the entire economy for these profits to be 

exhausted due to entry. That is, the free-entry condition no longer holds in that state, as 

h t+1 J t+1 − κ > 0 , 

whereas it holds with equality in all other states. 22 

In period t , an idle entrepreneur is now faced with the choice of either posting a vacancy immediately, or waiting in the

hope of entering when profits are strictly positive. Waiting is obviously a dominant strategy as long as profits in period t

fall short of the expected profits in period t + 1 . Vacancies in period t therefore decline, and the hiring rate increases. This

remains true until profits in period t are exactly equal to the expected profits of entry in period t + 1 . That is, until the

arbitrage condition 

h t J t − κ = E t [ h t+1 J t+1 − κ] > 0 , 

is satisfied. Thus, the (expectation of) positive profits available in period t + 1 , caused by a shortage of available en-

trepreneurs, gives rise to positive profits in period t; profits that are generated by a rise in the hiring rate, h t , which is

accomplished through a decline in vacancies. In short, a perceived increase in future uncertainty can give rise to an option

value of waiting and a decline in economic activity in the present, if that increased volatility means that the constraint on

the number of available entrepreneurs is expected to be binding in some future state of the world. 

While this simple extension of the baseline model is sufficient to give rise to an option-value channel, it suffers from sev-

eral disadvantages. Firstly, for an option-value mechanism to operate in this environment, one had to postulate the existence 

of states of the world in which there is literally nobody left to create jobs, regardless of how great the associated profits

are. That seems implausible. More broadly, the distribution of shocks must be such that the free-entry condition is binding 

in some states but not in others. That is, the presence of option-value effects is sensitive to assumptions about the size of

shocks. Finally, the requirement that the constraint on the number of entrepreneurs be occasionally binding complicates the 

numerical analysis. 

4.1. A model with firm heterogeneity 

So what can be done? Clearly, we have to maintain the assumption of a finite mass of entrepreneurs, lest free entry

drive expected profits to zero in all states of the world, eliminating the possibility of an option-value channel. At the same

time, it is desirable to have an internal solution. This can be accomplished by having heterogeneity in productivity among 
21 If the shock occurs in period τ , then z τ+1 will be more volatile because ε z,τ+1 is more volatile. But z τ+2 will be more volatile because ε z,τ+2 and z τ+1 

will be more volatile. 
22 Note, in particular, that the prospect of a large fall in aggregate productivity leaves expected profits unaffected, since such a shock lead to an increase 

in the slack of the constraint on the available number of entrepreneurs. 
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idle entrepreneurs. The simple modification gives rise to a framework in which there are always idle entrepreneurs, but only 

some that find it profitable to enter the matching market. The measure that finds it profitable to do so is endogenous and

time-varying. At the same time, the option value of waiting remains operative, since higher uncertainty gives entrepreneurs 

upward potential, whereas they are shielded from downward risk, since they can always choose not to post vacancies. 23 

4.1.1. Setup 

We assume that there is a finite, and constant, mass of potential entrepreneurs, ϒ . 24 We adopt the standard convention

in the SaM literature according to which each entrepreneur can potentially create a one-worker firm. In every period, each 

unmatched entrepreneur receives an iid productivity draw, a , from the cumulative distribution function, F (a ) , with mean

zero. The distribution is uniform on the interval A = [ −a , a ] , with a = 

√ 

3 σa , where σa is the standard deviation of a . 25 

If an entrepreneur is successful in creating a new firm, the idiosyncratic productivity draw, a , is realized and lasts per-

manently throughout the match. As in the baseline model, the firm is then only dissolved by exogenous separation, which 

occurs at a rate δ. Entrepreneurs have finite lives, in that following separation the entrepreneur “dies” and gets replaced. 26 

If, on the other hand, the entrepreneur is unsuccessful in creating a firm, she receives a new productivity draw in the sub-

sequent period. As a consequence, only entrepreneurs with a high enough value for a will find it worthwhile to pay the cost

of posting a vacancy. Others may instead find it more beneficial to wait for the opportunity of receiving a better draw in

the future. That is, there is scope for an option value of waiting, without having to rely on there being states of the world

in which there are no entrepreneurs left who conceivably could post further vacancies. 27 

With idiosyncratic productivity shocks the firm value is given by 28 

J t (a ) = (1 − ω)( x (z t + a ) − χ) + β(1 − δ) E t [ J t+1 (a )] . (15) 

In the baseline model, the free-entry condition ensured that the value of an idle entrepreneur is always zero. In the cur-

rent case, by contrast, the measure of entrepreneurs, ϒ , is finite, and the value of being an idle entrepreneur prior to the

revelation of the idiosyncratic draw, J U t , is non-negative and given by 

J U t = 

∫ 
A 

max 
{
βE t [ J 

U 
t+1 ] , h t J t (a ) + (1 − h t ) βE t [ J 

U 
t+1 ] − κ

}
dF (a ) (16) 

= 

∫ 
A 

max 
{

0 , h t (J t (a ) − βE t [ J 
U 
t+1 ]) − κ

}
dF (a ) + βE t [ J 

U 
t+1 ] . (17) 

Define ˆ a t as the productivity cut-off that renders an entrepreneur indifferent between entering or not; that is, 

h t (J t ( ̂  a t ) − βE t [ J 
U 
t+1 ]) − κ = 0 . (18) 

Moreover, denote a ∗t as the expected value of a conditional on a being above the cutoff level, and p t as the probability of

such a draw. That is, 

p t = 1 − F ( ̂  a t ) , a 
∗
t = 

1 

p t 

∫ a 

ˆ a t 

adF (a ) = E t [ a | a ≥ ˆ a t ] . (19) 

Then the value of an idle entrepreneur can be written as 

J U t = p t 

(
h t (J t (a ∗t ) − βE t [ J 

U 
t+1 ]) − κ

)
+ βE t [ J 

U 
t+1 ] . (20) 

Lastly, the number of vacancies is given by 

v t = p t (ϒ − (1 − δ) n t−1 ) . (21) 
23 The models of Coles and Kelishomi (2018) and Leduc and Liu (2020b) , referred to already in footnote 4, likewise feature firm heterogeneity and an 

imperfectly elastic entry margin. Nonetheless, these models rule out an option-value channel by assumption. The reason is that in their setup, each one of 

a fixed mass of entrepreneurs can run several, independent business opportunities, and entering today does not preclude entering again next period. That 

is, mutual exclusivity does not obtain. 
24 Section OD.2 in the online appendix considers a more general version in which ϒ is allowed to be time-varying. It nests both the model discussed 

here and the standard SaM model with free entry. 
25 Results with a Normal distribution are similar and are reported in online appendix OF.2. 
26 The match value does not feature a term related to the value of waiting as entrepreneurs die upon separation. This assumption is made to allow 

for a transparent analysis. When entrepreneurs live for ever, they would receive a new draw of a after separation and – just like entrepreneurs who 

wait – benefit from increased uncertainty although only at some future date. Online appendix OD.1 provides an alternative setup with infinitely-lived 

entrepreneurs. 
27 For the standard SaM model, there exists an equivalent representation with a representative n -worker firm. Online appendix OE derives such a rep- 

resentation for a generalized version of our model with idiosyncratic productivity dispersion. Therefore, both the standard and our alternative model can 

be interpreted as explaining changes in employment either through the extensive margin (changes in firm creation), the intensive margin (changes in firm 

size), or both. 
28 The notation is somewhat simplified in that it does not specify that a is the draw that the entrepreneur received in the period the match was created. 

Over time, firm level productivity, z t + a , only varies with aggregate productivity, z t . We also do not add a subscript to indicate that the level of a is 

firm-specific. 
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Thus, in contrast to the previous framework, the firm value is now provided by equation (15) , and the free-entry condition

is replaced by equation (18) ; the equations for h t , f t , n t , as well as the exogenous processes remain the same. 

Before providing a qualitative analysis of the option-value channel it is necessary to touch upon some aspects of the 

calibration (see Section 4.2 for additional details). In particular, our ambition is to keep the heterogenous-firm version as 

close as possible to the baseline, and for both frameworks to coincide – at least with respect to the key variables – at the

steady state. In the baseline framework the cut-off level ˆ a is, by construction, zero. Thus, we calibrate the model such that 

the steady-state value of ˆ a remains at zero for any value of σa . Given the symmetry of the distribution this implies that

p = 0 . 5 . 29 Moreover, following equation (21) , and imposing the steady-state values of vacancies, v , and employment, n , from

the baseline model, one finds that ϒ must be set as ϒ = 2 v + (1 − δ) n . Another salient implication of this choice of ˆ a is

that at the steady state, the measure of idle entrepreneurs posting a vacancies is equally large as that of idle entrepreneurs

that are not. Thus, the constraint on the number of entrepreneurs is unlikely to be binding even for fairly large shocks and

we verified that it indeed never is for any of the numerical exercises discussed. 

4.1.2. An option value of waiting 

The emergence of an option-value channel in this framework is intuitive and visible even in the absence of aggregate risk.

We first explain how the channel emerges only due to idiosyncratic risk, and then discuss how a similar effect arises from

aggregate volatility. In online appendix OC, we furthermore develop a two-period version of this model with heterogeneous 

productivity levels which is helpful in providing some graphical intuition as well as some analytical results. 

Idiosyncratic risk. Suppose that there is no aggregate risk and that the cross sectional dispersion in productivity is zero; 

that is, σa = 0 . Provided that there is a sufficient mass of available entrepreneurs to exhaust all (excess) profits of entry, the

first term in equation (17) must equal zero. That is, 

max 
{

0 , h (J(0) − βJ U ) − κ
}

= 0 , (22) 

where we dropped time subscripts given the absence of aggregate uncertainty. Consequently, J U = 0 , and the above equation

simply replicates the free-entry condition in the standard SaM model. Thus, with σa = 0 , the heterogeneous-firm model 

nests the baseline. 

Suppose instead that σa > 0 . If ˆ a t were unaffected by this alteration (remaining at zero), so would the hiring rate, h t . By

contrast, the presence of cross-sectional dispersion in productivity implies that a ∗ – i.e., the expected value of the idiosyn- 

cratic component conditional upon entry – must rise above zero. This means that the value of waiting, βE t [ J 
U 
t+1 

] , is positive

as well. Consequently, an entrepreneur with a = 0 now prefers to wait in the hope of getting a better draw next period.

Consequently, ˆ a t will increase until the hiring rate has dropped sufficiently so that the expected profits of vacancy posting 

at the new cut-off level equals the value of waiting. 30 

Would it not be possible for changes in the hiring rate to drive the expected value of waiting to zero? No. If that were

true, then the expected profits of vacancy-posting would be equal to zero for an entrepreneur with a = ˆ a t . With idiosyncratic

dispersion, however, this agent has some probability of receiving a draw for a in the future that exceeds ˆ a t in which case the

expected profits must be strictly positive. 31 The more cross-sectional dispersion, as indicated by σa , the larger the difference 

between ˆ a and a ∗; that is, the stronger the option value of waiting due to idiosyncratic risk, the lower p t , and the higher

the unemployment rate. The leftmost graph in Fig. 4 illustrates this relationship between σa and the steady state level of

the unemployment rate. As can be seen, the mechanism is powerful; an increase in the standard deviation of a from zero

to 0.01 (that is, one percent of the output level without idiosyncratic dispersion) increases the steady-state unemployment 

rate from 6 . 4% to almost 14% . 

Aggregate risk. The presence of aggregate risk also gives rise to an option value of waiting mechanism, which operates 

similarly, but not identically nor independently, to the above mechanism. To understand the nuance, notice that a higher 

value for z t+1 would increase the value of J t+1 (a ) , while a lower value for z t+1 would result in a decline. When wages

are linear in productivity and entrepreneurs die after an exogenous separation, which is the case in this framework, the 

increase and decrease in J t+1 exactly offset each other. Nevertheless there still is an option value of waiting. The reason

is as follows. The increase in z t+1 generally leads to a reduction in the cutoff value ˆ a t+1 (and, hence, in a ∗
t+1 

), since total

productivity, z t+1 + ˆ a t+1 , will anyway increase. Similarly, the decrease in z t+1 generally leads to an increase in ˆ a t+1 (and

a ∗t+1 ). Consequently, the probability of entering and thereby benefiting from an increase in J t+1 is higher than that of the

decrease. 32 Therefore, an anticipated increase in future aggregate volatility increases the conditional expected value of a 

match, J t+1 (a ∗
t+1 

) , which thereby raises the value of waiting, J U 
t+1 

; the option-value channel materializes. 

It ought to be noted that the presence of cross-section dispersion - alongside, of course, the finite measure of en-

trepreneurs – is necessary for this mechanism to operate at all . 33 Indeed, entrepreneurs can only “benefit” from a higher 
29 Online appendix OF.4 provides the results when this fraction is equal to 0.2 instead. 
30 It is of course essential that entrepreneurs have the option to not post a vacancy in the future. That is, expected profits are always bounded below at 

zero. This leads to a convex payoff function and Jensen’s inequality then implies that uncertainty raises expected values. 
31 With idiosyncratic dispersion, a ∗t could be equal to ˆ a t , but only if ˆ a t is at the upper bound of the distribution, that is, when nobody would want to 

post vacancies. This does not happen for any of our parameterizations, because changes in matching probabilities always ensure an interior solution for ˆ a t . 
32 Phrased in another way, the higher J t+1 is multiplied by a higher value of p t+1 than the lower J t+1 . See online appendix OC for an intuitive and graphical 

exposition using a 2-period version of the model. 
33 That is, unless we rely on a shock distribution that render the free-entry condition occasionally binding. 

13 



W.J. Den Haan, L.B. Freund and P. Rendahl Journal of Monetary Economics 123 (2021) 1–18 

Fig. 4. Cross-sectional dispersion and steady-state properties. Notes: The panels display key moment properties as a function of the amount of cross- 

sectional dispersion. The left panel indicates the steady-state unemployment rate, while the right panel plots the steady-state elasticity of labor market 

tightness with respect to aggregate productivity. All other model parameters are kept fixed and are equal to the ones given in Table 1 for the case with 

the linear wage rule and no cross-sectional dispersion. 

Table 1 

Calibrated parameters. 

Wage 

Parameter Interpretation Source/target Nash Linear 

β Discount factor Ann. interest rate of 4% 0.99 0.99 

ψ Efficiency of matching Unemployment rate of 6.4% 0.645 0.645 

x Markup Markup of 11% 0.9 0.9 

δ Separation rate JOLTS database 0.1 0.1 

ω Workers barg. power Steady-state wage relation 0.5 0.915 

α Elasticity of matching Petrongolo and Pissarides (2001) 0.5 0.5 

κ Vacancy posting cost 2% of steady-state output 0.14 0.14 

χ Disutility of working ηθ,z equal to 7.051 0.751 0.645 

ρz Persist. of agg. product. Leduc and Liu (2016) 0.95 0.95 

ρσ Persist. of uncertainty Leduc and Liu (2016) 0.76 0.76 

σz Std. agg. product. shock Leduc and Liu (2016) 0.01 0.01 

σσ Std. uncertainty shock Leduc and Liu (2016) 0.392 0.392 

Notes. This table lists the parameter values of the baseline SaM model with both types of wage setting. One pe- 

riod in the model corresponds to one quarter. There are some slight unavoidable differences with the calibration 

procedure of Leduc and Liu (2016) . For instance, with risk neutrality, the calibrated value of the disutility of la- 

bor parameter, χ , is slightly different than with log utility. Also, with utility linear in consumption there is no 

difference between disutility of labor and unemployment benefits and our χ parameter captures both. The tar- 

geted value of ηθ,z , the steady-state elasticity of labor market tightness with respect to aggregate productivity, 

is implied by Leduc and Liu ’s (2016) calibration for the model with Nash bargaining and linear utility. Parameter 

values are rounded to three decimal places. 

 

 

 

 

 

 

match value if the profits of entry can be positive. Absent cross-sectional dispersion (and with a potentially infinite measure 

of entrepreneurs), the hiring rate would otherwise adjust to ensure that the expected profits of entry are zero in all time

periods and in all states of the world, and the option-value channel would close down. The rightmost graph in Fig. 4 shows

the relationship between the amount of cross-sectional dispersion, σa , and the steady-state elasticity of labor market tight- 

ness with respect to aggregate productivity. Less dispersion implies a higher elasticity, which reflects the fact that dispersion 

dampens the movements in the hiring rate. 

4.2. Recalibration scheme 

An insight from the previous section is that the amount of cross-sectional dispersion, σa , alters some of the key proper-

ties of the model. In particular, a higher value of σa is associated with a higher steady-state unemployment rate for a given

value of aggregate productivity. Yet, a key element of the calibration strategy of Leduc and Liu (2016) and adopted here

is that the theoretical steady-state unemployment rate matches its empirical counterpart. In addition, the volatility of the 

hiring rate is declining in σa . In view of this, we pursue a recalibration strategy which ensures that irrespective of the chosen

value of σa , the model economy matches key empirical targets and features a comparable degree of aggregate volatility to 
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the baseline model of Section 2 . Specifically, (i ) the steady-state values of all endogenous variables are unchanged; and (ii )

the steady-state elasticity of labor market tightness with respect to aggregate productivity equals the baseline. 

The key parameter to obtain the latter target is χ , which controls the value of the worker’s outside option during bar-

gaining. By choosing larger values for χ when σa is higher, we reduce the contemporaneous surplus, x (z t + a − χ) , which

renders the model variables more volatile – offsetting the lower volatility implied by a wider cross-sectional distribution. 

Next, for the steady-state rate of unemployment to be the same as in the baseline model, the steady-state value of the

cutoff level ˆ a must be equal to zero for the different values of σa considered. 34 The key parameter to accomplish this is the

worker bargaining power, ω. When χ is increased, the share that accrues to the entrepreneur, i.e., 1 − ω, must increase to

ensure the same level of steady-state vacancy posting. 

Lastly, the steady-state total productivity of the average firm is given by z + a ∗. Since a ∗ increases with σa , we adjust the

value of z downward to compensate for this effect. A benefit of this approach is that the steady-state value of 
(
J( ̂  a ) − βJ U 

)
,

i.e., the difference in the value of a match at the cutoff relative to the value of an unmatched entrepreneur, is the same

across economies. 35 Since that term plays a key role in driving the dynamics of the model, this aspect of the recalibration

procedure assists with the interpretation of the results. 

Our recalibration scheme imposes a natural range for the values of σa . As σa increases, we need to increase χ and lower

ω. Above a value of σa = 0 . 003 , ω quickly approaches its natural lower bound of 0. As this is a fairly low value, we adopt

it as a benchmark. 36 Following our recalibration procedure, when σa = 0 . 003 , we set χ = 0 . 757 , ω = 0 . 636 , and z = 0 . 997 .

The remaining parameters are unchanged and available in Table 1 , while the mass of entrepreneurs ϒ given p = 0 . 5 is equal

to 1.11. 

4.3. Numerical results 

Fig. 5 plots the IRFs for a volatility shock given σa = 0 . 003 . 37 The following observations stand out. First, and consistent

with the preceding qualitative discussion, an increase in anticipated aggregate uncertainty causes a recession even though 

wages are linear in productivity. The anticipation of heightened future volatility increases the value of waiting, which in 

turn reduces entry and vacancy-posting, lowering the job finding rate and, ultimately, pushing up the unemployment rate. 

Second, the total volatility effects are much larger than the pure uncertainty effects (consistent with the empirical findings 

of Berger et al. (2020) ). This result strengthens our recommendation to consider both types of IRFs when studying the

implications of time-varying volatility. Indeed, the total volatility IRFs strongly resemble those obtained in the absence of 

firm heterogeneity, and for similar reasons; the nonlinearities of the matching function generate a persistent rise in both 

the unemployment rate and the hiring rate, as discussed in Section 3 . 

A few subtleties are worth pointing out. For one, in the presence of idiosyncratic dispersion, aggregate output is no 

longer proportional to z t n t . The composition of the sample of producing firms matters, as they vary in their individual

productivity levels. Specifically, changes in the number of vacancies posted occur through changes in the cutoff level, which 

in turn affects the average productivity of producing firms. Following a volatility shock, the value of waiting rises on impact

due to anticipation effects. The associated increase in the average productivity level of those firms that do enter dampens, 

but does not overturn, the reduction in output due to the fall in employment – an effect that is absent in the model with

homogeneous entrepreneurs. 38 However, in the case of total volatility effects, this dampening effect is short-lived. The sharp 

rise in the unemployment rate and the associated increase in vacancy posting (through an increased entry probability) takes 

hold, whereupon the average productivity of entrants declines. Consequently, output not only falls because of the decline in 

employment, but also due to composition effects. 

Moreover, uncertainty shocks have non-zero effects on the job finding rate. This result stands in contrast to the baseline

model (with linear wages), according to which both the pure and the total volatility effects on the job finding rate are

equal to zero in expectation when the matching elasticity, α, is equal to 0.5. Here, instead, the presence of a wait-and-

see mechanism – specifically the associated reduction in the entry probability – causes the job-finding rate to decline when 

perceived uncertainty rises. The total volatility effect on the job-finding rate is likewise negative, larger, and more persistent. 

To see why, recall from the discussion in Section 3 , that the hiring rate is a convex function of z t . Equation (18) makes clear

that the observed increase in the value of an unmatched entrepreneur introduces an additional positive effect on the hiring 

rate, and thus a negative effect on the average job finding rate. 

Quantitative comparison. To evaluate the quantitative impact of uncertainty shocks in the current framework, we com- 

pare our results with those described in Section 3.1 for the standard SaM model with free entry and Nash bargaining
34 Recall that ϒ is set such that the fraction of entrepreneurs that enters the matching market is 1 / 2 in the economy without cross-sectional dispersion. 
35 The calibration strategy involves setting the fraction of output spent on vacancy posting costs in steady-state, κv / ( z a ∗n ) , equal to 2% . The adjustment 

of z ensures that κ is the same across economies, which together with the fact that h is calibrated to be the same across economies means that J( ̂ a ) − βJ U 

is the same across economies. 
36 This amount of idiosyncratic dispersion is small relative to the degree of cross-sectional productivity dispersion observed in the real world. See, for 

example, Sterk et al. (2020) . It is not surprising that our framework with ex-ante identical entrepreneurs cannot generate the observed differences which 

are likely to arise from numerous factors besides those present in a simplified model as we consider here. 
37 See online appendix OF.1 for the same set of IRFs given σa = 0 . 001 . Additionally, Fig. 6 plots the impact and maximum total volatility effect on the 

unemployment rate, specifically, as a function of σa . 
38 Figure OF.3 in the online appendix illustrates that this effect can, in principle, lead to a small initial increase in output when σa = 0 . 001 . 
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Fig. 5. IRFs for uncertainty shock in SaM model with cross-sectional dispersion; σa = 0 . 003 . Notes: The “total volatility” IRFs plot the change in the period- 

0 expected values of the indicated variables in response to a unit-increase in ε σ,t . The “pure uncertainty” IRFs display how the economy responds when 

agents think volatility will increase, but the higher volatility actually never materializes. 
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Fig. 6. Cross-sectional dispersion and aggregate uncertainty effects. Notes: The panels display the initial impact and the maximum total volatility impact of 

a unit-increase in ε σ,t as a function of the amount of cross-sectional dispersion, σa . Other model parameters are recalibrated to make the economies with 

different values of σa comparable. 

 

 

 

 

 

 

 

 

 

 

 

 

(recall that this wage-setting assumption is the key reason why pure uncertainty shocks have non-zero effects in that 

model). 

Fig. 6 illustrates the total volatility effect of an uncertainty shock on the unemployment rate, both on impact (left graph)

and at the maximum along the IRF (right graph). The effect on impact is entirely due to anticipation, and the maximum total

volatility effect occurs after roughly eight quarters. The horizontal lines in the two graphs indicate, for comparison purposes, 

the same statistics obtained in the baseline model with Nash bargaining. Recall that in the model with heterogeneity we 

adopted the linear wage rule and deliberately chose the mass of entrepreneurs, ϒ , such that the constraint on their number

is never binding. Hence, with barely any cross-sectional dispersion, there should be no quantitatively significant anticipation 

effects due to a volatility shock. The figure reveals that, indeed, for very small values of σa , we are essentially back to the

model of Section 2 with linear wages. 

Nonetheless, even with still relatively little cross-sectional dispersion, volatility shocks can generate a substantial effect 

on unemployment. Thus, a value of σa equal to 0.003 implies that the entrepreneur with the most productive draw for a

is just one percent more productive than the entrepreneur with the least productive draw. In spite of that, both the initial

pure uncertainty effect as well as the maximum total volatility effect are more than double than what is generated in the

baseline model with Nash bargaining. 

Robustness checks. In online appendix OF, we discuss the results of several robustness exercises. Most importantly, our 

baseline specification of the model assumes that an entrepreneur can post only one vacancy and then creates a job with

probability h t (“stochastic hiring”). An alternative is to suppose that the entrepreneur posts 1 /h t vacancies and then creates

one job with certainty (“non-stochastic hiring”). In the standard SaM model with risk-neutral entrepreneurs, these two 

options generate the exact same model properties. In our modified framework, entrepreneurs are also risk neutral and the 

two different specifications imply the same qualitative properties. Quantitatively, however, when there is both aggregate and 

idiosyncratic uncertainty, a model with non-stochastic hiring generates a substantially stronger option-value effect due to 

elevated volatility than implied by our baseline specification. 

5. Concluding remarks 

The option value of waiting to invest in the presence of uncertainty strikes many as a plausible mechanism to rationalize

the empirical finding that elevated uncertainty negatively impacts economic activity. Moreover, the popularity of the search- 

and-matching (SaM) literature underscores the usefulness of modeling job creation as an investment. Yet, we showed that 

the usual assumption in that literature of there being a “potentially infinite number” of entrepreneurs to take advantage of 

opportunities in the matching market eliminates any grounds for wait-and-see behavior. The standard SaM model, therefore, 

cannot be used to rationalize the effects of uncertainty shocks in terms of an option-value channel. If, on the other hand,

there is a limit on the number of potential entrepreneurs and they vary in their idiosyncratic productivity levels – two 

modifications that are both plausible and can be introduced into the model in a tractable manner – the model properties

completely change. In particular, an increase in perceived volatility then does indeed robustly increase the option value of 

waiting, causing a reduction in job creation and higher unemployment. 

Declaration of Competing Interest 
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