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We consider an information design problem in which a sender tries to
persuade a receiver that has "correlation neglect", i.e. fails to under-
stand that signals might be correlated. We show that a sender with un-
limited number of signals can fully manipulate the receiver. Specifically,
the sender can induce the receiver to hold any state-dependent posterior
she wishes to. If the sender only wishes to induce a state-independent
posterior, she can use fully correlated signals, but generally she needs
to design more involved correlation structures.

In this day and age we are constantly exposed to many different information sources,
including a myriad of social media platforms. The growth in the amount of information
we are exposed to and its complexity may open up opportunities for those who try to
manipulate our beliefs. Indeed, in the last few years, more and more instances of orches-
trated attempts to manipulate information using social media have been exposed, and
companies like Facebook are under increasing pressure to take action against what they
call "coordinated inauthentic behaviour" on its platforms.1

While information sources may be correlated, individuals may be unaware that this
is the case. A recent empirical literature documents that individuals exhibit "correlation
neglect". Formally, this means that they assume that information sources are (condition-
ally) independent. Ortoleva and Snowberg (2015) documents how correlation neglect
shapes political views. Eyster and Weizsäker (2011), Kallir and Sonsino (2009) and
Enke and Zimmermann (2019) provide experimental evidence for such behaviours.2

In this paper we investigate how coordination across information sources, when un-
known to the individual, can be used strategically to affect her beliefs. We analyse a
model of persuasion with one sender and one receiver. We use an information design
framework in which a sender can design and commit to a joint information structure
with m signals as a function of the state of the world. The receiver, who attempts to learn
the state of the world, observes the realisations of these m signals. The receiver under-
stands the marginal distribution of each signal but she updates her beliefs assuming that
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1See for example https://about.fb.com/news/2020/10/removing-coordinated-inauthentic-behavior-mexico-iran-
myanmar/.
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the signals are all conditionally independent.
Our main result shows that the sender can achieve full manipulation as the number of

signals she can use grows large. That is, in the limit she can induce the receiver to hold
any state-dependent belief. With continuity assumptions on utilities, this implies that the
sender can approximate her first-best state-dependent utility.

To appreciate this result consider the following simple example, which we will revisit
later on. The state of the world is binary, Ω = {0, 1}, with uniform prior. We identify a
posterior with the probability it allocates to the state ω = 1. The sender wants to confuse
the receiver in both states, i.e. she would like the receiver to have a posterior higher or
equal than a threshold q > 1/2 in state 0, and lower or equal than 1 − q in state 1.

If the sender could only use one signal, she can achieve her goal with a probability of
at most 1−q. She can do that by using a binary signal with accuracy q; the signal s takes
two realisations 0 or 1 with Pr(s = 1 | ω = 1) = Pr(s = 0 | ω = 0) = q. Such signal
induces two posteriors µ1 = q and µ0 = 1 − q. In particular, posterior µ1 is induced with
probability q in state 1 and probability 1 − q in state 0 and posterior µ0 is induced with
the complementary probabilities.

However, we show that as the number of signals she can use grows large, the sender
is able to achieve her goal with probability approaching one. The intuition comes from
the combination of two observations. First, correlation neglect creates an amplification
effect. As the receiver thinks signals are independent, she expects the realisations to
behave as a multinomial distribution. As the number of signals increases, the law of
large numbers implies that by using a set of realisations that deviate slightly from the
expectation, the sender can induce extreme posteriors. This is the case even if the signals
are relatively uninformative.

The second observation is that in order to achieve full manipulation, the sender needs
to exploit negative correlation. Coming back to the example, for a realisation to induce
a posterior µ0 < 1/2, such a realisation has to be sent with a higher probability when the
state is 0 than when the state is 1. Hence, if µ0 is induced with high probability in state 1,
then it has to be induced with even higher probability in state 0. Therefore, if the signals
were fully positively correlated, it becomes impossible to induce state-dependent beliefs
that are contrarian to the true state with high probability.

While the sender needs to use negative correlation, there are limits to the amount
of negative correlation of posteriors that can be induced with a signal structure (Levy,
Moreno de Barreda and Razin, 2021a). For example, the sender cannot simultaneously
send two signals inducing µ0 = 0 and µ1 = 1 as each such posterior can only be sent in
its respective state. However, if instead she uses signals that are almost uninformative,
with posteriors µ0 = 1/2− ε and µ1 = 1/2 + ε for a small ε, she can simultaneously send
µ0 and µ1 with a very high probability.

The combination of these two observations implies that as the number of signals grows
large, the sender can use relatively uninformative signals and correlate them in the right
manner, to generate any desired posterior at any state with high probability.

Figure 1 illustrates the intuition for the example above. Suppose that the posterior
threshold for the receiver is q = 2/3 and that the sender uses 10 binary signals with
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accuracy 0.6. The horizontal axis represents the number of signals with realisation s = 1,
and the vertical axis represents the probability of such events. The solid bars correspond
to the binomial distribution that the receiver thinks she is facing in each of the two states
of the world. Instead, the sender correlates the realisations of the signals in accordance
with the blank bars: In state ω = 1, with probability 1/3 all of the signals have realisation
s = 1 and with probability 2/3 only 4 of them have realisation s = 1. In this latter case,
the receiver’s posterior is equal to the desired 1− q = 1/3, since the binomial probability
of observing exactly 4 realisations s = 1 is twice as likely in state ω = 0 than in state
ω = 1. The opposite structure is used in state ω = 0. The sender then induces the
desired posteriors with probability 2/3 rather than the initial 1/3 that was achieved with
a single signal. And as the sender adds more signals to her arsenal, she approaches full
manipulation.
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Figure 1. Real and perceived information structures conditional on the state.

Our paper relates to the growing literature on persuasion, stemming from Aumann
and Maschler (1995) and Kamenica and Gentzkow (2011). A recent literature analyses
persuasion in the presence of behavioural biases of the receiver. Our analysis should be
viewed as a worst-case scenario; we allow the sender to fully commit to an informa-
tion structure, the receiver does not perceive any level of correlation, and the sender has
potentially a large number of signals at her disposal.3 A similar worst-case scenario ap-
proach is taken in Eliaz, Spiegler and Weiss (Forthcoming). Alonso and Câmara (2016)
analyse persuasion when the receiver has a wrong prior. In an example similar in spirit to
the above they show, in contrast to our result, that full manipulation cannot be achieved.

Our analysis relates more generally to the literature on misspecified models. In other
recent contributions, Eliaz and Spiegler (2020), Schumacher and Thysen (2018), and
Ellis, Piccione and Zhang (Forthcoming) characterise how individuals with misperceived
models can be strategically manipulated.

I. The model and preliminary results

There is a finite state space Ω, #Ω = n, with a full support prior probability distribution
p ∈ ∆(Ω) which is common knowledge. The sender designs a finite information struc-

3In Levy, Moreno de Barreda and Razin (2021b) we consider a related model that is applied to political competition.
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ture that consists of m ∈ {1, 2, ...} distinct signals. The receiver observes the m signal
realisations and chooses an action a out of a compact set A ⊆ R. Given action a and state
ω, the receiver gets utility u(a, ω) and the sender gets utility v(a, ω).

A. Information structures

A finite information structure with m signals is defined by {S, {q(· | ω)}ω∈Ω} where
S =

∏m
i=1 S i is the Cartesian product of the support of the individual signals and q(· |

ω) ∈ ∆(S) is the joint probability distribution conditional on ω ∈ Ω. We assume S i
is finite for all i ∈ {1, ...,m}. Let {S i, {qi(· | ω)}ω∈Ω} denote the marginal information
structure for signal i derived from {S, {q(· | ω)}ω∈Ω}, and let qi(·) denote the marginal
unconditional probability distribution.

As in the Bayesian Persuasion literature it will be more convenient to abstract from
signal structures and work directly with distributions over posteriors. Given a realisation
si ∈ S i of signal i with qi(si) > 0, define the posterior induced by si to be,

(1) µsi(ω) =
p(ω)qi(si | ω)

qi(si)
for all ω ∈ Ω.

The joint distribution of the signals {q(· | ω)}ω∈Ω induces a family of conditional dis-
tributions, {τ(· | ω)}ω∈Ω ⊂ ∆(∆(Ω)m), over vectors of posteriors, such that4

(2) τ((µs1 , ..., µsm) | ω) = q((s1, ..., sm) | ω) for all ω ∈ Ω.

Given the joint conditional distributions {τ(· | ω)}ω∈Ω, we denote by {τi(· | ω)}ω∈Ω ⊂
∆(∆(Ω)) the set of marginal conditional distributions over posteriors corresponding to
the i′th signal and τi(·) =

∑
ω∈Ω p(ω)τi(· | ω) ∈ ∆(∆(Ω)) the corresponding marginal

unconditional distribution.
Note that equations (1) and (2) impose conditions on the distributions over posteriors

that might be generated from a signal structure. The following lemma characterises the
families of joint conditional distributions that can be induced by m signals:5

LEMMA 1: The set of joint conditional distributions {τ(· | ω)}ω∈Ω is inducible by m
signals if and only if for any µ ∈ ∆(Ω) and any i ∈ {1, ...,m} such that τi(µ) > 0,

(3) (Conditional Constraints) µ(ω) =
p(ω)τi(µ | ω)

τi(µ)
for all ω ∈ Ω.

Intuitively, each posterior needs to coincide with what a Bayesian updater would gen-
erate from the respective signal.6 By Lemma 1, we can then abstract from explicit signal

4Here, wlog, we are implicitly assuming that for every signal i, distinct realisations si, s′i lead to different posteriors
µsi , µs′i

. If for signal i there are si , s′i ∈ S i such that µsi = µs′i
, then we replace these two realisations by a new one s′′i

with qi(s′′i | ω) = qi(si | ω) + qi(s′i | ω).
5The proof is trivial and therefore omitted. Similar results are in Gutmann et al. (1991), Arieli et al. (Forthcoming),

Ziegler (2020) and Arieli, Babichenko and Sandomirskiy (2020).
6This condition is related to the obedience condition in Bergemann and Morris (2016). In their setup, the sender
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structures and work with conditional distributions over posteriors that satisfy the condi-
tional constraints.

B. Correlation neglect heuristic

Given any set of joint conditional distributions {τ(· | ω)}ω∈Ω, we assume that the re-
ceiver understands the marginal distributions {τi(· | ω)}ω∈Ω. However, she believes that
for any vector of posteriors µ = (µ1, ..., µm), the conditional joint distribution is given by
m∏

i=1
τi(µi | ω). We denote by µCN(µ) ∈ ∆(Ω) the posterior that a receiver with correlation

neglect forms when observing µ. The following characterises µCN(µ).7

LEMMA 2: Given a prior p and a vector of posteriors µ, the posterior belief of a
receiver with correlation neglect is:

µCN(µ)(ω) =

∏m
i=1 µi(ω)

/
p(ω)m−1∑

υ∈Ω

∏m
i=1 µi(υ)

/
p(υ)m−1

.

The formula in Lemma 2 is inherited from the multiplicative form of the joint distri-
bution of independent signals. Note that µCN is symmetric in µ, and depends only on the
realised vector of posteriors and not on the actual distribution over vectors of posteriors
τ.

II. Complete manipulation

In this Section we first show how the sender can completely manipulate the beliefs of
the receiver. We then make some mild assumptions on the utilities u(a, ω) and v(a, ω) to
show that this manipulation implies that the sender can approach her first-best.

Let τm denote a signal structure with m signals, and recall that the sender designs τm

subject to the conditional constraints and the receiver updating her beliefs according to
the correlation neglect heuristic. Let (ρω)ω∈Ω denote a vector of state-dependent poste-
riors and let | · | denote the Euclidean distance in Rn (#Ω = n). Our main result shows
that when the sender has a large number of signals in her arsenal, she is able to induce in
state ω posteriors that are arbitrarily close to ρω, with probability approaching one.

THEOREM 1: For any (ρω)ω∈Ω ∈ ∆(Ω)n, there exists a sequence of signal structures
{τm}m∈N, such that for any ω ∈ Ω, and any ε > 0,

lim
m→∞

τm({µ s.t. τm(µ) > 0 | |µCN(µ) − ρω| < ε} | ω) = 1.

recommends an action to the receiver and the recommendation should be consistent with what a rational Bayesian updater
would do upon receiving such a recommendation.

7This result exists in Sobel (2014), Proposition 5. The multiplicative form also arises in Morris (1977) and Bordley
(1982).
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In the proof we use the fact that the receiver’s perception of conditional independence
allows the sender to make use of the law of large numbers while exploiting different
forms of correlation. Specifically, we highlight the combination of two features. First,
the correlation neglect heuristic creates an amplification effect. For example, repeating
a posterior that is removed from the prior in a particular direction, amplifies the belief
of the receiver in that direction. Second, by introducing negative correlation of poste-
riors, the sender can increase the conditional probability with which she can generate
correlation neglect beliefs that go against the state. While in general the sender cannot
negatively correlate posteriors with a high probability because of the conditional con-
straints, these constraints are relaxed as signals become more uninformative. As the
receiver is very sensitive to small deviations from an uninformative signal, the sender
can then expertly correlate such signals to approach any desired posterior at any state
with probability close to one.

To see this more clearly, consider the following Example, that we discussed in the
introduction:

EXAMPLE 1 (An "Evil" Sender): Consider a binary state space Ω = {0, 1} with uni-
form prior. We identify a posterior with the probability it allocates to the state ω = 1.
The receiver has three possible actions A = {L,M,H}. Her optimal action is H if her
posterior is on or above 2/3, L if her posterior is on or below 1/3 and M otherwise. The
sender would like to induce action H in state 0 and action L in state 1. In other words,
the sender wishes to confuse the receiver.

If the sender has only one signal, her optimal information structure would generate
posteriors µ0 = 1/3 and µ1 = 2/3 with the following conditional distributions: τ(µ0 |

1) = 1/3, τ(µ1 | 1) = 2/3, τ(µ0 | 0) = 2/3 and τ(µ1 | 0) = 1/3. She is then able to fool
the receiver one third of the time.

If the sender can use more than one signal, she could use the amplification effect to
generate the same posteriors with less informative signals. This will allow her to fool the
receiver with higher probability. To see this take the simple example of fully correlated
homogeneous signals. Given a posterior µ ∈ ∆(Ω), let µFC

m (µ) ≡ µCN(µ, µ, ..., µ) denote
the correlation neglect posterior that is generated by full correlation, that is, by repeating
m times the posterior µ. In Figure 2 we plot the correlation neglect posterior generated
by repeating the µ posterior m times for different m. As illustrated in the Figure, for any
µ > 1/2, we can find 1/2 < µ′ < µ such that µFC

m+1(µ′) = µFC
m (µ). This can be done

analogously for µ < 1/2.
As an example, if the sender has two signals at her disposal, by using a signal that

induces µ0 =
√

2 − 1 > 1/3 and µ1 = 2 −
√

2 < 2/3, and repeating this signal twice,
the sender could generate the desired correlation neglect posteriors: µCN(µ0, µ0) = 1/3
and µCN(µ1, µ1) = 2/3. Such fully correlated information structure is depicted in Table
1. The entries in the table correspond to the conditional probabilities of generating those
vectors of posteriors in state ω. As she is using less informative signals, the sender is
able to fool the receiver with probability

√
2 − 1 > 1/3.8

8Note that a receiver that understands that the signals are fully correlated will have correct beliefs of either µ0 or µ1.
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Figure 2. Amplification effect of the correlation neglect heuristic.

Table 1— Information structure with full correlation. (m = 2, µ0 =
√

2−1, µ1 = 2−
√

2)

τ(· | ω) (µ0, µ0) (µ1, µ1)
ω = 1

√
2 − 1 2 −

√
2

ω = 0 2 −
√

2
√

2 − 1

By adding more signals and fully correlating them the sender is able to generate the
desired posteriors with signals that are less informative and hence with higher probability.
However, the conditional constraints impose an upper limit of 1/2 to the probability with
which the sender can fool the receiver, since any µ1 > 1/2 needs to be induced strictly
more often in state ω = 1 than in state ω = 0.

The sender can however do better using negative correlation. Suppose for example that
she has 3 signals and consider µ0 = 1/3 and µ1 = 2/3. Instead of fully correlating them,
she could in state ω = 1 replace the vector (µ0, µ0, µ0) with the vector (µ0, µ0, µ1) and
its permutations. The fact that µ0 appears more times than µ1 in these vectors implies
she will be able to generate µCN(µ0, µ0, µ1) = 1/3. Moreover, the fact that µ1 is also
present, allows the sender to allocate less weight to (µ1, µ1, µ1) while still satisfying the
conditional constraints. Analogously, in state ω = 0, the sender can replace the vector
(µ1, µ1, µ1) with the vector (µ0, µ1, µ1) and its permutations. Panel A in Table 2 depicts
an information structure with m = 3 and negative correlation. For simplicity of notation,
we represent vectors of posteriors by the frequency pair (z0, z1), where zi is the number
of posteriors µi the vector contains. For example, µ = (µ0, µ0, µ1) and any of its permu-
tations will be represented by the pair (z0, z1) = (2, 1). Using the symmetry of µCN , we
denote by µCN(z0, z1) the correlation neglect posterior induced by any of the vectors with
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those frequencies. The entries in the table corresponds to the total conditional probabili-
ties allocated to those frequency pairs. It is easy to check that the conditional constraints
are satisfied, and that µCN(2, 1) = 1/3 and µCN(1, 2) = 2/3. Therefore, with just three
signals, the sender can already fool the receiver half of the time!9

Table 2— Information structures with negative correlation.

Panel A: m = 3, µ0 = 1/3, µ1 = 2/3

τ(· | ω) (3,0) (2,1) (1,2) (0,3)
ω = 1 0 0.5 0 0.5
ω = 0 0.5 0 0.5 0

Panel B: m = 10, µ0 = 0.4, µ1 = 0.6

τ(· | ω) (10,0) (6,4) (4,6) (0,10)
ω = 1 0 2/3 0 1/3
ω = 0 1/3 0 2/3 0

By adding more signals and negatively correlating them, the sender can generate the
desired correlation neglect posteriors with a higher probability. For instance, by using
m = 10 signals, the sender manages to fool the receiver two thirds of the time (as exem-
plified in Figure 1 in the introduction). She could do so by setting µ0 = 0.4, µ1 = 0.6 and
using the information structure in Panel B of Table 2.

Continuing in this fashion, as m increases, the sender will be able to fool the receiver
with a probability converging to one. The proof of Theorem 1 generalises this intuition
to any number of states and any desired set of posteriors.

A. Proof of Theorem 1

In the proof below, we construct m homogeneous signals. Given these signals, the
receiver expects to observe a multinomial distribution. Instead, the sender constructs
a joint conditional distribution with support on only a subset of the realisations of the
multinomial, with the aim of inducing the desired posteriors with high probability.

Specifically, each signal generates n posteriors (n = #Ω) denoted by {µω}ω∈Ω,10 with
the following conditional marginal distribution:

(4)
τm

i (µω|ω) = 1
n + 1√

m
≡ α(m) ∀ω ∈ Ω, i=1,...,m,

τm
i (µυ|ω) = 1

n −
1

(n−1)
√

m
≡ β(m) ∀ω, υ ∈ Ω, υ , ω, i=1,...,m.

9Note that the information structure depicted in the table is fully revealing about the state, which implies that if the
receiver understood the joint informations structure, this will result in a zero utility for the sender.

10To simplify the notation, when no confusion occurs, we will omit the reference to m.
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The specific functional forms used for α and β are not crucial. We only require the signals
to generate posteriors that span the whole space and that the signals become sufficiently
uninformative as the number of signals grows so that an increasing probability can be
allocated to the desired vector of posteriors. In particular any differentiable function
α(m) such that α(m) ∈ (1/n, 1), β(m) = (1 − α(m))/(n − 1), limm→∞ α(m) = 1/n and
limm→∞ 1/(m2α′(m)) = 0 could be used.

Given the marginals described in (4), the posteriors {µω}ω∈Ω are pinned down by
Lemma 1. Intuitively, signal i generates posterior µω with slightly higher probability
at state ω than at any other state υ , ω. Hence, µω(ω) > p(ω) and µω(υ) < p(υ) for
all υ , ω. In the limit the signals become completely uninformative as limm→∞ τ

m
i (µυ |

ω) = 1/n for all υ ∈ Ω.
The joint conditional distribution τm(· | ω) generates vectors of posteriors µ with µi ∈

{µυ}υ∈Ω for i = 1, ...,m. As in Example 1, we describe a vector of posteriors µ in the
support of τm(· | ω) by the number of times each posterior µυ appears in µ. Denote
by zυ(µ) the proportion with which the posterior µυ appears in the vector µ, zυ(µ) ∈
{0, 1/m, ...,m/m}.11

We denote by Zm the set of all vectors z(µ) = {zυ(µ)}υ∈Ω where
∑
υ zυ(µ) = 1. Given

the symmetry of the correlation neglect heuristic, if z(µ) = z(µ′) then µCN(µ) = µCN(µ′).
With some abuse of notation, we denote by µCN(z) the correlation neglect posterior gen-
erated by a vector of posteriors with vector of proportions z. Given Lemma 1 and Lemma
2, we have:

(5) µCN(z)(ω) =

∏
υ∈Ω µ

υ(ω)mzυ

p(ω)m−1∑
η

∏
υ∈Ω µ

υ(η)mzυ

p(η)m−1

=
p(ω)αmzωβm(1−zω)∑
η p(η)αmzηβm(1−zη) .

Given state ω ∈ Ω, we would like to generate specific vectors of proportions, zω(m) ∈
Zm, such that µCN(zω(m)) converges to ρω as m increases.

Consider the case in which ρω is interior, i.e. ρω(υ) > 0 for all υ ∈ Ω.12 To implement
the posterior ρω, we find the vector ζω(m) = {ζωυ }υ∈Ω, where ζωυ ∈ R with

∑
υ ζ

ω
υ = 1, that

solves:

(6)
p(υ)αmζωυ βm(1−ζωυ )∑
η p(η)αmζωη βm(1−ζωη )

= ρω(υ) for all υ ∈ Ω.

Rearranging we get

(7)
(
α

β

)mζωυ
=
ρω(υ)
p(υ)

∑
η

p(η)
(
α

β

)mζωη
 for all υ ∈ Ω,

11The proof can also proceed by interpreting the vectors of proportions as multinomial random variables and using the
law of large numbers. We thank a referee for pointing this out.

12The case in which ρω is not interior is addressed in the Appendix.
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and by multiplying across υ and taking the nth root we get

(8)
(
α

β

)m
n

=
∏
υ∈Ω

(
α

β

)mζωυ
n

=
∏
υ∈Ω

(
ρω(υ)
p(υ)

) 1
n
∑
η

p(η)
(
α

β

)mζωη
 .

By dividing (7) by (8), taking logs and rearranging we get

(9) ζωυ =
1
n

+
1
m

ln
(

ρω(υ)/p(υ)

[∏η ρ
ω(η)/p(η)]

1
n

)
ln

(
α
β

) .

Note that the vector ζω(m) is not necessarily in Zm as its entries might not be in {0, 1/m, ...,m/m}.
Define by zω(m) a vector in Zm that is closest to ζω(m) using the Euclidean distance:

zω(m) ∈ arg min
z∈Zm
|z − ζω(m)|.

As m increases, limm→∞ |zω(m) − ζω(m)| = 0.13 By the continuity of µCN(·),

lim
m→∞

µCN(zω(m)) = ρω.

Our objective is to design a joint distribution τm(· | ω) to generate the vector of propor-
tions zω(m) in state ω with high probability. However, in order to satisfy the conditional
constraints (4), we also need to generate other vectors of posteriors. As we did in Exam-
ple 1, we put some (small) probability on (µυ, ..., µυ), υ ∈ Ω. For each ω ∈ Ω, consider
the following joint conditional distribution:

(10)

τm({µ | z(µ) = zω(m)} | ω) = γω,

τm((µω, ..., µω) | ω) = λωω,

τm((µυ, ..., µυ) | ω) = λωυ ,

τm(µ | ω) = 0 if z(µ) , zω(m), and µ , (µυ, ..., µυ) for some υ ∈ Ω,

13To see this, note that for sufficiently large m, we can guarantee that 0 ≤ ζωυ ≤ 1 (in fact, we show later in the proof
that limm→∞ ζ

ω
υ = 1/n). Therefore, there exists kυ ∈ N, with kυ < m such that kυ/m ≤ ζωυ ≤ (kυ + 1)/m. Moreover, since∑

υ ζ
ω
υ = 1, we can construct a vector of proportions ẑ such that ẑυ ∈ {kυ/m, (kυ + 1)/m}. Therefore,∑

υ

(zωυ − ζ
ω
υ )2 ≤

∑
υ

(ẑυ − ζωυ )2 ≤
n

m2 and lim
m→∞

∑
υ

(zωυ − ζ
ω
υ )2 = 0.
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where14

γω =


α
zωω

if zωω = 1

β
maxυ,ω{zωυ }

if zωω = 0

min
{
α
zωω
,

β
maxυ,ω{zωυ }

}
otherwise

,

λωω = α − γωzωω,
λωυ = β − γωzωυ .

In the Appendix we prove that this joint conditional distribution is well defined. More-
over, the marginals satisfy (4) for each i = 1, ...,m:

τm
i (µω|ω) = γωzωω + λωω = α,

τm
i (µυ|ω) = γωzωυ + λωυ = β, ∀υ , ω.

We now show that this joint conditional distribution allocates a probability approach-
ing one (as m increases) to the vectors of posteriors with z(µ) = zω(m). As m increases,
α(m) and β(m) converge to 1/n. Using l’Hôpital’s rule,

limm→∞
1/m

ln(α(m))−ln(β(m)) = limm→∞ −1/m2
/(

1
α(m)

∂α(m)
∂m − 1

β(m)
∂β(m)
∂m

)
= limm→∞ −1/m2

/(
− 1

2m3/2
α(m)+β(m)
α(m)β(m)

)
= limm→∞

1
m1/2

1/n2−1/m
1/n = 0.

which implies that limm→∞ ζ
ω
υ = 1/n. In addition, since limm→∞ |zω(m) − ζω(m)| = 0,

we have that limm→∞ zωυ = 1/n and limm→∞ γ
ω = 1. Here we make use of the functional

forms of α(m) and β(m) that guarantee that the desired proportions converge to the mean
and hence we can assign to the vector of such proportions a probability close to one.

Therefore, with probability converging to one, the conditional joint distribution in-
duces a correlation neglect posterior converging to ρω. This concludes the proof for an
interior ρω. �

B. From belief manipulation to first-best

We now formalise the sender’s first-best, the lowest upper bound on her expected util-
ity when she can freely manipulate the receiver’s beliefs and freely choose from the
receiver’s optimal actions.

We assume that u(a, ω), v(a, ω) are continuous in a for all ω ∈ Ω. Given a posterior
µ ∈ ∆(Ω), we denote by Aµ the set of actions in A that maximise the receiver’s utility
given her belief µ:

Aµ = arg max
a∈A

∑
ω∈Ω

µ(ω)u(a, ω).

We assume that the correspondence µ � Aµ is continuous in ∆(Ω) but for a finite set of

14The weight γω is equally shared among all vectors of posteriors in {µ | z(µ) = zω}
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posteriors.
Define the sender’s preferred actions from Aµ, Aωµ = arg maxa∈Aµ v(a, ω). The conti-

nuity of Aµ together with the continuity of v implies (using Berge’s Maximum theorem)
that the function vω : ∆(Ω) → R, defined as vω(µ) = maxa∈Aµ v(a, ω) is continuous in
∆(Ω) but for a finite set of posteriors.

Let v̄ω = supµ∈∆(Ω) vω(µ) denote the supremum of the sender’s utility in state ω when
she can freely choose the receiver’s posterior and optimal action. We define the first-best
for the sender as

∑
ω∈Ω p(ω)v̄ω.

Finally, we make an additional continuity assumption that allows us to show that the
sender can achieve levels of utility arbitrarily close to her first-best when she has many
signals. Assumption 1 ensures that even if the arg sup vω(µ) is in the finite set of pos-
teriors for which Aµ is not continuous, v̄ω can be approached through a sequence of
posteriors beliefs:

ASSUMPTION 1: For any ω ∈ Ω and any µ ∈ ∆(Ω), there exists a ∈ Aωµ , a sequence
{µl}

∞
l=1 ⊂ ∆(Ω) with µl , µ for all l = 1, ...,∞ and a sequence {al}

∞
l=1 with al ∈ Aωµl

, such
that µl →l→∞ µ and al →l→∞ a.

Assumption 1 is weaker than lower hemicontinuity of the correspondence µ � Aωµ .
To see the logic for this assumption, note that with state-independent utilities, even when
the receiver’s best response is not unique at some belief, one can assume that the re-
ceiver picks the sender-preferred action. In contrast, with state-dependent utility, there is
no natural way to induce the receiver to choose, given some particular beliefs, different
actions for different states. To guarantee that a sender’s preferred action is chosen with
probability close to one at each state, and even for posteriors at which µ � Aωµ is not
continuous, Assumption 1 ensures that any such action can be approached with a (po-
tentially state-dependent) sequence of beliefs and actions. Specifically, in Example 1,
µ � Aωµ is not continuous at µ = 1/3 and µ = 2/3, but satisfies Assumption 1 and so
we can approach µ = 2/3 in state 0 with beliefs above 2/3, and µ = 1/3 in state 1 with
beliefs below 1/3.15 All the assumptions enlisted above are satisfied if Aµ is a singleton
and continuous everywhere. They are also satisfied in all the examples in this paper and
the canonical examples discussed in the Bayesian Persuasion literature.

The above, together with Theorem 1, allows us to derive:

COROLLARY 1: There exists a sequence of signal structures {τm}m∈N such that the
sender’s expected utility converges to her first-best utility.

C. State-independent utility and full positive correlation

The optimal solution we construct in the proof of Theorem 1 involves negative cor-
relation. However, in some cases, a simple correlation structure can suffice for the

15To see an example that violates Assumption 1 (and thus also lower hemicontinuity), consider a binary state of the
world, where the receiver strictly prefers L if her belief µ < 1/2, H if µ > 1/2, and is indifferent among {L,M,R} if
µ = 1/2. The sender’s preferred action is H in state 0 as in Example 1, but M in state 1. There is however no sequence
of beliefs-actions pairs (µ, a) that converges to (1/2,M), as whenever µ < 1/2 the receiver takes action L and whenever
µ > 1/2 the receivers takes action H.
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sender. The next result shows that when the utility of the sender is state-independent,
i.e., when she wants to induce a state-independent posterior, the sender can use full pos-
itive correlation in order to completely manipulate the receiver. Recall that we denoted
by µFC

m (µ) = µCN(µ, ..., µ), the correlation neglect posterior that is generated by repeating
m times the posterior µ.

PROPOSITION 1: Given a posterior ρ ∈ ∆(Ω), there exists a sequence of signal struc-
tures {τm}m∈N of fully positively correlated signals, such that for any ω ∈ Ω, and any
ε > 0,

lim
m→∞

τm({µ = (µ, ..., µ) s.t. τm(µ) > 0 | |µFC
m (µ) − ρ| < ε} | ω) = 1.

Any desirable posterior ρ can be generated by using a posterior that lies in the ap-
propriate direction away from the prior and repeating it m times. When m is large, this
movement away from the prior can be minimal and can be achieved with probability
close to one. As in Corollary 1, this result implies that the sender can approach her
first-best (state-independent) utility.

We conclude by illustrating what the sender can achieve with full correlation and a
finite number of signals, using the canonical binary utility model.

EXAMPLE 2 (The binary utility model): Consider Ω = {0, 1} with prior p = Pr(ω =

1) < 1/2. The receiver takes one of two actions, a = H if µCN(µ) ≥ 1/2 and a = L
otherwise. The sender gains 1 when the receiver chooses H and 0 otherwise, regardless
of the state.

1

0 1

1
2

µ

p

µ

aµ

Panel A: m = 1

1

0 1

1
2

µ

p

µFC
2

aµFC
2

Panel B: m = 2

1

0 1

1
2

µ

p

µFC
10

aµFC
10

Panel C: m = 10

Figure 3. Optimal full correlated structure. Binary utility model.

Figure 3 illustrates the correlation neglect posterior of the receiver when the sender
positively correlates all her signals. On Panel A, we illustrate the solution for one signal.
The diagonal line represents the beliefs of the receiver which, for the case of one signal,
corresponds to the correct beliefs. The thick horizontal lines correspond to the utility
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of the sender from the receiver’s optimal action given the belief. Concavification of the
binary utility function (the dashed line) yields a solution with two posteriors 1/2 and 0,
where posterior 1/2 is induced with probability one in state ω = 1, and with probability
p/(1 − p) in state ω = 0. This leads to expected utility of p + (1 − p)p/(1 − p) = 2p
for the sender, represented by the dot on the vertical dashed line. In Panel B and Panel
C we graph µFC

m (µ) for m = 2 and for m = 10 respectively. This corresponds to the solid
S-shaped curved. Note that now the sender can induce a = H whenever

µFC
m (µ) =

µm

pm−1

µm

pm−1 +
(1−µ)m

(1−p)m−1

≥
1
2
.

Concavification implies that the optimal solution would be to generate posteriors µFC
m =

0 and µFC
m = 1/2. To do this, the repeated signal should put weight on posteriors 0 and

µ = pm−1/m/(p(m−1)/m + (1− p)(m−1)/m), inducing posterior µ with probability one in state
ω = 1 and probability (p/(1 − p))1/m in state ω = 0. It is easy to see that as m tends to
infinity, the sender induces action a = H with probability one.

III. Discussion

In this paper we show that a sender can completely manipulate a receiver with corre-
lation neglect when she has many signals at her disposal. When the number of signals
that the sender can use is bounded, she will have to use more informative signals in order
to attain her desired posteriors. Using more informative signals implies however that
she will face stricter constraints on the set of joint information structures she can design,
due to the conditional constraints. A recent literature focuses on characterising the set of
feasible joint distributions over posteriors stemming from a signal structure, sometimes
in different applications (see Arieli et al. (Forthcoming), Morris (2020), Mathevet and
Taneva (2019), Sandmann (2020) and Ziegler (2020)). Levy, Moreno de Barreda and
Razin (2021a), Bergemann and Morris (2016; 2019) and Gossner (2000) suggest that
having more uninformative signals relaxes the conditional constraints on information
structures. Levy, Moreno de Barreda and Razin (2021a) also formalise how distributions
over posteriors that are "closer" to full positive correlation are easier to implement. This
implies that for a bounded number of signals the sender might face a trade-off between
her desire to use negative correlation and relaxing the conditional constraints by using
positive correlation.

Our analysis has been that of a worst-case scenario, where the receiver completely ig-
nores correlation. In some cases, the receiver may perceive some degrees of correlation.
It is beyond the scope of this paper to analyze this general case. Ellis and Piccione (2017)
and Levy and Razin (2020) discuss general environments in which a decision maker per-
ceives some degree of correlation, and one of these approaches could potentially allow
an extension of our model in this direction.
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