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Abstract: A scoring rule is a function of a probabilistic
forecast and a corresponding outcome used to evaluate
forecast performance. There is some debate as to which
scoring rules are most appropriate for evaluating fore-
casts of sporting events. This paper focuses on forecasts
of the outcomes of football matches. The ranked probabil-
ity score (RPS) is often recommended since it is ‘sensitive
to distance’, that is it takes into account the ordering in
the outcomes (a home win is ‘closer’ to a draw than it is
to an away win). In this paper, this reasoning is disputed
on the basis that it adds nothing in terms of the usual
aims of using scoring rules. A local scoring rule is one that
only takes the probability placed on the outcome into con-
sideration. Two simulation experiments are carried out to
compare the performance of the RPS, which is non-local
and sensitive to distance, the Brier score, which is non-
local and insensitive to distance, and the Ignorance score,
which is local and insensitive to distance. The Ignorance
score outperforms both the RPS and the Brier score, cast-
ing doubt on the value of non-locality and sensitivity to
distance as properties of scoring rules in this context.

Keywords: football forecasting; forecast evaluation; Igno-
rance score; ranked probability score; scoring rules.

1 Introduction
Probabilistic forecastingof sportingevents suchas football
(often known as ‘soccer’) matches has become an area of
considerable interest in recent years. One reason for this is
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that forecasting can help inform gambling decisions and
therefore has the potential to support the identification
of profitable betting strategies. Probabilistic forecasting
has also grown in popularity in the sports media. In some
mediaoutlets, for example, estimatedprobabilitiesare rou-
tinely disseminated in match previews and even in-play.
An obvious implication of the growth of probabilistic fore-
casting in sport is the need for effectivemethods of forecast
evaluation. This is particularly true in the case of gambling
where ‘beating the bookmaker’ is a difficult task which
typically requireshighly informativepredictions.However,
even when the forecasts are used for purposes other than
gambling, there is often still an incentive for the forecasts
to be informative, or at least to be perceived as such. There
is therefore a need for objective measures of forecast per-
formance. This paper is concerned with the question of
how to evaluate probabilistic forecasts of events such as
football matches with three or more possible outcomes.

Evaluation of probabilistic forecasts is typically per-
formed using scoring rules, functions of the forecast and
correspondingoutcomeaimedat assessing forecast perfor-
mance. A large number of scoring rules have been defined
over the years and there is considerable debate surround-
ing which are the most appropriate. A common approach
with which to differentiate candidate scoring rules is to
identify desirable properties and favour scores that have
them. There is often debate, however, surrounding which
properties are (most) desirable and hence a lack of con-
sensus remains. As a result, in fields such as weather
forecasting, a wide range of different scores are often
presented.

One property of scoring rules that is perhaps the most
widely agreed upon is called propriety. A score is proper
if, in expectation, it favours a forecast that consists of
the distribution from which the outcome is drawn, i.e. a
perfect probabilistic forecast. This paper is concerned pri-
marily with twomore contentious properties. One of those
properties is locality. A score is local if it only considers
the probability at the outcome and disregards the rest of
the distribution. A non-local score therefore takes at least
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some of the rest of the forecast distribution into account.
The other property of interest concerns whether a scoring
rule takes ordering into account. The outcomes of foot-
ball matches can be considered to be ordinal (along with
matches in other sports in which a draw is allowed). A
home win is closer to a draw than it is to an away win. As
such, there is a question of whether a scoring rule should
take into account this ordering. A paper by Constanti-
nou and Fenton argues that forecast probability placed
on potential outcomes close to the actual outcome should
be rewarded and therefore ordering should be taken into
account (Constantinou and Fenton 2012). Therefore, if the
matchoutcome isahomewin,probabilityplacedonadraw
should be rewarded more than probability on an away
win. Scoring rules that have this property are referred to
as being ‘sensitive to distance’. One scoring rule that has
this property is the ranked probability score (RPS). Con-
stantinou and Fenton therefore argue that the RPS is the
appropriate score for the evaluation of probabilistic fore-
casts of football matches. As a result, the RPS has become
perhaps the most popular and widely used scoring rule
for this purpose. In this paper, the view that sensitivity to
distance in a scoring rule is beneficial is disputed along
with Constantinou and Fenton’s suggestion that the RPS
should be widely used to evaluate football forecasts.

Three scoring rules are considered in this paper: the
RPS, which is both non-local and sensitive to distance, the
Brier score, which is non-local but insensitive to distance
and the Ignorance score, which is local and therefore also
insensitive to distance. It is argued that the Ignorance score
is the most appropriate out of these three candidate scores
and evidence is presented in the form of two experiments
demonstrating that the Ignorance score is able to identify
a set of perfect forecasts quicker than the other two scoring
rules.

The question of how probabilistic forecasts of discrete
events should be evaluated is one with a long history. An
early contribution to the literature was the introduction
of the Brier score (Brier 1950). The Brier score considers
the squared distance between the forecast probability and
the outcome for each possible category in which the out-
come could fall (the category in which the outcome falls
is represented with a one and all other categories with a
zero). Whilst the Brier score is most commonly applied to
binary events, it was originally formulated more generally
such that it can be extended to events with more than
two possible outcomes. The Ignorance score (Good 1992,
Roulston and Smith 2002), often referred to as the loga-
rithmic score, takes a different approach by simply taking
the logarithm of the probability placed on the outcome.

The rationale behind the Ignorance score is in information
theory and is closely related to other information mea-
sures such as the Kullback–Leibler Divergence (Bröcker
and Smith 2007). The ranked probability score (Epstein
1969) is closely related to the Brier score but compares
the cumulative distribution function of the forecast and
the outcome rather than the probability mass function.
Other proposed scoring rules include the spherical score,
which combines the probability placed on the outcome
with a correction term to ensure that it is proper (Friedman
1983) and the quadratic scorewhich simply takes themean
squared distance between the forecast and the outcome
(Selten 1998). This paper, however, is concerned only with
the Ignorance score, Brier score and RPS. These scoring
rules were chosen because we are principally interested
in the properties of locality and sensitivity to distance.
The RPS is both non-local and sensitive to distance, the
Brier score is non-local and insensitive to distance and the
Ignorance score is local and insensitive to distance (the
Ignorance score is in fact the only local and proper scoring
rule (Bernardo 1979)).

A range of other properties of scoring rules have been
proposed,manyofwhichhave been suggested as desirable
in some way. Propriety, as mentioned above, is perhaps
the most well known property and it stipulates that, in
expectation, a scoring rule should favour the distribution
fromwhich theoutcomewasdrawnoverall others (Bröcker
and Smith 2007). Another property is locality. A score is
local if only the probability at the outcome is taken into
account (Parry, Dawid, and Lauritzen 2012). A number of
other properties of scoring rules have been defined over
the years. A scoring rule is equitable if the same expected
score is assigned to a set of forecasts consisting of a single
probability p than to a set of forecasts randomly drawn
from the unit interval (Gandin and Murphy 1992). It has
been shown, however, that a scoring rule cannot be both
proper and equitable (Jolliffe and Stephenson 2008). A
scoring rule is regular if it only assigns an infinite score
to a forecast that places zero probability on the outcome
(Gneiting and Raftery 2007). Feasible scoring rules assign
bad scores to forecasts that give material probability to
events that are highly unlikely (Maynard 2016). A scoring
rule is said to be effective if the expectation is a strictly
decreasing function of the distance between the forecast
distribution and the ‘true’ distribution (Friedman 1983).

A number of authors have commented on the value
of sensitivity to distance in scoring rules. Jose, Nau, and
Winkler (2009) recommended the use of scoring rules that
are sensitive to distance, including for forecasts of football
matches. They provide generalisations of existing scoring
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rules tomake themsensitive to distance. Staël vonHolstein
(1970) also recommended that scoring rules should be sen-
sitive todistanceandsuggesta familyof scoringrulesbased
on theRPS that alsohave thisproperty.Murphy (1970) com-
pared the formulation of the RPS and the Brier score and
recommended that the RPS should at least be used along-
side the Brier score when the event of interest is ordered.
Bernardo (1979), on the other hand commented that “when
assessing the worthiness of a scientist’s final conclusions,
only the probability he attaches to a small interval contain-
ing the true value should be taken into account.” arguing
for locality as a desirable property.

There is a steadily increasing literature describing
methodology for the construction of probabilistic fore-
casts of sporting events such as football matches (Diniz
et al. 2019). In many of these papers, scoring rules have
been deployed to attempt to assess the quality of those
forecasts. For example, Forrest, Goddard, and Simmons
(2005) use the Brier score to compare probabilistic fore-
casts derived frombookmakers’ odds and from a statistical
model. Spiegelhalter and Ng (2009) use the Brier score to
assess the performance of their Premier Leaguematch pre-
dictions. The RPS has also been widely used. For example,
Koopman and Lit (2019) use the RPS to evaluate their
dynamic multivariate model of football matches, Baboota
and Kaur (2019) use it to evaluate their machine learning
approach to football prediction and Schauberger, Groll,
and Tutz (2016) use the RPS alongside cross-validation to
select a tuning parameter in their model. The Ignorance
score appears to be less widely used than the Brier score
and theRPS.Diniz et al. (2019) compare theperformance of
a number of predictive models using the Ignorance score
alongside the Brier score and the spherical score whilst
it also has been used by Schmidt, Strobel, and Volkland
(2008) alongside the Brier score to assess the probabilis-
tic performance of a prediction market for the 2002 World
Cup.

This paper is organised as follows. In Section 2, for-
mal definitions of the scoring rules and their properties
are given. In Section 3, the arguments of Constantinou
and Fenton are presented and disputed. In Section 4, the
question of how scoring rules are used in practice is dis-
cussed.Thephilosophicaldifferencebetweenaperfect and
imperfectmodel scenario isdiscussed inSection5. Theper-
formance of the Brier score, Ignorance score and RPS are
compared in a model selection experiment using exam-
ples from Constantinou and Fenton’s paper in Section 6.
A similar experiment is performed in Section 7 using fore-
cast probabilities derived frombookmakers’ odds of actual

matches. Finally, Section 8 is used for discussion and
conclusions.

2 Background
2.1 Definitions of scoring rules
The three scoring rules considered in this paper aredefined
as follows. For an event with r possible outcomes, let pj be
the forecast probability at position j where the ordering of
the positions is preserved and let y be the corresponding
outcome. Define o1,… , or such that

o j =
{
1 if j = y
0 otherwise

(1)

TheBrier score,generalised for forecastsofeventswith
r possible outcomes, is defined as

Brier =
r∑
i=1

(pi − oi)2. (2)

The Ranked Probability Score is defined as

RPS =
r−1∑
i=1

i∑
j=1

(pj − o j)2. (3)

The Ignorance score is defined as

IGN = −log2(py). (4)

2.2 Properties of scoring rules
Throughout a long history of research, a large number of
properties of scoring rules have been defined. Here, those
that are relevant to the arguments and experiments in this
paper are described.

Perhaps themostwell knownproperty of scoring rules
is propriety. A score is proper if it is optimised, in expec-
tation, with the distribution from which the outcome was
drawn. As such, a proper scoring rule always favours a per-
fect probabilistic forecast in expectation. It is widely held
that scoring rules that do not have this property should be
dismissed (Bröcker and Smith 2007). Each of the scoring
rules described above are proper. A perfect probabilistic
forecast is rarely, if ever, expected to be possible to achieve
in practice. Therefore, in expectation, whilst a proper scor-
ing rulewill always rankaperfect forecastmore favourably
than an imperfect one, different proper scores will often
rank pairs of imperfect forecasts differently.

Another property of scoring rules is locality. A score
is local if it only takes into account the probability at the
outcome. If any of the rest of the distribution is taken into
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account by the score, it is non-local. The Ignorance score
is local whilst the Brier score and RPS are both non-local.

For discrete events, another property concerns
whether the score takes into account the ordering of a
set of potential outcomes. Scores that do this are defined
as sensitive to distance. For sporting events, for example,
a draw and a home win can be considered to be closer
together than a home win and an away win. A scoring rule
that is sensitive to distance will therefore reward proba-
bility placed on an event closer to the actual outcome.
Whilst the RPS is sensitive to distance, the Ignorance and
Brier scores are not since they do not take into account the
ordering of the possible outcomes.

3 A rebuttal of arguments in favour
of the RPS

The popularity of the RPS for evaluating probabilistic fore-
casts of football matches is largely due to a paper written
by Constantinou and Fenton, published in the Journal of
Quantitative Analysis in Sports in 2012 (Constantinou and
Fenton 2012). The crux of the argument in that paper is
that probability placed on potential outcomes ‘close’ to the
actual outcome should be rewardedmore than probability
placed on those that are ‘further away’. If the home team
is currently winning by one goal, it would take the away
team to score one more goal for the match to end in a draw
and twomore goals for it to end in an awaywin and, there-
fore, the potential outcomes are, in a sense, ordered. The
authors claim that, in light of this, only scoring rules that
are sensitive to distance should be considered. A natural
choice is therefore argued to be the RPS.

With the aim of presenting further evidence towards
the suitability of the RPS, Constantinou and Fenton define
five hypothetical football matches, each with a specified

outcome (i.e. a home win (H), a draw (D) or an away win
(A)). For eachmatch, they define a competing pair of prob-
abilistic forecasts and use general reasoning to argue that,
given the defined outcome, one is more informative than
the other. They then show that the RPS is the only scor-
ing rule out of a number of candidates that assigns the
best score to their favoured forecast in each case, and
argue that this provides evidence of its suitability. We
dispute the validity of this reasoning. We argue that the
approach by which the performance of the scores is com-
pared under a specific outcome of the match is flawed.
Instead, scores should be compared by considering the
underlying probability of each possible outcome, thereby
taking into account theunderlyingprobability distribution
of the match. This is a much more difficult task.

To provide a setting with which to illustrate the argu-
ments of Constantinou and Fenton and to provide counter-
arguments, details of the five hypothetical matches used
as examples in that paper are reproduced. The outcome of
each match, the two forecasts and an indicator of Con-
stantinou and Fenton’s favoured forecast (𝛼 or 𝛽) are
shown in Table 1.

The reasoning given by the authors for favouring each
forecast is as follows. For match one, forecast 𝛼 predicts a
home win with total certainty and must outperform any
other forecast (including 𝛽). For match two, forecast 𝛼
placesmoreprobabilityon theoutcome than forecast𝛽 and
thereforeprovides themost informative forecast.Formatch
three, the only match in which the outcome is defined to
be a draw, it is argued that, although both forecasts place
the same probability on the outcome, forecast 𝛼 should
be favoured because the probability placed on a home
win and an away win are evenly distributed and therefore
‘more indicative of a draw’. For match four, it is argued
that forecast 𝛼 should be favoured because, although both
forecasts place the same probability on the outcome, 𝛼

Table 1:Match examples defined by Constantinou and Fenton.

Match Forecast p(H) p(D) p(A) Result ‘Best’ Forecast

1 𝛼 1 0 0 H 𝛼

𝛽 0.9 0.1 0

2 𝛼 0.8 0.1 0.1 H 𝛼

𝛽 0.5 0.25 0.25

3 𝛼 0.35 0.3 0.35 D 𝛼

𝛽 0.6 0.3 0.1

4 𝛼 0.6 0.25 0.15 H 𝛼

𝛽 0.6 0.15 0.25

5 𝛼 0.57 0.33 0.1 H 𝛼

𝛽 0.6 0.2 0.2

In each case, forecast 𝛼 is described as superior to forecast 𝛽 by the authors. H, D and A in the Result column denote a home win, draw and
away win respectively.
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places more probability ‘close’ to the home win, i.e. on
a draw, than 𝛽 and therefore is more favourable. Finally,
for match five, which is described as the most contentious
case,whilst 𝛽 placesmore probability on the outcome than
𝛼, the authors argue that forecast 𝛼 is, in fact, more desir-
able than 𝛽 because it is ‘more indicative of a home win’
due to the greater probability placed on the draw. To pro-
vide further justification for favouring forecast 𝛼, they give
an example in which a gambler uses the forecast to inform
a bet on the binary event of whether the match ends with
any outcomeother than an awaywin (commonly knownas
a lay bet). Since the sum of the probabilities on the home
win and the draw are higher for forecast 𝛼 than for forecast
𝛽, they suggest that 𝛼 is more desirable for that purpose.

Our main counterargument to the reasoning of Con-
stantinouandFentonconcerns their assertion that forecast
𝛼 outperforms forecast 𝛽 in each case. In fact, it is impos-
sible to say which of the two forecasts should be preferred
in each case without considering the underlying prob-
ability distribution of the match (which is unknown in
practice). Consider match one. Here, they argue that fore-
cast 𝛼 should be rewarded more than any other forecast
since it predicts the outcome with absolute certainty. This
seems entirely reasonable since no forecast is able to place
more probability on the outcome. However, it does not fol-
low from this that 𝛼 is the best forecast. To illustrate this,
consider the case in which 𝛽 represents the true under-
lying probability distribution of the match; i.e. the match

will endwith a homewinwith probability 0.9, a drawwith
probability 0.1 and an away win with probability 0. It is
not contentious to state that 𝛽 is the best forecast in this
setting and we argue that it would be deeply flawed to
claim otherwise. Forecast 𝛼 should not be considered to
be the best forecast simply because the match happened
to end in a home win (which would happen with 90 per-
cent probability in this case). In a succession of football
matches inwhich theunderlyingprobability is represented
by 𝛽 and the forecast is 𝛼, a draw would eventually occur,
with forecast 𝛼 placing zero probability on that event. The
same logic can be applied if the underlying probability
distribution is represented by forecast 𝛼, in which case,
𝛼 can objectively be considered to be the best forecast. In
summary,without knowing theunderlyingprobability dis-
tribution of thematch, the answer to the question of which
forecast is best can only be ‘it depends’. In practice, of
course, it is never possible to know theunderlyingdistribu-
tion and therefore we cannot distinguish the performance
of the two forecasts on the basis of a single match.

The effect of the probability distribution of the match
on the favoured forecast under each score is now demon-
strated. For a given probability distribution, the expected
score of each of forecasts 𝛼 and 𝛽 are calculated, in order
to determine which is preferred by each scoring rule. This
is repeated for a large number of randomly selected under-
lying probability distributions. This is demonstrated for
match five in Figure 1. Here, each dot represents a different

Figure 1: Randomly chosen probability distributions of match five coloured according to which forecast (𝛼 or 𝛽) is preferred by each of the
three scoring rules. The preferences indicated by each colour are shown on the right hand side.
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probability distribution of the match with the probability
of a home win and a draw on the x and y axes respec-
tively. Each dot is coloured according to which of the two
candidate forecasts is preferred under the three scoring
rules (the colour scheme is shown on the side of the plot).
Note that, for this particular match, there are no dark blue
areas, that is there arenounderlyingdistributions inwhich
the Ignorance score prefers 𝛼 and the RPS and Brier score
prefer 𝛽.

The first conclusion to be drawn from Figure 1 is that,
clearly, as previously discussed, the forecast favoured by
each scoring rule depends on the underlying probability
distribution. Moreover, the choice of scoring rule impacts
which of the two forecasts is preferred. We can look at
each of the regions and try to understand how andwhy the
three scoring rules differ. Consider the light blue region
in the bottom right of figure. A point located in the very
bottom right represents a probability distribution which
places a probability of one on a home win and therefore
zero on both a draw and an away win. Here, the RPS is
the only score that favours 𝛼 over 𝛽. This seems somewhat
counterintuitive and can be argued to be aweakness of the
scoring rule. Here, the RPS rewards probability placed on
a draw, regardless of the fact that outcome cannot happen.
The cost of doing this is that, out of the two forecasts, the
one thatplaces lessprobability on theoutcome is favoured.

The same information as shown in Figure 1 for match
five is shown for matches one to four in Figure 2. This
reinforces the importanceof theunderlyingprobabilitydis-
tribution and how the choice of forecast depends heavily
on the scoring rule.

In practice, scoring rules are usually used to assess
the performance of forecasting systems rather than indi-
vidual forecasts. A forecasting system is a set of rules that
is used to generate forecasts of different events in some
common way. For example, a forecasting system might be
built on the basis of an individual model, a combination
of models or the judgement of a particular person and can
be applied to generate forecasts of a range of events (e.g.
football matches). Forecasting systems are then evaluated
by taking the average score over many events according
to some scoring rule. This provides a basis with which
to select a forecasting system for the prediction of future
events.

Before moving on, it is of interest to address two par-
ticular points made by Constantinou and Fenton in favour
of forecast 𝛼 for match five. Firstly, they describe a sit-
uation in which the forecasts are used to inform a ‘lay’
bet on an away win. They argue that, since the combined
probability placed on a home win or a draw is higher for
forecast 𝛼 than for forecast 𝛽, 𝛼 is a better forecast, given
this outcome. There is a simple counterargument to this. If
a gambler intends touse the forecasts tomake laybets such

Figure 2: Randomly chosen probability distributions of matches one to four coloured according to which forecast (𝛼 or 𝛽) is preferred by
each of the three scoring rules. The preferences indicated by each colour are shown on the right hand side.
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as the one described, the resulting binary forecasts formed
by adding the home win and draw probabilities should be
evaluated separately. This is because the new binary fore-
casts take a different form and have a different aim. It does
not makes sense during evaluation to attempt to pre-empt
how the forecasts might be used to create other forecasts
of a different nature. In fact, the original match outcome
forecasts and the binary forecasts might even favour a dif-
ferent forecasting system. For example, one forecasting
system might be poor at distinguishing a home win from
a draw but good at estimating the probability of an away
win. Tying one’s hands to create and use a one size fits all
forecast seems unnecessary and counterproductive in this
case.

The second point of contention regards the
‘indicativeness of a home win’ in match five. The authors
argue that despite the fact that forecast𝛽 placesmoreprob-
ability on the outcome than forecast 𝛼, forecast 𝛼 is more
indicative of a home win, due to the increased probability
placed on the draw. It should be noted here that, were the
probability on the draw reduced to 0.3 and the probability
on the away win increased to 0.23, the RPS would favour
forecast 𝛽 and thus the ‘indicativeness’ of a home win is
somewhat arbitrary.

The primary claim of Constantinou and Fenton is that
probability placed on possible outcomes that are ‘close’
to the actual outcome should be rewarded more than
probability placed on outcomes that are ‘further away’.
Furthermore, they argue that the RPS provides a scoring
rule that does this and is therefore suitable for evaluat-
ing forecasts of football matches. However, as described
above, by not considering the underlying distribution of
the match, it is not possible to state that one forecast is
better than another and therefore the reasoning given in
support of the RPS does not provide a compelling argu-
ment.We therefore consider the question ofwhich forecast
is assigned the best score, when conditioned on a single
outcome, to be moot and we do not consider it further.
Instead, we define potential goals of using scoring rules
andaskwhether the sensitivity todistanceproperty offered
by the RPS has any value in achieving them.

4 What are scoring rules for?
The principle intention of this paper is to assess the value
of scoring rules that are non-local and sensitive to distance
in the context of forecasts of football matches. In order to
attempt to assess the merits of these properties, it is use-
ful to consider the aims behind the deployment of scoring
rules. For the properties of interest to have value, there

should be some practical benefit in terms of achieving
those aims. Here, we discuss the aims behind the appli-
cation of scoring rules with a view to assessing whether
the non-local and sensitivity to distance properties help to
achieve them.

One obvious aim of scoring rules is to provide ameans
of comparison between competing forecasting systems.
There are many contexts in which one might want to make
suchcomparisons.Onemighthaveafinite set of competing
probabilistic forecasts of the same events and be looking
to determine which is the most informative. For example,
a broadcastermaywant to decidewhich forecasts aremost
useful to show in its sports coverage or a gambler may
wish to decide which forecasting service to subscribe to in
order to aid their betting decisions. Ameans of comparison
can also be important in the context of model develop-
ment. A forecaster looking to improve the performance of
their forecasting system by, for example, increasing the
number of factors included in the model, may want to
assesswhether these changes result in improved forecasts.
Parameter selection also falls under the umbrella of fore-
cast comparison since each set of parameter values will
lead to adifferent set of forecasts. Sinceparameters usually
take continuous values, parameter selection can be con-
sidered to be a comparison between an infinite number of
sets of forecasts.

Whilst selecting one of two or more sets of forecasts
may be considered to be important in a range of settings,
this alone does not give an indication of the magnitude of
the difference in skill. An additional question of interest
concerns how much more informative one set of forecasts
is over another and whether this difference is significant.
Typically, two sets of forecasts are compared using the dif-
ference in their mean score (Wheatcroft 2019). Resampling
techniques can then be used to determine if that difference
is significant. An interesting question concerns whether
the difference in scores has an interpretation in terms of
the relativeperformanceof the forecasting systemsof inter-
est. In fact, to our knowledge, only one of the scoring rules
considered in this paper has a useful interpretation when
considered in this way and that is the Ignorance score.
Let ̄IGNrel = ̄IGN1 − ̄IGN2 be the mean relative Ignorance
between forecasting systems one and two. The value ̄IGNrel
represents the difference in information provided by each
one expressed in bits. On average, forecasting system one
places 2−IGNrel times more probability on the outcome than
forecasting system one.

Whilst scoring rules are useful tools for evaluating
and comparing forecasting systems, it is important to
acknowledge their limitations. Often, a set of forecasts
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are used with a specific purpose in mind. In sports
forecasting, this might be to aid a decision whether to
placeabet onacertainoutcome,whether to select a certain
player for a match or which play to make during a game.
It is therefore crucial to determine whether the forecasts
are fit for that specific purpose. For example, a set of fore-
casts may successfully incorporate important information
and therefore score better than alternative forecasts that
do not incorporate this information yet still not be fit for a
specific purpose. For example, using a set of forecasts to
choose whether to place bets may result in a substantial
loss whichwould have been avoided had the bets not been
placed at all.

5 Perfect and imperfect model
scenarios

Philosophical approaches to the comparison of scoring
rules typically consider two distinct settings: the perfect
model scenario, in which one of the candidate forecasting
systems coincides with the probability distribution that
generated the outcome (often referred to as the data gen-
erating model (DGM)) and the imperfect model scenario,
in which each candidate forecasting system is imperfect
(Judd and Smith 2001, 2004). In the perfect model sce-
nario, there should be no ambiguity as to which set of
forecasts is most desirable; a perfect forecasting system
is always better than an imperfect one. In the imperfect
model scenario, on the other hand, the question of which
forecasting system is the most desirable is subjective.

In the perfect model setting, there are two directly
linked questions of interest. Firstly, ‘does the scoring
rule always favour the perfect forecasting system in
expectation?’ Scoring rules that do this are called proper
and it is generally considered that a chosen scoring rule
should have this property (Bröcker and Smith 2007). As
discussed in Section 2.2, each of the three scoring rules
considered in this paper are proper and thus they can-
not be distinguished in this way. A closely linked means
of comparison for scoring rules assumes that each one
is proper and assesses how many past forecasts and out-
comes are required to have a given probability of selecting
the perfect forecasting system. Requiring fewer forecasts
and outcomes to do this means that the information is
used more efficiently and therefore that there is a better
chance of selecting the best forecasting system for future
events. This observation forms thebasis of the experiments
presented in this paper.

In practice, one can never expect any of the
candidate forecasting systems to be perfect and therefore

the perfect model case is generally accepted to be only a
theoretical construct. It can nonetheless be argued that
the performance of scoring rules in this context is impor-
tant. If, in expectation, a scoring rule does not favour a
perfect forecasting system over all others, one should be
uneasy about the ability of that scoring rule to favour use-
ful imperfect forecasting systems over misleading ones.
Similarly, the efficiency in which a scoring rule uses the
information in past forecasts and outcomes ought to tell
us something about the way in which each scoring rule
uses the information provided to it. For example, in the
context of non-local scoring rules that are sensitive to
distance, if these properties are truely useful, we might
expect that extra information should be capable of distin-
guishing perfect and imperfect forecasting systems more
quickly.

In practical situations, since none of the candidate
forecasting systems are expected to be perfect, all exer-
cises in forecasting system selection fall into the imperfect
model scenario category. In this setting, unlike the per-
fect model case, proper scores will often favour different
imperfect forecasting systems. Distinguishing the scoring
rules is then a question of identifying which type of imper-
fect forecasts should be preferred. Other than the analysis
demonstrated in Figures 1 and 2, this question is left as
future work.

6 Experiment one – repeated
outcomes of the same match

In this experiment, the five pairs of forecasts defined by
Constantinou and Fenton and shown in Table 1 are used
to assess the probability that each of the three candidate
scoring rules identifies a perfect forecasting system over
an imperfect one for a given number of past forecasts and
outcomes. For a given pair of forecasts, define the out-
comes of a series of nmatches by drawing from forecast 𝛼
or forecast 𝛽 with equal probability 0.5. Define two fore-
casting systems as follows. The perfect forecasting system
always knows which of the two distributions from which
the outcome is drawn and therefore always defines the cor-
rect distribution as the forecast. The imperfect forecasting
system, on theotherhand,always issues thealternativedis-
tribution as the forecast. A scoring rule is defined to ‘select’
a forecasting system if it is assigned the lowest mean score
over n forecasts. The probability that each scoring rule
will select the perfect forecasting system is calculated for
different valuesofnand theexperiment is carriedoutusing
each of the forecast pairs in Table 1.
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6.1 Results
Perhaps the most interesting of the five examples defined
by Constantinou and Fenton is match five. Here, both fore-
cast 𝛼 and forecast 𝛽 place similar probability on a home
win but forecast 𝛼 places more probability on the draw.

The probability of each scoring rule identifying the perfect
forecasting system in this case is shown as a function of
n in Figure 3. Here, the Ignorance score outperforms both
the Brier score and the RPS for almost every tested value of
n, whilst there is little difference in the performance of the
Brier score and RPS.

Figure 3: Probability of each scoring rule selecting the perfect forecasting system as a function of n for match 5.

Figure 4: Probability of each scoring rule selecting the perfect forecasting system as a function of n for matches 1 to 4.
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The results for matches one to four are shown in
Figure4. Formatchone, the Ignorance score clearlyoutper-
forms both the Brier score and the RPS for relatively large
values of n, whilst the difference is minimal for lower val-
ues. The non monotonic nature of the probabilities under
the RPS and Brier scores may seem surprising at first but,
in fact, can easily be explained.All three scoring rules pun-
ish the imperfect forecasting system when the outcome is
a draw, since the forecast in this case predicts a home win
with certainty. The overall probability of a draw for a given
realisation is 0.05 since the probability that the outcome
is drawn from 𝛽 is 0.5 and the probability of a draw given
𝛽 is 0.1. For all values of n less than 20, once a draw has
occurred, no combinations of other outcomes can result in
the imperfect forecasting system being assigned a better
mean score than the perfect forecasting system. When n is
greater than 20, on the other hand, the imperfect forecast-
ing system can still ‘recover’ from such a situation as long
as there is only one such occurrence. The probability for
the Ignorance score, on the other hand, is monotonic and
this is because the Ignorance score assigns an infinitely
bad score to a forecast that places zero probability on an
outcome. Therefore, once such a case has been observed,
the imperfect forecasting system cannot achieve a better
score than the perfect forecasting system and, since the
probability of observing such a case increases with n, the
probability is monotonically increasing.

Formatch two,whilst the probabilities of selecting the
perfect forecasting system are similar for each score, the
Ignorance score slightly outperforms the other two scores
for all values of n. In terms of the Brier score and the RPS,
neither appears to be systematically better than the other.

For match three, the Ignorance score tends to out-
perform the other two scores for all n greater than three,
whilst, again, there is no obvious systematic difference
between the performance of the RPS and Brier scores. For
very small n, the Ignorance score achieves a lower proba-
bility of selecting the perfect forecasting system. However,
caution should be applied in such cases since scoring rules
aredesignedwitha relatively largenumberof forecastpairs
in mind, that is, if the aim were to apply them to small n,
they might be designed differently.

Match four provides perhaps the most interesting
results. In this case, 𝛼 and 𝛽 differ only in the probabil-
ities placed on a draw and an away win. There is therefore
only a small difference between the perfect and imper-
fect forecasting systems. This is reflected in the fact that
the probability of choosing the perfect forecasting system
increases relatively slowly with n. Here, whilst the Igno-
rance and Brier scores perform similarly well, there is a

distinct advantage for both over the RPS. Whilst the RPS
performs relatively well for low n, the value of increas-
ing n is far lower than for the Ignorance and Brier scores,
i.e. the RPS does not make good use of the extra informa-
tion provided by increasing the number of forecasts and
outcomes.

Overall, from these results, there is no evidence that
the RPS outperforms either the Brier or Ignorance scores
and, in fact, there is someevidence that theopposite is true.
The RPS does not typically make good use of additional
sample members in comparison to the other two scores.
Looking more closely at the results, the stark difference
in performance in match four, and to some extent match
five, suggests that the biggest difference in performance
might be in cases in which the difference between the two
candidate forecasts is relatively small and this observa-
tion provides a motivation for the design of experiment
two. Experiment one considers only a case with repeated
forecasts from one of two candidate distributions. In prac-
tice, there is usually interest in forecasts of different events
rather than a large number of realisations of the same
event. Inexperiment two, theperformanceof the three can-
didate scoring rules is compared in the context of forecasts
of a wide range of different football matches generated
from actual bookmakers’ odds.

7 Experiment two – forecasts
based on match odds

In experiment two, the aim is to assess the effectiveness of
each scoring rule in terms of distinguishing a ‘perfect’ fore-
casting system from an ‘imperfect’ one in a more realistic
setting inwhich eachmatch has a different probability dis-
tribution. To do this, artificial pairs of forecasts are created
inwhich one represents the true distribution and the other
is imperfect. The aim is then to estimate the probability
that each scoring rule selects the set of true distributions.

To obtain sets of forecasts that are realistic in terms
of actual football matches, bookmakers’ odds on past
matches are used which are converted into probabilistic
forecasts. These are taken from the repository of football
data at www.football-data.co.uk which supplies free-to-
access data from a range of European leagues. Details of
the data and how the odds are used to generate probabilis-
tic forecasts are given in the appendix. Odds from a total
of 39,343 matches are available and form the basis of a set
of candidate probability distributions.

We seek n pairs of forecasts such that one represents
the truedistributionof theoutcome,and thereforeaperfect
forecast, whilst the other represents an imperfect forecast.

http://www.football-data.co.uk
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In order to test the effect of different levels of imperfection,
we define a method of controlling it. To create a perfect
forecast and corresponding outcome, a distribution is ran-
domly drawn from the candidate set and defined to be the
perfect forecast. A random draw from that distribution is
then taken and defined to be the outcome. Next, we seek
an alternative, imperfect forecast from the candidate set.
Here, we apply a condition on the similarity of the can-
didate forecasts with the perfect forecast. Let the perfect
forecast be defined by {ph, pd, pa} where ph, pd and pa
represents the forecast probability of a home win, draw
and away win respectively. For each forecast in the can-
didate set, define the ‘distance’ from the true probability
distribution to be

𝜀 = 1
3 (|p̃h − ph|+ |p̃d − pd|+ |p̃a − pa|). (5)

Wedefine some threshold value 𝛿, find all forecasts for
which 𝜀 is less than 𝛿 (excluding the perfect forecast itself)
and randomly draw the imperfect forecast from that set.
This process is repeated n times such that there are a total
of n pairs of forecasts. We define the ‘perfect forecasting
system’ to be the system that always issues the perfect fore-
cast from the pair and the ‘imperfect forecasting system’
to be such that the alternative, imperfect forecast is always
issued. The experiment is repeated for multiple values of n

and different levels of the parameter 𝛿, which governs the
imperfection.

7.1 Results
The effect of different levels of imperfection, governed by
the selected value of 𝛿, is demonstrated in Figure 5. Each
blue dot represents a perfect forecast, with the x and y
axes representing the probability of a home win and a
draw respectively. The grey line links each of these with
the corresponding imperfect forecast. Increasing the value
of 𝛿 tends to result in more distinct pairs of forecasts and
therefore a higher level of imperfection.

The proportion of forecast pairs in which the perfect
forecasting system is selected over the imperfect forecast-
ing system is shown for each score and value of 𝛿 as a
functionof log2(n) inFigure 6. The red, blue andgreen lines
represent this proportion for the Brier score, Ignorance
score and RPS respectively for the stated value of 𝛿. For
higher levels of imperfection, that is when 𝛿 is high, there
does not appear to be much difference in the performance
of the scoring rules. However, for the lowest level of imper-
fection, in which 𝛿 = 0.1, there appears to be a notable
difference with the RPS outperformed by both the Igno-
rance and Brier scores. From this graph alone, however,

Figure 5: Examples of forecast pairs for different levels of imperfection. The probability placed on a home win and a draw is represented by
the x and y axes respectively. The grey lines join pairs of forecasts for the purpose of the experiment.
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Figure 6: The proportion of cases in which the perfect forecasting system is selected by each scoring rule system as a function of log2(n) for
different values of 𝛿.

it is not clear whether these differences are statistically
significant. Given that each of the scores are calculated
on the same sets of forecast pairs, the scoring rules
can be compared pairwise with a total of three different

comparisons (Ignorance vs RPS, Ignorance vs Brier and
RPS vs Brier). These differences are shown as a function of
log2(n) in Figure 7, with each panel representing a different
value of 𝛿. The error bars represent 95 percent resampling

Figure 7: Pairwise differences in the proportion of cases in which the perfect forecasting system is selected between the Ignorance and RPS
(blue), Ignorance and Brier score (red) and Brier score and RPS (yellow) as a function of log2(n) with 95 percent resampling intervals of the
mean.
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intervals of the mean difference and hence, if the intervals
do not contain zero, there is a significant difference in the
performance of that pair of scoring rules.

For the two lowest levels of imperfection (𝛿 = 0.01 and
𝛿 = 0.025), there is a clear hierarchy in terms of the effi-
cacy of each score in identifying the perfect forecasting
system. The Ignorance score tends to outperform the Brier
score which tends to outperform the RPS. This difference
is most stark for larger values of n. For the two larger levels
of imperfection (𝛿 = 0.05 and 𝛿 = 0.1), the difference is
less clear and, in general, there is no significant difference
between the Brier score and the RPS. The Ignorance score,
on the other hand, still tends to perform significantly bet-
ter than both other scores. These results therefore provide
clear support for the Ignorance score and little support for
the RPS.

8 Discussion and conclusions
The aim of this paper is to reopen the debate surrounding
the use of scoring rules for evaluating the performance of
probabilistic forecasts of football matches. The reasoning
presented by Constantinou and Fenton supporting the use
of the RPS over other scoring rules has been shown to
be oversimplistic and the conclusion questionable. With
this in mind, two experiments have been conducted with
the aim of assessing the performance of each scoring rule
in the context of identifying a perfect forecasting system
using a finite number of past forecasts and outcomes. The
Ignorance score has been found to outperform both the
RPS and the Brier scores whilst, to a lesser extent, the Brier
score has been shown to perform better than the RPS in
this context.

The results in this paper may seem surprising at first.
After all, both the Brier score and the RPS are non-local
and take intoaccount theentire forecastdistribution rather
than just the probability at the outcome whilst the RPS is
sensitive to distance and therefore also takes into account
the ordering of the potential outcomes. It would be easy
to conclude from this that, since both scores take more of
the distribution into account, they are more informative.
However, it should be stressed that this would only be the
case if those extra aspects are genuinely useful in terms of
assessing the performance of the forecasts. In practice, we
only ever gain limited knowledge regarding the true distri-
bution, even once the outcome is revealed. If, for example,
the outcome is a home win, this tells us little or noth-
ing about the probability of a draw or an away win. In
fact, knowing the outcome reveals relatively little about
its probability, other than it is greater than zero. Given

this, we argue that the probability placed on potential out-
comes that didn’t happen are irrelevant. We know nothing
about the true probabilities and therefore cannot reward
probability placed on such outcomes. On the other hand,
we know that the actual outcome occurred. Moreover, the
more likely that event was deemed by the forecast, the bet-
ter prepared we could have been for the occurrence of that
outcome.We therefore argue that the probability placed on
the outcome can be the only aspect of interest in evaluat-
ing probabilistic forecasts. Given that the Ignorance score
is theonlyproperand local score (BröckerandSmith2007),
this leads to it being a natural preference.

From a statistical point of view, the superior perfor-
mance of the Ignorance score is perhaps not surprising.
The mean Ignorance score over a set of forecast distribu-
tions isclosely related to the log-likelihoodofasample from
a statistical distribution (with the key difference being that
the log-likelihood is calculated from multiple data points
fitted to the same distribution whilst the mean Ignorance
score is calculated overmultiple forecast distributions and
outcomes). Minimising the mean Ignorance score there-
fore follows much the same process as maximising the
log-likelihood in parameter estimation. Maximum likeli-
hood estimators are typically asymptotically efficient, that
is, in the limit of a large sample size, the mean squared
error between a maximum likelihood estimator and the
‘true’ value of a parameter is lower than for any other
estimator. Whilst this does not necessarily mean that the
Ignorance score is maximally efficient in terms of distin-
guishing multinomial forecast distributions, as discussed
in this paper, it does demonstrate the power of this kind of
approach.

In summary, this paper has both argued for and pro-
vided empirical evidence in favour of the Ignorance score
over both the Brier score and RPS. It should be noted, how-
ever, that this paper has only touched upon the question of
which typesof imperfect forecasts are favouredbydifferent
scores. Useful future work would be to attempt to under-
stand better where different scoring rules favour different
types of forecasts. A preference for the types of forecasts
favoured by the Brier score or RPS would then need to be
weighedupagainst theunfavourable resultsdemonstrated
in this paper. Regardless, we hope that the arguments and
results in this paper are successful in reopening the debate
surrounding the choice of scoring rule for evaluating fore-
casts of football matches. From the evidence presented in
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this paper, we strongly recommend the Ignorance score for
this purpose.

A. Data
Experiment two makes use of bookmakers’ odds on
actual football matches to form probabilistic forecasts.
These odds are taken from the data set available at
www.football-data.co.uk which supplies free-to-access
match-by-match data on 22 European Leagues dating back
as far back as the 1993/1994 season. Here, data from the
top five English leagues are used and are summarised in
Table 2.

B. Match probabilities from odds
Let Oh, Od and Oa be the decimal odds on a home win,
draw and away win respectively for a given match. The
multiplicative inverse of the odds on each outcome repre-
sents the ‘implied’ probability. However, due to the profit
margin of the bookmakers, the implied probabilities will
generally sum to a value greater than one. To remove the
profitmargin, the impliedprobabilitiesaredivided through
by their sumandthereforeaprobabilistic forecast is formed
by

ph =
1∕Oh

1∕Oh + 1∕Od + 1∕Oa
,

pd =
1∕Od

1∕Oh + 1∕Od + 1∕Oa
,

pa =
1∕Oa

1∕Oh + 1∕Od + 1∕Oa
.

(6)

Forecasts are formed using the maximum odds (over
all bookmakers given) in each case.

Table 2: Football league data used in this paper.

League First available
season

Number of
matches

English Premier League 2005/2006 6460
English Championship 2005/2006 6624
English League One 2005/2006 6624
English League Two 2005/2006 6624
English National League 2005/2006 6488
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