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Abstract

This paper shows that differentiating driving costs by time of day and 
vehicle type help improve urban air quality, lower driving, and induce adoption 
of electric vehicles. By taking advantage of a congestion charge that imposed 
spatial and temporal variation in the cost of driving a conventional vehicle, 
we find that economic incentives lower traffic and concentrations of NO2. 
Exploiting a novel dataset on car ownership, we find that households exposed 
to congestion charging on their way to work were more likely to adopt an 
electric vehicle. We document strong heterogeneous patterns of electric vehicle 
adoption along several socioeconomic dimensions, including household type, 
income, age, education, work distance and public transit quality.
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1 Introduction

Transportation is a major contributor to urban air pollution and greenhouse gas

emissions. Despite substantial improvements in the energy efficiency of vehicles, a

long tradition of imposing air quality standards, and increased attention towards cli-

mate change mitigation, most countries around the world still struggle with the dual

challenge of poor ambient air quality and high levels of carbon emissions from trans-

portation (WHO, 2016; EEA, 2019).1 While more ambitious policies are needed to

curb emissions, imposing higher costs on driving is often met with substantial public

opposition, where critics point to unfavorable distributional properties of such poli-

cies. Previous studies also show that regulations aimed at mitigating air pollution

and other driving-related externalites can have unintended consequences (Davis,

2008; Auffhammer and Kellogg, 2011; Bento et al., 2014; Gibson and Carnovale,

2015), sometimes even leading to net welfare losses. Unintended consequences may

arise due to drivers’ substitution behavior, or by exploitation of policy loopholes.

Understanding the impacts of transportation policies aimed at mitigating local and

global externalities, as well as their distributional implications, is hence crucial in

order to facilitate an efficient and equitable low-carbon transition in the transporta-

tion sector.

In this paper, we combine highly detailed data on air pollution, traffic, and car

ownership to shed light on efficiency and equity impacts of a congestion charge that

increased the costs of driving gasoline and diesel vehicles during rush hours. While

command-and-control type of regulations such as low-emission zones and license

plate-based driving restrictions are often used to combat urban air pollution, with

mixed success (Davis, 2008; Wolff, 2014; Zhang et al., 2017; Zhai and Wolff, 2020),

market-based policies such as congestion charging have recently been implemented

in several major cities around the world (e.g., Stockholm, Zürich, Milan, London,

Singapore). Still, there are few empirical studies exploiting quasi-experimental vari-

ation to estimate effects of these types of policies on travel behavior and emissions.2

Are these types of market-based polices able to mitigate air pollution and induce a

shift towards greener modes of transportation? Or are drivers simply substituting

towards lower priced hours or roads, potentially leaving the total traffic volume un-

changed? What are the distributional consequences of increasing the price of driving

a high-emission vehicle, and to what extent are low-income households able to adapt

1According to the World Health Organization (WHO), over 90% of the world’s population live
in places where air quality levels exceeds the health-based guidelines (WHO, 2016).

2Notable exceptions include e.g., Gibson and Carnovale (2015) and Simeonova et al. (2019). A
more comprehensive literature review is provided towards the end of the introduction.
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by adopting costly electric vehicles exempted from congestion charging?

To examine these issues, we exploit a congestion charge implemented in 2016

in the second largest city in Norway (Bergen) that raised the price of entering the

city center toll cordon during rush hours by 80 %. The congestion charge only

applied to weekdays, and only to gasoline and diesel vehicles. While the main goal

of congestion charging is usually to lower traffic volumes during rush hours, the

Bergen congestion charge was to a large extent motivated by an aim of improving

air quality and to speed up the adoption of battery-electric vehicles (electric vehicles

in the following), which have been exempted from paying congestion charges and

road toll in Norway since 1997.3 The policy hence increased the relative price of

driving a high- vs. low-emission vehicle. Before 2010, access to high-quality electric

vehicles were limited, and polices favoring these cars likely had a modest impact

on adoption. However, with the roll-out of several high quality models over the

past decade, electric vehicles have become a feasible option, thereby expanding the

opportunity set of drivers (Figenbaum et al., 2015). Given the exceptionally high

market penetration of electric vehicles in Norway, the Bergen congestion charge

makes for an interesting study case to examine the margins of adjustment when

drivers face a time-of-day and vehicle-specific charge on driving.4

As a first step, we examine the overall effect of the congestion charge on traffic

volume and ambient air quality using high-frequency sensor and monitoring station

level data. To identify causal effects of the policy, we exploit two sources of variation

across time: pre and post policy and weekday vs. weekend.5 Results from the

empirical examination show a negative and significant effect on both traffic volume

and air pollution; increasing the rush hour rate of entering the toll cordon by around

80 % led to a 14 % decrease in cars entering the congestion zone during rush hours

and an 11 % reduction in concentrations of NO2 during midday hours.6 While we

find evidence of inter-temporal substitution towards the 15-30 minutes right before

and after rush hours, as well as spatial substitution towards lower priced roads,

the overall change in traffic is dominated by the large reductions on treated roads

during rush hours. These findings suggest that drivers primarily substituted towards

other modes of transportation. Averaging effects over the course of a day, we find

3From 2019 and onward the policy was changed, and electric vehicles were charged with ∼20
percent of the standard rate. This policy change, however, is outside the time frame of our dataset.

4In the first quarter of 2019, over 50% of all new passenger vehicles sold in Norway were electric
vehicles; see elbil.no. In the year of the congestion charge implementation (2016), the share of
electric vehicles of all new passenger vehicles sold in Norway was around 16%.

5The congestion charge was only active during weekdays.
6We find similar sized effects for NO2 when applying a difference-in-differences specification

that exploits variation across cities instead of weekday vs. weekend. A similar specification is not
feasible for traffic volumes due to lack of comparable data across cities.
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that daily traffic volume on rush-hour priced roads decreased by around 4.8 % and

ambient levels of NO2 decreased by 6.5 % (or 3.1 µg/m3). We find a similar-sized

percentage decline in PM10, but estimates are too noisy to draw firm conclusions.

As PM10 is largely generated from wear and tear from roads, tires and break blocks

rather than vehicle exhaust, a change in fleet composition towards electric vehicles

is likely to lower NO2 concentrations but not necessarily PM10.

To further examine behavioral responses to the congestion charge, we exploit a

novel data set that combines registry data on the full population of cars in Norway

with detailed socioeconomic information on households, including the neighborhood-

level location of individuals’ home and workplace. Combining this exceptionally

detailed data with information on the road network and the location of toll gates,

we are able to identify the toll payments faced by each individual household when

traveling between home and work – provided that they choose the shortest route.

Based on these datasets, we construct treatment and control groups in a triple

differences framework. Specifically, we define the treatment group as households

exposed to congestion charging on their way to work and the control group as

households where the work route does not have toll gates.7 We then compare the

treatment and control groups pre and post policy and across two similar-sized cities

in Norway (Bergen and Stavanger), where Stavanger serves as the “placebo” case.

By comparing the development of similar types of households across two cities, we

are able to control for differential, time-varying effects of the increased availability

of electric vehicles on households that pay and do not pay road toll. Identification

is further strengthened by the inclusion of neighborhood-year level fixed effects,

household level demographics and travel time between home and work with both

car and public transit.

Results from the empirical examination suggest that households respond to the

congestion charge by substituting towards electric vehicles. We find that households

exposed to the Bergen congestion charge were around 4.2 percentage points more

likely to adopt an electric vehicle. This estimated treatment effect explains around

1/3 of the increase in electric vehicle adoption in the treatment group from 2014

to 2017.8 Further, we find that the positive effect on electric vehicle adoption is

mirrored by a negative effect on the adoption of gasoline and diesel vehicles, leading

to a close to zero effect on the total number of cars owned by a household. This

7This definition serves as a proxy for the overall costs faced by households from congestion
charging.

8From the end of 2014 to the end of 2017, the share of toll-paying commuters in Bergen that
owned an electric vehicle increased by 13 percentage points, from 4.7 percent to 17.7 percent. In
the absence of the congestion charge, we predict that the electric vehicle share in 2017 would have
been 13.5 percent.
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suggests that households, on average, replaced their fossil fuel car by an electric one.

Examining heterogeneous effects, we find strong gradients along several socioeco-

nomic dimensions. While the policy had no effect on electric vehicle adoption among

households in the lowest income quintile, the electric vehicle share for households in

the highest income quintile increased by around 7 percentage points as a consequence

of the policy. We also find that treatment effects are larger for university-educated

couples with kids, and for households with a longer work commute and poor public

transit quality. The latter implies that the quality of transportation substitutes

plays a key role in households’ adaptation responses. While the heterogeneous ef-

fects may be explained by differences in preferences, parts may be due to financial

constraints in purchasing an electric vehicle.

Overall, our findings on car ownership suggest that congestion charging combined

with exemptions for electric vehicles can be a powerful tool to promote electric

vehicle adoption, but that there are systematic differences in how households respond

to the policy. Back-of-the-envelope welfare calculations suggest that the policy led

to a net welfare gain with a benefit to cost ratio of around 3:1.

The magnitude of our treatment estimates must be seen in context of Norway’s

other existing electric vehicle incentives, such as exemptions from purchasing tax and

value-added tax. These strong financial incentives have contributed to an exception-

ally high market share of electric vehicles in Norway and a relatively well-developed

charging infrastructure. In absence of these favorable conditions, we would likely

have seen a lower effect of the congestion charge on electric vehicle adoption. De-

spite the specific features of our research context, we argue that our findings may

help shed light on expected impacts of congestion charging in other countries in a

future scenario where electric vehicles are more competitive to internal combustion

engine vehicles, e.g. due to policies or technological improvements, and the charging

infrastructure more developed than today.

Our paper complements the empirical literature on the effects of transportation

polices on air pollution, congestion, and other driving-related externalities. Previous

studies have shown that e.g., low emission zones, road tolls and congestion charges

can help improve urban air quality (Wolff, 2014; Gibson and Carnovale, 2015; Fu

and Gu, 2017; Gehrsitz, 2017; Simeonova et al., 2019; Pestel and Wozny, 2019; Zhai

and Wolff, 2020), with resulting health benefits such as lower asthma rates in chil-

dren (Simeonova et al., 2019), lower infant mortality (Currie and Walker, 2011),

and fewer hospital admissions related to chronic cardiovascular and respiratory dis-

eases (Pestel and Wozny, 2019). While these studies provide important estimates

on environmental and health effects of transportation policies, very few studies com-
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bine highly detailed data with a quasi-experimental design to examine underlying

mechanisms through which individuals respond to these policies, as well as how

these mechanisms differ across households. The majority of papers also focus on

command-and-control instruments; by contrast we provide estimates on the effects

of a marked-based policy implemented in several major cities over the past decade.

Our paper also contributes to a small but growing quasi-experimental literature

on electric vehicle adoption. Existing studies focus on the effects of purchasing

subsidies (Muehlegger and Rapson, 2018; Clinton and Steinberg, 2019), charging

infrastructure (Li et al., 2017) and low emission zones (Wolff, 2014) on new vehicle

registrations, usually at the zip-code, metropolitan, or state level. By contrast, we

examine effects of a congestion charge paired with electric vehicle exemptions on

household-level car ownership. Compared to previous studies, we use exceptionally

detailed data, were we are able to locate the residence and workplace of each indi-

vidual living in Norway. This allows us to construct a policy exposure measure that

vary substantially across space and time, which helps to develop a more credible

identification strategy. Further, by using data on households’ car portfolio rather

than just new car sales, we are able to examine whether the policy increased or

decreased the total number of cars – a crucial aspect to understand the net environ-

mental and climate benefits of electric vehicle incentives.

The remainder of the paper is organized as follows: Section 2 provides back-

ground information on the policy and the broader institutional setting. Section 3

describes the data and results for pollution and traffic. Section 4 describes data and

results for household-level transportation behavior. Section 5 provides a discussion

of the net welfare effects and distributional concerns. Section 6 concludes.

2 Background

The congestion charge in Bergen was announced in February 2015 and implemented

one year later, on February 1st 2016; see Table 1. The congestion charge was

electronically collected via the existing automated toll gates in and around the city

center of Bergen; see Figure 1. Before implementation, small passenger vehicles

passing the toll cordon paid an amount of NOK 25 (∼$3) irrespective of time of day.

After the introduction of congestion pricing, small passenger vehicles faced a rush-

hour rate of NOK 45 (∼$5.4) in the hours 06:30-09:00 and 14:30-16:30, equivalent

to an 80 % price increase. The rush hour rates were only active on weekdays.

Rates in non-rush hours were lowered to NOK 19 (∼$2.3), representing a 24 % price

decrease. Vehicles were charged when entering the toll cordon. If a vehicle passed
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Table 1: Congestion charging in the city of Bergen

Date implemented Feb 1, 2016
Date announced Feb 18, 2015

Morning rush 06:30-09:00
Afternoon rush 14:30-16:30

Price pre Feb 1, 2016 NOK 25 (∼$3)
Price post Feb 1, 2016: rush hour NOK 45 (∼$5.4)
Price post Feb 1, 2016: non-rush NOK 19 (∼$2.3)

Notes: Rates are given in NOK. 10 NOK ≈ 1 EUR and ≈ 1.2 USD. Rates
correspond to the levels at the time of implementation and reflect rates faced
by small passenger vehicles (< 3500 kg) . For large vehicles (> 3500 kg)
the price was 50 NOK before Feb 1st 2016, and 90 NOK during rush hours
(38 NOK outside rush hours) after policy implementation. Battery electric
vehicles were exempted from the congestion charge and toll rates throughout
the period analyzed. Hybrid electric vehicles were subject to the same rates
as internal combustion engine vehicles (ICEVs). Appendix Figure A.3 shows
the development of toll rates in Bergen over the period 2005 to 2017.

the toll cordon several times within an hour, it was only charged once.9 Battery-

electric vehicles were exempted from toll rates both before and after the introduction

of the congestion charge. The congestion charge hence further increased the relative

cost of driving a diesel or gasoline vehicle compared to a battery-electric vehicle.10

While the main goal of rush hour pricing is usually to mitigate congestion, the

introduction of the Bergen congestion charge was to a large extent motivated by

air quality concerns. In the years leading up to implementation, Bergen together

with a handful of larger cities in Norway struggled with poor urban air quality, and

in 2015 Norway was convicted in the EFTA court for violating EU’s ambient air

quality standards in several parts of the country.11 The majority of the violations

were linked to excess concentrations of NO2 in urban areas, where exhaust from road

traffic is usually a major source; see Section 3.1 for details. As a consequence of the

court decision, Norway was required to initiate measures to meet the requirements

of the EU Air Quality Directive.

Beyond meeting air quality requirements, the introduction of the congestion

charge was also seen as an instrument to lower CO2 emissions and facilitate the shift

towards greener modes of transportation. As almost 98 % of Norway’s electricity

9There was also a monthly cap on the overall cost per vehicle. Once the cap was reached, the
vehicle was allowed to enter the toll cordon free of charge. However, this cap was set too high to
be binding for regular commuters.

10See e.g., NPRA (2018) for more details on the policy, and for a descriptive analysis of traffic
volumes after the introduction of the policy. Congestion charging has also been implemented in four
other cities in Norway; see Appendix Table A.1. In this paper, we focus on the Bergen congestion
charge as we either lack sufficient air pollution data on the other cities, or lack information on car
ownership for the post period.

11See e.g., regjeringen.no and nrk.no.
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Figure 1: Map of toll gates, pollution monitoring stations and weather stations in
Bergen

Toll stations
Weather stations
Pollution stations
Road network

Danmarks plass

Notes: The map shows toll gates, weather stations, and pollution monitoring stations in and around the city
centre of Bergen. The only pollution monitoring station with a sufficiently long time series to use in the
analysis is the monitoring station labeled as Danmarks plass. See Appendix A for additional maps of Bergen
and the road network.

production is renewable (Statistics Norway, 2020), electric vehicles cause very low

indirect CO2 emissions from driving. Norway has an ambitious goal of increasing

the market share of electric vehicles to 100 % by 2025 (NTP, 2017, p. 224), and the

congestion charge exemption was one of many benefits granted to electric vehicle

owners over the time period analyzed. At the national level, electric vehicles are

exempted from purchase taxes and VAT. At the local level, electric vehicles benefit

from exemptions from road toll and congestion charges, access to bus lanes, free

parking, and free charging. See Appendix Table A.3 for a complete list of electric

vehicle incentives.

The strong incentives have contributed to an exceptionally high market share of

electric vehicles in Norway - the highest in the world in 2017 (IEA, 2018). The high

share has been facilitated by a dramatic increase in the supply of electric vehicle

models since 2010.12 While many of the policies promoting electric vehicles have

been in place since the 1990s, their impact likely increased as several high-quality

12See Figenbaum et al. (2015) for an overview of electric vehicles introduced in the Norwegian
market.
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electric vehicle models became available. When estimating effects of the congestion

charge on individual-level behavior, it will therefore be important to control for the

potentially differential time trends across households with different levels of exposure

to electric vehicle benefits. For instance, households paying road toll on their way

to work will have a stronger incentive to adopt an electric vehicle, and the response

is likely to increase as more electric vehicles become available - also in the absence

of an increase in road toll. In this paper, we aim to disentangle the effect of the

Bergen congestion charge from other policy and technology trends by constructing

a control group that faced similar local and national policies and incentives - with

the exception of congestion charging.

The introduction of congestion charges in Norway has sparked a lot of public

discontent, where critics often point to unfavorable distributional properties of the

policy. As all drivers face the same rate, those from lower-income households will

necessarily spend a larger share of their overall budget if similarly exposed to the

congestion charge. Critics have also pointed to the lack of high-quality substitutes

for many households, locking them into existing behavioral patterns. Purchasing

a battery-electric vehicle to avoid road toll and congestion charges is still out of

reach for many households – despite the large tax exemptions. In the spring and

summer of 2019, there were several mass protests around the country against higher

toll rates and congestion charging, which resulted in the formation of a new, single-

cause political party pledging to remove all toll gates. The new “road toll party” got

a substantial share of the votes in the local elections in the fall of 2019, leading to the

cancellation of planned congestion charges and new toll gates.13 Despite claims of

the policy disproportionately harming low-income households, there is little evidence

on how individuals actually adapted to the policy and to what extent they seemed

to be locked into behavioral patterns due to e.g., income and limited public transit

options.

3 Part I: air pollution and traffic volume

What was the effect of the congestion charge on rush hour and daily traffic? And

to what extent did the policy improve ambient air quality? In the following, we

examine these questions using high-frequency data from traffic sensors and pollution

monitoring stations.

13See e.g. https://www.nrk.no/osloogviken/bomringen-i-drammen-skrotes-1.14560632

(accessed September 11, 2020; Norwegian only).
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3.1 Data and descriptives

3.1.1 Traffic volume

To investigate effects of the congestion charge on traffic, we collect sensor level

data on traffic volume and composition from the local road toll company in Bergen

(Ferde). A map of the 14 automated toll gates, which indicate the congestion

charging area, is provided in Figure 1. The sensor level data contains information

on all cars passing the automated toll road gates in the period 2014 to 2018, with a

15-minute resolution. The number of cars within each 15 minute interval is further

split into vehicles weighing less than 3.5 tonnes (referred to as “passenger vehicles”)

and vehicles weighing 3.5 tonnes or more (refereed to as “trucks”).14 In the main

analysis, we focus on the total number of cars passing any toll gate in or out of

Bergen in a given time period. By aggregating traffic to the city level, we eliminate

the toll gate dimension of the data and are left with a high-frequency time series

of total traffic.15 Further, we focus on a period covering two years before and two

years after the congestion charge was implemented, i.e., Feb 1 2014 to Feb 1 2018.

This ensures that toll rates were constant in the pre-treatment period; see Appendix

Figure A.3.

Figure 2: Traffic volume two years before and after Feb 1 2016
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Notes: Figures show the average number of vehicles passing the toll cordon over the course of a day based
on 15 minute intervals. Panel (a) shows averages for weekdays (Monday-Friday) and panel (b) shows averages
for the weekend (Saturday-Sunday). Dashed lines indicate averages for the 730 days (2 years) prior to policy
implementation. Solid lines indicate averages for the 730 days (2 years) post policy implementation. Gray shaded
areas indicate rush hours (06:30-09:00 and 14:30-16:30). Note that the congestion charge was not active during
weekends. See Appendix Figure B.1 for traffic volume presented separately for passenger vehicles and trucks. See
Appendix Figure B.2 for similar figures using a period of 365 days pre/post policy implementation. See Appendix
Figure B.3 for traffic volume 365 days pre and post Feb 1 2015 (“placebo intervention”).

14Note that vehicles weighing less than 3.5 tonnes also consist of taxis, vans, and service vehicles.
Vehicles weighing 3.5 tonnes or more also consist of buses and emergency vehicles in addition to
trucks.

15Main results are not sensitive to the level of aggregation, as shown in Appendix B.2.3.
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Figure 2 shows how vehicles passing the toll gates are distributed over the course

of a day two years before (dashed line) and two years after (solid line) the conges-

tion charge was implemented. Panel (a) clearly indicates that traffic volumes peak

around rush hours, and that rush hour traffic declined in the two years after policy

implementation.16 The figure also shows a small increase in the number of cars

right before and after rush hours, suggesting that the policy induced some drivers to

change their departure time to avoid the increased cost. However, this substitution

towards non-rush hours seems to be limited to a 15 minute interval before and after

rush hours. The traffic pattern during weekends, when the congestion charge was

not active, looks very similar in the two years before and after the policy; see panel

(b) in Figure 2.17

3.1.2 Air pollution

To examine effects of the policy on ambient air quality, we collect hourly data on

atmospheric pollution for the period 2014-2018 from the Norwegian Institute for

Air Research (NILU), which operates a number of air monitors across Norway. Air

pollution is measured as micrograms per cubic meter of air (µg/m3). Figure 1 shows

a map with the location of monitoring stations in the inner city of Bergen. While

there are several monitoring stations located within the congestion zone, only one

monitoring station has a sufficiently long time series to examine effects on the policy

(the station labeled Danmarks plass). We hence limit the analysis to this station

only when estimating effects on air pollution.

In the analysis, we focus one two key air pollutants: nitrogen dioxides (NO2)

and particulate matter with a diameter between 2.5 and 10 micrometers (PM10).18

NO2 is one of a group of highly reactive gases known as nitrogen oxides (NOx).

The most important source of NO2 in Norway is exhaust from vehicles with an

internal combustion engine, i.e., gasoline and diesel vehicles (NILU, 2019).19 High

ambient levels of NO2 is usually an urban phenomenon, and in the period analyzed

several of the larges cities in Norway violated the national air quality standards

for NO2. Epidemiological studies have documented several adverse health effects of

exposure to NO2, such as aggravation of asthma and bronchitis, impaired respiratory

functions, and mortality (see e.g., Lipsett et al., 1997; Shima and Adachi, 2000).

16The reduced traffic during rush hours are primarily driven by passenger vehicles; see Appendix
Figure B.1.

17See Appendix B.1 for additional descriptives.
18These are the two pollutants most relevant to road traffic, and are also the ones where we

have sufficient data to perform the analysis. An overview of the relative contribution of different
sources to six different air pollutants is provided in Appendix Table A.2.

19Other less important sources of NO2 are manufacturing industry and ship traffic.
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Recent studies also suggest that NO2 have adverse health effects also for ambient

levels well below national ambient air quality standards (Simeonova et al., 2019;

Breivik et al., 2020).

Particulate matter is a mixture of solid particles and liquid droplets such as

dust, dirt, soot, or smoke. PM is usually divided into two categories according to

the size of the particles. PM10 refers to particles with diameters between 10 and

2.5 micrometers.20 The most important sources of PM10 in urban areas in Norway

are wear and tear from roads, car tires and break blocks, sand added to roads to

increase friction of icy surfaces in the winter, and wood-fired ovens (NILU, 2019).

The epidemiological literature has documented several adverse health effects from

exposure to PM10 and PM2.5, such as premature death in people with heart and

lung disease, aggravated asthma, and decreased lung growth and lung function in

children (see e.g., Avol et al., 2001).

Figure 3 shows how ambient levels of NO2 and PM10 vary over the course of 24

hours in the two years before (dashed line) and after (solid line) policy implemen-

tation. Gray shaded areas indicate rush hours. Both pollutants show a peak during

the weekday morning rush, with a more pronounced peak for NO2. By comparing

the average pollution levels pre and post policy, we see that there is a clear decline

in ambient air pollution on both weekdays and weekends. However, the decline in

µg/m3 seems to be largest for weekdays.21 To put the levels of air pollution into

context, the WHO Air Quality Guidelines for NO2 and PM10 are 40 µg/m3 annual

mean and 20 µg/m3 annual mean, respectively (WHO, 2006). See Appendix C.1 for

additional descriptives and summary statistics.

3.1.3 Weather

To control for the effects of weather on traffic and pollution outcomes, we col-

lect monitor-level weather data from the Norwegian Meteorological Institute for the

years 2014-2018. We focus on hourly measures of temperature, precipitation, wind

speed, and wind direction. The weather data is linked to a pollution monitoring

station by calculating the inverse distance weighted average of observations from all

weather stations within a 50 kilometer radius of a pollution monitoring site. Based

on hourly wind data, we construct four wind direction categories.22 Additionally,

20PM2.5 refers to particles with a diameter of 2.5 micrometers or smaller.
21If we restrict the sample to one year pre and post policy implementation, there appears to be

no reduction in NO2 on weekends and a large reduction on weekdays; see Appendix Figure C.2.
For PM10 there is a similar, but less striking pattern.

22Categorization is based on wind direction in degrees. Northern ∈ [0-45] and (315,360], Eastern
∈ (45,135], Southern ∈ (135,225], Western ∈ (225,315].
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Figure 3: Air pollution two years before and after Feb 1 2016

(a) Weekday NO2 (b) Weekend NO2

(c) Weekday PM10 (d) Weekend PM10

Notes: Figure shows average ambient air pollution over the course of a day for the pollution monitoring station
located at Danmarksplass in Bergen. Values are based on 60 minute intervals. Panels (a) and (c) show averages for
weekdays (Monday-Friday) and panels (b) and (d) show averages for weekends (Saturday-Sunday). Dashed lines
indicate averages for the two years prior to policy implementation (Feb 1 2016). Solid lines indicate averages for
the two years post policy implementation. Gray shaded areas indicate rush hours. Note that congestion charging
is not active during weekends. Pollution is measured as micrograms per cubic meter of air(µg/m3). See Appendix
Figure C.3 for ambient air pollution one year pre and post Feb 1 2015 (”Placebo intervention”). See Appendix
Figure C.2 for similar figures using a period of one year pre and post policy intervention.

we collect data on temperature inversion episodes in Bergen from the Nansen En-

vironmental and Remote Sensing Center.23 The dataset contains temperature for

Bergen recorded at different altitudes, allowing us to identify inversion episodes, i.e.,

periods in which the temperature is increasing in altitude. As cold air is heavier

than warm, air inversion episodes tend to reduce air circulation close to the surface

and thus trap the pollutants produced by vehicles (and other sources) close to the

ground. In the 2 years pre and post policy, inversion episodes occurred for around

4 % of the hourly observations; see Appendix C.1.

23The data is available from the following website: https://veret.gfi.uib.no/?action=

download.
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3.2 Empirical strategy

In this subsection, we provide an empirical framework to help estimate a causal effect

of the congestion charge on traffic volume and air pollution. While the descriptive

evidence presented in Section 3.1 suggest a decline in traffic and air pollution after

the introduction of the congestion charge, the reduction might have been due to

other factors than the policy, such as weather conditions, the use of wood-fired ovens,

road construction, the supply of low and zero emission vehicles, etc. To identify the

causal (short-run) effect of the policy, we employ a differences-in-differences (DiD)

framework, where we exploit the fact that rush hour charges were not active during

weekends.24 By defining weekdays as our treatment observations and weekends as

our control observations, we mitigate the risk of estimates being confounded by other

factors that change over time and affect traffic or pollution simultaneously. The

key identifying assumption is that changes in omitted time-varying variables, such

as unobserved technological trends, economic activity and local policy initiatives,

affect weekday and weekend traffic and air pollution similarly.

Our main regression equation can be written as:

yikt = βpostt × weekdayt +X ′itγ + λym + θdi + εikt, (1)

where yikt denotes the outcome of type k observed at time interval i on date t; X ′it is

a vector of weather controls; λym denotes year×month fixed effects; θdi denotes day-

of-week×time-of-day fixed effects; and εikt is the idiosyncratic error term. Finally,

postt is a dummy variable equal to 1 after February 1st 2016, and weekdayt is a

dummy variable equal to 1 during weekdays, meaning that β is the coefficient of

interest. Seasonal variation and long-term time trends are absorbed by λym, while

pre-policy weekday-weekend differences are absorbed by θdi. Thus, the variation left

to identify β̂ is the pre-post difference between weekdays and weekends. In the main

specifications standard errors are clustered at the weekly level.

For the main traffic regressions, yikt denotes the total traffic volume of type

k ∈ {all vehicles, passenger vehicles, trucks} passing the toll cordon in Bergen dur-

ing a 15 minute interval. For air pollution regressions, yikt denotes the concentration

of pollutant k ∈ {NO2, PM10} measured at hourly intervals. Both regression spec-

ifications include the same vector of weather controls.25 Our main specification is

24Looking at Figure 2, panel (b) it does not seem like the traffic pattern during weekends changed
visibly pre vs. post policy implementation.

25While weather controls are arguably more important in the air pollution regressions, weather
conditions may also affect traffic volume. For consistency reasons, we use the same vector of
weather controls in both regressions: three polynomials of air temperature; two polynomials of
precipitation; the interaction of temperature and precipitation; two polynomials of wind speed;
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based on a sample consisting of 730 days (two years) before and after the policy

implementation. This is the longest time interval our data allows that ensures that

seasonal trends in traffic or pollutants are balanced pre and post. We remove ir-

regular days, such as vacations and summer months. Alternative specifications and

robustness checks are provided in Appendix B.2.

We consider our DiD strategy to give us a conservative treatment estimate, for

at least two reasons. First, as some pollutants can stay in the air for several hours

(depending on weather conditions among other factors), a policy-induced reduction

in weekday pollution may lower ambient levels of air pollution on weekends as well.

In the presence of such positive spillovers from weekdays to the weekend, we expect

our DiD strategy to downward bias treatment effects. Second, if the policy leads

to behavioral changes that are carried over to weekends, our treatment estimate

will difference out these effects. For instance, one might suspect that the policy

led to more cycling, walking and use of public transit, and that individuals that got

accustomed to these modes of transportation were also more inclined to change their

behavior during weekends. Furthermore, if households bought electric vehicles as

a response to the policy, they likely also used these vehicles during weekends. Our

DiD estimate should therefore be interpreted as a lower bound on the causal effect

of the policy.26

3.3 Results on traffic volume

Figure 4 displays the estimated treatment effects of the policy, where estimates are

allowed to vary by 15 minute increments. Comparing these 96 different treatment

effects allows us to identify the time intervals with the largest treatment effects,

as well as explicitly examine intertemporal substitution. The figure clearly follows

the same pattern as Figure 2; traffic shows a sharp decline during the morning and

evening rush hours and an increase in the 15-30 minutes before and after rush hours.

In the remaining hours of the day, the effect of the congestion charge on traffic is

close to zero. These findings imply that the policy worked as intended, by inducing

drivers to either change their mode of transportation or substitute towards lower

priced hours. The increase in traffic right before and after rush hours are clearly

dominated by the reduction during rush hours, implying an overall reduction in

daily traffic.

four dummies for wind direction (north, south, east and west) as well as their interaction with
wind speed; and finally, a dummy for inversion episodes. We estimate two sets of each of these
weather control variables; one for weekdays and one for weekends.

26For air pollution, the data permits us to present an alternative DiD estimate based on differ-
ences across cities and over time; see Appendix C.3 for details.
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Figure 4: DiD estimates on traffic volume by 15 min. intervals. 2 years pre/post
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Notes: Figure plots treatment effects estimated from from equation 1, where regressions are run separately for each
15 minute increment. Whiskers indicate 95% confidence intervals. Standard errors are not adjusted for multiple
hypothesis testing. Gray shaded areas indicate rush hours. Traffic is measured as the total number of cars passing
the toll cordon every 15 minutes. Standard errors are clustered at the week level.

Table 2 shows the average daily treatment effect (column 1), as well as treatment

effects for five different time periods of the day (columns 2-6). Overall, the congestion

charge led to a 4.8 % reduction in daily traffic volume during weekdays (around 78

vehicles per 15 minute interval, or 7,456 vehicles per day).27 Note that this estimated

effect incorporates intertemporal spillovers within a day. Columns (2)-(4) indicate

that traffic during rush hours was significantly reduced by 14.4 % (around 447

vehicles per 15 minute interval). Column (5) shows a 9 % increase in traffic in the

30 minutes before and after the morning and evening rush, indicating intertemporal

substitution. Column (6) shows a small reduction in traffic during other non-rush

hours (1.3 %) that is significant at the 10 % level.28 See Appendix Table B.1 for

results split by passenger vehicles and trucks.

To illustrate the magnitude of the intertemporal substitution, we translate the

15 minute effects to the total increase or decrease in the number of vehicles within a

given time period. While rush hour traffic decreased by (447×18 quarters =) 8,046

cars, there was an increase of (207.8×8 quarters =) 1,662 cars in the 30 minutes

2777.67 cars per quarter × 96 quarters per day = 7,456 cars per day.
28This might be related to the small reduction in fees outside rush hours. However, the reduction

in fees outside rush hours also applies to weekends, and will therefore to some degree be differenced
out. Note, however, that traffic during weekends did not seem to decrease (see Figure 2. Thus, it
seems like the reduction in fees outside rush hours had limited impact on overall traffic volume.
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Table 2: DiD estimates on traffic volume. 2 years pre/post

Rush hours Non-rush hours

Dependent variable: All day All Morning Evening +/-30 min Other
# vehicles/15 minute interval (1) (2) (3) (4) (5) (6)

Post × weekday -77.67∗∗∗ -447.0∗∗∗ -445.7∗∗∗ -436.9∗∗∗ 207.8∗∗∗ -15.42∗

(9.889) (23.18) (29.33) (25.68) (19.89) (7.971)

Observations 87518 16416 9122 7294 7294 63808
Mean depvar (pre, weekday) 1632 3104 3239 2936 2316 1175
Change (%) -4.76 -14.40 -13.76 -14.88 8.97 -1.31

Weather controls (X ′itγ ) X X X X X X
Month × year FE (λym) X X X X X X
Day-of-week × time-of-day FE (θdi) X X X X X X

Notes: Table shows results from 6 separate regressions. Dependent variable is vehicles passing toll gates in Bergen
during a 15 minute interval. Post×weekday refers to the β coefficient estimated from Equation 1. Column headings
indicate the sample used in each regression. “Rush hours” refer to the intervals 06:30-08:59 (morning) and 14:30-
16:29 (evening). For non-rush hours, “+/- 30 min” refers to the 30 minute intervals right before and after rush
hours. “Other” refers to the remaining non-rush hours (i.e., 9:30-13:59 and 17:00-05:59). Sample is restricted to
730 days pre and post policy implementation. Standard errors clustered at the weekly level in parentheses. *
p<0.10, ** p<0.05, *** p<0.01. Standard errors are not adjusted for multiple hypothesis testing.

before and after rush hours. If there had been a zero increase in traffic during these

30 minutes before and after rush hours, we would have seen a 5.8 % decrease in daily

traffic instead of the actual 4.8 % decrease.29 Drivers’ substitution towards lower

priced hours hence lowers the daily treatment effect by around 1 percentage point.

In Appendix B.2, we show that our baseline results on traffic are robust to: (i)

trimming the sample to one year pre and post policy, (ii) using three different aggre-

gation levels of traffic, (iii) using different levels of fixed effects, and (iv) performing

placebo tests using Feb 1 2015 as the treatment date.

In Appendix B.3, we examine potential spatial substitution towards roads outside

the congestion zone. There are primarily two detours drivers can make to avoid the

toll cordon: either when driving from north to south, or from south to west. Using

hourly data from traffic sensors mounted in the roads, we find evidence of spatial

substitution behavior during rush hours, in particular in the south-west direction.

We estimate that the spatial spillover is around 1054 vehicles per day for the two

road sections combined. This substitution pattern does not necessarily represent

an undesirable effect of the policy, as traffic is diverted away from the areas where

it likely imposes a larger impact on traffic flows and air quality. If we take these

spatial spillovers into account, however, the estimated daily reduction in traffic

during weekdays changes from 4.8 % (baseline estimate) to 4.1 %.30 Unfortunately,

29Calculations: (7,456-1,662)/(1,632×96) = 5.8 % reduction in daily traffic.
30The net daily reduction in traffic in and around the congestion zone is around (7,456–1,054=)

6,402 vehicles, which corresponds to a (6,402/1,632×96=) 4.1 % reduction in daily traffic.
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our data does not allow us to examine whether the deterred trips are not taking

place at all, or whether people are substituting towards other modes of transport

such as public transit, walking, cycling or car pooling.

3.4 Results on air pollution

Figure 5 shows hourly DiD estimates for NO2 and PM10. From Figure 5 panel (a),

we see that the congestion charge led to significant reductions in NO2 most hours

between 6 am and 5 pm. The largest reductions occur in the time period right after

the morning rush. As air pollutants can stay in the air for a period of time after they

are released, we do not expect to see the same sharp differences between rush hours

and non-rush hours as in Figure 2.31 If we compare the estimated treatment effects

to the raw means presented in Figure 3, the estimated effects are very similar to

the observed difference in NO2 concentrations before and after the policy, indicating

that most of the change in NO2 over time can be attributed to the congestion charge.

Figure 5: DID estimates on NO2 and PM10 by 60 min. intervals. 2 years pre/post

(a) NO2 (b) PM10

Notes: Figure plots the coefficient β estimated from Equation 1. Each coefficient reflects the estimated treatment
effect from a separate regression, where the sample is restricted to the 1 hour interval indicated on the x-axis.
Sample period is restricted to 2 years before and 2 years after policy implementation (Feb 1 2016). Gray shaded
areas indicate rush hours. Pollution is measured as micrograms per cubic meter of air (µg/m3). See Appendix
Figure C.4 for results based on a sample restricted to 1 year before and after policy intervention. See Appendix
Figure C.6 for ”placebo” estimates based on 1 year before and after Feb 1 2015.

Table 3, panel (a) shows average daily treatment effects for NO2 (column 1)

together with average treatment effects for 5 different time intervals (columns 2-6).

The coefficient in column (1) suggests that the congestion charge lowered NO2 con-

centrations by 3.1 µg/m3 on average during a day, corresponding to a 7 % reduction.

The effect is driven by reductions during and between rush hours; NO2 concentra-

tions were 6.8 µg/m3 lower during rush hours, corresponding to a 11 % reduction,

31The length of the period air pollutants stay in the air will vary with weather conditions, such
as precipitation, wind speed and inversion episodes.
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while estimated effects on NO2 during the evening and night time are close to zero

and insignificant.32

Table 3: DID estimates on NO2 and PM10. 2 years pre/post

24 hours Daytime Midday Rush Evening Night

Dependent variable: 00-23 05-22 06-17 6-9,14-16 18-23 00-05
ambient air pollution (µg/m3) (1) (2) (3) (4) (5) (6)

Panel A: NO2

Post × weekday -3.064∗∗ -4.334∗∗∗ -6.719∗∗∗ -6.813∗∗∗ -0.182 0.323
(1.369) (1.576) (1.634) (1.658) (1.915) (1.300)

Observations 21438 16041 10637 6227 5403 5398
Mean depvar (pre-weekday) 47.01 55.06 60.86 63.78 42.30 24.58
Change (%) -6.52 -7.87 -11.04 -10.68 -0.43 1.32

Panel B: PM10

Post × weekday -1.185 -1.690∗ -2.084∗ -1.735 -0.868 0.565
(0.809) (0.955) (1.163) (1.115) (0.850) (0.699)

Observations 21624 16219 10794 6314 5429 5401
Mean depvar (pre-weekday) 18.81 21.02 22.29 21.76 18.67 12.01
Change (%) -6.30 -8.04 -9.35 -7.97 -4.65 4.70

Weather controls (X ′itγ) X X X X X X
Month×year FE (λym) X X X X X X
Day of week×time-of-day FE (θdi) X X X X X X

Notes: Table shows results from 12 separate regressions. Dependent variable is ambient air pollution measured
as mean levels of NO2 or PM10 (µg/m3) during a 60 minute interval. Post×weekday refers to the coefficient β
estimated from equation 1. Column headings indicate the sample used in each regression. Rush hours refer to the
intervals 06:00-09:59 (morning) and 14:00-16:59 (evening). Sample is restricted to two years pre and post policy
implementation. Standard errors clustered at the weekly level in parentheses. * p<0.10, ** p<0.05, *** p<0.01

Panel (b) in Figure 5 and Table 3 present results for PM10. While the estimated

treatment effects show a relatively similar pattern as for NO2, with reductions dur-

ing the daytime, the imprecisely estimated coefficients make it hard to draw firm

conclusions. There are several reasons why we would expect PM10 estimates to be

more noisy and smaller in magnitude than the NO2 estimates. First, PM10 is influ-

enced by multiple sources, and is therefore not as tightly linked to traffic as NO2.

In particular, during wintertime PM10 is heavily influenced by the use of wood-fired

ovens. Second, as the main source of traffic-related PM10 is wear and tear from

roads, tires and break blocks rather than exhaust, a potential policy-induced in-

crease in the share of electric vehicles during weekdays would likely have little effect

on PM10. By contrast, traffic-related NO2 is primarily generated from exhaust and

would therefore be more influenced by a change in the composition of the car fleet.

In Appendix C.2, we show that the negative and significant effect of congestion

32Our rush hour estimate of -11 % corresponds to a road toll elasticity of air pollution of around
-0.14. This figure is relatively similar to the toll elasticity reported in Fu and Gu (2017) (-0.15),
where the authors estimate the impact of highway toll on an air pollution index reflecting NO2,
PM10 and SO2.
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charging on concentrations of NO2 is robust to: (i) trimming the sample to one year

pre and post policy, (ii) using different levels of fixed effects, (iii) using different

combinations of weather controls, and (iv) performing placebo tests using Feb 1

2015 as the intervention date. The same robustness checks also confirm a negative

but non-significant effect on PM10.

As discussed in Section 3.2, our treatment estimates on NO2 and PM10 should

be interpreted as lower bound estimates of the true effect of the policy. One reason

for this is that we are differencing out effects of changes in travel habits if these spill

over to weekends, such as a shift from driving to cycling. Further, as we will show

in Section 4, the congestion charge led to an increased adoption of electric vehicles,

which may have lead to a higher share of electric vehicles on the road during both

weekdays and weekends.

In an attempt to incorporate these types of behavioral shifts in our treatment

estimate, we present findings from an alternative DiD strategy where we compare

air pollution levels across cities, pre and post the policy. A similar strategy has

been used in previous empirical papers examining effects of various transportation

policies on air pollution (see e.g., Simeonova et al., 2019; Zhai and Wolff, 2020). Note

however that exploiting differences across cities is only feasible for air pollution and

not traffic volume, as we only have access to traffic data from toll gates in Bergen. By

contrast, air pollution readings are available for several cities around the country.

By focusing on weekdays only and using differences across cities, we circumvent

potential problems of spillovers between weekdays and weekends. At the same time,

different cities may be subject to different local policies and time trends that might

confound the treatment effect, and that are hard to control for. The key identifying

assumption is that time-varying omitted variables relevant to air pollution affect all

cities similarly. Estimation results from the spatial DiD strategy are presented in

Appendix C.3 and show that the congestion charge lowered concentrations of NO2

by 4 µg/m3, or 8.4 percentage points, which is 1.9 percentage points larger than the

main results. Again, we find no significant effect on PM10.

4 Part II: Household-level behavior

In this part of the paper, we further examine effects of the congestion charge by

moving from station and sensor level data to rich registry data on household level

car ownership. The disaggregated data allows us to ask questions such as: How do

different types of households adapt to the congestion charge? To what extent do

households purchase an electric vehicle in response to the policy? Do households
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simply add a new car to their portfolio, or do they switch from ”brown” to ”green”?

By estimating a rich set of socioeconomic gradients, we also aim to unmask potential

behavioral differences in how households adapt to rising driving costs.33

4.1 Data sources

To construct a dataset on car ownership, household demographics, and congestion

charge exposure, we combine data from several sources, which are described below.34

4.1.1 Car ownership

We collect data on the full population of vehicles registered in Norway over the

period 2011-2017 from the National Motor Vehicle register. The register contains

technical vehicle information on each car, such as model and fuel type. From the

register, we also collect information on current and previous owners of each vehicle,

as well as the timing of several acquisition and disposal events, including the first

registration date, date of the previous ownership change, scrapping date and/or de-

registration dates. We restrict our dataset to privately owned passenger vehicles and

vans registered for non-commercial purposes, and stock-sample car owners from the

register at the end of each year (December 31st). Even though cars are registered

at the individual level, we consider car acquisitions a household level decision and

hence focus on households’ car ownership in the analysis. This leaves us with a panel

of car ownership at the household×year level, where each observation is a snapshot

of cars owned at the end of each year. See Appendix D for more information.

Figure 6 displays the annual share of households that owns an electric vehicle.

From December 2011 to December 2017, the share of Norwegian households that

owned an electric vehicle increased from around 0 % to around 4.5 % (dashed line).

The ownership share in 2017 was by far the highest in the world at the time.35

For Bergen municipality, the share of households that owned an electric vehicle by

the end of 2017 was around 8 % (solid line).36 In the empirical analysis, we aim

to disentangle effects of the Bergen congestion charge on electric vehicle ownership

33Ideally we would also like to examine the effect of the policy on household-level driving. How-
ever, data availability prevents us from investigating this margin of adjustment.

34See also Fevang et al. (2021) for a detailed description of the different data sources.
35According to IEA (2018), Norway had the world’s highest number of battery-electric vehicles

and plug-in hybrid as a share of the vehicle stock in 2017 (6.4 %). Only two other countries show
a stock share of 1 % or higher: Netherlands (1.6 %) and Sweden (1.0 %). Battery-electric vehicles
(BEVs) account for around two-thirds of the world’s electric car fleet.

36Note that the ownership share of electric vehicles is significantly higher in cities than in rural
areas, likely due to e.g., stronger local incentives, better accessibility of charging stations, and
shorter distances.
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Figure 6: Electric vehicle ownership
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Notes: Figure plots the share of households that own a battery electric vehicle on December 31 each year over
the period 2011-2017. The first observation reflects the electric vehicle share on December 31st 2011 and the last
observation reflects the electric vehicle share on December 31st 2017.

from other confounding trends, such as the increased supply of electric vehicles and

national EV policies.

4.1.2 Household characteristics

The car ownership data described above is linked to detailed socioeconomic data

on individuals and households from various Norwegian registers, such as the na-

tional population register and tax records. Specifically, we collect information on

age, gender, number of persons and children in the household, employment and re-

tirement status, income, wealth, education, and ownership of a second home (e.g.,

cabin). The registry data contains information about the location of each household

at the basic statistical unit level – the smallest geographical unit for which we have

micro-data. We refer to these units as “neighborhoods”. There are in total more

than 14,000 neighborhoods in Norway, with an average population of around 400

individuals, or less than 200 households.37 The detailed information on households

allows us to control for several characteristics in the empirical analysis that might

influence car ownership, as well as explore heterogeneous effects of the policy.

4.1.3 Journey to work and associated toll payments

In addition to socioeconomic information on individuals and households, all em-

ployed individuals are matched to their employer, allowing us to identify the place

37By comparison, there were 426 municipalities and 4,856 zip codes in Norway in 2017.
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of work at the neighborhood level. By combining the matched employer-employee

data with information on the road network, we calculate the fastest route between

centroids of the residential and workplace neighborhoods.38 We also collect data

on toll rates and coordinates of all toll gates in Norway from the Norwegian Public

Roads Administration.39 Toll gates are then mapped to each road link, allowing us

to calculate toll payments associated with the fastest route between all possible com-

binations of neighborhood pairs. The calculated toll payments provide a measure

of individual-level work trip exposure to the congestion charge. Lastly, we calculate

other work trip related variables such as driving time, distance to and from work,

and door-to-door time when using public transit.40

4.2 Empirical strategy

To identify causal effects of the congestion charge on household-level car ownership,

we aim to exploit quasi-random variation in individuals’ exposure to higher toll rates

on the road section between home and work.41 We start by defining two groups

of households which we refer to as paying commuters and non-paying commuters.

Paying commuters are households where at least one individual passes the toll cordon

on the (time-minimizing) route between home and work. Non-paying commuters

are households where none of the working individuals have toll payments associated

with the (time-minimizing) route between home and work. After the introduction

of the congestion charge in February 2016, the first group of households (paying

commuters) faced an increased cost of driving to work during rush hours. We view

this increased cost as a proxy for policy exposure.

Based on these two groups of households, a potential identification strategy

could be to compare the two groups before and after the policy in a Difference-in-

Differences (DiD) framework. Any time-invariant difference between the two groups

38To derive the fastest route, we use a publicly available dataset on the Nor-
wegian road network (https://register.geonorge.no/geodatalov-statusregister/elveg/
ed1e6798-b3cf-48be-aee1-c0d3531da01a) and find the route along the network that minimizes
the sum of link-specific travel time according to the speed limit.

39See Appendix Figure D.2 for toll road developments in Bergen and Stavanger over time.
40“Public transit time” is obtained from the Norwegian regional transportation models (RTM).

These are national transportation models frequently used by policy makers. The variable we use is
the sum of time on board, waiting time (calculated as a function of the frequency), transit time and
access/egress time (i.e. walking to/from the stations). Note that these numbers are not necessarily
based on the shortest public transit route; they are the output of a transportation model where
route choice is partly based on minimization of generalized travel costs, and partly calibrated to
fit observed data. The data on public transit time is static. For a more detailed description of how
public transit routes are coded in the transportation models, see Kwong and Ævarsson (2018).

41While individuals may be exposed to congestion charging on non-work trips as well, we assume
that rising driving costs on the road section between home and work will play an important role
in households’ response to the policy.
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would then be differenced out. We argue, however, that the two types of households

faced different trends that would violate the parallel trends assumption and hence

bias the estimates. As described in Section 2, electric vehicles were exempted from

toll payments also before the introduction of the congestion charge. These incentives

for buying electric vehicles likely interacted with the increased availability and im-

proved quality of electric vehicles over time. As a consequence, “paying commuters”

faced a stronger incentive to buy an electric vehicle which has increased over our

sample period. This implies that we would expect to see a larger increase in electric

vehicle ownership for “paying commuters” compared to “non-paying commuters”

also in absence of the congestion charge.

To overcome the potential problem of non-parallel trends, we employ a triple

differences (DiDiD) framework, where we compare the difference between paying

and non-paying commuters in Bergen to a similar difference between households

located in a city without congestion charging.42 As several cities in Norway have

a toll cordon, we can define neighborhood pairs that are located on opposite sides

of the tolled area. We identify Stavanger as a similar sized city that has a toll

cordon, but where congestion charging was not introduced until October 2018. The

rates were similar to Bergen in the pre-period, and remained unchanged in the time

period analyzed.43 Our triple differences strategy hence aims to exploit variation

along three dimensions: (i) pre vs. post, (ii) paying commuters vs. non-paying

commuters, and (iii) Bergen vs. Stavanger.44

4.2.1 Estimating equation

More formally, our DiDiD estimator is written as:

yit = βpostt × ci ×Bi + αtci + ηci ×Bi +X ′itγ + θnt + εit, (2)

where i indicates household, t indicates year, yit is a placeholder for a relevant

household level outcome (e.g., electric vehicle ownership) in a given year, postt is

42Appendix D.2 shows the result of running two separate DiD regressions for these two cities.
As expected, paying commuters in both cities experienced an increase in electric vehicle ownership
relative to non-paying commuters (Appendix Figure D.4). Note that the vertical difference between
the estimated coefficients in the two DiD models is approximately the same as the triple difference
coefficients presented in Figure 7 and Table 5 in our main analysis.

43Bergen is the second largest city in Norway (with 255,464 inhabitants in 2017), while Stavanger
is the third largest city (with 222,697 inhabitants in 2017). Both cities are located in the south-
west of Norway, along the coast. See Appendix Table A.1 for an overview of cities with congestion
charging, and Appendix Figure D.2 for an overview of toll rates in Bergen and Stavanger in the
time period analyzed.

44See Appendix D.1 for details on sample restrictions and definitions of treatment and control
groups.
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a dummy variable equal to 1 after policy implementation, ci is a dummy variable

equal to 1 if the household is classified as a “paying commuter”, and Bi is a dummy

variable equal to 1 if the household is located in or close to Bergen (as opposed to

Stavanger). The coefficient of interest is β and reflects the triple differences estimate

(DiDiD). θnt indicates neighborhood×year fixed effects, and will absorb any time-

variant variation within narrowly defined areas in Bergen and Stavanger that are

common to paying commuters and non-paying commuters. This includes the effect

of other local electric vehicle incentives that potentially vary over time, such as

availability of charging stations and parking spaces. The αt parameters will absorb

the year specific effects of being a commuter, and η will absorb the effect of a being

paying commuters in Bergen pre policy implementation. εit is the idiosyncratic

error term and X ′it is a vector of demographics and work route specific controls; see

Appendix D.1 for details.

4.2.2 Identifying assumptions

A key identifying assumption underlying our empirical strategy is that paying com-

muters in Bergen and Stavanger would have experienced parallel trends in the out-

come variable in absence of the congestion charge - conditional on control vari-

ables and fixed effects. While this assumption is inherently untestable, parallel

pre-treatment trends suggest that the assumption is more likely to hold. To ex-

amine the validity of the parallel trends assumption, we estimate a version of our

DiDiD estimator where treatment effects are allowed to vary over time. By defining

the year prior to the announcement of the policy as the reference year (2014), the

dynamic DiDiD estimator can be written as:

yit =
∑

s∈{T |s6=2014}

[
αtci + βtci ×Bi

]
× 1{t = s}+ η

[
ci ×Bi

]
+X ′itγ + θnt + εit, (3)

where annual treatment effects are captured by βt. Parallel trends imply that βt ≈ 0

for the years prior to 2014. Note that η will absorb the 2014 level difference between

paying commuters in Bergen and Stavanger. Hence the annual treatment effects βt

are identified from the annual deviations from 2014 levels.

4.2.3 Interpretation of the DiDiD estimate

As our empirical strategy relies on exposure to the policy on the road section be-

tween home and work, our estimated treatment effect should be interpreted as a

local treatment effect for the sub-population of households where at least one in-

dividual is employed. For households where none of the individuals are employed
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(e.g., students, retirees, unemployed), effects of the congestion charge may be very

different. Further, we use work-trip exposure to the congestion charge as a proxy for

policy exposure, while the congestion charge may affect non-work trips as well. Our

empirical strategy could hence be interpreted as a form of treatment intensity, were

we assume that households that face a congestion charge on their way to work will

be more intensively exposed than those that do not. This means that households

in the control group (non-paying commuters) will potentially also be exposed to

higher driving costs, but presumably to a lesser extent than the treatment group.

As a result, our estimated treatment effect should be interpreted as a lower bound

of the causal effect of the policy for the particular sub-population defined.

4.2.4 Heterogeneous effects

To examine how different types of households respond to the congestion charge,

we estimate a version of the DiDiD estimator where we allow treatment effects to

vary by different socioeconomic groups. When k ∈ K denotes group (e.g., income

quintile), the heterogeneous DiDiD can be written as:

yit =
∑
k∈K

[
βkpostt ×Bi × ci + αtkci + δtk + ηkBi × ci + ψkBi

]
1{i ∈ k}

+X ′itγ + θnt + εit, (4)

where the treatment effect for group k is captured by βk. Note that all coefficients ex-

cept demographics and neighborhood×year fixed effects are k specific. This ensures

a flexible model were we account for several group-specific time-varying factors.45

4.3 Descriptives based on the estimation sample

Based on our empirical strategy, we restrict our data set to households located

in or close to Bergen and Stavanger, and where at least one household member

is employed. See Appendix D.1 for more details on the sample restriction. The

trimmed sample leaves us with 76,088 households observed over a period of 7 years,

resulting in an unbalanced panel of 448,196 household×year observations.

Table 4 shows summary statistics for 2014 by city and commuter group based

on the estimation sample.46 The electric vehicle share among paying commuters is

similar across the two cities in 2014 (5 % in Bergen and 4 % in Stavanger). We also

45A fully flexible model where all variables are k specific would be equivalent to estimating
separate regressions of Equation 2 for each group k.

46See Appendix Table D.4 for the same summary statistics in 2017.
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Table 4: Summary statistics, by city and commuter group. 2014

Bergen Stavanger

Paying Non-paying Paying Non-paying

mean sd mean sd mean sd mean sd

Panel A: Outcomes
Electric vehicle (0/1) 0.047 0.211 0.028 0.164 0.036 0.185 0.020 0.138
Number of electric vehicles 0.048 0.220 0.028 0.171 0.037 0.195 0.020 0.141
Number of ICE vehicles 1.173 0.838 1.447 0.872 1.483 0.830 1.357 0.849
Total number of vehicles 1.221 0.856 1.476 0.877 1.520 0.836 1.377 0.854

Panel B: Journey to work variables
Toll rate (NOK/individual) 23.51 7.43 0.00 0.00 17.69 6.23 0.00 0.00
Toll rate (NOK/household) 34.80 17.43 0.00 0.00 26.53 13.13 0.00 0.00
Driving distance (km) 12.37 8.10 14.07 8.83 13.63 6.68 10.45 5.85
Driving time (min) 13.25 8.57 14.93 9.60 13.80 6.81 11.70 7.35
PT time minus driving time (min) 56.65 43.77 90.33 79.61 76.70 53.50 76.05 77.45
PT time divided by driving time 5.37 2.71 7.48 5.36 6.98 4.61 8.04 8.15

Panel C: Socio-economic variables
Couple (0/1) 0.71 0.45 0.69 0.46 0.76 0.43 0.67 0.47
Children living at home (0/1) 0.41 0.49 0.42 0.49 0.47 0.50 0.41 0.49
Persons in household 2.62 1.34 2.66 1.38 2.84 1.38 2.63 1.41
Age 44.37 12.09 45.01 12.43 44.01 11.44 44.48 12.28
Female (0/1) 0.49 0.28 0.49 0.29 0.48 0.25 0.48 0.29
Owns second home 0.11 0.32 0.11 0.31 0.11 0.31 0.11 0.31
Employed (0/1) 0.94 0.17 0.90 0.20 0.94 0.16 0.92 0.19
Retired (0/1) 0.06 0.20 0.07 0.22 0.05 0.18 0.06 0.20
Income (100,000 NOK/individual) 4.17 3.14 3.90 2.36 4.70 2.87 4.45 2.97
Income (100,000 NOK/household) 7.17 4.73 6.60 4.60 8.31 5.64 7.47 5.79
Wealth (mill NOK/individual) 1.64 6.16 1.32 3.43 1.72 3.02 1.84 5.21
Wealth (mill NOK/household) 2.81 8.74 2.26 6.17 3.08 5.55 3.14 10.06
Education:
Unknown (0/1) 0.17 0.37 0.17 0.38 0.14 0.34 0.19 0.39
Less than high school (0/1) 0.07 0.26 0.12 0.33 0.10 0.30 0.12 0.32
High school (0/1) 0.22 0.42 0.35 0.48 0.30 0.46 0.29 0.45
College (0/1) 0.31 0.46 0.26 0.44 0.29 0.45 0.26 0.44
University (0/1) 0.23 0.42 0.08 0.28 0.17 0.38 0.15 0.35
Observations 12244 21742 23747 18355

Notes: Table shows summary statistics for 2014 based on the estimation sample. Paying refers to paying commuters.
Non-paying refers to non-paying commuters. ICE refers to “internal combustion engine”, and PT refers to “public
transit”. All variables except “children” and “number of household members” are individual specific, but averaged
across spouses. In the empirical estimation, we control for the following set of variables: female, employed, retired,
second home, children, education level, the number of persons registered at the household, two polynomials in age,
income, wealth, distance and driving time to work, two polynomials in the absolute and relative time differences to
get to work by public transit versus private car. If a variable is missing for one of the spouses, the other spouse’s
value is used as a proxy for the household average. We let the coefficients for all variables be couple and single
specific (i.e., whether the household has one or two adult members). More detailed variable descriptions can be
found in Appendix Table D.3. Descriptives for 2017 can be found in Appendix Table D.4.

see that the electric vehicle share among non-paying commuters is lower for both

cities (3 % in Bergen and 2 % in Stavanger). In the DiDiD strategy, we will compare

the development in car ownership for the two types of household groups in Bergen,

to the equivalent difference in ownership share for the two types of households in

Stavanger.
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From Panel B in Table 4, we see that average toll rates associated with the

journey to work is NOK 0 for non-paying commuters (by construction), NOK 23.5

for paying commuters in Bergen and NOK 17.7 for paying commuters in Stavanger.

Appendix Figure D.2 shows the development in toll rates over time, and reveals that

paying commuters in Stavanger were subject to the same toll level in the period 2013

to 2017.47 Paying commuters in Bergen, however, experienced an increase in toll

rates over the same period. From Appendix Figure D.2, Panel A we see that there

was a small increase in toll rates in Bergen the year before the congestion charge

was introduced (2014), and then a larger jump in 2016 when rush hour pricing was

implemented.48 This means that estimated treatment effects will likely reflect a

response to both these jumps in toll rates (i.e., the effect of changing the toll rate

from NOK 13 all day to NOK 45 (19) during (non-) rush hours). If we observe

a positive treatment effect in 2015 on car ownership, this might reflect effects of

both the congestion charge announcement on February 1 2015 as well as a potential

delayed response to the jump in toll rates in 2014.

Panel C shows summary statistics for various socioeconomic variables. Overall,

paying commuters in Bergen and Stavanger are relativity similar across most demo-

graphics – although paying commuters in Stavanger are more likely to be two-adult

households and have slightly higher income and education levels. If we compare pay-

ing computers to non-paying commuters, the former are more likely to be couples

and tend to be richer and with a higher education level.

4.4 Results on car ownership

Figure 7 displays annual treatment effects estimated from the DiDiD specification in

Equation 3. From panel (a), we see that households exposed to the Bergen conges-

tion charge were more than 4 percentage points more likely to own an electric vehicle

by the end of 2017. The treatment effects in 2016 and 2017 are roughly of the same

magnitude and both effects are clearly significantly different from zero. We also find

a positive and significant treatment effect on electric vehicle ownership in the end

of 2015, suggesting that households responded to the announcement of the policy in

47Panel A of Appendix Figure D.2 shows how toll rates in Bergen and Stavanger has changed
over time, while Panel B of Appendix Figure D.2 shows the average toll exposure per year for
paying and non-paying commuter households in Bergen and Stavanger. Note that the average
household level toll exposure in Appendix Figure D.2, Panel B is slightly lower than the actual toll
rates as several households only have one spouse that is exposed to toll charges on his/her way to
work, while the other spouse live and work on the same side of the toll cordon.

48The congestion charge was implemented early in the year (marked by the vertical line), but
as our data is at the annual level the jump in toll rates does not show up until the observation at
Dec 31st, 2016.
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the beginning of the year (in February 2015). The presence of an anticipation effect

is unsurprising as cars are durable goods and car acquisition decisions are typically

made with future expectations taken into account. Furthermore, the electric vehi-

cle market in the period around policy announcement was characterized by excess

demand and long waiting lists, meaning that households would have difficulties in

timing the car acquisition to a specific date. Looking at the pre-intervention period

(2011-2014), estimated coefficients are close to zero, supporting the validity of the

parallel trends assumption. While we do find a statistically significant effect in one

of the pre-treatment years, this deviation appears small compared to the large jump

in the electric vehicle share in the post-treatment period.

Panel (b) in Figure 7 shows treatment effects on the number of internal combus-

tion engine (ICE) vehicles owned by a household. The negative treatment effects

on ICE vehicles are close to a mirror image of the positive effects on electric vehicle

adoption, suggesting that households switched from “green” to “brown” rather than

adding an additional vehicle to their household. This is also confirmed by the non-

significant treatment effects on the total number of vehicles owned by a household;

see Figure 7, panel (c).

Table 5: DiDiD estimates on vehicle ownership

Probability Number of vehicles

Dependent variable: Pr(BEV) BEV ICEV Total
(1) (2) (3) (4)

Post × Paying commuters × Bergen 0.0419∗∗∗ 0.0451∗∗∗ -0.0422∗∗∗ 0.00288
(0.00593) (0.00652) (0.0119) (0.0116)

Observations 376914 376914 376914 376914
Mean depvar 2014 (paying commuters, Bergen) 0.0469 0.0482 1.1730 1.2212
Mean depvar 2017 (paying commuters, Bergen) 0.1774 0.1872 1.1555 1.3427

Paying commuter × year FE (αtci) X X X X
Paying commuter × Bergen FE (ηci ×Bi) X X X X
Household characteristics (X ′itγ) X X X X
Neighborhood × year FE (θnt) X X X X

Notes: Table plots the coefficient β estimated from Equation 2. The dependent variable is indicated by the column
heading. BEV refers to battery electric vehicles, ICEV refers to internal combustion engine vehicles, and Total
refers to the total number of vehicles owned by the household. The sample is restricted to the years 2011-2017,
where 2016-2017 denotes the “post” period and 2015 is excluded due to potential anticipation effects. Standard
errors are clustered at the neighborhood level. * p<0.10, ** p<0.05, *** p<0.01.

Table 5 shows average treatment effects for the car ownership variables when

we restrict the post period to 2016-2017 and the pre period to 2011-2014. The

estimate in column (1) suggests that the congestion charge on average induced a

4.2 percentage point increase in the probability of owning an electric vehicle in

the post implementation years. To illustrate the magnitude of this effect, we find
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Figure 7: DiDiD estimates on vehicle ownership
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(b) Number of ICE vehicles
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(c) Total number of vehicles
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Notes: Figure plots coefficients βt estimated from equation 3, where β2014 is normalized to zero. Panel (a) shows
the annual treatment effect on the probability of a household owning a battery electric vehicle. Panel (b) shows the
annual treatment effect on the number of internal combustion engine (ICE) vehicles owned by a household. Panel
(c) shows the annual treatment effect on the total number of vehicles owned by a household. Standard errors are
clustered at the neighborhood level. All regressions include the following set of controls: female, employed, retired,
second home, children, education level, number of persons registered at the household, two polynomials in age,
income, wealth, distance and driving time to work, two polynomials in the absolute and relative time differences
to get to work by public transit versus private car. All controls are single/couple specific.

that the congestion charge can explain around 1/3 of the increase in electric vehicle

ownership for the treatment group from 2014 to 2017.49 See also Figure 8 for an

illustration of the treatment effect. At the same time, we find that the policy reduced

the average number of ICE vehicles owned by a household by 0.042 (see column 3),

49This can be derived from the observed electric vehicle shares in 2014 and 2017 reported in
column (1) of Table 5.
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resulting in a zero effect on the total number of vehicles owned by a household (see

column 4). Our findings hence suggest that the congestion charge helped induce a

substantial increase in the number of electric vehicles, while at the same time leaving

the average number of cars owned unchanged.

Figure 8: Observed and predicted levels of electric vehicle ownership
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Notes: Solid line shows the share households among paying commuters in Bergen that owned an electric vehicle
in the period 2011-2017. Dashed line shows the predicted share of households among paying commuters in Bergen
that would have owned an electric vehicle in absence of the congestion charge, based on the treatment estimates
reported in Figure 7a. The vertical distance between the two lines indicate the annual treatment effects. The
vertical dotted line denotes the announcement date (Feb 18th 2015) and the vertical dashed line denotes the
implementation date (Feb 1st 2016).

Next, we examine the sensitivity of our main results to various specifications of

fixed effects and demographic controls. In particular, we show that the inclusion of

neighborhood×year fixed effects are important for the magnitude of our estimates

(Appendix Table D.5). This comes as no surprise as the demand for electric vehicles

is increasing over time and likely to be affected by several local aspects of the

residential neighborhood, such as access to parking and charging stations. Moreover,

accessibility, travel demand and exposure to toll charges and other local electric

vehicle incentives that are unrelated to the commute are likely to be captured by

these fixed effects. Appendix Figure D.6 shows that our main result on electric

vehicle adoption is robust to the inclusion of demographics and journey to work

controls. The stability of our treatment estimate across nine different specifications

suggest that our neighborhood-year fixed effects do a good job in controlling for

various socioeconomic characteristics. For ICE vehicles, the estimated treatment

effect is larger (i.e., more negative) for the specification without any demographic

controls. However, including journey to work controls seem to be sufficient to arrive

at a robust treatment effect; adding seven additional sets of demographic controls
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has little effect on the estimated treatment effect.

4.4.1 Heterogeneous effects

The estimated average treatment effects presented in the previous section are likely

to mask substantial heterogeneity. In the following, we examine heterogeneous treat-

ment effects along six socioeconomic dimensions: income, family size, education,

age, commuting distance, and public transit quality. Key results are presented in

Figure 9, while supporting results are available in Appendix D.3.

Income: Allowing the treatment effect to vary by household income, we find a

clear income gradient in electric vehicle adoption; see panel (a) in Figure 9. While

households in the highest quintile are 7 percentage points more likely to adopt an

electric vehicle in response to the policy, the corresponding number for the lowest

income quintile is close to zero and non-significant.50 This observed heterogeneous

pattern could be due to both preferences and financial constraints. First, high-

income households might prefer to purchase an electric vehicle in response to the

policy, while low-income households prefer to change their mode of transportation

to e.g., public transit or cycling. Differences in the margin of adjustment could

reflect different preferences for adopting new technology, differences in the value of

time, or differences in utility from cycling or using public transit. At the same time,

the heterogeneous pattern may also reflect financial barriers; purchasing an electric

vehicle in the time period we are considering is synonymous with purchasing a new

car (due to the negligible market for used electric vehicles). Low-income households

may therefore in practice have a more limited opportunity set than high-income

households, as the only used cars available are internal combustion engine vehicles.51

Even if a low-income household considers it cheaper in the long-run to purchase an

electric vehicle rather than paying road toll, financial constraints may prevent the

household from pursing its optimal adaptation behavior.52

50See Appendix Table D.6 for coefficients in table format. In Appendix Figure D.8 we also show
that high-income households are less likely of adopting an internal combustion engine vehicle,
which suggest that the switch from brown to green is driven by the same type of households. This
interpretation is also confirmed by looking at Appendix Figure D.9, which shows a close to zero
effect on total car ownership for all income quintiles.

51Note that purchasing a new electric vehicle in Norway is not necessarily more expensive than
purchasing a new conventional vehicle. As electric vehicles are exempted from both the value added
tax and the registration tax, electric vehicles actually tend to be cheaper than comparable conven-
tional cars; see Appendix Table E.2 for an illustration. Purchasing new cars in general, however,
occurs eight times more frequently within the top income decile compared to the bottom one; this
holds for both battery-electric and conventional vehicles (see Fevang et al., 2021, Figure 5c).

52In a simplified calculation presented in Appendix Table E.3, we show that purchasing a new
electric vehicle might in fact be a cheaper option than purchasing a used internal combustion engine
vehicle when taking into account both congestion charges and fuel costs.
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Figure 9: Heterogeneous DiDiD: electric vehicle adoption.
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(f) Public transit quality
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Notes: Figure plots the coefficients βk estimated from equation 4, where k refers to group (e.g., income quintile).
Each panel (a-f) plots coefficients estimates from a separate regression. Whiskers indicate 95 % confidence intervals.
The dependent variable is a dummy variable equal to 1 if the household owns an electric vehicle in year t and
0 otherwise. Groups are based on 2014 demographics. “Income” is summed over spouses, “education” is the
maximum value in each household and “age”, “work distance” and “public transit quality” are averaged over
spouses. Public transit quality is defined as “time to work by public transit minus time to work by car” in minutes.
The sample is restricted to the years 2011-2017, where 2016-2017 denotes the “post” period and 2015 is excluded
due to potential anticipation effects. Standard errors are clustered at the neighborhood level. See Appendix
Table D.6 for coefficients in table format.
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Household type, education, and age: In a next step, we examine how treatment

effects vary by household type, education, and age. We find that the probability

of adopting an electric vehicle in response to the policy is significantly higher for

couples with children below 18 years; see Figure 9, panel (b). For single adult

households, the treatment effect is close to zero - irrespective of children in the

household. The heterogeneous pattern may reflect that couples with kids are less

flexible in changing their mode of transportation. A larger family involves more

logistics, which might make it harder to switch to e.g., public transit. There may

also be economies of scale that makes it more cost efficient for these households to

invest in an electric vehicle. Further, we find that the treatment effect is increasing

in educational attainment, with the largest effect for college and university educated

households (panel c). This pattern could potentially reflect a correlation between

educational attainment and preferences for new technologies. It might also indicate

a higher awareness of environmental and climate benefits of driving an EV among

higher educated households. Previous literature also suggest that individuals tend

to “undervalue” future fuel savings when purchasing a vehicle (see e.g., Allcott and

Wozny, 2014), and this tendency might weaken with education. Lastly, we document

an inverse u-shaped relationship between electric vehicle adoption and age (panel

d), with households close to retirement age as the least responsive group.

As education and age covary with income, the observed heterogeneous patterns

are likely to reflect a combined effect of income and the demographic in question -

in addition to other correlated variables. In an attempt to disentangle the income

channel from other mechanisms, we estimate heterogeneous effects separately for the

lowest and highest income quintile; see Appendix Figure D.7. Findings show that

households in the lowest income quintile are non-responsive to the policy irrespective

of educational attainment and age. This suggests that financial barriers may play

an important role in EV adoption. For high-income households, who are more

likely to afford a new electric vehicle, treatment effects are increasing in educational

attainment and decreasing in age. These patterns suggest that age and education

have an effect on EV adoption that go beyond the income effect.

Commuting distance and public transit quality: A household’s adaptation

decision may also depend on the quality of transportation substitutes. From Fig-

ure 9, we see that the probability of EV adoption is increasing in the driving distance

to work (panel e) and decreasing in public transit quality (panel f). Public transit

quality is proxied by the additional time it takes to get to work by public transit com-

pared to driving a private car.53 While these findings suggest that transportation

53Time by public transit includes average waiting time and walking time to and from stations.
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substitutes influence a household’s adaptation response, the distributional implica-

tions are not clear cut. On the one hand, the driving distance to work and the

quality of public transit may reflect a sorting process where individuals choose their

preferred neighborhood based on amenities - including public transit access. To the

extent that this process is voluntary (i.e., not constrained by financial barriers), and

public transit quality is capitalized into housing prices and rents, the distributional

impacts of the policy may be less of a concern. On the other hand, the heterogeneous

pattern may reflect a “lock-in” effect for households living in rural areas with poor

public transit options. As switching to cycling or public transit is less feasible, these

households are likely to face a higher adaptation cost as they are disproportionately

“forced” to use the electric vehicle channel to avoid congestion charges.

Again, commuting distance and public transit quality may covary with income.

In Appendix Figure D.7, we show that households in the lowest income quintile are

non-responsive to public transit quality and work distance. By contrast, high-income

households with poor public transit quality are more likely to purchase an electric

vehicle compared to similarly wealthy households with better public transit options.

A similar pattern emerges for work distance. While suggestive, these findings add

to the evidence base suggesting that low-income households are to a larger extent

locked into existing behavioral patterns.

5 Discussion

This section provides some simple back-of-the-envelope welfare calculations, as well

as a short discussion of the distributional implications of the congestion charge.

5.1 Welfare effects

To give a rough estimate of the net welfare effect of the policy, we combine the

treatment effects presented in previous sections with a set of assumptions and cost

estimates. In our calculations, we consider three categories of social benefits (im-

proved air quality, lower CO2 emissions, time savings due to less congestion) and

contrast these to the private adaptation costs. Focusing on marginal changes in

equilibrium quantities induced by the policy, the net welfare effect can be written
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as:

∆W =

Local pollutants︷ ︸︸ ︷
∆NO2 ·MCNO2 + ∆PM10 ·MCPM10 +

Global pollutant︷ ︸︸ ︷
∆CO2 ·MCCO2 +

Time savings︷ ︸︸ ︷
∆Time · VoT︸ ︷︷ ︸

Social Benefits

−∆Adaptation costs︸ ︷︷ ︸
Social costs

,

(5)

where MC indicates marginal cost, Time indicates driving time, and V oT indicates

the value of travel time. Below we give a short description of the welfare calculations,

while more details are provided in Appendices E.1–E.5.

Adaptation costs: A congestion charge imposes private costs because the policy

prevents drivers from choosing their preferred travel mode, route, or time. We

consider four ways in which individuals may adapt to the congestion charge: (1)

not drive at all (e.g., change mode of transportation, or work from home), (2) shift

driving to non-rush hours (intertemporal substitution), (3) drive around the toll

cordon (spatial substitution), and (4) buy an electric vehicle to avoid charges. Note

that the actual toll payments made by drivers is simply a transfer from households to

the government; if we disregard transaction costs, these payments have no associated

social costs.54 To quantify the adaptation costs related to (1)-(3), we combine the

estimated reduction in cars passing the toll cordon during rush hours (Table 2) with

derived adaptation costs per trip using the triangle area formula. To quantify the

private costs of substituting towards electric vehicles (4), we combine estimates from

our household-level ownership regressions (Table 5) with various assumptions.

Local and global pollutants: To quantify social benefits of reduced air pollution,

we combine our estimates on changes in ambient levels of NO2 and PM10 (Table 3)

with estimates on the social cost of exposure to air pollution, which we compile

from the literature. To quantify benefits of lower CO2 emissions, we consider the ef-

fects of reduced driving – taking into account intertemporal and spatial substitution

(Table 2, Table B.5) – as well as the substitution towards electric vehicles (Table 5).

Time savings: A key benefit of congestion charging is time savings due to less

congestion. Unfortunately our data lacks a relevant congestion measure such as

driving speed or time spent in traffic. As a second best solution, we combine our

detailed traffic data with before-after estimates of average time savings on different

routes collected from a descriptive report (NPRA, 2016).

54The flat rate, however, implies taking a larger percentage of income from low-income earners,
which has distributional implications; see Section 5.2.
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Net welfare effect: Table 6 gives an overview of the calculated social benefits

and costs of the policy. Overall, we find that the Bergen congestion charge led to

a positive and economically significant net welfare gain of around NOK 49 million

per year, equivalent to around USD 5.92 million per year. The welfare calculations

imply a benefit to cost ratio of 3.2. Our conclusion of a net welfare gain is robust to

excluding any one of the four social benefit components, or assuming that adaptation

costs are twice as high as our preferred estimate.

Table 6: Welfare effects of the congestion charge

mill. NOK/year

Total social benefits 71.57
Lower NO2 concentrations 9.05
Lower PM10 concentrations 16.14
Lower CO2 emissions 4.12
Less congestion (saved travel time) 42.26

Total adaptation costs 22.22
Changing mode, route, or time 18,51
Changing vehicle type (to electric) 3.72

Net welfare effects (NOK) 49.34
Net welfare effects (USD) 5.92

5.2 Distributional concerns

While we find a net welfare gain of the policy, benefits and costs are not necessarily

evenly distributed across different population groups. In Section 4.4.1, we show that

there are systematic differences in how households adapt to the policy. In particular,

we find that high income households are more likely to adopt an electric vehicle in

response to the policy. We further find that a long work commute and poor access

to public transit increase the chances of adopting an electric vehicle - but only for

high-income households. The latter suggests that low-income households may to a

larger extent be locked into existing behavioral patterns.

Another dimension affecting the distributional profile of the policy is the actual

toll payments. As congestion charges are imposed as a flat rate, they make up a

larger percentage of the budget for low-income earners, meaning that the charges

are regressive. Based on some simple calculations presented in Appendix Table E.3,

the sum of congestion charges payed on the work commute over a year are likely to

be in the same order of magnitude as the annual fuel costs. The congestion charges

hence make up a non-negligible share of the car ownership costs.
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There are, however, several aspects that dampen the regressivity of the conges-

tion charge. First, the regressive profile only applies to the part of the population

that actually owns a car. In 2016, the car ownership rate in Norway was around

30 %, and those that do not own a car are on average 30 % poorer and have less

education (see Fevang et al., 2021, Table 1 for a detailed overview). This means

that the congestion charge will be less regressive when looking at the full popula-

tion and not only car owners. Second, congestion charges are usually implemented

around cities, where income levels tend to be higher. Moreover, households exposed

to congestion charges on their work commute are on average slightly richer and

more educated than non-exposed households, as illustrated in Table 4. The fact

that policy exposure is positively correlated with income dampens the regressivity

of the policy. Lastly, the net distributional effects of congestion charges will depend

on how the proceeds from the policy are used. Around 70 % of the revenues from

congestion charges in Bergen is budgeted for public transit purposes,55 which tends

to disproportionally benefit lower-income groups. Accounting for all the elements

mentioned above will tend to dampen the regressivity of the policy.

6 Conclusion

Combating climate change and poor urban air quality will require a fundamental

shift towards greener modes of transportation. Policies that incentivize individuals

to choose low-emission transportation alternatives will likely play a key role in this

transition. To ensure that market-based policies work as intended and retain public

support, there is a need to better understand behavioral responses to these types of

policies, and effects on emissions.

This paper shows that differentiating driving costs by time of day and vehicle

type can help reduce traffic, improve urban air quality, and shift the composition

of the car fleet towards electric vehicles. Exploiting a congestion charge in Norway

that imposed spatial and temporal variation in the costs of driving a high-emission

vehicle, we find that the policy reduced rush hour traffic by 14.5 % and daily traf-

fic by around 4.8 %. The lower traffic translated into cleaner air: we estimate a

6.7 µg/m3 reduction in ambient levels of NO2 during midday hours, equivalent to

an 11 % decrease. Examining adaptation responses, we find that the congestion

charge increased the probability of a household owning an electric vehicle by around

4.2 percentage points – explaining around 1/3 of the observed increase in electric

55This percentage applies to the budget period 2018-2037; see: https://www.regjeringen.

no/contentassets/66644bf4b3e642acaf10bea324af42b8/byvekstavtale-bergen-2017-2023.

pdf, pg. 26 (accessed August, 2020).
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vehicle ownership over the same period. The increase in electric vehicle ownership

was mirrored by a similar decrease in the ownership of fossil fuel vehicles, leaving

the total number of cars unchanged. We document strong heterogeneous patterns

along several socioeconomic dimensions, with high-income households responding

more strongly to the electric vehicle incentives. Overall, we find that the congestion

charge led to a net welfare gain, with a cost ratio of 3.2.

The magnitude of our findings should be interpreted in light of Norway’s ex-

ceptionally high electric vehicle share and well-developed charging infrastructure.

Estimated effects, however, may be informative of expected impacts of raising driv-

ing costs for fossil fuel cars in other countries at a future point in time when electric

vehicles are more competitive (e.g., due to technological improvements). Further,

while we highlight strong socioeconomic gradients in the adoption of electric vehi-

cles, our findings may reflect both different preferences as well as barriers that limit

the opportunity set of households. We leave it up to future research to further dis-

entangle these two mechanisms, and to shed additional light on distributional effects

of transportation policies aimed at mitigating local and global externalities.
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Appendix A Background

Figure A.1: Location of Bergen

Figure A.2: Location of Bergen city center and major roads
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Table A.1: Congestion pricing in Norway. 2013-2019

Kristiansand Trondheim Bergen Oslo Stavanger

Date implemented Nov 19, 2013 Mar 10, 2014 Feb 1, 2016 Nov 1, 2017 Oct 1, 2018
Morning rush 6:30-9:00 7:00-9:00 6:30-9:00 6:30-9:00 07:00-09:00
Afternoon rush 14:30-17:00 15:00-17:00 14:30-16:30 15:00-17:00 15:00-17:00
Price pre 21 0 25 35 20
Price post: rush hour 21 22 45 54/59* 44
Price post: non-rush 14 11 19 44/49** 22

Notes: Prices are given in NOK. 10 NOK ≈ 1 EUR and ≈ 1.2 USD. Prices reflect the rate for small passenger vehicles at the time
of implementation. *gasoline cars: NOK 54, diesel cars: NOK 59. ** gasoline cars: NOK 44, diesel cars: NOK 49

Figure A.3: Toll road in Bergen. 2005-2018
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Notes: Figures shows toll rates for Bergen for the period 2005 to 2017. The congestion charge was introduced on
February 1 2016.
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Table A.2: Key air pollutants and the relative contribution of different sources.

Source NO2 PM10 PM2.5 SO2 CO O3

Exhaust VH M H S

Wear and tear from roads, tires, and breaks VH M

Sand added to increase friction of icy road surfaces VH M

Wood-fired ovens H H

Manufacturing industry M M M M

Ship traffic M S S M

Long-range pollution S M H S VH

Notes: VH refers to very high contribution, H refers to high contribution, M refers to medium contribution, S refers
to small contribution. The contribution of different sources are specific to Norway, and may differ from the most
important sources in other countries. Note that the levels of CO in Norway are generally too low to represent any
threat to human health. Source: NILU (2019).

Table A.3: The Norwegian EV incentives (as of January 2020)

Year Instrument Local in-
centive?

1990 Exempted from purchase/import taxes
1996 Exempted from annual road tax
1997 Exempted from road toll1 Yes
1997 Exempted from ferry charges2 Yes
1999 Free municipal parking3 Yes
2000 50 % reduced company car tax4

2001 Exempted from 25% VAT on purchase
2005 Access to bus lanes5 Yes
2015 Exempted from 25% VAT on leasing
2018 Fiscal compensation for scrapping fossil car when switching to a zero-emission car
2019 Holders of driver license class B allowed to drive electric car class C1 (light lorries)

Source: https://elbil.no/english/norwegian-ev-policy/. Year refers to the year implemented.
1 From 2019: local authorities allowed to impose a rate of maximum 50% of the toll road.
2 From 2018: local authorities allowed to impose a rate of maximum 50% of the ferry fares.
3 From 2018: parking fees for EVs introduced locally. Upper limit of 50% of full price.
4 From 2018: company car tax reduction reduced to 40%.
5 From 2016: local authorities allowed to limit access to bus lanes to EVs that carry one or more passengers.
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Appendix B Traffic

B.1 Data and descriptives

B.1.1 Raw means two years pre and post, by small and large vehicles

Figure B.1: Traffic volume by 15 min. intervals, 2 years pre and post Feb 1 2016.
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Notes: Figures show the average number of vehicles passing the toll cordon over the course of a day, based on
15 minute intervals. Panels (a) and (c) show averages for weekdays and panels (b) and (d) show averages for
the weekend. Dashed lines indicate averages for the 730 days prior to policy implementation. Solid lines indicate
averages for the 730 days post policy implementation. Gray shaded areas indicate rush hours. Passenger cars: all
vehicles < 3500 kg. Trucks: all vehicles > 3500 kg.
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B.1.2 Raw means one year pre and post

Figure B.2: Traffic volume by 15 min. intervals, 1 year pre and post Feb 1 2016.
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Notes: Figures show the average number of vehicles passing the toll cordon over the course of a day, based on
15 minute intervals. The left side panels show averages for weekdays and the right side panels show averages for
the weekend. Dashed lines indicate averages for the 365 days prior to policy implementation. Solid lines indicate
averages for the 365 days post policy implementation. Gray shaded areas indicate rush hours. Passenger cars: all
vehicles < 3500 kg. Trucks: all vehicles > 3500 kg.
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B.1.3 Placebo intervention: 1 year pre and post Feb 1st 2015

Figure B.3: Traffic volume by 15 min. intervals, 1 year pre and post Feb 1 2015
(”Placebo intervention”).
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(d) Passenger cars. Weekend
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(e) Trucks. Weekday
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(f) Trucks. Weekend
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Notes: Figures show the average number of vehicles passing the toll cordon over the course of a day, based on 15
minute intervals. The left side panels show averages for weekdays and the right side panels show averages for the
weekend. Dashed lines indicate averages for the 365 days prior to Feb 1 2015. Solid lines indicate averages for the
365 days post Feb 1 2015. Gray shaded areas indicate rush hours. Passenger cars: all vehicles < 3500 kg. Trucks:
all vehicles > 3500 kg.
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B.2 Supporting results and robustness checks

B.2.1 Results for small and large vehicles

Figure B.4 splits the effect between small and large vehicles. The effect for small ve-

hicles follows the trend in Figure 4 closely, while the effect for large vehicles is more

evenly spread throughout the day. There could be several reasons for this: Large

vehicles consist mainly of trucks, which may to a greater extent be bound by delivery

times and the truck drivers’ work schedules, making avoiding the congestion charge

difficult. The general decrease may stem from lower commercial activity in the

city center during weekdays due to the congestion charge, reducing the demand for

freight. Alternatively, the congestion charge could have incentivized shippers to op-

timize their consolidation routines, thereby reducing the number of trucks required.

However, we do not have appropriate data to examine these mechanisms further.

Figure B.5 displays similar results for a shorter time time frame of plus/minus one

year of the date of policy implementation.

Figure B.4: DiD estimates by vehicle type and 15 min. intervals. 2 years pre/post

(a) Passenger cars.
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(b) Trucks.
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Notes: Figure plots treatment effects estimated from from equation 1, where regressions are run separately for
each 15 minute increment. Whiskers indicate 95% confidence intervals. Gray shaded areas indicate rush hours.
Traffic is measured as total number of cars passing the toll cordon every 15 minutes. Standard errors are clustered
on week. Passenger cars: all vehicles < 3500 kg. Trucks: all vehicles > 3500 kg.
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Table B.1: DiD estimates on traffic volume by 15 min. intervals. 2 years pre/post

Rush hours Non-rush hours

Dependent variable: All day All Morning Evening +/-30 min Other
# vehicles/15 minute interval (1) (2) (3) (4) (5) (6)

Panel A: Passenger cars.
Post × weekday -74.52∗∗∗ -442.1∗∗∗ -440.7∗∗∗ -432.1∗∗∗ 212.5∗∗∗ -12.92

(9.701) (22.53) (28.62) (25.50) (19.65) (7.933)

Observations 87518 16416 9122 7294 7294 63808
Mean depvar (pre, weekday) 1520 2902 3021 2753 2143 1093
Change (%) -4.90 -15.23 -14.59 -15.70 9.92 -1.18

Panel B: Trucks.
Post × weekday -3.146∗∗∗ -4.920∗∗∗ -4.999∗∗∗ -4.840∗∗∗ -4.686∗∗∗ -2.507∗∗∗

(0.494) (0.963) (1.138) (1.013) (0.827) (0.396)

Observations 87518 16416 9122 7294 7294 63808
Mean depvar (pre, weekday) 112 202 218 183 173 81
Change (%) -2.81 -2.43 -2.30 -2.64 -2.70 -3.08

Weather controls (X ′itγ ) X X X X X X
Month × year FE (λym) X X X X X X
Day-of-week × time-of-day FE (θdi) X X X X X X
Length of time interval (hours) 24 4.5 2.5 2 2 17.5

* p<0.10, ** p<0.05, *** p<0.01. Standard errors are clustered on week.
Notes: Table shows results from 2×6 separate regressions. Dependent variable is the number of vehicles passing the toll
gates in Bergen during a 15 minute interval. Post×weekday refers to the β coefficient estimated from Equation 1. Column
headings indicate the sample used in each regression. “Rush hours” refer to the intervals 06:30-08:59 (morning) and 14:30-16:29
(evening). For non-rush hours, “+/- 30 min” refers to the 30 minute intervals right before and after rush hours. “Other”
refers to the remaining non-rush hours (i.e., 9:30-13:59 and 17:00-05:59). Sample is restricted to 730 days pre and post policy
implementation. Passenger cars: all vehicles < 3500 kg. Trucks: all vehicles > 3500 kg.
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B.2.2 1 year before and after Feb 1 2016

Table B.2 shows results when the sample is restricted to 365 days pre/post policy

implementation. Results from this table are almost identical to Table 2.

Figure B.5: DiD estimates on traffic volume by 15 min. intervals. 1 year pre/post

(a) All vehicles, 365 days pre/post Feb 1 2016.
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(b) Passenger cars, 365 days pre/post Feb 1
2016.
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(c) Trucks, 365 days pre/post Feb 1 2016.
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Notes: Figures plots treatment effects estimated from from equation 1, where regressions are run separately for
each 15 minute increment. Sample includes +/- 365 days of the treatment date. Whiskers indicate 95% confidence
intervals. Gray shaded areas indicate rush hours. Traffic is measured as total number of cars passing the toll
cordon every 15 minutes. Standard errors are clustered at the week level. Passenger cars: all vehicles < 3500 kg.
Trucks: all vehicles > 3500 kg.
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Table B.2: DiD estimates on traffic volume by 15 min. intervals. 1 year pre/post

Rush hours Non-rush hours

Dependent variable: All day All Morning Evening +/-30 min Other
# vehicles/15 minute interval (1) (2) (3) (4) (5) (6)

Panel A: All vehicles.
Post × weekday -74.70∗∗∗ -468.0∗∗∗ -475.4∗∗∗ -458.2∗∗∗ 277.3∗∗∗ -13.24

(11.94) (23.00) (26.39) (30.83) (20.11) (10.92)

Observations 43948 8244 4580 3664 3664 32040
Mean depvar (pre, weekday) 1627 3072 3205 2906 2329 1174
Change (%) -4.59 -15.24 -14.83 -15.77 11.91 -1.13

Panel B: Passenger cars.
Post × weekday -70.60∗∗∗ -459.5∗∗∗ -466.4∗∗∗ -450.1∗∗∗ 282.7∗∗∗ -10.41

(11.56) (22.17) (25.65) (30.17) (19.46) (10.70)

Observations 43948 8244 4580 3664 3664 32040
Mean depvar (pre, weekday) 1514 2868 2986 2721 2155 1093
Change (%) -4.66 -16.02 -15.62 -16.54 13.11 -0.95

Panel C: Trucks.
Post × weekday -4.107∗∗∗ -8.484∗∗∗ -8.928∗∗∗ -8.089∗∗∗ -5.327∗∗∗ -2.826∗∗∗

(0.736) (1.350) (1.498) (1.429) (1.186) (0.595)

Observations 43948 8244 4580 3664 3664 32040
Mean depvar (pre, weekday) 112 203 219 184 174 82
Change (%) -3.66 -4.17 -4.08 -4.38 -3.06 -3.46

Weather controls (X ′itγ ) X X X X X X
Month × year FE (λym) X X X X X X
Day-of-week × time-of-day FE (θdi) X X X X X X
Length of time interval (hours) 24 4.5 2.5 2 2 17.5

* p<0.10, ** p<0.05, *** p<0.01. Standard errors are clustered on week.
Notes: Table shows results from 18 separate regressions. Dependent variable is vehicles passing toll gates in Bergen
during a 15 minute interval. Post×weekday refers to the β coefficient estimated from Equation 1. Column headings
indicate the sample used in each regression. “Rush hours” refer to the intervals 06:30-08:59 (morning) and 14:30-
16:29 (evening). For non-rush hours, “+/- 30 min” refers to the 30 minute intervals right before and after rush
hours. “Other” refers to the remaining non-rush hours (i.e., 9:30-13:59 and 17:00-05:59). Sample is restricted to
365 days pre and post policy implementation. Passenger cars: all vehicles < 3500 kg. Trucks: all vehicles > 3500
kg.
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B.2.3 Different aggregation levels

Table B.3 shows results for three different aggregation levels: daily observations

(N = 656); toll gate specific observations on a daily level (N = 9, 182); and toll gate

specific observations on a 15 minute resolution (N = 850, 004). The point estimates

will naturally be very different since the observational unit is changed, but the table

indicates that predicted percentage changes are almost identical. Furthermore, all

coefficients except those in column (6) are significant at the 0.01 level.

Table B.3: DiD, different aggregation levels. 2 years pre/post.

Rush hours Non-rush hours

Dependent variable: All day All Morning Evening +/-30 min Other
# vehicles (1) (2) (3) (4) (5) (6)

Panel A: Daily.

Post × weekday -7218.6∗∗∗ -7982.8∗∗∗ -4444.7∗∗∗ -3533.6∗∗∗ 1662.1∗∗∗ -394.0
(1099.9) (446.5) (302.1) (216.1) (162.7) (760.1)

Observations 915 914 913 912 914 915
Mean depvar (pre, weekday) 156666 55873 32392 23486 18534 82020
Change (%) -4.61 -14.29 -13.72 -15.05 8.97 -0.48

Panel B: Toll gate level, daily.

Post × weekday -517.8∗∗∗ -567.9∗∗∗ -323.9∗∗∗ -248.2∗∗∗ 119.6∗∗∗ -68.52
(76.58) (31.58) (20.23) (15.08) (11.46) (47.53)

Observations 12807 12790 12766 12758 12791 12807
Mean depvar (pre, weekday) 11193 3992 2316 1679 1324 5877
Change (%) -4.63 -14.22 -13.98 -14.79 9.03 -1.17

Panel C: Toll gate level, 15 minute resolution.

Post × weekday -5.796∗∗∗ -32.58∗∗∗ -33.43∗∗∗ -30.74∗∗∗ 15.16∗∗∗ -1.200∗∗

(0.719) (1.626) (2.035) (1.800) (1.411) (0.575)

Observations 1186729 228343 126367 101976 101165 857221
Mean depvar (pre, weekday) 120.91 222.01 231.68 209.92 166.02 88.19
Change (%) -4.79 -14.68 -14.43 -14.65 9.13 -1.36

* p<0.10, ** p<0.05, *** p<0.01. Standard errors are clustered on week.
Notes: The outcome variable is the total number of vehicles passing toll gates. The specifications are the same
as the main specifications in Table 2, but fixed effects are modified to take into account differences in aggregation
levels. In panel A, observations are daily and regressions include month×year and day-of-week fixed effects. In
panel B, observations are daily on the toll gate level, and regressions include month×year×toll gate and day-of-
week×toll gate fixed effects. In panel C observations are per toll gate per 15 minute interval, and regressions
include month×year×toll gate and day-of-week×time-of-day×toll gate fixed effects.
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B.2.4 Different model specifications

Table B.4 shows that the main results are not sensitive to the level of the fixed

effects.

Table B.4: DiD, different fixed effects. 2 years pre/post.

Different levels of fixed effects:

# vehicles (1) (2) (3) (4) (5)

All day -82.17∗∗∗ -75.39∗∗∗ -74.45∗∗∗ -77.09∗∗∗ -70.43∗∗∗

(27.25) (10.90) (9.192) (9.810) (9.326)

Rush hours:

All -440.7∗∗∗ -436.1∗∗∗ -432.1∗∗∗ -444.9∗∗∗ -421.3∗∗∗

(30.09) (29.46) (22.11) (22.20) (21.80)

Morning rush -445.6∗∗∗ -448.1∗∗∗ -425.0∗∗∗ -448.4∗∗∗ -422.0∗∗∗

(30.11) (30.20) (30.03) (29.78) (30.94)

Afternoon rush -437.6∗∗∗ -435.6∗∗∗ -427.6∗∗∗ -432.4∗∗∗ -411.4∗∗∗

(25.78) (25.79) (24.48) (26.01) (25.28)

Non-rush hours:

+/-30 min 192.5∗∗∗ 210.8∗∗∗ 212.2∗∗∗ 210.8∗∗∗ 221.9∗∗∗

(29.60) (20.94) (18.46) (19.47) (18.36)

Other -19.69 -14.39 -15.26∗∗ -15.40∗ -13.27∗

(27.60) (9.985) (7.249) (7.989) (7.235)

Weather controls X X X X X
Year×month X X X
Year×week X X
DoW X X
ToD X
DoW×ToD X
Month×DoW×ToD X
Week×DoW×ToD X

* p<0.10, ** p<0.05, *** p<0.01. Standard errors are clustered on week.
Notes: The outcome variable is the total number of vehicles passing toll gates each 15 minute interval. The
specifications are the same as the main specifications in Table 2, but with varying levels of fixed effects column-wise.
Each coefficient is from a separate regression (30 regressions in total). DoW: “day-of-week”, ToD: “Time-of-day”.
Columns (1) and (2) have more aggregated (i.e. fewer) fixed effects than the main specification. Columns (3)-(5)
have additional fixed effects. Note for example that the most detailed specification (5) will have at most four
observations for each fixed effect in the second set (time-of-day×day-of-week×week-of-year; one observation for
each time interval each year).
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B.2.5 Placebo intervention: 1 year pre/post Feb 1st, 2015.

Figure B.6 presents estimated effects of placebo treatments, assuming that the con-

gestion charge took place February 1st 2015, i.e. one year earlier. These placebo

treatments are estimated on a dataset that includes 365 days pre/post the placebo

treatment date, since we don’t have access to traffic data earlier than 2014. The

estimated effect of the placebo treatment is insignificantly different from zero for

most of the 96 estimated coefficients, increasing our confidence in the fact that

the estimated pre/post weekend/weekday difference in our main specification is not

driven by changes over time in unobservables affecting traffic during weekends and

weekdays differently.
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Figure B.6: Total traffic volume by 15 min. intervals, DiD estimates.

(a) All vehicles. Placebo (1feb2015).
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(b) Passenger cars. Placebo (Feb 1, 2015).
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(c) Trucks. Placebo (Feb 1, 2015).
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Notes: Figures plots treatment effects estimated from from equation 1, assuming the policy took place Feb 1 2015
(“placebo treatment” one year earlier’). Regressions are run separately for each 15 minute increment. Sample
includes +/- 365 days of the placebo treatment date. Whiskers indicate 95% confidence intervals. Gray shaded
areas indicate rush hours. Traffic is measured as total number of cars passing the toll cordon every 15 minutes.
Standard errors are clustered on week. Passenger cars: all vehicles < 3500 kg. Trucks: all vehicles > 3500 kg.
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B.3 Spatial spillovers

Cars driving into the center of Bergen are not able to avoid toll charges. However,

cars passing Bergen have alternative routes to avoid the cordon toll completely. This

allows us to examine potential spatial spillover effects.

The two main routes to avoid toll payments, depending on which direction the

car is coming from, are displayed in Figure B.7.56 The toll gates avoided by the

alternative routes are marked as red triangles (See Figure 1 for the location of all

toll gates of the cordon toll).

Figure B.7: Alternatives for bypassing toll gates for transit cars

(a) North-south direction. (b) South-west direction.

Notes: Blue lines are routes around Bergen that avoid the cordon toll completely. Red triangles display the relevant
toll gates. Green circles mark traffic censors from which we obtain traffic data. Source: Google Maps.

Cars passing Bergen in the north-south direction have two alternatives: either

driving on E39 through the center of Bergen city and the cordon toll, or following

the road E16/580 to the west of Bergen avoiding the cordon toll completely – see

Figure B.7a. This route is 6 minutes longer.

Cars passing Bergen in the south-west direction are also able to avoid the toll

cordon by taking roads E39/556 rather than the direct tunnel under the strait (road

557). This is a detour of 9 minutes for cars arriving from the south-west, as the

route illustrated in Figure B.7b. However, for cars arriving from the south-east (e.g.

from E39) this route is only about one minute longer.

To examine spatial spillovers we collect vehicle count data from the traffic sensors

that are marked as green dots in the figure above. These data are hourly and publicly

56We are grateful to the Norwegian Public Roads Administration for making us aware of these
alternative routes, see e.g. NPRA (2018). Note also that as of April 6th 2019, 15 new toll gates
were put in operation. These toll gates cover the alternative routes displayed in Figure B.7, making
it infeasible to avoid tolls under the current scheme.
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Figure B.8: DiD estimates on traffic volume by hourly intervals.

(a) North-south direction.
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(b) South-west direction.
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Notes: Figure plots treatment effects estimated from from equation 1, where β is allowed to vary by hourly
increments. Whiskers indicate 95% confidence intervals. Gray shaded areas indicate rush hours. Traffic is measured
as total number of cars registered by the traffic censors in both directions each hour. Standard errors are clustered
at the week level.

available.57

A limiting factor is that not much traffic count data is available pre policy

implementation. For the north-south direction, we have hourly data from September

9th 2015 and onwards. To balance out seasonal variation pre-post, we therefore

focus on the period September 9th to January 31st. This gives us one pre period

and two post periods. For the south-west direction, we have data for a whole year

pre policy and two whole years after.58 Note that as the data is hourly, several of the

observations contain 30 minutes during rush hours and 30 minutes during non-rush.

For the north-south direction, Figure B.8 indicates small treatment effects that

are similar in magnitude during the morning and evening rush hours. However only

the effects during the morning rush are significantly larger than zero. The effect is

more marked and larger in magnitude for the south-west direction, and all hourly

estimates that (partly) cover rush hours are significantly larger than zero. The effect

is slightly larger during the morning rush.

Table B.5 illustrates effects for selected time intervals. We estimate the spatial

spillover to be around 1,000 vehicles per day.59

57We use data from the censors “Kr̊akenes” and “Indre Arna EV16”, which can be accessed
here: https://www.vegvesen.no/trafikkdata/start/. Note that data from several other traffic
sensors along the same routes are available; however, the time periods for which data can be
accessed is relatively limited and different for each sensor. We found these sensors to have data
available for the most sensible time periods pre/post policy implementation.

58Apart from the period length, data selection follows the same steps as the toll gate data. This
means that the same observations are removed due to holidays.

59The “all day” regression indicates that the increase in numbers of vehicles per day is (5.65 +
38.27)× 24 = 1, 054. The regression for the six hourly intervals covering rush hours indicates that
the number of vehicles per day during rush is (31.4 + 125.3)× 6 = 940.
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Table B.5: DiD estimates on traffic volume

Dependent variable: All day Rush hours Other

# vehicles per hour 0:00-23:59 Both 6:00-8:59 14:00-16:59 17-06, 09-14
(1) (2) (3) (4) (5)

Panel A: North-south.
Post × weekday 5.653 31.40∗ 42.87∗∗∗ 21.03 -2.104

(7.762) (15.55) (8.977) (26.30) (6.594)

Observations 8385 2097 1043 1054 6288
Mean depvar (pre, weekday) 718.40 1329.67 1042.33 1612.77 514.92
Change (%) 0.79 2.36 4.11 1.30 -0.41

Panel B: South-west.

Post × weekday 38.27∗∗∗ 125.3∗∗∗ 153.5∗∗∗ 103.6∗∗∗ 10.10
(8.632) (18.24) (22.32) (22.63) (7.975)

Observations 16063 4016 2007 2009 12047
Mean depvar (pre, weekday) 1014.38 1918.47 1703.28 2133.35 712.85
Change (%) 3.77 6.53 9.01 4.86 1.42

Weather controls (X ′itγ ) X X X X X
Month × year FE (λym) X X X X X
Day-of-week × time-of-day FE (θdi) X X X X X

* p<0.10, ** p<0.05, *** p<0.01. Standard errors are clustered on week.
Notes: The outcome variable is the total number of vehicles driving on the road in both directions. The specifica-
tions are the same as the main specifications in Table 2, but time periods are defined differently since only hourly
data is available.
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Appendix C Air pollution

C.1 Data and descriptives

C.1.1 Summary statistics

Table C.1: Summary statistics air pollution and weather. All days of the week.
Bergen

mean sd min max count
NO2 38.83 30.44 0 235 33,332
PM10 16.53 13.74 0 851 33,600
air temperature 8.92 5.78 -9 31 33,903
precipitation 0.28 0.77 0 27 33,179
wind speed 3.56 2.35 0 20 33,903
wind direction 197.57 80.98 0 360 33,903
wind direction (1-4) 2.76 0.98 1 4 33,903
inversion 0.04 0.20 0 1 33,903

Table C.2: Summary statistics air pollution and weather. Tuesday-Thursday.
Bergen

mean sd min max count
NO2 43.61 32.35 0 235 14,102
PM10 18.06 14.48 0 230 14,343
air temperature 8.96 5.76 -9 31 14,514
precipitation 0.29 0.81 0 27 14,191
wind speed 3.53 2.32 0 17 14,514
wind direction 197.25 81.09 0 358 14,514
wind direction (1-4) 2.75 0.99 1 4 14,514
inversion 0.05 0.22 0 1 14,514
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C.1.2 Scatter plots

Figure C.1: Hourly observations of air pollution. 2 years before and after Feb. 1
2016.

(a) NO2

(b) PM10

Notes: Figures show hourly air pollution readings from the station “Danmarksplass” in Bergen.
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C.1.3 Air pollution 1 year before and after Feb 1 2016

Figure C.2: Ambient air pollution 1 year before and after Feb 1 2016

(a) NO2. Weekday (b) NO2. Weekend

(c) PM10. Weekday (d) PM10. Weekend

Notes: Figure shows average ambient air pollution over the course of a day for the pollution monitoring station
located at Danmarksplass in Bergen. Values are based on 60 minute intervals. Panel (a) and (c) show averages
for weekdays (Tuesday-Thursday) and panels (b) and (d) show averages for weekends (Saturday-Sunday). Dashed
lines indicate averages for the 365 days prior to policy implementation (Feb 1 2016). Solid lines indicate averages
for the 365 days post policy implementation. Gray shaded areas indicate rush hours. Note that congestion charging
is not active during weekends. Pollution is measured as micrograms per cubic meter of air(µg/m3). See Appendix
Figure C.3 for ambient air pollution 365 days pre and post Feb 1 2015 (”Placebo intervention”).
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C.1.4 Placebo intervention

Figure C.3: Ambient air pollution, 1 year before and after Feb 1 2015 (“Placebo
intervention”)

(a) NO2. Weekday (b) NO2. Weekend

(c) PM10. Weekday (d) PM10. Weekend

Notes: Figure shows ambient air pollution on weekdays (Tuesday-Thursday) for the pollution monitoring station
located at Danmarksplass in Bergen. Pollution is measured as micrograms per cubic meter of air(µg/m3). Ambient
air quality standards for NO2 (annual mean): 40 µg/m3. Ambient air quality standards for PM10 (annual mean):
25 µg/m3. The variable “hour” on the x-axis indicate the start of the time interval, e.g., hour 6 indicates the time
interval 06:00-06:59.
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C.2 Supporting results and robustness checks

C.2.1 Results based on 1 year pre and post Feb 1 2016

Figure C.4 and Table C.3 shows results when the sample is restricted to 365 days

pre/post policy implementation. Estimated daily treatment effects on NO2 are very

similar to results in our main specification, where we use a period of 2 years before

and after policy implementation. As is our main results, we find no significant effects

on PM10.

Figure C.4: DiD estimates on air pollution (µg/m3), by 60 min. intervals. 1 year
pre/post

(a) NO2: Treatment date: Feb 1, 2016 (b) PM10: Treatment date: Feb 1, 2016
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Table C.3: DID estimates on NO2 and PM10. 1 year pre/post

24 hours Daytime Midday Rush Evening Night

Dependent variable: 00-23 05-22 06-17 6-9,14-16 18-23 00-05
ambient air pollution (µg/m3) (1) (2) (3) (4) (5) (6)

Panel A: NO2

Post × weekday -3.089∗ -3.064 -5.387∗∗ -5.702∗∗∗ 1.991 -2.218
(1.812) (1.945) (2.038) (2.066) (2.686) (1.979)

Observations 10865 8132 5396 3157 2736 2733
Mean depvar (pre-weekday) 47.40 55.60 61.40 64.49 42.65 24.64
Change (%) -6.52 -5.51 -8.77 -8.84 4.67 -9.00

Panel B: PM10

Post × weekday -0.864 -0.725 -0.260 0.250 -1.597 -0.396
(1.337) (1.541) (1.665) (1.586) (1.689) (1.016)

Observations 10892 8170 5436 3180 2737 2719
Mean depvar (pre-weekday) 18.19 20.32 21.63 21.22 17.91 11.57
Change (%) -4.75 -3.57 -1.20 1.18 -8.92 -3.43

Weather controls (X ′itγ) X X X X X X
Month×year FE (λym) X X X X X X
Day of week×time-of-day FE (θdi) X X X X X X

Notes: Table shows results from 12 separate regressions. Dependent variable is ambient air pollution measured as mean
levels of NO2 or PM10 (µg/m3) during a 60 minute interval. Post × Weekday refers to the coefficient X estimated from
equation X. Column headings indicate the sample used in each regression. Rush hours refers to the intervals 06:00-09:59
(morning) and 14:00-16:59 (evening). Non-rush hours, +/- 60 min refers to the 60 minutes right before and after rush
hours (i.e., 05:00-05:59, 10:00-10:59, 13:00-13:59, 17:00-17:59). Non-rush hours, other refers to the remaining non-rush
hours (i.e., 10:00-12:59 and 18:00-04:59). Sample is restricted to 365 days pre and post policy implementation. Standard
errors are clustered on week.
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C.2.2 Different model specification: fixed effects

Table C.4 shows average daily treatment effects for NO2 and PM10 using different

specifications of fixed effects. From Panel A, we see that our main results on NO2 is

not sensitive to the level of the fixed effects; the treatment effect ranges from 3.064

to 3.180 µg/m3 (or 6.52 to 6.77%, respectively). For PM10 the estimated treat-

ment effect becomes significant under the most conservative specification (column

7), where we only exploit variation within a week instead of within a month (see

Panel B).

Table C.4: DID estimates on NO2 and PM10. 2 years pre/post

Dependent variable: Daily treatment effects

ambient air pollution (µg/m3) (1) (2) (3) (4) (5)* (6) (7)

Panel A: NO2

Post × weekday -3.180∗∗ -3.082∗∗ -3.099∗∗ -3.075∗∗ -3.064∗∗ -3.120∗∗ -3.153∗∗

(1.502) (1.495) (1.497) (1.387) (1.369) (1.339) (1.324)

Observations 21438 21438 21438 21438 21438 21438 21109
Mean depvar (pre-weekday) 47.01 47.01 47.01 47.01 47.01 47.01 46.99
Change (%) -6.77 -6.56 -6.59 -6.54 -6.52 -6.64 -6.71

Panel B: PM10

Post × weekday -1.311 -1.174 -1.173 -1.187 -1.185 -1.389 -1.634∗∗

(0.920) (0.841) (0.840) (0.816) (0.809) (0.848) (0.807)

Observations 21624 21624 21624 21624 21624 21624 21358
Mean depvar (pre-weekday) 18.81 18.81 18.81 18.81 18.81 18.81 18.83
Change (%) -6.97 -6.24 -6.23 -6.31 -6.30 -7.38 -8.68

Weather controls X X X X X X X
Post X X X X X X X
Weekday X X X X X X X
Month × year X X X X
DoW X X
ToD X
DoW × ToD X X
Week × DoW × ToD X
Week × year X X

Notes: Table shows results from 12 separate regressions. Dependent variable is ambient air pollution measured as
mean levels of NO2 or PM10 (µg/m3) during a 60 minute interval. Estimated effects reflect daily average effects.
DoW is short for day of week (Monday-Thursday). ToD is short for time of day (24 hours). Sample is restricted
to 2 years pre and post policy implementation. Standard errors are clustered on week. The coefficients in column
(5) correspond to the main estimates in column (1) in Table 3.
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C.2.3 Different model specifications: weather controls

Figure C.5 plots treatment effects for NO2 and PM10 using different combinations of

weather controls. Corresponding regression coefficients are shown in Table C.5 and

Table C.6. The magnitude of the estimated treatment effects are relatively stable

across the different specifications. What the weather variables are primarily doing

is tightening the confidence intervals. However, adding wind direction to the set of

controls (specification #5) does seem to increase the magnitude of the treatment

coefficients somewhat.

Figure C.5: DiD estimates on air pollution (µg/m3). Different weather controls

(a) NO2: All day (b) PM10: All day

(c) NO2: Rush hours (d) PM10: Rush hours

Notes: Each subfigure shows results from 8 separate regressions. Dependent variable is ambient air pollution measured
as mean levels of NO2 or PM10 (µg/m3) during a 60 minute interval. Panel (a) and (b) show daily average effects while
Panel (c) and (d) show results for rush hours. Whiskers show 95 % confidence intervals. Except for weather controls, the
model specification is the same as in the main regression table (Table 3). Standard errors are clustered on week. Temp
refers to a polynomial of air temperature of degree 3; Rain refers to a polynominal precipitation of degree 2; Temp*Rain
refers to an interaction of temperature and precipitation; Wind speed refers to a polynominal of wind speed of degree 2;
WInd direction refers to four dummies for wind direction (north, south, east and west); Wind direction * speed refers to
an interaction between wind direction and wind speed; Inversion refers to a dummy variable for inversion episodes. We
estimate two sets of each of these weather control variables; one for weekdays and one for weekends.
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Table C.5: DID estimates on NO2 and PM10. 2 years pre/post

Dependent variable: Daily treatment effects

ambient air pollution (µg/m3) (1) (2) (3) (4) (5) (6) (7) (8)*

Panel A: NO2

Post × weekday -3.276 -3.494 -3.187 -3.255 -5.022∗∗ -2.821∗ -2.985∗∗ -3.064∗∗

(3.660) (2.334) (2.222) (2.218) (2.101) (1.396) (1.376) (1.369)

Observations 21530 21530 21438 21438 21438 21438 21438 21438
Mean depvar (pre-weekday) 46.95 46.95 47.01 47.01 47.01 47.01 47.01 47.01
Change (%) -6.98 -7.44 -6.78 -6.92 -10.68 -6.00 -6.35 -6.52

Panel B: PM10

Post × weekday -0.506 -0.505 -0.542 -0.581 -1.273 -1.061 -1.124 -1.185
(1.222) (1.017) (0.955) (0.949) (0.900) (0.828) (0.814) (0.809)

Observations 21716 21716 21624 21624 21624 21624 21624 21624
Mean depvar (pre-weekday) 18.83 18.83 18.81 18.81 18.81 18.81 18.81 18.81
Change (%) -2.69 -2.68 -2.88 -3.09 -6.77 -5.64 -5.98 -6.30

Temperature X X X X X X X
Precipitation X X X X X X
Temperature × precipitation X X X X X
Wind direction X X X X
Wind speed X X X
Wind direction × wind speed X X
Inversion X

Notes: Table shows results from 16 separate regressions. Dependent variable is ambient air pollution measured as
mean levels of NO2 or PM10 (µg/m3) during a 60 minute interval. Estimated effects reflect daily average effects.
Sample is restricted to 2 years pre and post policy implementation. Except for the weather controls, the model
specification is the same as in the main regression table (Table 3). Standard errors are clustered on week. Temp refers
to a polynomial of air temperature of degree 3; Rain refers to a polynominal precipitation of degree 2; Temp*Rain
refers to an interaction of temperature and precipitation; Wind speed refers to a polynomial of wind speed of degree
2; Wind direction refers to four dummies for wind direction (north, south, east and west); Wind direction×speed
refers to an interaction between wind direction and wind speed; Inversion refers to a dummy variable for inversion
episodes. We estimate two sets of each of these weather control variables; one for weekdays and one for weekends.The
coefficients in column (8) correspond to the main estimates in column (1) in Table 3.
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Table C.6: DID estimates on NO2 and PM10. 2 years pre/post. Rush hours only

Dependent variable: Daily treatment effects

ambient air pollution (µg/m3) (1) (2) (3) (4) (5) (6) (7) (8)*

Panel A: NO2

Post × weekday -5.828 -6.406∗∗ -5.540∗∗ -5.614∗∗ -8.413∗∗∗ -6.564∗∗∗ -6.880∗∗∗ -6.813∗∗∗

(4.028) (2.641) (2.451) (2.416) (2.324) (1.687) (1.648) (1.658)

Observations 6255 6255 6227 6227 6227 6227 6227 6227
Mean depvar (pre-weekday) 63.70 63.70 63.78 63.78 63.78 63.78 63.78 63.78
Change (%) -9.15 -10.06 -8.69 -8.80 -13.19 -10.29 -10.79 -10.68

Panel B: PM10

Post × weekday -1.045 -1.054 -0.839 -0.891 -1.933 -1.834 -1.768 -1.735
(1.543) (1.430) (1.308) (1.297) (1.252) (1.122) (1.119) (1.115)

Observations 6341 6341 6314 6314 6314 6314 6314 6314
Mean depvar (pre-weekday) 21.76 21.76 21.76 21.76 21.76 21.76 21.76 21.76
Change (%) -4.80 -4.84 -3.86 -4.09 -8.89 -8.43 -8.13 -7.97

Temperature X X X X X X X
Precipitation X X X X X X
Temperature × precipitation X X X X X
Wind direction X X X X
Wind speed X X X
Wind direction × wind speed X X
Inversion X

Notes: Table shows results from 16 separate regressions. Dependent variable is ambient air pollution measured as
mean levels of NO2 or PM10 (µg/m3) during a 60 minute interval. Estimated effects reflect daily average effects.
Sample is restricted to 2 years pre and post policy implementation and restricted to rush hours only. Except for
the weather controls, the model specification is the same as in the main regression table (Table 3). Standard errors
are clustered on week. Temp refers to a polynomial of air temperature of degree 3; Rain refers to a polynominal
precipitation of degree 2; Temp*Rain refers to an interaction of temperature and precipitation; Wind speed refers
to a polynomial of wind speed of degree 2; Wind direction refers to four dummies for wind direction (north, south,
east and west); Wind direction×speed refers to an interaction between wind direction and wind speed; Inversion
refers to a dummy variable for inversion episodes. We estimate two sets of each of these weather control variables;
one for weekdays and one for weekends.The coefficients in column (8) correspond to the main estimates in column
(1) in Table 3.
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C.2.4 Placebo intervention: 1 year pre/post Feb 1st, 2015

Figure C.6 and Table C.7 presents estimated effects of placebo treatments on air

pollution, assuming that the congestion charge took place February 1st 2015, i.e.

one year earlier. These placebo treatments are estimated on a dataset that includes

365 days pre/post the placebo treatment date. For each of the panels in Figure C.6,

estimated effect of the placebo treatment is insignificantly different from zero for

23 of the 24 estimated coefficients, increasing our confidence that our main results

are not driven by changes over time in unobservables affecting air pollution during

weekends and weekdays differently.

Figure C.6: DID estimates on air pollution by 60 min. intervals. 1 year pre/post

(a) NO2: Placebo: Feb 1, 2015 (b) PM10: Placebo: Feb 1, 2015

Notes: Figure plots the coefficient β estimated from equation ??, but where β is allowed to vary by the hour of the day. Sample
is restricted to 2 years before and after policy implementation (Feb 1 2016). Gray shaded areas indicate rush hours. Note that
congestion charging is not active during weekends. Pollution is measured as micrograms per cubic meter of air(µg/m3). Standard
errors are clustered on week.
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Table C.7: DID estimates on NO2 and PM10. Placebo intervention

24 hours Daytime Midday Rush Evening Night

Dependent variable: 00-23 05-22 06-17 6-9,14-16 18-23 00-05
ambient air pollution (µg/m3) (1) (2) (3) (4) (5) (6)

Panel A: NO2

Post × weekday 0.274 -0.877 -0.245 -0.0626 -3.196 2.330
(1.656) (1.789) (1.832) (1.920) (2.456) (1.967)

Observations 10683 7995 5301 3102 2693 2689
Mean depvar (pre-weekday) 49.18 57.54 64.03 67.06 43.56 25.70
Change (%) 0.56 -1.52 -0.38 -0.09 -7.34 9.07

Panel B: PM10

Post × weekday -1.097 -1.825 -2.596 -2.703 -0.121 0.362
(1.726) (1.926) (1.968) (1.965) (2.187) (1.308)

Observations 10910 8186 5449 3188 2738 2723
Mean depvar (pre-weekday) 20.52 22.93 24.38 23.87 20.32 13.00
Change (%) -5.35 -7.96 -10.65 -11.32 -0.60 2.78

Weather controls (X ′itγ) X X X X X X
Month×year FE (λym) X X X X X X
Day of week×time-of-day FE (θdi) X X X X X X

Notes: Table shows results from 12 separate regressions. Dependent variable is ambient air pollution measured
as mean levels of NO2 or PM10 (µg/m3) during a 60 minute interval. Post × Weekday refers to the coefficient X
estimated from equation X. Column headings indicate the sample used in each regression. Rush hours refers to the
intervals 06:00-09:59 (morning) and 14:00-16:59 (evening). Non-rush hours, +/- 60 min refers to the 60 minutes
right before and after rush hours (i.e., 05:00-05:59, 10:00-10:59, 13:00-13:59, 17:00-17:59). Non-rush hours, other
refers to the remaining non-rush hours (i.e., 10:00-12:59 and 18:00-04:59). Sample is restricted to 365 days pre and
post policy implementation. Standard errors are clustered on week.
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C.3 Alternative DiD strategy: Bergen vs. other cities

In this section, we estimate effects of the congestion charge on air pollution by ex-

ploiting differences across cities, pre and post policy implementation. When Bergeni

is a dummy variable equal to 1 for the monitoring station located in Bergen and

postt is a dummy variable equal to 1 after February 1st 2016, the DiD estimator can

be written as:

yikst = βpostt ×Bergen+X ′istγ + σs + λywd + θdis + εikt, (6)

where yikst denotes hourly (i) concentrations of pollutant k ∈ {NO2, PM10} mea-

sured at station s on date t; X ′it is a vector of station-specific weather controls; σs

are monitoring station fixed effects; λywd denotes year×week number×day-of-week

fixed effects; θdis denotes station-specific day-of-week×time-of-day fixed effects; and

εikt is the idiosyncratic error term. The DiD estimate is captured by the coefficient

β.

We use an estimating sample consisting of 26 pollution monitoring stations lo-

cated near roads in different areas around Norway. We restrict the sample to week-

days only (Monday-Friday) and drop holidays and summer months. As a similar

policy was introduced in Oslo in November 2017, we restrict our sample to 1 year

pre and post Feb 1 2016. This means that our sample covers the period Feb 1 2015

to January 31 2017. The vector of controls are similar to the main specification in

Section 3.4, with the exception that we allow effects of weather controls to vary by

station. We also need to drop the inversion control as we only have data for Bergen

from our data source. Standard errors are clustered on week number and station

ID.

Table C.8 shows results from the DiD estimation. From panel (a) column (1)

we see that the congestion charge led to a 4.2 µg/m3 decrease in the concentration

of NO2, corresponding to a 9% decline. This estimate is around 1.1 µg/m3, or

2.5 percentage points, higher that the main result presented in Table 3. While

the decrease in µg/m3 is highest during rush hours, the percentage reductions are

relatively similar for the 6 time period throughout the day. For PM10, we find no

significant effect of the Bergen congestion charge; see panel (b) in Table C.8.
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Table C.8: DID estimates on NO2 and PM10. Bergen vs. other cities. Level

24 hours Daytime Midday Rush Evening Night

Dependent variable: 00-23 05-22 06-17 6-9,14-16 18-23 00-05
ambient air pollution (µg/m3) (1) (2) (3) (4) (5) (6)

Panel A: NO2

Post × Bergen -3.990∗∗ -4.351∗∗ -4.992∗∗ -5.327∗∗ -3.364∗ -2.162
(1.502) (1.591) (1.786) (2.000) (1.737) (1.479)

Observations 177545 132772 87891 51509 44888 44766
Mean depvar (pre-weekday) 47.40 55.60 61.41 64.49 42.65 24.64
Change (%) -8.42 -7.83 -8.13 -8.26 -7.89 -8.77

Panel B: PM10

Post × Bergen -0.420 -0.260 -0.193 1.162 0.0710 -0.346
(2.066) (2.609) (2.710) (2.653) (2.885) (0.769)

Observations 179934 135221 89996 52561 45275 44663
Mean depvar (pre-weekday) 18.29 20.46 21.85 21.58 17.91 11.57
Change (%) -2.29 -1.27 -0.88 5.38 0.40 -2.99

Weather controls (X ′itγ) X X X X X X
Station FE (σs) X X X X X X
Post X X X X X X
Day of week×week×year FE ( λywd) X X X X X X
Station×day of week×time-of-day FE (θdis) X X X X X X

Notes: Table shows results from 12 separate regressions. Dependent variable is ambient air pollution measured as mean
levels of NO2 or PM10 (µg/m3) during a 60 minute interval. Post × Bergen refers to the coefficient β estimated from
equation 6. Column headings indicate the sample used in each regression. Rush hours refers to the intervals 06:00-09:59
(morning) and 14:00-16:59 (evening). Non-rush hours, +/- 60 min refers to the 60 minutes right before and after rush
hours (i.e., 05:00-05:59, 10:00-10:59, 13:00-13:59, 17:00-17:59). Non-rush hours, other refers to the remaining non-rush
hours (i.e., 10:00-12:59 and 18:00-04:59). Sample is restricted to 365 days pre and post policy implementation. Standard
errors are clustered on week.
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Appendix D Car ownership

D.1 Data and descriptives

D.1.1 The Stavanger toll cordon

Figure D.1: Map of toll gates around Stavanger

Notes: This map displays the road network in and around Stavanger, as well as the toll gates that were part of
the Stavanger cordon toll in 2014. Note that several routes into the city will pass multiple toll gates. However,
just as in Bergen cars will only pay once as long as they pass the toll gates within the same hour.

D.1.2 Toll rates in Bergen and Stavanger 2005-2017

Figure D.2 shows the toll rates in Bergen and Stavanger over the period 2005 to 2017.

The first panel displays the rates, while the second panel is the average toll exposure

within the household for paying and non-paying commuters. The toll exposure is

slightly lower than the rates because in some households not all adult members are

exposed to the cordon toll on their way to work.
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Figure D.2: Toll rates in Bergen and Stavanger

(a) Toll rates in Bergen and Stavanger
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D.1.3 Definition of treatment and control group

Paying commuters are defined as households where at least one household member

passed the toll cordon to Bergen or Stavanger (but no other toll gates) on his/her

way to work in 2014. Non-paying commuters are defined as households where all

household members had zero toll payments on their work routes in 2014. The

allocation of households to paying commuters and non-paying commuters is done

based on toll payments in 2014 - the year before the congestion charge in Bergen

was announced.

D.1.4 Sample selection

Our dataset consists of 441,451 households in either Hordaland or Rogaland county

(the counties of Bergen and Stavanger) in 2014, resulting in 3,047,853 annual obser-

vations over the years 2011-2017. Based on our empirical strategy, we restrict our

sample in the following way:

1. Household must have existed in 2014.

2. At least one household member must be employed.

3. At least one household member must have a workplace where the geographical

location is observed (i.e. non-missing work route).

4. Households must be located within 50 kilometers of the city of Bergen or

Stavanger.

5. Households must have an average work distance between 5 and 50 kilometers.

6. Households cannot have moved between 2014 and 2017.

7. Households must fall within the definitions of “paying commuter” or “non-

paying commuter” as outlined in Section D.1.3.

As treatment is defined as a time-invariant attribute on the household level, the

household must have existed in 2014 to be part of the analysis. We consider work

distances below 5 km as walking and cycling distance and hence less likely to be

affected by toll rates. The 50 km cutoff is done to ensure comparable work distances

for paying and non-paying commuters. Restriction #6 is done to ensure that all

households are assigned to the treatment or control group in a consistent manner

and have not self-selected out of the treatment group. We do not require households

to be observed during all years 2011-2017 to be included in our sample, meaning

that the dataset is an unbalanced panel.60

60Restricting the sample to households observed in all years 2011-2017 reduces the number of
observations significantly. However, results based on a balanced sample are very similar to our
main results. Results can be provided upon request.
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Applying the sample restrictions listed above leaves us with a dataset consisting

of 76,088 households over 7 years, resulting in a total of 448,196 annual observations.

Table D.1 shows how each sample selection criterion affects number of observations,

and Table D.2 show the effect on selected variable means in 2014.

Table D.1: Observations by year and sample selection criteria

Year (1) (2) (3) (4) (5) (6) (7)

2011 406363 370232 254648 197985 133008 112947 53043
2012 414484 377820 262262 204554 137977 115072 57905
2013 422965 385675 269801 210634 142258 115898 64130
2014 441451 402609 276970 215960 146686 116540 76088
2015 447332 406767 273130 212631 145500 114320 69419
2016 451399 408620 268936 209241 143962 112629 64627
2017 463859 419919 269322 209369 144545 113296 62984

Total 3047853 2771642 1875069 1460374 993936 800702 448196
Share of population 1.00 0.91 0.62 0.48 0.33 0.26 0.15

Notes: This table shows how observations per year are reduced as various sample selection criteria are imposed.
(1) All households in the counties Hordaland and Rogaland; (2) Removing households where no individuals work;
(3) Removing households where no individuals are matched with workplace locations; (4) Removing households
located more than 50 kilometers away from Bergen/Stavanger; (5) Removing households where work distance is
not between 5 and 50 kilometers; (6) Removing households that moved between 2014 and 2017; (7) Removing
households not covered by treatment and control definitions. Column (7) is our final sample.
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Table D.2: Summary statistics by sample selection criteria, 2014

Sample mean of variables (1) (2) (3) (4) (5) (6) (7)

Panel A: Outcomes
Electric vehicle (0/1) 0.020 0.021 0.029 0.032 0.037 0.040 0.031
Number of electric vehicles 0.021 0.022 0.029 0.033 0.038 0.041 0.032
Number of ICE vehicles 1.038 1.031 1.260 1.207 1.298 1.374 1.392
Total number of vehicles 1.058 1.053 1.290 1.240 1.336 1.415 1.425

Panel B: Journey to work variables
Toll rate (NOK/individual) 20.79 20.81 20.81 21.78 17.18 16.84 9.30
Toll rate (NOK/household) 28.39 28.46 28.46 29.92 24.02 24.07 13.88
Driving distance (km) 34.55 34.56 34.56 33.96 14.31 14.33 12.79
Driving time (min) 32.53 32.55 32.55 31.65 14.73 14.77 13.53
PT time minus driving time (min) 73.74 73.87 72.85 64.69 75.18 77.85 77.22
PT time divided by driving time 7.62 7.63 7.64 6.74 6.56 6.81 7.12

Panel C: Socio-economic variables
Couple (0/1) 0.53 0.49 0.65 0.64 0.68 0.72 0.71
Children living at home (0/1) 0.28 0.30 0.39 0.39 0.41 0.44 0.43
Persons in household 2.16 2.15 2.53 2.49 2.59 2.71 2.70
Age 48.74 46.83 43.04 42.69 42.91 44.63 44.47
Female (0/1) 0.50 0.50 0.48 0.48 0.48 0.49 0.49
Owns second home 0.10 0.10 0.11 0.11 0.11 0.11 0.11
Employed (0/1) 0.65 0.71 0.91 0.91 0.92 0.92 0.92
Retired (0/1) 0.21 0.16 0.05 0.05 0.05 0.06 0.06
Income (100,000 NOK/individual) 3.52 3.62 4.08 4.16 4.21 4.32 4.32
Income (100,000 NOK/household) 5.58 5.65 6.81 6.92 7.11 7.45 7.44
Wealth (mill NOK/individual) 1.42 1.37 1.33 1.43 1.43 1.66 1.62
Wealth (mill NOK/household) 2.23 2.07 2.25 2.42 2.45 2.84 2.82
Education:
Unknown (0/1) 0.28 0.30 0.20 0.21 0.18 0.16 0.16
Less than high school (0/1) 0.16 0.13 0.10 0.10 0.10 0.10 0.11
High school (0/1) 0.25 0.25 0.29 0.27 0.29 0.29 0.30
College (0/1) 0.21 0.21 0.27 0.27 0.28 0.29 0.28
University (0/1) 0.10 0.11 0.14 0.15 0.15 0.16 0.15
Observations 441451 402609 276970 215960 146686 116540 76088

Notes: (1): All households in the counties Hordaland and Rogaland; (2): Removing households where no individ-
uals work; (3): Removing households where no individuals are matched with workplace locations; (4) Removing
households located more than 50 kilometers away from Bergen/Stavanger; (5): Removing households where work
distance is not between 5 and 50 kilometers; (6) Removing households that moved between 2014 and 2017; (7)
Removing households not covered by treatment and control definitions. Column (7) is our final sample.

D.1.5 Model specification and description of variables

Our dataset contains information at both the individual and household level. Individual-

level data is restricted to persons above the age of 18. In the analysis, we focus on

households as the unit of observation. This means that individual-level characteris-

tics are aggregated to the household level as described in this section.

In the main analysis, we control for the following set of variables: Dummy vari-

ables for being female, being employed, being retired, owning a second home, having

children below the age of 18, and separate dummies for education levels (unknown,
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Table D.3: Description of variables

Variable Description

Panel A: Outcome variables
BEVit Dummy variable indicating whether household i owns a battery electric

vehicle
NumBEVit The number of battery electric vehicles owned by household i
ICEVit The number of internal combustion engine vehicles owned by household

i
carsit Total number of vehicles owned by household i

Panel B: Treatment variables
Bi Dummy variable, 1 if household lives in the vicinity of Bergen; 0 if the

household lives in the vicinity of Stavanger
ci Dummy variable, 1 if at least one household member pass the toll cordon;

0 if no household members are exposed to tolls on their commute
postt Dummy variable for 2016 and later

Panel C: Control variables
coupleit Dummy variable indicating whether there is more than one adult house-

hold member
ageit Average age of adult household members
femaleit Share of adult household members that are females
employedit Share of adult household members that are employed
retiredit Share of adult household members that are retired
secondhomeit Dummy variable for whether household owns second home
personsit Number of household members, adults and children
childrenit Dummy variable for having children <18 years living at home
incomeit Average net income of adult household members. Labor and capital

income net of taxes plus other transfers
wealthit Average net wealth of adult household members. Value of capital stock

(including property) and financial assets net of outstanding debt
educ0it Dummy: all household members have unknown education
educ1it Dummy: highest education in household is less than high school
educ2it Dummy: highest education in household is high school
educ3it Dummy: highest education in household is college
educ4it Dummy: highest education in household is university
wdit Average work distance of adult employed household members in kilome-

ters. Fastest route between centroids of working and residence neighbor-
hoods

timeit Time spent in minutes associated with the commute above, according to
the speed limit

PT diffit Time to work by public transit (including expected waiting, transit and
access/egress time) minus time spent by car

PT shareit Time to work by public transit (including expected waiting, transit and
access/egress time) divided by time spent by car

θnt Neighborhood by year fixed effects for the household’s residence location

less than high school, high school, college and university). A continuous variable

for number of persons (adults and children) registered at the household. Two poly-
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nomials in age, net income, net wealth, distance to work and time to work by car.

We also include two polynomials for two variables that are meant to capture the

workplace’s accessibility by public transit – these are the absolute and the relative

time differences to get to work by public transit versus private car. All variables

except “children” and “number of household members” are individual specific, but

averaged across spouses. If a variable is missing for one of the spouses, the other

spouse’s value is used. If a variable is missing for both spouses, that household is

omitted from the regression. Finally, we let the coefficients for all variables be cou-

ple and single specific (i.e. whether the household has one or two adult members).

Descriptions of the variables are included in Table D.3.
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D.1.6 Summary statistics

Table D.4: Summary statistics 2017

Bergen Stavanger

Paying Non-paying Paying Non-paying

mean sd mean sd mean sd mean sd

Panel A: Outcomes

Electric vehicle (0/1) 0.178 0.382 0.117 0.321 0.121 0.326 0.074 0.263

Number of electric vehicles 0.187 0.415 0.124 0.351 0.127 0.352 0.078 0.280

Number of ICE vehicles 1.156 0.788 1.486 0.854 1.489 0.809 1.421 0.815

Total number of vehicles 1.343 0.831 1.610 0.858 1.616 0.815 1.499 0.824

Panel B: Journey to work variables

Toll rate (NOK/individual) 42.01 14.62 0.19 2.73 17.43 6.62 0.11 1.70

Toll rate (NOK/household) 64.32 32.57 0.37 5.22 27.02 13.59 0.21 3.24

Driving distance (km) 12.42 7.98 14.17 8.76 13.57 6.67 10.53 5.91

Driving time (min) 13.28 8.29 15.03 9.58 13.77 6.81 11.77 7.40

PT time minus driving time (min) 60.00 51.03 94.82 82.68 79.85 57.24 80.16 79.50

PT time divided by driving time 5.62 2.76 7.85 5.59 7.27 4.77 8.51 8.53

Panel C: Socio-economic variables

Couple (0/1) 0.77 0.42 0.76 0.43 0.82 0.39 0.74 0.44

Children living at home (0/1) 0.42 0.49 0.42 0.49 0.48 0.50 0.42 0.49

Persons in household 2.75 1.33 2.77 1.37 2.96 1.35 2.77 1.40

Age 48.45 11.15 48.38 11.57 47.48 10.78 48.15 11.47

Female (0/1) 0.49 0.25 0.48 0.26 0.48 0.22 0.48 0.26

Owns second home 0.13 0.33 0.12 0.32 0.13 0.33 0.13 0.33

Employed (0/1) 0.93 0.18 0.89 0.20 0.92 0.18 0.90 0.20

Retired (0/1) 0.08 0.23 0.08 0.24 0.06 0.21 0.08 0.24

Income (100,000 NOK/individual) 4.50 3.43 4.12 2.20 4.81 2.78 4.62 4.62

Income (100,000 NOK/household) 7.95 5.11 7.22 4.41 8.73 5.46 8.06 8.52

Wealth (mill NOK/individual) 2.13 6.02 1.67 5.02 1.94 3.46 2.00 5.55

Wealth (mill NOK/household) 3.76 11.37 2.91 9.50 3.49 6.29 3.48 10.71

Education:

Unknown (0/1) 0.14 0.34 0.13 0.34 0.10 0.30 0.14 0.35

Less than high school (0/1) 0.06 0.24 0.11 0.31 0.09 0.28 0.11 0.31

High school (0/1) 0.23 0.42 0.37 0.48 0.31 0.46 0.30 0.46

College (0/1) 0.32 0.47 0.29 0.45 0.31 0.46 0.28 0.45

University (0/1) 0.25 0.43 0.10 0.29 0.19 0.39 0.16 0.37

Observations 10005 17906 20105 14968

Notes: (1): Paying commuters, Bergen; (2): Non-paying commuters, Bergen; (3): Paying commuters, Stavanger;

(4): Non-paying commuters, Stavanger.
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D.1.7 Paying and non-paying commuters by area

Maps display neighborhoods located within 50 kilometers of Bergen and Stavanger

by the share of the final sample that are paying/non-paying commuters. The share

of paying commuters is increasing by proximity to the toll cordon. Note that the

areas of some neighborhoods to the west mainly consist of open sea. Neighborhoods

with less than 50 households (mainly parks, woodland, mountains and bodies of

water) are removed for confidentiality reasons. Note that several neighborhoods in

or close to the city centers are too small to be visible.

Figure D.3: Share of population that is treated/non-treated

(a) Bergen, paying commuters

Share paying (%)
(97.5,100.0]
(69.2,97.5]
(48.9,69.2]
(30.5,48.9]
(19.9,30.5]
(9.5,19.9]
(4.8,9.5]
(0.0,4.8]
[0.0,0.0]

(b) Bergen, non-paying commuters

Share not paying (%)
(95.2,100.0]
(90.5,95.2]
(80.1,90.5]
(69.5,80.1]
(51.1,69.5]
(30.8,51.1]
(2.5,30.8]
[0.0,2.5]

(c) Stavanger, paying commuters

Share paying (%)
(86.0,100.0]
(76.7,86.0]
(65.1,76.7]
(51.3,65.1]
(45.7,51.3]
(40.0,45.7]
(33.3,40.0]
(25.7,33.3]
(15.2,25.7]
[0.0,15.2]

(d) Stavanger, non-paying commuters

Share paying (%)
(84.8,100.0]
(74.3,84.8]
(66.7,74.3]
(60.0,66.7]
(54.3,60.0]
(48.7,54.3]
(34.9,48.7]
(23.3,34.9]
(14.0,23.3]
[0.0,14.0]

Notes: The share of the final sample that is classified as “paying” and “non-paying” commuters in 2014, by
neighborhood.
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D.2 Supporting results and robustness checks

D.2.1 DiD and DiDiD estimates: supporting figures

Here, we show estimated treatment effects from two separate DiD regressions for

Bergen and Stavanger, where the two differences are “over time” and “between

paying and non-paying commuters”. These regressions take the following form:

yit =
∑

s∈{T |s6=2014}

αtci × 1{t = s}+ ηci +X ′itγ + θnt + εit. (7)

η will absorb the effect of being a paying commuter in 2014. If we let α1
t (α0

t ) denote

the estimated “paying commuter” effect for Bergen (Stavanger) in year t, the triple

difference estimate in a given year can be derived from α1
t − α0

t .

Figure D.4, panel (a) shows the DiD estimates for Bergen and Stavanger. The

estimated coefficients show that paying computers in both cities experiences an

increase in the electric vehicle ownership share relative to non-paying computers.

By subtracting the estimated effects for Stavanger from the true treatment effects

for Bergen, we arrive at our DiDiD estimates presented in panel (b). Figure shows

corresponding treatment effects for three additional outcome variables.

Figure D.4: Double and triple differences: Probability of owning an electric vehicle.

(a) Pr(BEV): DiD
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(b) Pr(BEV): DiDiD
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Notes: Figures on the left side plot coefficients αt estimated from equation 7, where α2014 is normalized to
zero. Figures on the right side plots the coefficients βt estimated from equation 3, where α2014 and β2014 are
normalized to zero. The outcome is a dummy variable indicating battery electric vehicle (BEVs) ownership per
household. Vertical dotted lines denote the announcement date (Feb 18th 2015), while vertical dashed lines denote
the implementation date (Feb 1st 2016). Standard errors are clustered at the neighborhood level.
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Figure D.5: Double and triple differences: Number of vehicles owned by vehicle
type.

(a) BEV: DiD
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(b) BEV: DiDiD
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(c) ICE: DiD
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(d) ICE: DiDiD
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(e) All cars: DiD
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(f) All cars: DiDiD
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Notes: Figures on the left side plot coefficients αt estimated from equation 7, where α2014 is normalized to zero.
Figures on the right side plots the coefficients βt estimated from equation 3, where α2014 and β2014 are normalized
to zero. The outcome is number of battery electric vehicles (BEVs) owned per household, number of internal
combustion engine vehicles (ICEVs) owned per household and total number of vehicles owned per household for
the first, second and third row, respectively. Vertical dotted lines denote the announcement date (Feb 18th 2015),
while vertical dashed lines denote the implementation date (Feb 1st 2016). Standard errors are clustered at the
neighborhood level.
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D.2.2 Robustness

Table D.5: DiDiD estimates with different fixed effects

(1) (2) (3) (4)

Panel A: Pr(BEV)
Post × Paying commuters × Bergen 0.0130∗∗ 0.0134∗∗ 0.0393∗∗∗ 0.0419∗∗∗

(0.00585) (0.00583) (0.00589) (0.00593)

Observations 376998 376997 376914 376914
Mean depvar 2014 (paying commuters, Bergen) 0.0469 0.0469 0.0469 0.0469
Mean depvar 2017 (paying commuters, Bergen) 0.1775 0.1775 0.1774 0.1774

Panel B: Number of BEVs
Post × Paying commuters × Bergen 0.0136∗∗ 0.0140∗∗ 0.0424∗∗∗ 0.0451∗∗∗

(0.00621) (0.00619) (0.00648) (0.00652)

Observations 376998 376997 376914 376914
Mean depvar 2014 (paying commuters, Bergen) 0.0482 0.0482 0.0482 0.0482
Mean depvar 2017 (paying commuters, Bergen) 0.1873 0.1873 0.1872 0.1872

Panel C: Number of ICEVs
Post × Paying commuters × Bergen -0.0429∗∗∗ -0.0392∗∗∗ -0.0360∗∗∗ -0.0422∗∗∗

(0.0102) (0.0102) (0.0121) (0.0119)

Observations 376998 376997 376914 376914
Mean depvar 2014 (paying commuters, Bergen) 1.1731 1.1731 1.1730 1.1730
Mean depvar 2017 (paying commuters, Bergen) 1.1554 1.1554 1.1555 1.1555

Panel D: Number of cars in total
Post × Paying commuters × Bergen -0.0293∗∗∗ -0.0252∗∗∗ 0.00633 0.00288

(0.00956) (0.00944) (0.0117) (0.0116)

Observations 376998 376997 376914 376914
Mean depvar 2014 (paying commuters, Bergen) 1.2214 1.2214 1.2212 1.2212
Mean depvar 2017 (paying commuters, Bergen) 1.3427 1.3427 1.3427 1.3427

Year FE X X
Paying commuter X X X
Paying commuter × Post X X X
Paying commuter × year FE (αtci) X
Paying commuter × Bergen (ηci ×Bi) X X X X
Bergen X
Bergen × Post X X
Neighborhood FE X
Neighborhood × year FE (θnt) X X
Household characteristics (X ′itγ) X X X X

* p<0.10, ** p<0.05, *** p<0.01. Standard errors are clustered on neighborhoods.
Notes: BEV refers to battery electric vehicles, while ICEV refers to internal combustion engine vehicles. Regression
(1) estimates the triple difference with dummies for “post”, “Bergen”, “paying commuters” and year fixed effects.
Regression (2) adds neighborhood fixed effects, alleviating the need for a “Bergen” dummy. Regression (3) interacts
neighborhood and year fixed effects, alleviating the need for “Bergen×post”. Regression (4) interacts “paying
commuters” with year fixed effects, alleviating the need for “Paying commuter×post”. This is the same regression
as in Equation 2 and Table 5.
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Figure D.6: DiDiD: Effect of demographics.

(a) Pr(BEV)

Secondary home

Public transport

Income and wealth
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(b) Number of BEVs
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Public transport
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-.1 -.05 0 .05 .1
Treatment effect

(c) Number of ICEVs

Secondary home

Public transport

Income and wealth

Employment and retirement

Education

Children and household size

Age and gender

Time and distance to work

No demographic controls

-.1 -.05 0 .05 .1
Treatment effect

(d) Number of cars

Secondary home

Public transport

Income and wealth

Employment and retirement

Education

Children and household size

Age and gender

Time and distance to work

No demographic controls

-.1 -.05 0 .05 .1
Treatment effect

Notes: BEV refers to battery electric vehicles, while ICEV refers to internal combustion engine vehicles. Whisker
plots are triple difference estimates from Equation 2 clustered at the neighborhood level, with an increasing
number of demographic controls. The top estimate of each panel is unconditional on demographics, while the
bottom estimate is the same as in Table 5.
The following variables are added in sequence: (1) single/couple specific first and second order polynomials of
time and distance to work by car; (2) single/couple specific controls for average age and share of females in the
household; (3) number of household members and single/couple specific dummies for kids less than 18 years old
living at home; (4) single/couple specific dummies for education level (the highest education level of spouses); (5)
single/couple specific controls for the share of household members that are employed and retired; (6) single/couple
specific first and second order polynomials of average net income and average wealth; (7) single/couple specific first
and second order polynomials for public transit accessibility to work (time by public transit minus time by car,
and time by public transit divided by time by car); and (8) a dummy variable for whether any household members
own a secondary home.
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D.3 Heterogeneous effects

Figure D.7: Heterogeneous DiDiD estimates on Pr(BEV), by top and bottom
income quintiles
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(b) Age
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(c) Public transit quality
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(d) Work distance
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Notes: Figure plots the coefficients βk estimated from equation 4, where groups are defined as interactions between
the top or bottom income quintile (the three middle income quintiles are excluded), and education level (panel a),
age (panel b), quintiles of public transit quality (panel c), or quintiles of work distance (panel d). Whiskers indicate
95 % confidence intervals. The dependent variable is a dummy variable equal to 1 if the household owns an electric
vehicle in year t and 0 otherwise. Group allocation is household specific and based on 2014 values. Educational
attainment refers to the maximum level observed within the household, income is summed over spouses and other
variables are averaged across spouses. “Public transit quality” relates to the commute, and is measured as the
difference in commute time between driving a private car and public transit. Households in income quintiles 2-4
are dropped from the regression. Standard errors are clustered at the neighborhood level.
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Table D.6: Heterogeneous DiDiD estimates on Pr(BEV)

Dependent variable: Pr(BEV) Estimate for group number:

Measured in percentage points (1) (2) (3) (4) (5)

Panel A: Income†

Post × Paying commuters × Bergen -0.247 2.547∗∗∗ 4.282∗∗∗ 4.018∗∗∗ 7.027∗∗∗

(0.716) (0.811) (0.888) (0.984) (0.951)

Mean depvar 2014 0.97 2.31 4.13 6.16 10.46
Mean depvar 2017 4.00 10.11 16.21 22.05 31.49
Household income (1000 NOK) 350.40 521.31 672.00 817.13 1244.59
Households per group 61069 72408 79541 81564 82332

Panel B: Family status††

Post × Paying commuters × Bergen -0.354 0.195 1.676∗∗ 6.637∗∗∗

(0.708) (1.648) (0.749) (0.807)

Mean depvar 2014 1.24 1.59 3.61 8.24
Mean depvar 2017 4.21 8.39 14.02 27.79
Households per group 79150 14203 125064 158497

Panel C: Education‡

Post × Paying commuters × Bergen 1.350 1.472 2.954∗∗∗ 4.924∗∗∗ 4.171∗∗∗

(0.929) (1.019) (0.807) (0.826) (0.983)

Mean depvar 2014 1.66 2.12 3.34 5.99 7.31
Mean depvar 2017 5.90 8.20 14.90 22.24 23.49
Households per group 51147 40605 117360 109901 57901

Panel D: Age†

Post × Paying commuters × Bergen 3.937∗∗∗ 5.041∗∗∗ 5.933∗∗∗ 3.367∗∗∗ 1.099
(0.954) (1.022) (0.964) (0.866) (0.816)

Mean depvar 2014 2.15 6.40 6.97 4.72 3.43
Mean depvar 2017 14.49 22.14 23.19 16.51 11.02
Average age 29.51 37.24 43.81 51.49 61.27
Households per group 61527 73636 80071 82488 79192

Panel E: Work distance†

Post × Paying commuters × Bergen 2.417∗∗ 2.518∗∗ 3.261∗∗∗ 4.638∗∗∗ 5.719∗∗∗

(0.939) (0.991) (0.887) (1.019) (0.996)

Mean depvar 2014 2.93 4.43 5.06 4.95 6.76
Mean depvar 2017 12.95 15.99 18.86 20.20 22.73
Work distance (kilometers) 6.68 8.53 10.85 14.35 24.12
Households per group 72634 75333 75951 76261 76735

Panel F: Public transit†

Post × Paying commuters × Bergen 2.458∗∗∗ 3.515∗∗∗ 4.404∗∗∗ 3.169∗∗∗ 8.404∗∗∗

(0.867) (0.941) (0.854) (1.085) (1.285)

Mean depvar 2014 2.00 4.80 6.06 6.57 7.90
Mean depvar 2017 9.33 16.92 20.17 23.18 28.20
Time public transport minus time car (minutes) 29.58 45.19 60.41 83.67 168.87
Households per group 67481 71827 77013 80418 79952

† Column number refers to quintiles of the population.
†† 1: Single without kids; 2: Single with kids; 3: Couple without kids; 4: Couple with kids.
‡ 1: Unknown; 2: Less than high school; 3: High school; 4: College; 5: University.
Notes: Table shows the coefficient βk estimated from equation 4, where k refers to group (e.g., income quintile).
All coefficients presented in a panel is from the same regression. The dependent variable is a dummy variable equal
to 1 if the household owns an electric vehicle in year t and 0 otherwise. Note that estimated effects are given in
percentage points. Group allocation is based on 2014 values, which means that households will not move between
groups over time. The sample consists of years 2011-2017, where 2016-2017 denotes the “post” period and 2015
is excluded due to potential for anticipation effects. Standard errors are clustered at the neighborhood level. *
p<0.10, ** p<0.05, *** p<0.01.
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Figure D.8: Heterogeneous DiDiD: ICEV ownership.
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Notes: Figure plots the coefficients βk estimated from equation 4, where k refers to group (e.g., income quintile).
Each panel (a-f) plots coefficients estimated from a separate regression. Whiskers indicate 95% confidence intervals.
The dependent variable is number of internal combustion engine vehicles owned by the household. Groups are based
on 2014 demographics. “Income” is summed over spouses, “education” is the maximum value in each household
and “age”, “work distance” and “public transit quality” are averaged over spouses. Public transit quality is defined
as “time to work by public transit minus time to work by car” in minutes. The sample is restricted to the years
2011-2017, where 2016-2017 denotes the “post” period and 2015 is excluded due to potential anticipation effects.
Standard errors are clustered at the neighborhood level.

47



Figure D.9: Heterogeneous DiDiD: Car ownership.
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Notes: Figure plots the coefficients βk estimated from equation 4, where k refers to group (e.g., income quintile).
Each panel (a-f) plots coefficients estimates from a separate regression. Whiskers indicate 95% confidence inter-
vals. The dependent variable is the total number of cars owned by the household. Groups are based on 2014
demographics. “Income” is summed over spouses, “education” is the maximum value in each household and “age”,
“work distance” and “public transit quality” are averaged over spouses. Public transit quality is defined as “time
to work by public transit minus time to work by car” in minutes. The sample is restricted to the years 2011-2017,
where 2016-2017 denotes the “post” period and 2015 is excluded due to potential anticipation effects. Standard
errors are clustered at the neighborhood level.
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Appendix E Welfare calculations

In this appendix, we provide more details on the welfare calculations presented in

Section 5.1 in the paper.

E.1 Adaptation costs

Households that continue to drive their diesel or gasoline car through the toll cordon

during rush hours after the policy was implemented will incur a higher private cost

due to higher toll rates. As these payments are simply a transfer to the government,

the impact on aggregate welfare is assumed to be zero. Households that adapt their

behavior to avoid the congestion charge, however, will incur a private adaptation

cost that is welfare-reducing. There are four ways in which this can occur: (1)

not drive at all (e.g., change mode of transportation or work from home), (2) shift

driving to non-rush hours (temporal adaptation), (3) drive around the toll cordon

(spatial adaptation), or (4) buy an electric vehicle.

To quantify the total adaptation costs related to (1)-(3), we combine the esti-

mated reduction in cars passing the toll cordon during rush hours with assumptions

on the adaptation cost per trip. The traffic reduction during rush hours is estimated

to be around 447 cars per 15-minute interval, or 8,046 cars per workday (see Table 2,

Column 2). As an upper bound on adaptation costs per trip, we use the 20 NOK

increase in toll rate during rush hours (from NOK 25 to NOK 45); if the cost of

avoiding the congestion charge was higher than NOK 20, individuals would prefer to

continue to drive through the toll cordon after the implementation of the congestion

charge. As a lower bound on the adaptation costs per trip, we use NOK 0; if an

individual was indifferent to passing the toll cordon during rush hours or not prior to

the policy change, the adaptation costs for this individual will be zero. By assuming

that demand is locally linear between these two extremes, we can apply the standard

triangle formula to calculate the private deadweight loss, 1
2
(p1 − p0)(qcars

0 − qcars
1 ),

where (p1 − p0) is the maximum adaption cost and (qcars
0 − qcars

1 ) is the total num-

ber of cars substituting away from the congestion charge (see Figure E.1). Given

230 working days each year, we find an adaptation costs resulting from (1)-(3) of

NOK 18.51 million per year (0.5×NOK 20×8,046 cars per day×230 working

days).61

However, the welfare analysis is complicated by the presence of BEVs and the

fact that they cannot be disentangled from other cars in the traffic data. Individuals

61Note that we simplify these calculations somewhat by focusing on the change in toll road
during rush hours and disregarding the small decrease in toll levels outside rush hours.
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Figure E.1: Illustration of adaptation costs

p

q

Cars (BEVs+ICEVs)BEVs

p1

p0

BEVs ICEVs

BEVs ICEVs

qBEVs
0 qBEVs

1
qcars

1 qcars
0

Figure illustrates cars (q) driving through the toll cordon during rush hours as a function of the toll intensity (p).
The number of cars in total during rush hours, which is what we observe for the traffic regressions, is downward
sloping in toll payments. The number of BEVs is upwards sloping. The number of ICEVs, which are required to
pay tolls, is the difference between these two curves. The congestion charge implies increased tolls from p0 to p1

during rush hours, fewer cars in total but additional EVs and a change in total toll payments from p0(qcars
0 −qBEVs

0 )
to p1(qcars

1 − qBEVs
1 ).

substituting towards BEVs as a response to the policy will also incur an adaptation

cost ≥ NOK 0 per day (otherwise they would have bought a BEV irrespective of the

congestion charge) and ≤ NOK 20 per day (otherwise they would have continued to

drive an ICEV). To quantify this adaptation cost (4), we again employ the triangle

formula to calculate 1
2
(p1−p0)(qBEVs

1 −qBEVs
0 ) (see Figure E.1), but rely on estimates

from the individual-level regressions. The regression coefficient in Table 5, Column 1

indicates that 4.2 percent of paying commuters avoided the congestion charge by

purchasing an electric vehicle. We define the population of paying commuters to

be the total number of households were at least one household member works and

lives on opposite sides of the toll cordon, and the work distance is between 5 and

50 kilometers. This gives us a population of 38,482 households.62 Based on our re-

gression estimate, 1,616 households adapted to the policy by purchasing an electric

vehicle (38,482 households×0.042). Assuming 230 working days each year, the pri-

vate adaptation cost amounts to NOK 3.72 million per year (0.5×NOK 20×230

working days×1,616 households).

62Note that this number is higher than the sample size of “paying commuters” in the analysis due
to the sample selection criteria imposed in the regressions. However, we still consider the 38,482
households to be a conservative estimate of the affected population, as the congestion charge also
affects the remaining population of Bergen – although their increased likelihood of purchasing an
electric car is probably smaller than 4.2 percent.
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E.2 Time savings

A key benefit of congestion charging is time savings from reduced congestion. Un-

fortunately, our data lacks a relevant congestion measure such as driving speed or

time spent in traffic, meaning that we are unable to obtain a causal estimate on time

savings. As a second best approach, we apply descriptive estimates of time savings

from other relevant studies. NPRA (2016) reports average time in traffic during

rush hours for the main corridors through the Bergen toll cordon during weekdays

in April 2015 and April 2016. We use these before/after measurements of driving

time, which average out to 2.3 minutes across all corridors, as a proxy for average

time savings. From our detailed driving data, we know that an average of 51,534

cars per day drive through the toll cordon during rush hours on weekdays post policy

implementation. To convert this to monetary units, we use a recent Norwegian time

value study (Flügel et al., 2020), where the time value for commuting car drivers

is estimated to NOK 93 per hour by means of stated preference experiments. Note

that this number is significantly lower than the average net wage in Norway, which

is often used as an opportunity cost for time spent in traffic in other studies. We

also disregard time savings for passengers. Our calculations will hence give us a

conservative estimate of the time savings induced by the policy. Given 230 working

days per year, the value of the time savings amounts to NOK 42.26 million an-

nually (51,534 cars per day×2.3 minutes per car÷60 minutes per hour×NOK 93

per hour×230 working days).

E.3 Local pollutants

To quantify social benefits of lower local pollution, we combine our estimates on

changes in ambient levels of NO2 and PM10 with assumptions about the affected

population and estimates on social benefits per µg/m3 in the existing literature.

From Table 3, Column 1, we find that the congestion charge led to a reduction in

daily average levels of NO2 and PM10 of 3.064 and 1.185 µg/m3, respectively.63 As

we only observe concentrations of local air pollutants at a single monitoring station

(Danmarks plass - see Figure 1), we have limited ability to examine the spatial dis-

persion of pollutants. Given that our one monitoring station is located at the border

of the inner city center of Bergen, we opt for a conservative approach and define the

inhabitants of the inner city center as the affected population (29,287 individuals).64

63Note that while our estimated effect of changes in PM10 concentrations is economically sig-
nificant, the daily estimate is not statistically significant and should therefore be interpreted with
caution.

64As a point of comparison, there are around 70,000 individuals living within the borders of the
Bergen toll cordon and around 270,000 individuals living in the municipality of Bergen.
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In reality, individuals working in the city center of Bergen as well as those living in

close proximity to the main roads running through the toll cordon are also likely to

be affected by the air quality improvements.65

Next, we need to provide an estimate of the social costs of air pollution. A

growing literature has documented a wide range of channels through which air pol-

lution has adverse effects on societal outcomes, such as low birth weight (Currie

and Walker, 2011), respiratory diseases (Jans et al., 2018), lower productivity in

both physical and high-skilled work (Graff Zivin and Neidell, 2012; Chang et al.,

2016; Ebenstein et al., 2016; Archsmith et al., 2018), criminal activity (Bondy et al.,

2020), etc. Factoring in all these different channels, and adapting them to our re-

search context, is not necessarily straight forward. E.g., the effect of exposure to

one µg/m3 may be non-linear and depend on the average level of air pollution, and

the outcome reported in studies is not necessarily measured in monetary units. In

this analysis, we rely on a recent Norwegian report providing estimates of the social

costs of one additional individual being exposed to 1 µg/m3 of NO2 and PM10 over

the course of one year (Rødseth et al., 2019). Taking into account a wide range

of short- and long-term effects related to e.g., respiratory diseases, cardiovascular

diseases, and excess mortality, the study gives cost estimates of NOK 160 per µg/m3

of NO2 and NOK 738 per µg/m3 of PM10. As the congestion charge is not active

during weekends, we scale these estimates by the share of working days (230/365).

Note that the cost estimates only cover some of the channels by which air pollution

may have adverse effects, and should therefore be seen as conservative estimates.

Based on the estimates and assumptions outlined above, we quantify an annual

social benefit of NOK 9.05 million for NO2 and NOK 16.14 million for PM10.

E.4 Global pollutants

The two most important parameters for determining the benefit of CO2 reductions

are the social cost of CO2 and the average CO2 intensity of (non-electric and elec-

tric) cars. Relying on estimates from Rødseth et al. (2019), we assume a social cost

of carbon of NOK 508 per metric ton of CO2 (∼$ 61). When quantifying the CO2

intensity of non-electric cars, we focus on the direct emissions from fuel combustion.

As a measure of the CO2 intensity, we use the average intensity of the passenger

car fleet of non-electric vehicles in Norway in 2018 (149 gCO2/km) (Rødseth et al.,

65Due to lack of data, we are not able to measure ambient air quality along the routes around the
city center where we see increased traffic. Our welfare calculations hence do not take into account
a potential worsening of air quality in these areas. At the same time, the routes around the city
center are generally less congested and have a lower population density - both suggesting a lower
social cost of traffic.
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2019). When quantifying the CO2 intensity of electric cars, we consider the indi-

rect emissions related to electricity production. As 95% of Norway’s electricity is

produced from hydropower, we simplify calculations somewhat by assuming a zero

CO2 intensity for electric vehicles.66

To quantify changes in CO2 emissions induced by the congestion charge, we

consider three different channels. First, the congestion charge led to lower CO2

emissions due to lower traffic volumes. As the congestion charge did not change

driving costs for electric vehicles, we can safely assume that the reduction in daily

traffic volume measured at the toll gates (7,456 cars per day; see Table 2, Column 1),

as well as the increase in daily driving around the toll gate (1,054 cars per day; see

Table B.5, Column 1), are explained by non-electric cars. Combined, these numbers

indicate the net total reduction in cars on the relevant road sections around Bergen

per working day. As a proxy for trip length, we use the average work-home distance

from the register data (12.37 kilometers). Given 230 working days per year, this

amounts to about 36 million fewer kilometers driven annually. Given the assume

CO2 intensity and social cost, this translates to NOK 2.76 million per year.

Second, we take into account that the trips around the toll cordon are longer. Of

the 1,054 additional trips per working day, 136 are in the north-south direction while

918 are in the south-west direction. Since the north-south route is 4.1 kilometers

longer and the north-south route is 3.5 kilometers longer, we estimate that the spatial

adaptation increased driving by 0.867 million kilometers annually, which translates

to a social cost of NOK 0.066 million per year.

Third, and importantly, households adapted to the policy by acquiring an electric

car. As explained above, we assume a zero CO2 emission intensity for electric cars.

To simplify the exposition, we assume that the electric cars induced by the policy

replaced non-electric cars 1-to-1. This assumption is in line with our findings in

Table 5, which indicates that the increase in electric vehicle ownership is very similar

in magnitude to the decrease in non-electric car ownership, resulting in a net zero

effect on total car ownership. According to Statistics Norway, a passenger car in

Hordaland county (where Bergen is located) was driven 11,680 kilometers per year

on average in 2016, and according to Section E.1 the congestion charge led 1616

66Note that the CO2 intensity of the electricity consumed in Norway is exceptionally low also
when taking into account electricity imports from other countries. In 2019, the CO2 inten-
sity of consumed electricity in Norway was estimated to around 17g CO2e/kWh; see nve.no/

energiforsyning/kraftproduksjon/hvor-kommer-strommen-fra/. By comparison, the aver-
age CO2 intensity of electricity from coal power plants in Europe was around 900g CO2/kWh in
2019; see IEA (2020). Note that we simplify calculations by disregarding equilibrium price effects
on international markets for power and CO2 quotas. We also disregard indirect CO2 emissions
related to the production and scrapping of cars.
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households in Bergen to acquire electric cars. This translates to about 19 million

kilometers annually, with a monetary value of around NOK 1.43 million per year

due to lower CO2 emissions. Note that we disregard second-order equilibrium effects

working through the second-hand car market.

Combining the three sources of changes in CO2 emissions gives an annual social

benefit of NOK 4.12 million per year.67

E.5 Assumptions and estimates

Table E.1 gives an overview of all values used in the welfare calculation, including

references where appropriate.

Table E.1: Assumptions and estimates used in welfare calculations

Description Source Value

Panel A: Adaptation costs
Congestion charge (additional NOK per trip during rush hours) Table 1 20
Working days per year Norwegian average 230
Change in the number of cars during rush hours per day Table 2, Column 2 -8,046
Paying commuting households exposed Register data 38,482
Probability of acquiring electric car due to exposure (percent) Table 5, Column 1 4.2

Panel B: Time savings
Average time savings during rush hours (minutes per car) NPRA (2016), pg. 14 2.3
Cars affected (cars per day during rush post policy) Traffic data 51,534
Value of time for drivers (NOK per hour) Flügel et al. (2020), pg. 59 93
Number of passengers per car Conservative assumption 0

Panel C: Local pollutants
∆NO2 (µg/m3) Table 3, Column 1 3.06
∆PM10 (µg/m3) Table 3, Column 1 1.19
Cost per year per individual per µg/m3 of NO2 exposure (NOK) Rødseth et al. (2019), pg. 23 160
Cost per year per individual per µg/m3 of PM10 exposure (NOK) Rødseth et al. (2019), pg. 22 738
Population exposed to lower air pollution Register data 29,287

Panel D: Global pollutants
Cost per tonne of CO2 (NOK) Rødseth et al. (2019), pg. 17 508
Average CO2 intensity of non-electric cars (g CO2/km) Rødseth et al. (2019), pg. 31 149
Average CO2 intensity of electric cars (g CO2/km) 0
Average driving per car per year (kilometers) Statistics Norway* 11,680
Average work distance (kilometers) Register data 12.37
Change in the number of cars passing the toll cordon (cars/day) Table 2, Column 1 -7,456
Additional cars driving around, north-south direction (cars/day) Table B.5, Column 1 135.6
Additional cars driving around, south-west direction (cars/day) Table B.5, Column 1 908.5
Additional trip length, north-south direction (kilometers) Google maps 4.1
Additional trip length, south-west direction (kilometers) Google maps 3.5

* Number reflects the average of all passenger cars registered in Hordaland county in 2016, publicly accessible at:
https://www.ssb.no/statbank/table/12576/tableViewLayout1/ (accessed August, 2020).

67Note that this figure is based on the exact calculations rather than the three rounded numbers
given above.
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E.6 Additional calculations for private costs

Table E.2: Vehicle prices (NOK)

Prod. price VAT Reg. tax MSRP

Compact cars
VW Golf Sportsvan (gasoline) 196,456 49,114 73,230 318,800
Nissan Leaf (electric) 245,090 0 0 245,090
Luxury cars
BMW 640i xDrive Coupe (gasoline) 505,434 126,358 503,007 1,134,800
Tesla Model S (electric) 655,000 0 0 655,000

Notes: This table displays prices in NOK for the modal compact electric car (Nissan Leaf, battery range
≈ 240 km) and the modal luxury electric car (Tesla Model S, battery range ≈ 460 km) in 2016, as well
as comparable gasoline cars with similar engine effects. The last column is the manufacturer’s suggested re-
tail price (MSRP), publicly accessible at: https://www.skatteetaten.no/globalassets/tabeller-og-satser/

listepris-bil/bilpriser-2016.pdf (accessed August, 2020). Based on the MSRP and national tax rates, we
have backed out the producer’s price excluding taxes, the VAT and the registration tax for the gasoline cars. Both
tax components are zero for BEVs. 10 NOK ≈ 1 EUR and ≈ 1.2 USD.

Table E.3: Annual private ownership costs

(1) (2) (3)
Cost element New BEV New ICEV Used ICEV

Ownership costs

Purchase price/value (NOK) 245,090 318,080 50,000
Annual depreciation rate (share) 0.12 0.12 0.12
Annual depr. cost, 5 year avg. (NOK) 23,150 30,112 4,723
Ownership tax (NOK) 445 3,135 3,135
Annual ownership cost (NOK) 23,595 33,246 7,858

Driving costs

Driving (km) 11,680 11,680 11,680
Cost per kilometer (NOK) 0.16 0.68 0.76
Annual driving cost (NOK) 1,869 7,942 8,877

Toll payments

Annual toll payments (NOK) 0 9,900 9,900

Value of other BEV incentives

Free parking (NOK) -2,349 0 0
Reduced ferry rates (NOK) -579 0 0
Bus line time savings (NOK) -4,498 0 0
Annual sum of incentives (NOK) -7,426 0 0

Total annual cost (NOK) 18,037 51,206 30,605

Notes: This table presents simplified calculations of the annual cost of car ownership for three different cars; a
new Nissan Leaf (column 1), a new Volkswagen Golf Sportsvan (column 2), and a comparable 10-12 year old small
gasoline car (column 3). See Table E.2 for different price components. We assume a depreciation of 12 % per year,
and calculate annual depreciation as the average annual value loss over a five year period. Kilometers driven is
from Table E.1, while price per kilometer is based on Norwegian gasoline and kWh prices and fuel/energy efficiency
of compact cars. Annual toll payments is for paying commuters in Bergen when the congestion charge is active,
assuming a household member drives to work each day (45 NOK×220 days). The annual value of other BEV
incentives are based on a national survey among BEV owners in Norway; see Figenbaum and Kolbenstvedt (2016),
p. 53 for details. We disregard service, maintenance and insurance costs, which are not necessarily differentiated
by propulsion systems but positively correlated with the age of the car. 10 NOK ≈ 1 EUR and ≈ 1.2 USD.

55

https://www.skatteetaten.no/globalassets/tabeller-og-satser/listepris-bil/bilpriser-2016.pdf
https://www.skatteetaten.no/globalassets/tabeller-og-satser/listepris-bil/bilpriser-2016.pdf

	Introduction
	Background
	Part I: air pollution and traffic volume
	Data and descriptives
	Traffic volume
	Air pollution
	Weather

	Empirical strategy
	Results on traffic volume
	Results on air pollution 

	Part II: Household-level behavior
	Data sources
	Car ownership
	Household characteristics
	Journey to work and associated toll payments

	Empirical strategy
	Estimating equation
	Identifying assumptions
	Interpretation of the DiDiD estimate
	Heterogeneous effects

	Descriptives based on the estimation sample
	Results on car ownership
	Heterogeneous effects


	Discussion
	Welfare effects
	Distributional concerns 

	Conclusion
	Appendix Background
	Appendix Traffic
	Data and descriptives
	Supporting results and robustness checks
	Spatial spillovers

	Appendix Air pollution
	Data and descriptives
	Supporting results and robustness checks
	Alternative DiD strategy: Bergen vs. other cities

	Appendix Car ownership
	Data and descriptives
	Supporting results and robustness checks
	Heterogeneous effects

	Appendix Welfare calculations
	Adaptation costs
	Time savings
	Local pollutants
	Global pollutants
	Assumptions and estimates
	Additional calculations for private costs


