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Abstract

We consider a parsimonious framework of jump-diffusion models for price dynamics with

stochastic price volatilities and stochastic jump intensities in continuous time. They account

for conditional heteroscedasticity and also incorporate key features appearing in financial time

series of price volatilities and jump intensities, such as persistence of contemporaneous jumps

(cojumps), mean reversion and feedback effects. More precisely, the stochastic variance and

stochastic intensity are jointly modelled by a generalised bivariate shot-noise process sharing

common jump arrivals with any non-negative jump-size distributions. This framework covers

many classical and important models in the literature. The main contribution of this paper is

that, we develop a very efficient scheme for its exact simulation based on perfect decompo-

sition where neither numerical inversion nor acceptance/rejection scheme is required, which

means that it is not only accurate but also the efficiency would not be sensitive to the param-

eter choice. Extensive numerical implementations and tests are reported to demonstrate the

accuracy and effectiveness of this scheme. Our algorithm substantially outperforms the clas-

sical discretisation scheme. Moreover, we unbiasedly estimate the prices of discrete-barrier

European options to show the applicability and flexibility of our algorithms.
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1 Introduction

Existence of discontinuities or jumps in the asset price (or return), its volatility and even its jump

intensity in the market have been extensively studied in the literature. Incorporating jumps in asset

prices for option pricing was already presented in the seminal work by Merton (1976). Similarly,

price volatility may also exhibits jumps, and the empirical importance of jumps in volatility implied

from the option market as well as in the high-frequency data has been well documented in Bakshi

et al. (1997); Bates (2000); Pan (2002); Todorov and Tauchen (2011). Even though both types of

jumps have been included, the resulting models still can not fully capture the real time series which

have been observed in the financial market. Adding jumps in its jump intensity becomes a natural

extension, see the more general models of affine framework developed by Duffie et al. (2000, 2003).

Recent evidences further reveal that these jumps in prices (or returns), price volatilities and

jump intensities may occur simultaneously, especially when nowadays large high-frequency data

are available and associated econometricalmethods for detecting jumps have been developed. More

precisely, there are mainly two types of contemporaneous jumps, or cojumps for an asset: There

are contemporaneous jumps (i.e. price-volatility cojumps) in the asset price (or return) and its

volatility that may present "leverage effects", see Eraker et al. (2003); Eraker (2004); Broadie et al.

(2007); Jacod and Todorov (2010); Todorov and Tauchen (2011); Bandi and Renò (2012, 2016);

Jacod et al. (2012, 2017); Andersen et al. (2015a,b); Fulop et al. (2015) and Aït-Sahalia and Jacod

(2014, Sec.14.2). For example, Todorov and Tauchen (2011) provided empirical evidence from

the high-frequency data of the close-to-maturity options written on the stock market index that, the

volatility jumps and market price jumps occur in most of the same time and exhibit high negative

dependency. In addition, as shocks to the price dynamics are likely to propagate over time, there

are contemporaneous jumps (i.e. price-intensity cojumps) in the asset price (or return) and its jump

intensity that may present "feedback effects" or "contagion effects", see Aït-Sahalia et al. (2014,

2015); Xiu (2014); Fulop et al. (2015); Aït-Sahalia and Hurd (2016); Carr andWu (2017); Boswijk

et al. (2018); Corradi et al. (2018); Dungey et al. (2018); Nyström and Zhang (2021). This type of

price-intensity cojumps has become more important since the global financial crisis of 2007–2008.

Overall, the concurrence mechanism of jumps makes diversification less effective and contributes

to another layer of systemic risk to the market. Therefore, modelling the dynamics of these co-

jumps is of paramount importance for risk management, asset pricing, trading, as well as to study

the unanticipated transmission of shocks, explain risk premia and understand the behaviors of in-

vestors and markets.
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Both the volatility process and jump intensity process are apparently not observable. Volatil-

ity is directly related to the rate of information flow in the market (Ross, 1989), and information

often comes in packets or clusters randomly. Therefore, stochastic volatility presents some key

features that often appear in the financial time series, such as mean reversion and volatility clus-

tering (i.e. the tendency of large changes in asset prices, either positive or negative, to be followed

by large changes, and small changes to be followed by small changes). As surveyed by Shephard

(2005, p.11) and Broadie et al. (2007), the earliest model in the literature that incorporates these

elements in the volatility process is probably the so-called shot-noise SV model used by Bookstaber

and Pomerantz (1989). It is a simple mean-reverting pure-jump model for volatility dynamics that

could reflect the digestion of information after events are sequentially and discretely revealed to the

public in the market (Peng and Xiong, 2003). It arises naturally in a financial market with stochas-

tic information flows, and the process of digesting information by investors has a rate that changes

endogenously through time. Very recent nonparametric evidence from Todorov et al. (2014) also

suggests that volatility may evolve only through jumps. Meanwhile, jump intensity acts similarly as

volatility and shares many common features. Therefore, we adopt a generalised bivariate shot-noise

process (Cox and Isham, 1980, p.88) with two types of cojumps for modelling the joint evolution

of volatility and intensity1. It is a shot-noise stochastic volatility (SV) model2, which accounts for

conditional heteroscedasticity (i.e. time-varying volatility), and incorporate basic and important

features appearing in financial time series of volatility, such as persistence of contemporaneous

jumps (shocks) and mean reversion. On the other hand, it is a shot-noise stochastic intensity model

that can also capture "feedback effects" by adding price-intensity cojumps. All together, it forms

a class of parsimonious and highly analytically tractable pure-jump stochastic volatility models in

continuous time.

Due to the importance of the role that these types of cojumps play in financial markets and the

high volume of recent literature on this issue, it would be useful to develop a very efficient, accurate

and easy-to-use numerical scheme of sampling them for practical implementation. In this paper,

we aim to introduce this parsimonious framework of SV models which incorporate both types of

cojumps meanwhile the resulting price processes still can be exactly and quickly simulated without

bias, so that cojumps can be very accurately and efficiently generated in normal computers for asset

pricing (e.g. options), risk management (e.g. stress tests, back tests for trading strategies and port-
1Shot-noise processes have already been used as parsimonious stochastic intensity models (i.e. shot-noise stochastic

intensity models) for event arrivals in finance and insurance, such as corporate defaults in Duffie and Singleton (1999,
2003) and catastrophes in Dassios and Jang (2003).

2In fact, shot-noise process was used by Bookstaber and Pomerantz (1989) for modelling the volatility dynamics.
We use it here for the variance dynamics, but we still name it as a shot-noise stochastic volatility (rather than shot-noise
stochastic variance).
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folio management), or for simulation-based study and testing for some newly developed statistical

or econometric methods. Conventional simulation methods (such as Euler scheme) widely adopted

both in industry and literature for stochastic volatility models are mainly based on discretising the

underlying processes and simulating approximately by time discretisation (Glasserman, 2003). Al-

though simple and generally applicable, they introduce bias into simulation-based estimations. In

contrast, exact simulation for stochastic volatility models has the primary advantage of generat-

ing sample paths according to the process law exactly, and it is especially useful for unbiasedly

estimating option prices. It is an interesting and challenging problem which has attracted many

researchers recently. Beskos and Roberts (2005) developed an exact simulation algorithm based

on the acceptance/rejection (A/R) scheme for one-dimensional state-dependent diffusions. It was

then extended by Chen and Huang (2013) to exactly simulate a more general class of diffusions

via a localisation technique. Broadie and Kaya (2006) designed an exact simulation algorithm for

the classical Heston (1993)’s CIR SV model. Recently, it has been further extended by Baldeaux

(2012) for the 3/2 SV model, Grasselli (2017) for the 4/2 SV model, Cai et al. (2017) for the SABR

model, Kang et al. (2017) for the Wishart SV model, and Li and Wu (2019) for the Ornstein–

Uhlenbeck SV model. However, all of them heavily rely on the numerical inversion scheme for

Laplace (Fourier) transforms, and it is well known that it involves truncation and discretisation

errors. In contrast, we develop algorithms for exact simulation without any numerical inversion

or truncation. Our key methodology for simulation design is based on the exact distributional de-

composition3 for the underlying stochastic processes. The key advantage of this approach is that it

does not involve numerical inversion procedure. In addition, for this shot-noise cojump framework

in particular here, remarkably, we even discover a perfect decomposition such that the process can

be decomposed into simple random variables which can be exactly simulated directly without any

A/R scheme. This means that it is not only accurate but also the efficiency would not be sensitive to

the parameter choice. As illustrated in later sections, our algorithm is extremely fast, and substan-

tially outperforms the classical discretisation scheme. Moreover, our scheme allows very flexible

distributions and their dependency structure among these sizes of cojumps.

The paper is organised as follows: Section 2 sets up the model framework of shot-noise co-

jumps. The associated exact simulation algorithms with relevant distributional properties are de-
3This approach has also been recently adopted by Dassios and Zhao (2013, 2017); Dassios et al. (2018); Qu et al.

(2021a,b,c) to develop tailored algorithms for exactly sampling some important random variables and point processes,
such as tempered stable distributions, Hawkes process, point processes with CIR-intensities, Lévy-driven OU processes
and Lévy-driven point processes. The basic idea is simple: to exactly simulate a random variable or a stochastic process,
we investigate whether it can be decomposed into simpler randomvariables exactly in law, each ofwhich can be simulated
exactly. However, it is only a generic principle and does not tell us anything in detail about how to simulate any targeted
random variable or stochastic process, and we have to obtain their distributional properties case by case and identify a
successful decomposition which is nontrivial.
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veloped in Section 3. In Section 4, we implement, validate our algorithms, and offer an application

to option pricing with extensive numerical experiments; comparisons with the classical discretisa-

tion scheme as well as the analysis of performance sensitivity to parameter choice are also provided.

Section 5 draws a brief conclusion for this paper.

2 Model Framework of Shot-noise Cojumps

To simplify the model setup, we assume the risk-free interest rate is fixed and the asset is a stock

which pays no dividend. The price dynamics is modelled by a jump-diffusion framework with

shot-noise stochastic volatility and stochastic intensity. It has contemporaneous and (in)dependent

jumps (i.e. cojumps) in price, variance and intensity processes. This is to capture exogenous shocks

(e.g. news) simultaneously acting on the price, volatility and intensity processes, which immedi-

ately present cojumps with (in)dependent random sizes. Each impact of shocks to the volatility or

intensity decays exponentially afterward. In addition, there is a series of contagious cojumps in the

price and intensity to capture the "feedback" or "contagion" effects. More precisely, it is specified

in Definition 2.1 in general as follows.

Definition 2.1 (Shot-noise Cojump Framework). The price process {St}t≥0 under the risk-neutral

measure Q follows a jump-diffusion process characterised by the stochastic differential equations

(SDEs)

dSt
St−

=
�
r − ct

�
dt+

È
VtdWt +

�
eJt − 1

�
dNt +

�
eJ
∗
t − 1

�
dN∗t , (2.1)

dVt = −δ (Vt − µV ) dt+ Y V
t dNt, (2.2)

dλt = −κ (λt − µλ) dt+ YtdNt + Y ∗t dN∗t , (2.3)

ct = (µS − 1) %+ (µ∗ − 1)λt, (2.4)

where

• r ≥ 0 is the constant of risk-free interest rate;

• {Wt}t≥0 is a standard Brownian motion;

• Vt is the shot-noise stochastic volatility (or instantaneous variance rate);

• δ > 0 is the constant mean-reversion rate of volatility;

• µV ≥ 0 is the constant mean-reversion level of volatility;
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• Nt is the counting process of price-volatility-intensity cojumps, which follows a standard

Poisson process of constant intensity % > 0 and characterises the price-volatility-intensity

cojump arrival times {Ti}i=1,2,..., i.e., N ≡ {Ti}i=1,2,...;

• N∗t is the counting process4 of price-intensity cojumps with shot-noise stochastic intensity

λt, which characterises the price-intensity cojump arrival times
¦
T ∗j
©
j=1,2,...

, i.e. N∗ ≡¦
T ∗j
©
j=1,2,...

;

• κ > 0 is the constant mean-reversion rate of intensity;

• µλ ≥ 0 is the constant mean-reversion level of intensity;

•
¦�
Ji, Y

V
i , Yi

�©
i=1,2,...

are the cojump sizes in price, volatility and intensity, respectively,

with any joint distribution Q(y1, y2, y3), y1 ∈ R, y2, y3 ≥ 0, and the marginal distribution

H(y), y ≥ 0 for Y V
i , where Ji := JTi , Y V

i := Y V
Ti

and Yi := YTi;

•
¦�
J∗j , Y

∗
j

�©
j=1,2,...

are another series of cojump sizes in price and intensity, respectively,

which are i.i.d. following a non-negative distribution with the joint distribution Q∗(x1, x2),

x1 ∈ R, x2 ≥ 0 where J∗j := J∗Tj and Y
∗
j := Y ∗Tj ;

• Nt andWt are assumed to be independent of each other, and

µS := E
�
eJi
�
, µ∗ := E

�
eJ
∗
j

�
, ∀i, j. (2.5)

Given the initial volatility level and initial intensity level, V0, λ0 > 0 (which could be fixed or

random), the shot-noise stochastic volatility and the shot-noise stochastic intensity as characterised

by the SDEs (2.2, 2.3) respectively can be explicitly expressed as the solutions of

Vt = µV + (V0 − µV ) e−δt +
NtX
i=1

Y V
i e
−δ(t−Ti),

λt = µλ + (λ0 − µλ) e−κt +
NtX
i=1

Yie
−κ(t−Ti) +

N∗tX
j=1

Y ∗j e
−κ(t−Ti).

Exactly sampled paths of the asset price St with the underlying stochastic shot-noise volatility Vt

and stochastic shot-noise intensity λt using our newly-developed simulation algorithm (which will

be provided later in Algorithm 3.2) for this shot-noise cojump framework are plotted in Figure 1

with parameter setting (4.1, 4.2, 4.3) specified later in Section 4.2.

4In fact, the point process N∗t is a dynamic contagion process as introduced by Dassios and Zhao (2011).
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Figure 1: Exactly sampled paths of the asset price St and underlying stochastic shot-noise volatility Vt and
stochastic shot-noise intensity λt using our newly-developed simulation scheme (Algorithm 3.2)
for the shot-noise cojump model with parameter setting (4.1, 4.2, 4.3) specified later in Section 4.2
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The most flexible setting in this framework is that these cojump sizes can follow any non-

negative distributions and even can be dependent on history of the processes or other variables. In

addition, we can also incorporate the leverage effect (i.e., negative dependency between the asset

price and its volatility) by setting a negative dependence for the sizes of cojumps in the asset price

and its volatility.

This shot-noise cojump framework is a parsimonious specification of the general affine frame-

work (Duffie et al., 2000, 2003). However, it is comprehensive enough to capture most of funda-

mental components (such as diffusion and jumps in price, conditional heteroscedasticity, mean-

reverting stochastic volatility, stochastic cojumps in price and volatility, leverage effect, stochastic

intensity, clustering jumps, contagion effect) as presented from the real financial time series, mean-

while maintaining the underlying models parsimonious and exactly simulatable without numerical

inversion and A/R procedure (as demonstrated in the next section). This framework covers many

classical and important jump-diffusion models in the literature. Of course, it covers the Black-

Scholes model (Black and Scholes, 1973) when the volatility and intensity are fixed and there is

no any jumps in the price process. If J∗t ≡ 0, Vt is a fixed positive constant and the jump size Jt

follows a normal distribution, then it reduces to the classicalMerton’s jump-diffusion model (Mer-

ton, 1976); if the logarithm of Jt follows an asymmetric double exponential distribution, then, it

reduces to the Kou’s jump-diffusion model (Kou, 2002). If Jt = J∗t ≡ 0, it is a pure shot-noise SV

model. If J∗t ≡ 0, then, it is a shot-noise SV model with contemporaneous price-volatility jumps

(shot-noise SVCJ model). If J∗t ≡ 0, µV = 0 and the jump size Y V
t follows an exponential distri-

bution, then, it is a gamma-OU SV model (Barndorff-Nielsen and Shephard, 2001a, 2002; Roberts

et al., 2004)5. If Jt ≡ 0 and the volatility is fixed, then, it reduces to the Hawkes’ jump-diffusion

model (Aït-Sahalia et al., 2015). Our framework is also similar to (but different from) the very re-

cent option-pricing model of Andersen et al. (2015b) but with a simpler parametrisation. However,

we focus on the development of simulation algorithm rather than empirical analysis.

3 Exact Simulation

In this section, we develop a highly efficient scheme of exact simulation for this shot-noise cojump

framework. We denote the Laplace transform, mean, integrated volatility, integrated intensity and
5Vt is the so-called gamma-OU process, since the asymptotic marginal distribution of volatility process is a simple

gamma distribution.
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integrated compensator respectively by

ĥ(u) :=

∞Z
0

e−uydH(y), µH :=

∞Z
0

ydH(y);

It :=

tZ
0

Vsds, I0 = 0; Λt :=

tZ
0

λsds, Λ0 = 0; Ct :=

tZ
0

csds, C0 = 0,

where ct is the compensator of cojumps in the price process. Obviously, we have the simple con-

nection between the integrated compensator process Ct and the integrated intensity process Λt,

Ct = (µS − 1) %t+ (µ∗ − 1) Λt. (3.1)

By taking the risk-free bond (with risk-free interest rate r) as the numeraire, the discounted price

process
¦
e−rtSt

©
t≥0

has to be a Q-martingale in order to eliminate arbitrage opportunity. Obvi-

ously, with the compensator ct specified by (2.4), for any time t > 0, we have

E [St | S0] = S0e
rt. (3.2)

For conciseness, in the sequel, we focus on the cases with the mean-reversion level µV = 0, as it

is trivial to extend to the cases with µV > 0 by simply changing variable Vt by Vt − µV .

3.1 Distributional Properties

A key difference frommany other SVmodels in the literature is that, there is no diffusion in volatil-

ity or intensity in our shot-noise cojump framework. This simplification makes it more analytically

tractable than most other SV models in the literature. Remarkably, it has nice distributional proper-

ties and even allows perfect decomposition for the underlying transition processes within any given

time period [T, T + τ ], τ ∈ R+.

The point increments of two typesNt andN∗t within the time period [T, T +τ ] are respectively

denoted by

∆Nτ := Nt+τ −Nt, ∆N∗τ := N∗t+τ −N∗t .

As specified in Definition 2.1, it is clear that, ∆Nτ follows a Poisson random variable of rate %τ .

However, ∆N∗τ is more complicated, which will be discussed in detail later in Section 3.2. It is

well known that,
T+τZ
T

È
VsdWs

���� IT+τ − IT ∼ N
�

0, IT+τ − IT
�
,
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where IT+τ − IT is the actual variance (Barndorff-Nielsen and Shephard, 2002), then, we have

the law of price transition as follows:

Proposition 3.1. Given the values of asset price ST and variance level VT at time T ≥ 0, the asset

price at time T + τ as the solution to the SDE (2.1,2.2) is given by

ST+τ = ST × eε ×
∆NτY
i=1

eJi ×
∆N∗τY
j=1

eJ
∗
j × exp

�
−

T+τZ
T

csds

�
, τ ∈ R+, (3.3)

or, in the logarithm of price as

lnST+τ = lnST + ε+
∆NτX
i=1

Ji +

∆N∗τX
j=1

J∗j − (CT+τ − CT ) , (3.4)

where

ε := rτ − 1

2

T+τZ
T

Vsds+

T+τZ
T

È
VsdWs,

and

ε

����� IT+τ − IT ∼ N
�
rτ − 1

2
(IT+τ − IT ) , IT+τ − IT

�
. (3.5)

We know from Proposition 3.1 that, to simulate the price process ST+τ conditional on ST , one

has to first simulate the joint pair of shot-noise volatility and its integral together at time T + τ ,

i.e., �
IT+τ − IT , VT+τ

� ����� IT , VT , ST ,
which relies on Theorem 3.1 derived as below.

Theorem 3.1 (Joint Distribution of Shot-noise Volatility and Its Integral). The joint Laplace trans-

form of (ZT+τ , VT+τ ) conditional on (ZT , VT ) is given by

E
�
e−ζZT+τ e−ξVT+τ | VT , ZT

�
= e−ζZT e−ξwVT × exp

�
−%

T+τZ
T

�
1− ĥ

�
ζ + ξe−δ(T+τ−s)

��
ds

�
, τ ∈ R+, (3.6)

where w := e−δτ and

Zt := δIt + Vt. (3.7)

Theorem 3.1 is proved in Appendix A.

Corollary 3.1. The Laplace transform and mean of VT+τ conditional on VT are given respectively
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by

E
�
e−ξVT+τ | VT

�
= e−ξwVT × exp

�
−%

T+τZ
T

�
1− ĥ

�
ξe−δ(T+τ−s)

��
ds

�
,

E [VT+τ | VT ] = V0e
−δτ +

%

δ
µH

�
1− e−δτ

�
. (3.8)

The Laplace transform of asymptotic and stationary marginal distribution of VT+τ is

Π̂(ξ) := lim
τ→∞

E
�
e−ξVT+τ | VT

�
= exp

�
−%
δ

ξZ
0

1− ĥ(u)

u
du

�
. (3.9)

Proof. Setting ζ = 0 in (3.6), we have the marginal distributions. Setting ζ = 0 and τ = ∞

in (3.6) and using the change of variable later as (3.10), the Laplace transform of the stationary

marginal distribution of VT+τ is derived in (3.9).

(3.8) offers a simple theoretical value later for validating and testing our simulation algorithms.

3.2 Simulation Algorithms

Distributional properties derived in Section 3.1 reveal an elegant scheme for exact simulation. Let

us first explain how to exactly sample a pair of increments of the numbers of two types of cojumps,

(∆Nτ ,∆N
∗
τ ), the next intensity level λT+τ and integrated intensityΛT+τ conditional on the initial

intensity levelλT and the initial integrated intensityΛT , respectively, within the time period [T, T+

τ ]:

Algorithm 3.1 (Exact Simulation for ∆Nτ ,∆N
∗
τ , λT+τ ,ΛT+τ ). Conditional on the intensity level

λT and integrated intensity ΛT , reset T ∗0 = T , λT ∗0 = λT , n = n∗ = 0, and execute the loop for

k = 0, 1, 2, ...:

1. Simulate one candidate interarrival time E∗k+1 via

E∗k+1 = −1

%
lnU, U ∼ U[0, 1].

2. Simulate anther candidate interarrival time S∗k+1 via

S∗k+1 =

8<: S
∗(1)
k+1 ∧ S

∗(2)
k+1, if D∗k+1 > 0,

S
∗(2)
k+1, if D∗k+1 < 0,

where

D∗k+1 := 1 +
κ lnU1

λT ∗
k
− µλ

, U1 ∼ U[0, 1],
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and

S
∗(1)
k+1 := −1

κ
lnD∗k+1; S

∗(2)
k+1 := − 1

µλ
lnU2, U2 ∼ U[0, 1].

3. Record the (k + 1)th realised interarrival time τ∗k+1 by

τ∗k+1 = S∗k+1 ∧ E∗k+1;

and then, record the (k + 1)th jump-arrival time T ∗k+1 in the intensity process λt by

T ∗k+1 = T ∗k + τ∗k+1.

If T ∗k+1 > T +τ , then, terminate the entire loop, and output ∆Nτ ,∆N
∗
τ , λT+τ ,ΛT+τ at the

terminal time point T + τ as

∆Nτ = n,

∆N∗τ = n∗,

λT+τ =
�
λT ∗

k
− µλ

�
e−κ(T+τ−T ∗k ) + µλ,

ΛT+τ = ΛT ∗
k

+
λT ∗

k
− µλ
κ

h
1− e−κ(T+τ−T ∗k )

i
+ µλ (T + τ − T ∗k ) ;

otherwise, continue the following steps:

4. Record the change at the jump-arrival time T ∗k+1 in the process λt via

λT ∗
k+1

=

8><>:
λT ∗−

k+1
+ Y ∗k+1, if τ∗k+1 = S∗k+1,

λT ∗−
k+1

+ Yk+1, if τ∗k+1 = E∗k+1,

where

λT ∗−
k+1

=
�
λT ∗

k
− µλ

�
e−κ(T

∗
k+1−T

∗
k ) + µλ.

5. Record the increment in the integrated intensity process Λt within the period
�
T ∗k , T

∗
k+1

�
via

ΛT ∗
k+1

= ΛT ∗
k

+
λT ∗

k
− µλ
κ

�
1− e−κτ

∗
k+1

�
+ µλτ

∗
k+1;

6. Count the point increments of two types respectively via

n =

8<: n, if τ∗k+1 = S∗k+1,

n+ 1, if τ∗k+1 = E∗k+1,
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n∗ =

8<: n∗ + 1, if τ∗k+1 = S∗k+1,

n∗, if τ∗k+1 = E∗k+1.

Algorithm 3.1 can be considered as an extension of the exact simulation scheme developed

by Dassios and Zhao (2013) for the popular Hawkes process (Hawkes, 1971). It serves as an

intermediate step for our main result Algorithm 3.2 for exactly simulating the shot-noise cojump

framework as below.

Algorithm 3.2 (Exact Simulation of Shot-noise Cojumps). Conditional on the initial values (ST , VT , IT , λT ,ΛT )

at time T , (ST+τ , VT+τ , IT+τ , λT+τ ,ΛT+τ ) at time T+τ for any τ ∈ R+ can be exactly simulated

jointly via

VT+τ | VT
D
= wVT +

∆NτX
i=1

Xi,

IT+τ | IT , VT+τ
D
= IT +

1

δ

 
VT − VT+τ +

∆NτX
i=1

Y V
i

!
,

lnST+τ | ST , IT , VT+τ , λT ,ΛT ,ΛT+τ
D
= lnST + ε+

∆NτX
i=1

Ji +

∆N∗τX
j=1

J∗j − (CT+τ − CT ) ,

where w := e−δτ ,

CT+τ − CT = (µS − 1) %τ + (µ∗ − 1) (ΛT+τ − ΛT ) ,

• ∆Nτ is a Poisson random variable of rate %τ , which can be exactly simulated all together

with ∆N∗τ , λT+τ ,ΛT+τ conditional on λT ,ΛT via Algorithm 3.1;

• Xi and Y V
i are dependent:

Xi | Y V
i = y

D
= ywUi , Ui ∼ U[0, 1];

• ε conditional on IT+τ − IT is a normally distributed random variable, i.e.,

ε | IT+τ − IT ∼ N
�
rτ − 1

2
(IT+τ − IT ) , IT+τ − IT

�
.

Proof. The proof here focuses on the shot-noise SV part, which is integrated with the one for

Algorithm 3.1. Since the jump size in volatility, Y V
i , has the marginal density function dH(y), we

13



have

T+τZ
T

�
1− ĥ

�
ζ + ξe−δ(T+τ−s)� �ds =

τZ
0

�
1− ĥ

�
ζ + ξe−δx

� �
dx

=
1

δ

ζ+ξe−δτZ
ζ+ξ

1− ĥ(u)

ζ − u
du (3.10)

=
1

δ

ζ+ξe−δτZ
u=ζ+ξ

1

ζ − u

∞Z
y=0

�
1− e−uy

�
dH(y)du

= −1

δ

ξe−δτZ
v=ξ

1

v

∞Z
y=0

�
1− e−(v+ζ)y

�
dH(y)dv

=
1

δ

∞Z
y=0

1Z
z=w

1

z

�
1− e−(ξz+ζ)y

�
dH(y)dz

= τ

∞Z
y=0

∞Z
x=0

�
1− e−ξx−ζy

� 1

δτx
1[yw,y]dxdH(y).

Hence, by Theorem 3.1, the joint Laplace transform of (ZT+τ , VT+τ ) is

E
�
e−ζZT+τ e−ξVT+τ | VT , ZT

�
= e−ζZT e−ξwVT × exp

�
−%τ

∞Z
0

∞Z
0

�
1− e−ξx−ζy

� 1

δτx
1[yw,y]h(y)dxdy

�

= e−ζZT e−ξwVT × exp

�
− %τ

�
1− ĝX,Y (ξ, ζ)

��
,

where the joint Laplace transform of the two random variables (X,Y ) is

ĝX,Y (ξ, ζ) := E
�
e−ξXe−ζY

�
=

∞Z
0

∞Z
0

e−ξx−ζyfX,Y (x, y)dxdy,

and the joint density function of (X,Y ) is specified by

fX,Y (x, y) =
1

δτx
1[yw,y]h(y), (3.11)

which is well-defined since

∞Z
0

∞Z
0

fX,Y (x, y)dxdy =

∞Z
0

∞Z
0

1

δτx
1[yw,y]h(y)dxdy =

∞Z
0

2
4� 1

δτ
lnx

� �����
x=y

x=yw

3
5h(y)dy =

∞Z
0

h(y)dy = 1.
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Note that, the marginal density function of Y is given by

fY (y) =

∞Z
0

fX,Y (x, y)dx =

∞Z
0

1

δτx
1[yw,y]h(y)dx = h(y)

∞Z
0

1

δτx
1[yw,y]dx = h(y),

which implies Y ∼ H . By conditioning, we have

fX,Y (x, y) = fY (y)× fX|Y=y(x),

and X | Y = y has the conditional density of

fX|Y=y(x) =
1

δτx
1[yw,y],

and can be simulated exactly via explicitly inverting the cumulative distribution function (CDF)

FX|Y=y(x) =
1

δτ
ln

�
x

yw

�
1[yw,y],

with the analytic inverse

F−1
X|Y=y(u) = yweδτu, u ∈ [0, 1],

i.e.,

X | Y = y
D
= yweδτU

∗
= ye−δτ(1−U∗) D= ye−δτU

∗
= ywU

∗
, U∗ ∼ U[0, 1].

It tells us how to exactly sample (ZT+τ , VT+τ ) conditional on (VT , ZT ) pairwisely and sequentially

via

VT+τ | VT
D
= wVT +

∆NτX
i=1

Xi,

ZT+τ | ZT
D
= ZT +

∆NτX
i=1

Y V
i ,

where Xi and Yi are dependent following the joint PDF of (3.11). Based on the transform (3.7),

we have IT+τ = 1
δ (ZT+τ − VT+τ ) and ZT = δIT + VT . Together with Proposition 3.1 and

Algorithm 3.1, we finally obtain Algorithm 3.2.

3.3 Replicating Marginal Distributions of Other SV Models

This subsection is to demonstrate that, although this class of SV models is simple, its great flexi-

bility of choosing jump-size distributions is able to mimic the marginal distributions of many more
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sophisticated SV models whose exact simulation algorithms without numerical inversion and A/R

(perfect decomposition) are not available. For example, it can marginally match any marginal

distribution of very popular non-Gaussian OU SV models introduced by Barndorff-Nielsen and

Shephard (2001a, 2002) (BNS). Note that, this matching is not asymptotic, and in fact, it is exact

in distribution.

Proposition 3.2. For any BNS’ SV model with non-Gaussian OU SV process V ∗t ,

dV ∗t = −δV ∗t dt+ dLδt, t ≥ 0,

where Lt is a Lévy subordinator with Lévy measure ν∗, if the CDF of volatility-jump sizes Y V
t in

the shot-noise SV process Vt is set by

H(y) = 1− δ

%
y
ν∗(dy)

dy
, y ∈ Y, (3.12)

where the support Y ⊆ [0,∞) is determined by the specification of ν∗ such that H(y) is a well

defined CDF, then, the marginal distributions of Vt and V ∗t are identical.

The proof is provided in Appendix B. For illustration, we provide two popular specifications

of Lévy measure ν∗ for BNS’ SV models:

• If one wants to match to the BNS’ SV with gamma marginal distribution with shape param-

eter a∗ and rate parameter b∗, i.e.,

ν∗(dy) = a∗y−1e−b
∗ydy, y > 0, a∗, b∗ > 0, (3.13)

then, we have

H(y) =

8<: 1− δa∗

% e
−b∗y, y ∈ [y+,∞),

0, y ∈ [0, y+),
y+ :=

1

b∗
ln
�
%

δa∗

�
.

In particular, if a∗ = %
δ and b

∗ = α > 0, then, nicely we have y+ = 0 and

H(y) = 1− e−αy, y ≥ 0,

which implies an exponential distribution of rate α for jump sizes Y V
t and exactly recovers

the popular gamma-OU SV model (Roberts et al., 2004).

• If one wants to match to the BNS’ SV with a positive exponentially tilted stable (ETS)
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marginal distribution, i.e.,

ν∗(dy) =
θ∗

yα∗+1
e−β

∗ydy, y ≥ 0, α∗ ∈ (0, 1), β∗, θ∗ ∈ R+, (3.14)

then, we have

H(y) =

8<: 1− δθ∗

%
e−β
∗y

yα∗
, y ∈ [y+,∞),

0, y ∈ [0, y+),

where y+ is the unique positive solution to the equation of y,

δθ∗

%

e−β
∗y

yα∗
= 1.

4 Pricing Options with Shot-noise Cojumps

In this section, we illustrate the performance, effectiveness and flexibility of our algorithms through

extensive numerical experiments. Section 4.1 and 4.2 were implemented on a desktop with Intel

Core i7-6700 CPU@3.40GHz processor, 24.00GBRAM,Windows 10 Professional, 64-bit Operat-

ing System. Section 4.4 was implemented on a desktop with Intel Core i7-1165G7 CPU@3.40GHz

processor, 16.00GBRAM,Windows 10Home, 64-bit Operating System. The algorithms are coded

and performed in MatLab (R2012a), and the computing time is measured by the elapsed CPU time

in seconds. Numerical validation and tests for our algorithms are based on the true values of ex-

pected volatility levels and asset prices in (3.8) and (3.2). The associated errors from the true values

are reported by three standard measures:

1. Error (Error) = estimated value (Est)− true value;

2. Relative error (Error %) = estimated value − true value
true value ;

3. Root mean square error RMSE =
È
bias2 + SE2, where the SE is the standard error of the

simulation output, and the bias is the difference between the expectation of the estimator and

the associated true (theoretical) value; for the algorithm of exact simulation here, the bias is

set to zero.

As an example, we implement a simple application of our new scheme for pricing exotic options

in finance. It is well known that, pricing exotic options under SV models is tricky. Discretely-

monitored path-dependent options (such as discrete-barrier European, Asia, lookback options) usu-

ally have no closed forms for their prices (except for a very small number of monitoring instants

under the simple Black-Scholes setting), and practitioners in the financial industry commonly use
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Monte Carlo simulation for evaluation (Campbell et al., 1997, p.340).6 It is straightforward to

directly apply our exact scheme, as only the prices at these monitoring time points need to be sim-

ulated, and the option prices thereby can be evaluated without bias. Here, we take the discretely-

monitored barrier option as an example, which is one of the most commonly traded exotic options

and is especially popular in foreign exchange markets. Although some analytical approximation

approaches do exist, pricing path-dependent options using Monte Carlo simulation for advanced

models is still widely adopted.

As a prototypical barrier option, let us consider a down-and-out barrier option on a European

call or put with discrete monitoring instants {tk}i=1,2,...,m−1 where tk := k∆t, ∆ = T/m and

T > 0 is the maturity (which is not the monitoring time point). For simplification, we denote

Sk := Stk . The payoff function at time T is Fo(ST ) if Sk > b for all k = 1, 2, ...,m − 1, where

Fo(s) =
�
ST −K

�+ for the call type, Fo(s) =
�
K − ST

�+ for the put type, b > 0 is the fixed

lower barrier, andK > b is the strike price. The present value of this option (at time t = 0) is

e−rTE
�
1{M [0,T ]>b}Fo(ST ) | S0

�
= e−rTE

"
m−1Y
k=1

1{Sk>b}Fo(ST ) | S0

#
,

where 1{·} is the indicator function, and

M [0,T ] := min
1≤k≤m−1

Sk.

Since {Sk}k=1,2,...,m can be sequentially and exactly simulated via Algorithm 3.2 without time

discretisation or numerical inversion, the option price at time t = 0 can be estimated without

bias. In fact, Algorithm 3.2 offers us a great flexibility to select various choices of distributions

for cojump sizes, to investigate the associated impacts to the option prices. In the following two

subsections, we offer two typical examples respectively to illustrate how Algorithm 3.2 can be

implemented in details:

1. The first example is simple and concise which is a pure shot-noise SV model without price-

intensity cojumps (no contagion);

2. The second example is more realistic and comprehensive where there are fully two types of

cojumps.
6Alterative approaches can be found in the literature. Petrella and Kou (2004) adopted the numerical inversion of

Laplace transform. Broadie and Yamamoto (2005) developed a fast Gaussian transform for Gaussian models. Feng
and Linetsky (2008) developed a Hilbert transform approach based on the convolution for general non-Gaussian Lévy
models.
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4.1 Pure Shot-noise SV Models

Let us first implement some simpler special cases of Definition 2.1, the shot-noise SV models

without cojumps. Representatively, we adopt the popular choice of a positive exponentially tilted

stable (ETS) distribution7 as an example for demonstration, i.e., Y V
i ∼ ETS (α, β, θ) with its Lévy

measure

ν(dy) =
θ

yα+1
e−βydy, y ≥ 0, α ∈ (0, 1), β, θ ∈ R+,

and mean µH = θβα−1Γ (1− α), where α is the stability index, θ is the intensity parameter and

β is the tilting parameter. In practice, parameters should be calibrated from the prices of liquidly

traded European options (i.e. m = 1) when the data is available. Here, for the illustration purpose,

the option contracts and parameters are manually set as

r = 5%, S0 = 100, K = 100, T = 1, b = 80,

V0 = 0.2, µV = 0, % = 4, δ = 5, α = 0.25, β = 1.5, θ = 0.2.

We adopt a highly efficient new algorithm in Dassios et al. (2018) for exactly sampling ETS ran-

dom variables. The plots of unbiasedly estimated prices for the monthly (m = 12), weekly

(m = 52) and daily (m = 250) monitored barriers of European call and put options respec-

tively for S0 ∈ [80, 120] are presented in Figure 2. Each value point is estimated from 100, 000

sample paths, which are exactly simulated by Algorithm 3.2. The detailed numerical results are

reported in Table 1. Thanks to the simple analytic formulas for true values of expected volatility

level E[VT | V0] and expected price level E[ST | S0] available in (3.8) and (3.2), respectively, we

are able to easily test the accuracy and efficiency of our algorithm. Convergence analysis of our ex-

act simulation scheme (Algorithm 3.2) for unbiasedly estimated volatility expectation E[VT | V0],

price expectation E[ST | S0], and option prices of monthly, weekly and daily monitored barriers

on European call and put options are plotted in Figure 3, respectively, with the associated numer-

ical results based in Table 2. In particular, we can observe that, the price of discretely monitored

barriers on European put options is not monotone with respect to the initial stock price S0, which

is consistent with the finding in literature, see Feng and Linetsky (2008).
7A positive tempered stable distribution can be constructed from a one-sided α-stable law by exponential tilting, see

Barndorff-Nielsen and Shephard (2001b, p.3) and Barndorff-Nielsen et al. (2002, p.14). It is a popular and basic tool
in finance, see some recent applications in Carr et al. (2002), Bates (2012), Li and Linetsky (2013), Mendoza-Arriaga
and Linetsky (2014), Todorov (2015) and Andersen et al. (2017). In particular, if α = 1

2
, it reduces to a very important

distribution, the inverse Gaussian (IG) distribution (which can be interpreted as the distribution of the first passage time
of a Brownian motion to an absorbing barrier).
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Table 1: Numerical results for the unbiasedly estimated prices of monthly, weekly and daily monitored barrier
options respectively for S0 ∈ [80, 120], and each value point is estimated from 100, 000 sample
paths, with the associated plots provided in Figure 2

S0 Call RMSE Put RMSE Time Call RMSE Put RMSE Time Call RMSE Put RMSE Time
Monthly Weekly Daily

80 4.05 0.06 0.69 0.010 45 2.26 0.05 0.22 0.005 172 1.08 0.03 0.08 0.003 801
85 6.60 0.07 1.02 0.012 44 5.13 0.06 0.51 0.008 171 4.46 0.06 0.34 0.006 792
90 9.65 0.08 1.34 0.014 43 8.73 0.08 0.74 0.009 174 7.93 0.08 0.54 0.008 813
95 13.04 0.10 1.55 0.015 44 12.13 0.09 0.89 0.010 171 11.52 0.09 0.68 0.008 789
100 16.14 0.10 1.66 0.016 44 15.82 0.10 0.97 0.011 170 15.53 0.11 0.79 0.009 795
105 20.17 0.12 1.66 0.016 44 19.52 0.12 1.01 0.011 169 19.17 0.12 0.81 0.009 793
110 24.11 0.13 1.64 0.016 45 23.73 0.13 1.00 0.011 168 23.34 0.13 0.80 0.009 777
115 28.24 0.14 1.53 0.015 44 27.94 0.14 0.94 0.010 170 27.64 0.14 0.76 0.009 775
120 32.46 0.15 1.40 0.015 45 32.18 0.15 0.88 0.010 168 32.05 0.15 0.70 0.008 786

Table 2: Numerical results for the convergence analysis of our exact simulation scheme (Algorithm 3.2) for
unbiasedly estimated volatility expectation E[VT | V0], price expectation E[ST | S0], and option
prices of monthly, weekly and daily monitored barriers on European call and put options respectively,
with the associated plots provided in Figure 3

E[VT | V0] E[ST | S0] Call Put
Paths True Est Error Error% RMSE True Est Error Error% RMSE Est RMSE Est RMSE Time

Monthly
10,000 0.1450 0.1475 0.0025 1.73% 0.0021 105.1271 104.8687 -0.2584 -0.25% 0.4360 16.3582 0.3324 1.6409 0.0500 5
40,000 0.1450 0.1444 -0.0007 -0.46% 0.0011 105.1271 104.9893 -0.1378 -0.13% 0.2180 16.2253 0.1660 1.6709 0.0251 17
160,000 0.1450 0.1455 0.0005 0.34% 0.0006 105.1271 105.0092 -0.1179 -0.11% 0.1105 16.4153 0.0849 1.6605 0.0124 69
640,000 0.1450 0.1450 -0.0001 -0.05% 0.0003 105.1271 105.0876 -0.0395 -0.04% 0.0553 16.4446 0.0424 1.6409 0.0062 283
2,560,000 0.1450 0.1451 0.0000 0.03% 0.0001 105.1271 105.1603 0.0332 0.03% 0.0277 16.4988 0.0213 1.6421 0.0031 1,137

Weekly
10,000 0.1450 0.1441 -0.0010 -0.66% 0.0022 105.1271 105.3827 0.2556 0.24% 0.4438 16.0692 0.3347 0.9625 0.0332 16
40,000 0.1450 0.1451 0.0000 0.02% 0.0011 105.1271 105.1002 -0.0269 -0.03% 0.2220 15.8009 0.1684 0.9845 0.0167 67
160,000 0.1450 0.1453 0.0002 0.17% 0.0006 105.1271 105.2642 0.1371 0.13% 0.1110 15.9575 0.0842 0.9858 0.0084 270
640,000 0.1450 0.1451 0.0000 0.02% 0.0003 105.1271 104.9996 -0.1275 -0.12% 0.0549 15.7039 0.0412 0.9853 0.0042 1,074
2,560,000 0.1450 0.1450 -0.0000 -0.01% 0.0001 105.1271 105.1184 -0.0088 -0.01% 0.0276 15.8166 0.0208 0.9875 0.0021 4,264

Daily
10,000 0.1450 0.1484 0.0033 2.30% 0.0023 105.1271 105.0292 -0.0979 -0.09% 0.4705 15.4459 0.3681 0.7337 0.0273 82
40,000 0.1450 0.1439 -0.0011 -0.78% 0.0011 105.1271 105.1172 -0.0099 -0.01% 0.2214 15.3683 0.1666 0.7489 0.0138 320
160,000 0.1450 0.1453 0.0002 0.16% 0.0006 105.1271 105.2243 0.0972 0.09% 0.1113 15.3937 0.0838 0.7757 0.0070 1,277
640,000 0.1450 0.1451 0.0001 0.08% 0.0003 105.1271 105.0217 -0.1055 -0.10% 0.0551 15.2567 0.0409 0.7824 0.0035 5,031
2,560,000 0.1450 0.1451 0.0000 0.03% 0.0001 105.1271 105.1150 -0.0121 -0.01% 0.0277 15.3673 0.0207 0.7722 0.0018 20,032
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Figure 2: Unbiasedly estimated prices of monthly, weekly and daily monitored barriers on European call and
put options respectively for S0 ∈ [80, 120], and each value point is estimated from 100, 000 sample
paths, with the detailed numerical results reported in Table 1

4.2 Shot-noise Cojump Models with Independent Cojump Sizes

Now, let us carry out numerical experiments with more comprehensive settings where both two

types of cojumps exist as fully specified by Definition 2.1. Let us first assume that cojump sizes in

price, volatility and intensity are independent of each other as Broadie et al. (2007, p.1457), and

Y V
i ∼ Exp (α) , Yi ∼ Exp (β1) , Y ∗j ∼ Exp (β2) , Ji ∼ N

�
µ1, σ

2
1

�
, J∗j ∼ N

�
µ2, σ

2
2

�
,

so, we have means

µH =
1

α
, µS = E

�
eJi
�

= exp
�
µ1 +

1

2
σ2

1

�
, µ∗ = E

�
eJ
∗
j

�
= exp

�
µ2 +

1

2
σ2

2

�
.

The parameters are set by

r = 5%, S0 = 100, K = 100, T = 1, b = 80, (4.1)

V0 = 0.25, µV = 0, % = 4, δ = 5, α = 5, µ1 = µ2 = 0, σ1 = σ2 = 0.1, (4.2)

λ0 = 0.5, µλ = 0.1, β1 = 2.5, β2 = 4. (4.3)
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Figure 3: Convergence analysis of our exact simulation scheme (Algorithm 3.2) for unbiasedly estimated
volatility expectation E[VT | V0], price expectation E[ST | S0], and option prices of monthly,
weekly and daily monitored barriers on European call and put options respectively, with the asso-
ciated numerical results reported in Table 2

Exactly sampled paths of the joint process (St, Vt, λt) are provided earlier in Figure 1. The plots

of unbiasedly estimated prices for the monthly (m = 12), weekly (m = 52) and daily (m = 250)

monitored barriers of European call and put options respectively for S0 ∈ [80, 120] are presented

in Figure 4, with detailed numerical results in Table 3. To test the accuracy and efficiency of

our exact simulation scheme, convergence analysis for unbiasedly estimated volatility expectation

E[VT | V0], price expectationE[ST | S0], and option prices of monthly, weekly and daily monitored

barriers on European call and put options are plotted in Figure 5, respectively, with the associated

numerical results reported in Table 4.

4.3 Shot-noise Cojump Models with Dependent Cojump Sizes

Some empirical evidences show the occurrence of jumps in price and volatility changes is of

opposite sign (Bandi and Renò, 2016) that further strengths "leverage effects". More generally,

Q(y1, y2, y3), the dependency of the sizes of price-volatility-intensity cojumps
¦�
Ji, Y

V
i , Yi

�©
i=1,2,...

,
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Table 3: Numerical results for the unbiasedly estimated prices of monthly, weekly and daily monitored barrier
options respectively for S0 ∈ [80, 120], and each value point is estimated from 100, 000 sample
paths, with the associated plots provided in Figure 4

S0 Call RMSE Put RMSE Time Call RMSE Put RMSE Time Call RMSE Put RMSE Time
Monthly Weekly Daily

80 5.56 0.0730 0.55 0.0099 47 3.10 0.0579 0.16 0.0046 161 1.58 0.0405 0.06 0.0026 784
85 8.55 0.0892 0.76 0.0115 46 6.41 0.0818 0.31 0.0064 161 5.37 0.0740 0.18 0.0046 784
90 11.78 0.1045 0.98 0.0131 46 10.20 0.0998 0.48 0.0079 162 9.38 0.0968 0.32 0.0060 782
95 15.22 0.1182 1.18 0.0142 45 14.14 0.1154 0.57 0.0085 162 13.14 0.1128 0.42 0.0068 777
100 19.11 0.1329 1.33 0.0152 46 17.83 0.1300 0.68 0.0093 161 17.44 0.1303 0.49 0.0074 776
105 23.26 0.1477 1.42 0.0157 46 22.08 0.1441 0.73 0.0096 162 21.67 0.1441 0.53 0.0077 769
110 27.07 0.1576 1.47 0.0159 46 26.08 0.1548 0.78 0.0099 162 25.78 0.1574 0.56 0.0078 785
115 31.02 0.1697 1.46 0.0158 46 30.55 0.1690 0.79 0.0100 162 30.20 0.1704 0.60 0.0081 768
120 35.17 0.1780 1.43 0.0155 47 34.55 0.1807 0.79 0.0100 163 34.26 0.1796 0.58 0.0079 754

Table 4: Numerical results for the convergence analysis of our exact simulation scheme (Algorithm 3.2) for
unbiasedly estimated volatility expectation E[VT | V0], price expectation E[ST | S0], and option
prices of monthly, weekly and daily monitored barriers on European call and put options respectively,
with the associated plots provided in Figure 5

E[VT | V0] E[ST | S0] Call Put
Paths True Est Error Error% RMSE True Est Error Error% RMSE Est RMSE Est RMSE Time

Monthly
10,000 0.1606 0.1623 0.0017 1.06% 0.0018 105.1271 105.4142 0.2871 0.27% 0.5347 19.1815 0.4135 1.2390 0.0461 4
40,000 0.1606 0.1609 0.0003 0.20% 0.0009 105.1271 104.9003 -0.2268 -0.22% 0.2667 19.0091 0.2032 1.3422 0.0243 18
160,000 0.1606 0.1610 0.0004 0.22% 0.0004 105.1271 105.2863 0.1592 0.15% 0.1375 19.2416 0.1065 1.3121 0.0119 73
640,000 0.1606 0.1606 -0.0000 0.00% 0.0002 105.1271 104.9513 -0.1758 -0.17% 0.0677 19.0106 0.0520 1.3090 0.0059 305
2,560,000 0.1606 0.1606 0.0000 0.01% 0.0001 105.1271 105.0976 -0.0295 -0.03% 0.0341 19.0939 0.0263 1.3179 0.0030 1,159

Weekly
10,000 0.1606 0.1590 -0.0016 -1.02% 0.0017 105.1271 105.0265 -0.1006 -0.10% 0.5612 18.3134 0.4281 0.6823 0.0295 19
40,000 0.1606 0.1616 0.0010 0.63% 0.0009 105.1271 105.4061 0.2789 0.27% 0.2731 18.1809 0.2081 0.6835 0.0147 73
160,000 0.1606 0.1605 -0.0001 -0.04% 0.0004 105.1271 105.2869 0.1598 0.15% 0.1369 18.1562 0.1039 0.6813 0.0074 290
640,000 0.1606 0.1605 -0.0001 -0.04% 0.0002 105.1271 104.9936 -0.1335 -0.13% 0.0680 17.9316 0.0516 0.6788 0.0037 1,184
2,560,000 0.1606 0.1605 -0.0001 -0.06% 0.0001 105.1271 105.1186 -0.0085 -0.01% 0.0340 18.0620 0.0258 0.6772 0.0018 4,672

Daily
10,000 0.1606 0.1634 0.0028 1.73% 0.0018 105.1271 105.2241 0.0970 0.09% 0.5427 17.4242 0.3961 0.4786 0.0232 87
40,000 0.1606 0.1600 -0.0006 -0.35% 0.0009 105.1271 105.2702 0.1431 0.14% 0.2750 17.5493 0.2075 0.4782 0.0114 356
160,000 0.1606 0.1612 0.0006 0.38% 0.0004 105.1271 105.1283 0.0012 0.00% 0.1363 17.4453 0.1025 0.4891 0.0058 1,382
640,000 0.1606 0.1606 0.0000 0.00% 0.0002 105.1271 105.1090 -0.0181 -0.02% 0.0681 17.3836 0.0511 0.4920 0.0029 5,452
2,560,000 0.1606 0.1607 0.0001 0.06% 0.0001 105.1271 105.1080 -0.0191 -0.02% 0.0341 17.4070 0.0256 0.4923 0.0015 21,542

23



80 90 100 110 120
0

5

10

15

20

25

30

35

40

S
0

O
pt

io
n 

P
ric

e
Call

 

 

80 90 100 110 120
0

0.5

1

1.5

S
0

Put

 

 
Monthly
Weekly
Daily

Monthly
Weekly
Daily

Figure 4: Unbiasedly estimated prices of monthly, weekly and daily monitored barriers on European call and
put options respectively for S0 ∈ [80, 120], and each value point is estimated from 100, 000 sample
paths, with the detailed numerical results reported in Table 3

and Q∗(x1, x2), the dependency of the sizes of price-intensity cojumps
¦�
J∗j , Y

∗
j

�©
j=1,2,...

, can

be constructed, for example, via two copula functions, respectively8, e.g. one 3-dimensional Gaus-

sian copula C1 forQ(y1, y2, y3) and one 2-dimensional Gaussian copula C2 forQ∗(x1, x2). More

precisely, we can assume that,

Y V
i ∼ Exp (α) , Yi ∼ Exp (β1) , Ji ∼ N

�
µ1, σ

2
1

�
,

and they can be simulated dependently via

Y V
i
D
= − 1

α
lnU

(1)
i , Yi

D
= − 1

β1
lnU

(2)
i , Ji

D
= µ1 + σ1Φ−1

�
U

(3)
i

�
,

where
�
U

(1)
i , U

(2)
i , U

(3)
i

�
is a vector of dependent uniform random variables from copula C1, and

Φ is the CDF of a standard normal distribution. Similarly, we assume

Y ∗j ∼ Exp (β2) , J∗j ∼ N
�
µ2, σ

2
2

�
,

8Copula functions are widely used for modelling dependency in finance, insurance and economics, see Embrechts
et al. (2002) and Patton (2009) for more details.
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Figure 5: Convergence analysis of our exact simulation scheme (Algorithm 3.2) for unbiasedly estimated
volatility expectation E[VT | V0], price expectation E[ST | S0], and option prices of monthly,
weekly and daily monitored barriers on European call and put options respectively, with the asso-
ciated numerical results reported in Table 4

and they can be simulated dependently via

Y ∗j
D
= − 1

β2
lnU

[1]
j , J∗j

D
= µ2 + σ2Φ−1

�
U

[2]
j

�
,

where
�
U

[1]
j , U

[2]
j

�
is a vector of dependent uniform random variables from copula C2. As the

associated results would present similar numerical structure as the precious cases, to avoid repe-

tition here we just illustrate this main idea. Of course, instead we may use other copulas, such as

student-t copulas that can incorporate tail dependency.

4.4 Comparison: Exact Scheme v.s. Discretisation Scheme

The shot-noise cojump models introduced in this paper are new, and there is no existing simulation

algorithm that can be used directly in the literature. The classical discretisation scheme can be de-

veloped to apply to our models, and we can provide a comparison between our exact scheme with

discretisation scheme. Although discretisation scheme is widely used, particularly in the industry,
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it is well known that this scheme introduces bias into estimation and the associated bias is hard to

be quantified and measured, see e.g. Glasserman (2003) and Asmussen and Glynn (2007) for more

discussions.

The classical (Euler) discretisation scheme can be applied to approximate our shot-noise co-

jump framework by discretisating the SDEs in Definition 2.1 with the equally-spaced small time

interval (grid) of length ∆ > 0 as

Ŝt+∆ − Ŝt
Ŝt

=
�
r − ct

�
∆ +

È
V̂t(Wt+∆ −Wt) +

�
eJt − 1

�
(Nt+∆ −Nt) +

�
eJ
∗
t − 1

�
(N∗t+∆ −N∗t ),

V̂t+∆ − V̂t = −δ
�
V̂t − µV

�
∆ + Y V

t (Nt+∆ −Nt),

λ̂t+∆ − λ̂t = −κ
�
λ̂t − µλ

�
∆ + Yt(Nt+∆ −Nt) + Y ∗t (N∗t+∆ −N∗t ),

ct = (µS − 1) %+ (µ∗ − 1) λ̂t,

where (Wt+∆−Wt) ∼ N(0,∆), (Nt+∆−Nt) ∼ Poisson(%∆) and (N∗t+∆−N∗t ) ∼ Poisson(λt∆).

Given the initial values (Ŝ0, V̂0, λ̂0) = (S0, V0, λ0), we can recursively simulate the discretisated

paths
¦

(Ŝt, V̂t, λ̂t)
©
t=1,2,...

for approximating the original processes
¦

(St, Vt, λt)
©
t>0

. This dis-

cretisation is an approximation as it introduces bias, i.e., in theory E[Ŝt | Ŝ0] 6= E[St | S0] for any

time point t > 0.

Based on the principle of optimal allocation of computation budget proposed by Duffie and

Glynn (1995) for discretisation scheme, the number of time-discretisation grids is set equal to the

square root of the number of sample paths. The numerical results of the comparison between the

discretisation scheme and our exact scheme for estimated price expectation E[ST | S0] based on

the parameter setting in (4.1), (4.2) and (4.3) with T = 1 and T = 10, respectively, are provided

in Table 5. Our exact scheme is extremely fast, as Algorithm 3.2 applies to any time interval

τ ∈ R+. There is no need for multiple grids and one realisation of stock price level ST can

be directly simulated just by a single grid at the terminal time T . For example, 640, 000 paths for

T = 10 can be generated from our exact scheme in only about 18.5 seconds, whereas discretisation

scheme takes about 10, 287.7 seconds to achieve a similar level of accuracy. In addition, the graphic

comparison of convergence via the RMSE versus CPU time is plotted in Figure 6. Although the

discretisation scheme is easier for implementation, our exact scheme producesmuch smaller RMSE

for a given computational budget. Hence, our exact scheme substantially outperforms the classical

discretisation scheme.
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Figure 6: Convergence analysis of our exact scheme (Algorithm 3.2) and discretisation scheme for estimated
price expectation E[ST | S0] for T = 1, 10, respectively, with the associated numerical results
reported in Table 5

4.5 Performance Sensitivity Analysis

Finally, the numerical analysis of performance sensitivity to the parameter choice is provided in

Table 6 with the parameter setting in (4.1), (4.2) and (4.3) as the reference by varying one of

parameters. As the sensitivity of algorithm performance to any of the parameters of jump sizes is

determined by the choice of distribution for jump sizes itself rather than our general exact scheme

(Algorithm 3.2) which is distribution-free for jump sizes. It does not make much sense to analyse

the sensitivity to these jump-size parameters. To analyse the sensitivity of our exact scheme, here,

we focus on other parameters, S0, δ, % and κ as examples. We can observe that the parameter choice

makes almost no impact to the computing time and the error measured by Error% of our proposed

exact scheme (Algorithm 3.2), and the error measured by RMSE is also not very sensitive.

5 Concluding Remarks

Shot-noise cojump framework, a class of shot-noise SV models with two types of cojumps, is

appealing for financial applications on grounds of simplicity and tractability, and offers a parsimo-

nious alterative for more sophisticated SV models in the literature. The great flexibility for jump-

size distributions and its dependency among cojump sizes makes it able to replicate the marginal

behaviours of many more sophisticated SV models, such as the classical non-Gaussian OU SV

models. The associated algorithms for exact simulation developed are efficient, accurate, easy to

use, and this is the main contribution of this paper. Neither numerical inversion nor A/R scheme is

required, which means that it is not only accurate but also the efficiency would not be sensitive to
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Table 5: Numerical results for the convergence analysis of our exact scheme (Algorithm 3.2) and discretisation
scheme for estimated price expectation E[ST | S0] for T = 1, 10, respectively, with the associated
plots provided in Figure 6

Paths Grids True Est Error% RMSE Time (sec)
Exact T = 1

10,000 105.1271 104.6699 -0.4349% 0.5475 0.3
40,000 105.1271 104.9415 -0.1765% 0.2748 0.9
160,000 105.1271 105.1566 0.0280% 0.1380 3.5
640,000 105.1271 105.1924 0.0621% 0.0684 4.6

Discretisation T = 1
10,000 100 105.1271 104.3922 -0.6991% 0.9169 12.2
40,000 200 105.1271 105.3217 0.1851% 0.3377 118.5
160,000 400 105.1271 104.8970 -0.2189% 0.2670 1,258.8
640,000 800 105.1271 105.1069 -0.0193% 0.0711 9,261.8

Exact T = 10
10,000 164.8721 169.4088 2.7516% 6.2396 0.9
40,000 164.8721 167.5343 1.6147% 3.2777 1.2
160,000 164.8721 165.3605 0.2962% 1.3237 3.6
640,000 164.8721 165.7269 0.5185% 0.6826 18.5

Discretisation T = 10
10,000 100 164.8721 168.0074 1.9016% 6.8183 13.5
40,000 200 164.8721 164.3272 -0.3305% 2.7392 112.7
160,000 400 164.8721 162.5822 -1.3889% 2.7799 906.8
640,000 800 164.8721 164.4456 -0.2587% 0.8304 10,287.7

the parameter choice, and this is the key methodological distinction from other existing exact algo-

rithms for SV models. Our algorithm is extremely fast, and substantially outperforms the classical

discretisation scheme. It might be also useful to fast generate sufficient amount of data for unbias-

edly testing some newly developed statistical and econometrical methods for cojumps. Intuitively,

incorporating cojumps could be important for more accurately pricing options, as many works from

financial time series data have already provided sufficient evidences as referred early in the intro-

duction. The focus of our paper is to propose this new framework and design an exact simulation

scheme as the first attempt for implementation, and our part of option pricing is merely illustrative.

For future research, empirical work for this new framework, such as parameter calibration, out-of-

sample forecast and hedging efficiency, can be carried out as Bakshi et al. (1997). It is particularly

interesting to infer the risk premium of cojumps from the real data of option prices as well as the

underlying prices. Just like the large family of affine processes (Duffie et al., 2000, 2003), our full

model version in Definition 2.1 is very general and would be useful for risk management, such as

back testing and stress testing, with a limited computing budget. On the other hand, it may be too

flexible and possess too many parameters for calibration, so special cases are suggested to be used

for different purposes. Moreover, it may be possible be extended to a multivariate framework of

shot-noise cojumps for modelling contemporaneous jumps across different assets.
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Table 6: Sensitivity analysis of parameter settings for our exact scheme (Algorithm 3.2) for estimated price
expectation E[ST | S0] when T = 1 based on 640,000 sample paths

S0 True Est Error% RMSE Time (sec)
100 105.1271 105.1924 0.0621% 0.0684 4.6
110 115.6398 115.6583 0.0160% 0.0749 4.8
120 126.1525 126.2217 0.0548% 0.0822 5.2
130 136.6652 136.6384 -0.0196% 0.0884 4.9
140 147.1780 147.0044 -0.1179% 0.0950 4.6
150 157.6907 157.5816 -0.0692% 0.1023 4.8
160 168.2034 168.2636 0.0358% 0.1092 4.8
170 178.7161 178.6336 -0.0461% 0.1160 4.7
180 189.2288 189.0715 -0.0831% 0.1223 5.4
190 199.7415 199.5096 -0.1161% 0.1294 4.9
200 210.2542 210.1734 -0.0385% 0.1364 4.8
δ True Est Error% RMSE Time (sec)
1 105.1271 104.9545 -0.1642% 0.1110 4.9
2 105.1271 105.0416 -0.0814% 0.0940 4.8
3 105.1271 105.1766 0.0471% 0.0825 4.7
4 105.1271 105.0722 -0.0523% 0.0739 5.2
5 105.1271 105.1217 -0.0052% 0.0682 4.8
6 105.1271 105.0992 -0.0265% 0.0637 4.6
7 105.1271 105.0857 -0.0394% 0.0601 4.8
8 105.1271 105.1569 0.0284% 0.0577 4.6
9 105.1271 105.1612 0.0324% 0.0554 4.9
10 105.1271 105.2080 0.0770% 0.0537 4.8
% True Est Error% RMSE Time (sec)
1 105.1271 105.1914 0.0611% 0.0427 5.1
2 105.1271 105.0292 -0.0932% 0.0522 4.9
3 105.1271 105.0340 -0.0885% 0.0604 4.9
4 105.1271 105.2329 0.1006% 0.0684 4.6
5 105.1271 105.0969 -0.0287% 0.0752 5.1
6 105.1271 105.2078 0.0767% 0.0824 4.9
7 105.1271 105.0934 -0.0321% 0.0884 4.8
8 105.1271 105.0625 -0.0615% 0.0955 4.9
9 105.1271 105.0238 -0.0983% 0.1024 4.6
10 105.1271 105.2205 0.0888% 0.1079 5.4
κ True Est Error% RMSE Time (sec)
0.1 105.1271 105.1859 0.0559% 0.0685 4.7
0.2 105.1271 105.1912 0.0609% 0.0686 4.6
0.3 105.1271 105.1569 0.0284% 0.0684 4.5
0.4 105.1271 105.0307 -0.0917% 0.0681 4.7
0.5 105.1271 105.1158 -0.0107% 0.0681 4.7
0.6 105.1271 105.2097 0.0786% 0.0683 4.7
0.7 105.1271 105.0324 -0.0901% 0.0679 4.7
0.8 105.1271 105.0773 -0.0474% 0.0681 4.6
0.9 105.1271 105.0625 -0.0615% 0.0680 4.5
1.0 105.1271 105.1125 -0.0139% 0.0678 4.5
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Appendices

A Proof for Theorem 3.1

Proof. Changing variable (3.7), the generator of process (Zt, Vt, t) acting on any function f(z, v, t) is

Af(z, v, t) =
∂f

∂t
− ∂f

∂z
(δv − δv)− δv ∂f

∂v
+ %

2
4 ∞Z

0

f(z + y, v + y, t)dH(y)− f(z, v, t)

3
5

=
∂f

∂t
− δv ∂f

∂v
+ %

2
4 ∞Z

0

f(z + y, v + y, t)dH(y)− f(z, v, t)

3
5 .

We can find a martingale f(Zt, Vt, t) when Af(z, v, t) = 0. Let us set Af(z, v, t) = 0 and try the solution

of form e−k1ze−A(t)veR(t), we then get

−vA′(t) +R′(t) + δvA(t) + %
�
ĥ
�
k1 +A(t)

�
− 1
�

= 0.

Solving the ODE above, we have

A(t) = ξe−δt,

R(t) = exp

�
%

tZ
0

�
1− ĥ

�
k1 +A(s)

��
ds

�
,

where ξ is an arbitrary constant. Let k2 = ξe−δT , then,

e−k1Zte−k2e
−δ(T−t)Vt × exp

�
%

tZ
0

�
1− ĥ

�
k1 + k2e

−δ(T−s)
� �

ds

�

is a martingale. Hence, we obtain the joint Laplace transform of (ZT+τ , VT+τ ) in (3.6).

B Proof for Proposition 3.2

Proof. Note that, the marginal distribution of V ∗t is independent of the decay rate δ (Barndorff-Nielsen and

Shephard, 2001a), so we solve the Laplace transform ĥ(u) in our shot-noise SV model such that its marginal

distribution (3.9) is the exactly same as the one from the BNS’ SV process V ∗t with Laplace exponent Φ∗

and Lévy measure ν∗, i.e.,

Π̂(ξ) = E
�
e−ξV

∗
t

�
,

and we have

exp

�
−%
δ

ξZ
0

1− ĥ(u)

u
du

�
= e−Φ∗(ξ),
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and

Φ∗(ξ) =
%

δ

ξZ
0

1− ĥ(u)

u
du.

Note that,

∞Z
0

�
1− e−ξy

�
ν∗(dy) =

%

δ

ξZ
0

1− ĥ(u)

u
du

=
%

δ

ξZ
u=0

1

u

∞Z
y=0

�
1− e−uy

�
dH(y)du

=
%

δ

∞Z
x=0

�
1− e−ξx

� 1

x

∞Z
y=x

dH(y)dx

=
%

δ

∞Z
x=0

�
1− e−ξx

� 1−H(x)

x
dx,

then, we have the Lévy measure ν∗ specified by

ν∗(dy) =
%

δ

1−H(y)

y
dy,

or, the CDF of volatility-jump sizes, (3.12).
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