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ABSTRACT
We derive closed-form solutions to optimal stopping problems
related to the pricing of perpetual American withdrawable standard
and lookback put and call options in an extension of the Black-
Merton-Scholes model with asymmetric information. It is assumed
that the contracts are withdrawn by their writers at the last hitting
times for the underlying risky asset price of its running maximum
or minimum over the infinite time interval which are not stopping
timeswith respect to theobservable filtration.We show that theopti-
mal exercise times are the first times at which the asset price process
reaches some lower or upper stochastic boundaries depending on
the current values of its runningmaximum orminimum. The proof is
based on the reduction of the original necessarily two-dimensional
optimal stopping problems to the associated free-boundary prob-
lems and their solutions by means of the smooth-fit and normal-
reflection conditions. We prove that the optimal exercise boundaries
are the maximal and minimal solutions of some first-order nonlinear
ordinary differential equations.
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1. Introduction

Let us consider a probability space (�,F ,P)with a standard BrownianmotionB = (Bt)t≥0
and define the process X = (Xt)t≥0 by:

Xt = x exp
((
r − δ − σ 2/2

)
t + σ Bt

)
(1)

which solves the stochastic differential equation:

dXt = (r − δ)Xt dt + σ Xt dBt (X0 = x) (2)

where x>0 is fixed, and r>0, δ > 0, and σ > 0 are some given constants. Assume that the
process X describes the price of a risky asset in a financial market, where r is the riskless
interest rate, δ is the dividend rate paid to the asset holders, and σ is the volatility rate.
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2 P. V. GAPEEV AND L. LI

We aim to present closed-form solutions to the discounted optimal stopping problems
with the values:

V̄i = sup
τ

E
[
e−r(τ∧θ) Gi(Xτ∧θ , Sτ∧θ )

]
and Ūi = sup

ζ

E
[
e−r(ζ∧η) Fi(Xζ∧η,Qζ∧η)

]
(3)

with G1(x, s) = L1 − x, G2(x, s) = s − L2x, G3(x, s) = s − L3 and F1(x, q) = x − K1,
F2(x, q) = K2x − q, F3(x, q) = K3 − q, for some deterministic constants Li,Ki > 0, for
i = 1, 2, 3. Suppose that the suprema in (3) are taken over all stopping times τ and ζ

with respect to the filtration (Ft)t≥0. The linear functions Gi(x, s) and Fi(x, q), for i = 1,
2, 3, represent the payoffs of standard and lookback options with floating and fixed strikes,
respectively, which are widely used in financial practice. Here, the random times θ and η

given by:

θ = sup{t ≥ 0 |Xt = St} and η = sup{t ≥ 0 |Xt = Qt} (4)

are not stopping times with respect to the natural filtration (Ft)t≥0 of the process X, but
they are honest times in the sense of Nikeghbali and Yor [34]. The processes S = (St)t≥0
and Q = (Qt)t≥0 are the running maximum and minimum of X defined by:

St = s ∨
(
max
0≤u≤t

Xu

)
and Qt = q ∧

(
min
0≤u≤t

Xu

)
(5)

for some arbitrary 0 < q ≤ x ≤ s.
Although the random times θ and η are not stopping times of X, we can still reduce

the problems of (3) to the associated optimal stopping problems for the two-dimensional
(time-homogeneous strong) continuous Markov processes (X, S) and (X,Q). For this
purpose, we observe that the expected rewards from (3) admit the representations:

E
[
e−r(τ∧θ) Gi(Xτ∧θ , Sτ∧θ )

] = E
[
e−rτ Gi(Xτ , Sτ )I(τ < θ) + e−rθ Gi(Sθ , Sθ )I(θ ≤ τ)

]
(6)

and

E
[
e−r(ζ∧η) Fi(Xζ∧η,Qζ∧η)

] = E
[
e−rζ Fi(Xζ ,Qζ )I(ζ < η) + e−rη Fi(Qη,Qη)I(η ≤ ζ )

]
(7)

for i = 1, 2, 3. Observe that the expressions in (6) and (7) allow to describe the original
contracts as standard game (or Israeli) contingent claims introduced by Kifer [27]. Such
contracts enable their issuers to exercise their right to withdraw the contracts prematurely,
by paying some penalties agreed in advance. Further developments of the Israeli options
and the associated zero-sum optimal stopping (Dynkin) games were provided by Kypri-
anou [29], Kühn and Kyprianou [28], Kallsen and Kühn [26], Baurdoux and Kyprianou
[3–5], Ekström and Villeneuve [12], Ekström and Peskir [11], Baurdoux, Kyprianou and
Pardo [6], Egami, Leung, and Yamazaki [10], and Leung and Yamazaki [31] among others.
In contrast to the concept of game contingent claimsmentioned above, in the present paper,
we study the withdrawable American standard and lookback options in which the writers
can terminate the contracts prematurely, by taking advantage of insider information which
is not available to the holders. More precisely, we suppose that the option writers know the
last hitting times for the underlying risky asset price process of its running maximum or
minimum θ or η over the infinite time interval, respectively. For instance, such situations
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can occur when the writers issue options on the underlying risky assets which may repre-
sent the shares of either their own firms or other companies to the decisions of the board of
which they have access and potentially influence them. In this view, the values V̄i and Ūi, for
i = 1, 2, 3, in (3) can be interpreted as the rational (or no-arbitrage) prices of the perpetual
American withdrawable options in the appropriate extension of the Black-Merton-Scholes
model (see, e.g. [45, Chapter VII, Section 3g]). Some extensive overviews of the perpet-
ual American options in diffusion models of financial markets and other related results in
the area are provided in Shiryaev [45, Chapter VIII; Section 2a], Peskir and Shiryaev [41,
Chapter VII; Section 25], and Detemple [8] among others.

We further study the problems of (3) as the associated optimal stopping problems of
(25) and (26) for the two-dimensional continuousMarkov processes having the underlying
risky asset price X and its running maximum S or minimumQ as their state space compo-
nents. The resulting problems turn out to be necessarily two-dimensional in the sense that
they cannot be reduced to optimal stopping problems for one-dimensional Markov pro-
cesses. Note that the integrals in the reward functionals of the optimal stopping problems
in (25) and (26) contain complicated integrands depending on the asset price as well as its
runningmaximum andminimumprocesses. This feature initiates further developments of
techniques to determine the structure of the associated continuation and stopping regions
as well as appropriate modifications of the normal-reflection conditions in the equivalent
free-boundary problems.Moreover, we show that the appearance of the withdrawal oppor-
tunities for the writers of the contracts at the times θ and η may essentially change the
behaviour of the optimal exercise boundaries for the holders of the options. The other
problems of perpetual American cancellable or defaultable standard and lookback options
in models with last passage times of constant and random levels for the underlying asset
prices and zero or linear recoveries were recently considered in Gapeev, Li and Wu [21]
and Gapeev and Li [16], respectively.

Discounted optimal stopping problems for the running maxima and minima of the
initial continuous (diffusion-type) processes were initiated by Shepp and Shiryaev [44]
and further developed by Pedersen [36], Guo and Shepp [24], Gapeev [14], Guo and
Zervos [25], Peskir [39,40], Glover, Hulley, and Peskir [22], Gapeev and Rodosthenous
[17–19], Rodosthenous and Zervos [43], Gapeev, Kort, and Lavrutich [20], and Gapeev
and Al Motairi [15] among others. It was shown, by means of the maximality principle
for solutions of optimal stopping stopping problems established by Peskir [37], which is
equivalent to the superharmonic characterization of the value functions, that the optimal
stopping boundaries are given by the appropriate extremal solutions of certain (systems of)
first-order nonlinear ordinary differential equations. More complicated optimal stopping
problems in models with spectrally negative Lévy processes and their running maxima
were studied by Asmussen, Avram, and Pistorius [1], Avram, Kyprianou, and Pistorius [2],
Ott [35], Kyprianou and Ott [30], and Li, Vu and Zhou [32] among others.

The rest of the paper is organized as follows. In Section 2, we embed the original prob-
lems of (3) into the optimal stopping problems of (25) and (26) for the two-dimensional
continuous Markov processes (X, S) and (X,Q) defined in (1) and (5). It is shown that
the optimal stopping times τ ∗

i and ζ ∗
i are the first times at which the process X reaches

some lower or upper boundaries a∗
i (S) or b

∗
i (Q) depending on the current values of the

processes S or Q, for i = 1, 2, 3, respectively. In Section 3, we derive closed-form expres-
sions for the associated value functionsV∗

i (x, s) andU∗
i (x, q) as solutions to the equivalent
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free-boundary problems and apply the modified normal-reflection conditions at the edges
of the two-dimensional state spaces for (X, S) or (X,Q) to characterize the optimal stop-
ping boundaries a∗

i (S) and b∗
i (Q), for i = 1, 2, 3, as the maximal or minimal solutions to

the resulting first-order nonlinear ordinary differential equations. In Section 4, by using
the change-of-variable formula with local time on surfaces from Peskir [38], we verify that
the solutions of the free-boundary problems provide the solutions of the original optimal
stopping problems. The main results of the paper are stated in Theorems 2.1 and 4.1.

2. Preliminaries

In this section, we introduce the setting and notation of the two-dimensional optimal
stopping problems which are related to the pricing of perpetual American withdrawable
standard and lookback put and call options and formulate the equivalent free-boundary
problems.

2.1. The optimal stopping problems

In order to compute the expectations in (6) and (7), let us now introduce the conditional
survival processes Z = (Zt)t≥0 and Y = (Yt)t≥0 defined by Zt = P(θ > t |Ft) and Yt =
P(η > t |Ft), for all t ≥ 0, respectively. Note that the processes Z and Y are called the
Azéma supermartingales of the random times θ and η (see, e.g. [33, Section 1.2.1]). By
using the fact that the global maximum of a Brownian motion with the drift coefficient
(r − δ)/σ 2 − 1/2 < 0has an exponential distributionwith themean 1/(2(δ − r)/σ 2 + 1),
while the negative of the global minimum of a Brownian motion with the drift coefficient
(r − δ)/σ 2 − 1/2 > 0 has an exponential distribution with themean 1/(2(r − δ)/σ 2 − 1)
(see, e.g. [42, Chapter II, Exercise 3.12]), we have:

Zt =
{

(St/Xt)
α , if α < 0

1, if α ≥ 0
and Yt =

{
(Qt/Xt)

α , if α > 0
1, if α ≤ 0

(8)

for all t ≥ 0, under s = x and q = x, where we set α = 2(r − δ)/σ 2 − 1, respectively. The
representations in (8) can also be obtained from applying Doob’s maximal equality (see
[34, Lemma 2.1 and Proposition 2.2]) to the process X−α = (X−α

t )t≥0, which is a strictly
positive continuous local martingale converging to zero at infinity. Then, it follows from a
direct application of the tower property for conditional expectations that the first terms in
the right-hand sides of the expressions in (6) and (7) have the form:

E
[
e−rτ Gi(Xτ , Sτ )I(τ < θ)

] = E
[
e−rτ Gi(Xτ , Sτ )(Sτ /Xτ )

α
]

(9)

when α < 0, under s = x, and

E
[
e−rζ Fi(Xζ ,Qζ )I(ζ < η)

] = E
[
e−rζ Fi(Xζ ,Qζ )(Qζ /Xζ )

α
]

(10)

when α > 0, under q = x, for any stopping times τ and ζ of the process X, respectively.
Moreover, it follows from standard applications of Itô’s formula (see, e.g. [42, Chapter IV,
Theorem 3.3]) and the properties that the processes S and Qmay change their values only
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whenXt = St and Xt = Qt , for t ≥ 0, respectively, that the Azéma supermartingales Z and
Y from (8) admit the stochastic differentials:

dZt = −α

(
St
Xt

)α

σ dBt + α I(Xt = St)
(
St
Xt

)α dSt
St

= −α

(
St
Xt

)α

σ dBt + α
dSt
St

(11)

when α < 0, and

dYt = −α

(
Qt

Xt

)α

σ dBt + α I(Xt = Qt)

(
Qt

Xt

)α dQt

Qt
= −α

(
Qt

Xt

)α

σ dBt + α
dQt

Qt
(12)

when α > 0, respectively. Hence, it follows fromDoob-Meyer decompositions for the pro-
cesses Z andY in (11) and (12) and applications of the dual predictable projection property
(see, e.g. [34, Corollary 2.4]) that the second terms in the right-hand sides of the expressions
in (6) and (7) admit the representations:

E
[
e−rθ Gi(Sθ , Sθ )I(θ ≤ τ)

] = −E
[∫ τ

0
e−ru Gi(Su, Su)α

(
Su
Xu

)α dSu
Su

]
(13)

when α < 0, under s = x, and

E
[
e−rη Fi(Qη,Qη)I(η ≤ ζ )

] = −E
[∫ ζ

0
e−ru Fi(Qu,Qu)α

(
Qu

Xu

)α dQu

Qu

]
(14)

whenα > 0, under q = x, for any stopping times τ and ζ , and every i = 1, 2, 3, respectively.
Furthermore, by means of standard applications of Itô’s formula, taking into

account the facts that ∂xxGi(x, s) = 0 and ∂xxFi(x, q) = 0, we obtain that the processes
e−rtGi(Xt , St)(St/Xt)

α and e−rtFi(Xt ,Qt)(Qt/Xt)
α admit the representations:

e−rt Gi(Xt , St)(St/Xt)
α

= Gi(x, s)(s/x)α

+
∫ t

0
e−ru

(
∂xGi(Xu, Su)(r − δ′)Xu − r Gi(Xu, Su)

)
I(Xu �= Su)

(
Su
Xu

)α

du

+
∫ t

0
e−ru

(
∂sGi(Xu, Su)Su + α Gi(Xu, Su)

)
I(Xu = Su)

(
Su
Xu

)α dSu
Su

+ Ni,1
t (15)

when α < 0, for each 0 < x ≤ s, and

e−rt Fi(Xt ,Qt)(Qt/Xt)
α

= Fi(x, q)(q/x)α

+
∫ t

0
e−ru

(
∂xFi(Xu,Qu)(r − δ′)Xu − r Fi(Xu,Qu)

)
I(Xu �= Qu)

(
Qu

Xu

)α

du

+
∫ t

0
e−ru

(
∂qFi(Xu,Qu)Qu + α Fi(Xu,Qu)

)
I(Xu = Qu)

(
Qu

Xu

)α dQu

Qu
+ Ni,2

t (16)

when α > 0, for each 0 < q ≤ x, for every i = 1, 2, 3, and all t ≥ 0, where we set δ′ =
δ + ασ 2 ≡ 2r − δ − σ 2, that can be considered as a withdrawal adjusted dividend rate.
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Here, the processes Ni,j = (Ni,j
t )t≥0, for i = 1, 2, 3 and j = 1, 2, defined by:

Ni,1
t =

∫ t

0
e−ru

(
∂xGi(Xu, Su)Xu − α Gi(Xu, Su)

)
I(Xu �= Su)

(
Su
Xu

)α

σ dBu (17)

and

Ni,2
t =

∫ t

0
e−ru

(
∂xFi(Xu,Qu)Xu − α Fi(Xu,Qu)

)
I(Xu �= Qu)

(
Qu

Xu

)α

σ dBu (18)

are continuous uniformly integrable martingales under the probability measure P, when
α < 0 and α > 0, respectively. Note that the processes S and Q may change their values
only at the times when Xt = St and Xt = Qt , for t ≥ 0, respectively, and such times accu-
mulated over the infinite horizon form the sets of the Lebesgue measure zero, so that the
indicators in the expressions of (15)–(16) and (17)–(18) can be ignored (see also Proof of
Theorem 4.1 below formore explanations and references). Then, inserting τ and ζ in place
of t into (15) and (16), respectively, by means of Doob’s optional sampling theorem (see,
e.g. [42, Chapter II, Theorem 3.2]), we get:

E
[
e−rτ Gi(Xτ , Sτ )(Sτ /Xτ )

α
]

= Gi(x, s)(s/x)α + E
[∫ τ

0
e−ru

(
∂xGi(Xu, Su)(r − δ′)Xu − r Gi(Xu, Su)

)( Su
Xu

)α

du

+
∫ τ

0
e−ru

(
∂sGi(Su, Su)Su + α Gi(Su, Su)

)dSu
Su

]
(19)

when α < 0, and

E
[
e−rζ Fi(Xζ ,Qζ )(Qζ /Xζ )

α
]

= Fi(x, q)(q/x)α + E
[∫ ζ

0
e−ru

(
∂xFi(Xu,Qu)(r − δ′)Xu − r Fi(Xu,Qu)

)(Qu

Xu

)α

du

+
∫ τ

0
e−ru

(
∂qFi(Qu,Qu)Qu + α Fi(Qu,Qu)

)dQu

Qu

]
(20)

when α > 0, for any stopping times τ and ζ , and every i = 1, 2, 3. Hence, getting the
expressions in (19) and (20) together with the ones in (13) and (14) above and combining
them with the expressions in (6) and (7), we may conclude that the values of (3) are given
by:

V̄i = Gi(x, x) + sup
τ

E
[∫ τ

0
e−ru Hi,1(Xu, Su) du +

∫ τ

0
e−ru ∂sGi(Su, Su) dSu

]
(21)

when α < 0, under s = x, and

Ūi = Fi(x, x) + sup
ζ

E
[∫ ζ

0
e−ru Hi,2(Xu,Qu) du +

∫ ζ

0
e−ru ∂qFi(Xu,Qu) dQu

]
(22)

when α < 0, under q = x, and i = 1, 2, 3, where the suprema are taken over all stopping
times τ and ζ of the processes (X, S) and (X,Q), respectively. Here, we set:

Hi,1(x, s) = (
∂xGi(x, s)(r − δ′)x − r Gi(x, s)

)
(s/x)α (23)
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for all 0 < x ≤ s, and

Hi,2(x, q) = (
∂xFi(x, q)(r − δ′)x − r Fi(x, q)

)
(q/x)α (24)

for all 0 < q ≤ x, respectively. In this case, we see that the problems in (21) and (22) can
naturally be embedded into the optimal stopping problems for the (time-homogeneous
strong) Markov processes (X, S) = (Xt , St)t≥0 and (X,Q) = (Xt ,Qt)t≥0 with the value
functions:

V∗
i (x, s) = sup

τ
Ex,s

[∫ τ

0
e−ru Hi,1(Xu, Su) du +

∫ τ

0
e−ru ∂sGi(Su, Su) dSu

]
(25)

when α < 0, and

U∗
i (x, q) = sup

ζ

Ex,q
[∫ ζ

0
e−ru Hi,2(Xu,Qu) du +

∫ ζ

0
e−ru ∂qFi(Qu,Qu) dQu

]
(26)

when α > 0, for every i = 1, 2, 3, respectively. Here, Ex,s and Ex,q denote the expec-
tations with respect to the probability measures Px,s and Px,q under which the two-
dimensionalMarkov processes (X, S) and (X,Q) defined in (1) and (5) start at (x, s) ∈ E1 =
{(x, s) ∈ R2 | 0 < x ≤ s} and (x, q) ∈ E2 = {(x, q) ∈ R2 | 0 < q ≤ x}, respectively. We fur-
ther obtain solutions to the optimal stopping problems in (25) and (26) and verify below
that the value functions V∗

i (x, s) andU∗
i (x, q), for i = 1, 2, 3, are the solutions of the prob-

lems in (21) and (22), and thus, give the solutions of the original problems in (3), under
s = x and q = x, respectively.

2.2. The structure of optimal exercise times

Let us now determine the structure of the optimal stopping times at which the holders
should exercise the contracts. For this purpose, we formulate the following assertion.

Theorem 2.1: Let the processes (X, S) and (X,Q) be given by (1) and (5), with some r>0,
δ > 0, and σ > 0 fixed, and the inequality δ′ ≡ 2r − δ − σ 2 > 0 be satisfied. Suppose that
the random times θ and η are defined in (4). Then, the optimal exercise times for the perpetual
American withdrawable standard and lookback put and call options with the values in (25)
and (26) have the structure:

τ ∗
i = inf{t ≥ 0 |Xt ≤ a∗

i (St)} and ζ ∗
i = inf{t ≥ 0 |Xt ≥ b∗

i (Qt)} (27)

under α < 0 and α > 0, for i = 1, 2, 3, respectively.
The optimal exercise boundaries a∗

i (s) and b∗
i (q) in (27) represent some functions satis-

fying the inequalities ai(s) < a∗
i (s) < ai(s) ∧ s, for s > si, and bi(q) ∨ q < b∗

i (q) < bi(q),
for 0 < q < qi, as well as the equalities a

∗
1(s) = s, a∗

3(s) = 0, for all s ≤ si, and b∗
1(q) = q,

b∗
3(q) = ∞, for all q ≥ qi, for every i = 1, 2, 3. Here, we have a1(s) = rL1α/(δ′(α − 1))
and a1(s) = rL1/δ′, a2(s) = rsα/(δ′L2(α − 1)) and a2(s) = rs/(δ′L2), while ai(s) = 0 and
a3(s) = s, under α < 0, with some 0 ≤ s1 ≤ a1 as well as s2 = 0 and s3 = L3.

We also have b1(q) = rK1/δ
′ and b1(q) = rK1α/(δ′(α − 1)), b2(q) = rq/(δ′K2) and

b2(q) = rqα/(δ′K2(α − 1)), underα > 1, as well as b1(q) = ∞ and b2(q) = ∞, under 0 <
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α ≤ 1, while b3(q) = q and b3(q) = ∞, with some q1 ≥ b1 as well as q2 = ∞ and q3 = K3.
Moreover, the boundary a∗

3(s) is increasing on (L3, L3α/(α + 1)), under α < −1, and on
(L3,∞), under −1 ≤ α < 0, while the boundary b∗

3(q) is increasing on (K3α/(α + 1),K3),
under α > 0.

Proof: (i) We first note that, by virtue of properties of the running maximum S and mini-
mumQ from (5) of the geometric BrownianmotionX from (1) (see, e.g. [9, Subsection 3.3]
for similar arguments applied to the runningmaximaof theBessel processes), it is seen that,
for any s′ > 0 and q′ > 0 fixed and an infinitesimally small deterministic time interval �,
we have:

S� = s′ ∨ max
0≤u≤�

Xu = s′ ∨ (s′ + �X) + o(�) as � ↓ 0 (28)

and

Q� = q′ ∧ min
0≤u≤�

Xu = q′ ∧ (q′ + �X) + o(�) as � ↓ 0 (29)

where we set �X = X� − s′ and �X = X� − q′, respectively. Observe that �S = o(�)

when �X ≤ 0, �S = �X + o(�) when �X > 0, �Q = o(�) when �X ≥ 0, and �Q =
�X + o(�)when�X < 0, wherewe set�S = S� − s′ and�Q = Q� − q′, and recall that
o(�) denotes a random function satisfying o(�)/� → 0 as � ↓ 0 (P-a.s.). In this case,
using the asymptotic formulas:

Es′,s′
[
�X;�X > 0

] ≡ Es′,s′
[
�X I(�X > 0)

] ∼ s′ σ
√

�

2π
as � ↓ 0 (30)

and

Eq′,q′
[
�X;�X < 0

] ≡ Eq′,q′
[
�X I(�X < 0)

] ∼ −q′ σ
√

�

2π
as � ↓ 0 (31)

as well as taking into account the structure of the rewards in (25) and (26), we get:

Es′,s′
[
e−r� Hi,1(s′, s′)� + e−r� ∂sGi(s′, s′)�S

]

∼ e−r� Hi,1(s′, s′)� + e−r� ∂sGi(s′, s′)s′ σ
√

�

2π
as � ↓ 0 (32)

and

Eq′,q′
[
e−r� Hi,2(q′, q′)� + e−r� ∂qFi(q′, q′)�Q

]

∼ e−r� Hi,2(q′, q′)� − e−r� ∂qFi(q′, q′)q′ σ
√

�

2π
as � ↓ 0 (33)

for each s′ > 0 and q′ > 0 fixed. Since we have ∂sG1(x, s) = 0 and ∂sGi(x, s) = 1, for i = 2,
3, as well as ∂qF1(x, q) = 0 and ∂qFi(x, q) = −1, for i = 2, 3, we see that the resulting coef-
ficients by the terms of order

√
� in the expressions of (32) and (33) are strictly positive, for

all (x, s) ∈ E1 as well as (x, q) ∈ E2 and every i = 2, 3. Hence, taking into account the facts
that the process S is positive and increasing and the processQ is positive and decreasing, we
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may therefore conclude from the structure of the second integrands in (25) and (26) as well
as the heuristic arguments presented in (32) and (33) above that it is not optimal to exercise
the withdrawable lookback put options whenXt = St , while it is not optimal to exercise the
withdrawable call options when Xt = Qt , for any t ≥ 0, respectively. In other words, these
facts mean that the diagonal d1 = {(x, s) ∈ E1 | x = s} belongs to the continuation region
C∗
i,1, for i = 2, 3, which has the form:

C∗
i,1 = {

(x, s) ∈ E1
∣∣V∗

i (x, s) > 0
}

(34)

while the diagonal d2 = {(x, q) ∈ E2 | x = q} belongs to the continuation region C∗
i,2, for

i = 2, 3, which is given by:

C∗
i,2 = {

(x, q) ∈ E2
∣∣U∗

i (x, q) > 0
}

(35)

for every i = 1, 2, 3 (see, e.g. [41, Chapter I, Subsection 2.2]).
Moreover, it follows from the structure of the first integrands in (25) and (26) that

it is not optimal to exercise the perpetual American withdrawable standard or lookback
put option when Hi,1(Xt , St) ≥ 0, while it is not optimal to exercise the appropriate stan-
dard or lookback call option when Hi,2(Xt ,Qt) ≥ 0, for any t ≥ 0, for every i = 1, 2,
3, respectively. In other words, these facts mean that the set {(x, s) ∈ E1 |Hi,1(x, s) ≥ 0}
belongs to the continuation region C∗

i,1 in (34), while the set {(x, q) ∈ E2 |Hi,2(x, q) ≥ 0}
belongs to the continuation region C∗

i,2 in (35), for every i = 1, 2, 3, respectively. In
this respect, if we assume that δ′ ≡ 2r − δ − σ 2 ≤ 0 holds, that obviously implies that
α ≡ 2(r − δ)/σ 2 − 1 < 0 holds, then we see from the expression in (25) that the equal-
ity τ ∗

1 = 0 should hold for the optimal stopping time, so that one should exercise the
appropriate perpetual American withdrawable put option instantly. In this view, for sim-
plicity of presentation, we further assume that δ′ > 0 holds, as well as note that the fact
that α ≡ 2(r − δ)/σ 2 − 1 > 0 holds obviously implies that δ′ ≡ 2r − δ − σ 2 > 0 holds.
In this case, the inequality H1,1(x, s) = (δ′x − rL1)(s/x)α ≥ 0 is satisfied if and only if
a1 ≤ x ≤ s holds with a1 = rL1/δ′, the inequality H2,1(x, s) = (δ′L2x − rs)(s/x)α ≥ 0 is
satisfied if and only if a2(s) ≤ x ≤ s holds with a2(s) = rs/(δ′L2), while the inequality
H3,1(x, s) = r(L3 − s)(s/x)α ≥ 0 is satisfied if and only if 0 < x ≤ s ≤ L3 holds. Further-
more, the inequality H1,2(x, q) = (rK1 − δ′x)(q/x)α ≥ 0 is satisfied if and only if q ≤ x ≤
b1 holds with b1 = rK1/δ

′, the inequality H2,2(x, q) = (rq − δ′K2x)(q/x)α ≥ 0 is satisfied
if and only if q ≤ x ≤ b2(q)holdswith b2(q) = rq/(δ′K2), while the inequalityH3,2(x, q) =
r(q − K3)(q/x)α ≥ 0 is satisfied if and only if x ≥ q ≥ K3 holds (see Figures 1-4 below for
the computer drawings of the boundary estimates a1, b1 and a2(s), b2(q)).

(ii) Let us now describe the structure of the continuation regions in (34) and (35). For
this purpose, we provide an analysis of the reward functionals of the optimal stopping
problems from (25) and (26). On the one hand, we observe that the function H1,1(x, s) =
(δ′x − rL1)(s/x)α decreases in x on the interval (0, a1), and then, it increases in x on the
interval (a1, s) with a1 = rL1α/(δ′(α − 1)) < rL1/δ′ = a1, under α < 0, for each s > s1
fixed and some 0 ≤ s1 ≤ a1. In this case, the functionH1,1(x, s) attains its global minimum
at x = a1, for any s > s1. According to the comparison results for strong solutions of (one-
dimensional) stochastic differential equations (see, e.g. [13, Theorem 1]), this fact means
that the process (H1,1(Xt , St))t≥0 started at the point H1,1(a1, s) has the smallest sample
paths than the one started at any other point H1,1(x, s), for any 0< x< s such that x �= a1
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and s > s1. In this respect, we may conclude that the point (a1, s) belongs to the stopping
region D∗

i,1, for i = 1, which has the form:

D∗
i,1 = {

(x, s) ∈ E1
∣∣V∗

i (x, s) = 0
}

(36)

for every i = 1, 2, 3 (see, e.g. [41, Chapter I, Subsection 2.2]), since otherwise, all the
points (x, s) such that 0< x< s, for any s > s1, would belong to the continuation region
C∗
1,1 from (34) too. The latter fact contradicts the obvious property that it is better to stop

the process (X, S) at time zero than do not stop the process at all during the infinite time
interval, under the assumption that α < 0. Therefore, taking into account the fact that the
function H1,1(x, s) is negative on the interval (0, a1), we see that all the points (x, s) such
that 0 < x ≤ a1 ∧ s, for any s > s1, belong to the stopping region D∗

1,1 from (36) as well.
Note that similar arguments applied for the function H2,1(x, s) = (δ′L2x − rs)(s/x)α

show that all the points (x, s) such that 0 < x ≤ a2(s) ∧ s, with a2(s) = rsα/(δ′L2(α −
1)) < rs/(δ′L2) = a2(s), under α < 0, for each s > s2 = 0 fixed, belong to the stopping
regionD∗

2,1 from (36).Moreover, it follows from the property that the functionH3,1(x, s) =
r(L3 − s)(s/x)α increases in x on the interval (0, s), under α < 0, that, for each s > s3 = L3
fixed, there exists a sufficiently small x>0 such that the point (x, s) belongs to the stopping
region D∗

3,1 from (36). According to arguments similar to the ones applied in [9, Subsec-
tion 3.3] and [37, Subsection 3.3], the latter properties can be explained by the fact that
the costs of waiting until the process X comes from such a small x>0 to the current value
of the maximum S may be too high, due to the presence of the discounting factor in the
reward functional of (25), one should stop at this x>0 immediately.

On the other hand, we observe that the function H1,2(x, q) = (rK1 − δ′x)(q/x)α
decreases in x on the interval (q, b1), and then, it increases in x on the interval (b1,∞)

with b1 = rK1α/(δ′(α − 1)) > rK1/δ
′ = b1, under α > 1, for each q < q1 fixed and some

q1 ≥ b1. In this case, the function H1,2(x, q) attains its global minimum at x = b1, for any
q < q1. According to the comparison results for strong solutions of (one-dimensional)
stochastic differential equations, this fact means that the process (H1,2(Xt ,Qt))t≥0 started
at the pointH1,2(b1, q) has the smallest sample paths than the one started at any other point
H1,2(x, q), for any x>q such that x �= b1 and q < q1. In this respect, we may conclude that
the point (b1, q) belongs to the stopping region D∗

i,2, for i = 1, which has the form:

D∗
i,2 = {

(x, q) ∈ E2
∣∣U∗

i (x, q) = 0
}

(37)

for i = 1, 2, 3, respectively, since otherwise, all the points (x, q) such that x>q, for any q <

q1, would belong to the continuation region C∗
1,2 from (35) too. The latter fact contradicts

the obvious property that it is better to stop the process (X,Q) at time zero than do not
stop the process at all during the infinite time interval, under the assumption that α >

1. Therefore, taking into account the fact that the function H1,2(x, q) is negative on the
interval (b1,∞), we see that all the points (x, q) such that x ≥ b1 ∨ q, for any q < q1, belong
to the stopping region D∗

1,2 from (37) as well.
Note that similar arguments applied for the function H2,2(x, q) = (rq − δ′K2x)(q/x)α

show that all the points (x, q) such that x ≥ b2(q) ∨ q, with b2(q) = rqα/(δ′K2(α − 1)) >

rq/(δ′K2) = b2(q), under α > 1, for each q < q2 = ∞ fixed, belong to the stopping region
D∗
2,2 from (37). Moreover, it follows from the fact that the function H3,2(x, q) = r(q −

K3)(q/x)α is strictly increasing in x on the interval (q,∞), under α > 0, that, for each
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Figure 1. A computer drawing of the continuation and stopping regions C∗
1,1 and D∗

1,1 formed by the
optimal exercise boundary a∗

1(s) and its estimates a1 and a1.

q < q3 = K3 fixed, there exists a sufficiently large x>0 such that the point (x, q) belongs
to the stopping region D∗

3,2 from (37). The same arguments based on the strict increase of
the functionsHi,2(x, q), for i = 1, 2, in x on the interval (q,∞), under 0 < α ≤ 1, for each
q < qi fixed, for i = 1, 2, with some q1 > b1 and q2 = ∞, show that, there exists a suffi-
ciently large x>0 such that the point (x, q) belongs to the stopping regions D∗

i,2, for i = 1,
2, from (37). The latter properties can be explained by the fact that the costs of waiting until
the processX comes from such a large x>0 to the current value of theminimumQmay be
too high, due to the presence of the discounting factor in the reward functional of (26), one
should stop at this x>0 immediately. In this view, we can set b1 = ∞ and b2(q) = ∞, for
q>0, under 0 < α ≤ 1 (see Figures 1–4 below for the computer drawings of the boundary
estimates a1, b1 and a2(s), b2(q)).

It is seen from the results of Theorem 4.1 proved below that the value functionsV∗
i (x, s)

and U∗
i (x, q) are continuous, so that the sets C

∗
i,1 and C∗

i,2 in (34) and (35) are open, while
the sets D∗

i,1 and D∗
i,2 in (36) and (37) are closed, for every i = 1, 2, 3 (see Figures 1–5 for

the computer drawings of the continuation and stopping regions C∗
i,j and D∗

i,j, for i = 1, 2,
3 and j = 1, 2).

(iii) Now, we observe that, if we take some (x, s) ∈ D∗
i,1 from (36) such that x > ai(s)

with ai(s) specified above and use the fact that the process (X, S) started at some (x′, s)
such that ai(s) ≤ x′ < x passes through the point (x, s) before hitting the diagonal d1 =
{(x, s) ∈ E1 | x = s}, then the equality in (25) implies thatV∗

i (x′, s) ≤ V∗
i (x, s) = 0 holds, so

that (x′, s) ∈ D∗
i,1, for i = 1, 2, 3.Moreover, if we take some (x, q) ∈ D∗

i,2 from (37) such that
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Figure 2. A computer drawing of the continuation and stopping regions C∗
1,2 and D∗

1,2 formed by the

optimal exercise boundary b∗
1(s) and its estimates b1 and b1.

x < bi(q)with bi(q) specified above and use the fact that the process (X,Q) started at some
(x′, q) such that bi(q) ≥ x′ > x passes through the point (x, q) before hitting the diagonal
d2 = {(x, q) ∈ E2 | x = q}, then the equality in (26) implies that U∗

i (x
′, q) ≤ U∗

i (x, q) = 0
holds, so that (x′, q) ∈ D∗

i,2, for i = 1, 2, 3.
On the other hand, if take some (x, s) ∈ C∗

i,1 from (34) and use the fact that the process
(X, S) started at (x, s) passes through some point (x′′, s) such that x′′ > x before hitting the
diagonal d1, then the equality in (25) yields that V∗

i (x′′, s) ≥ V∗
i (x, s) > 0 holds, so that

(x′′, s) ∈ C∗
i,1, for i = 1, 2, 3. Moreover, if we take some (x, q) ∈ C∗

i,2 from (35) and use the
fact that the process (X,Q) started at (x, q) passes through some point (x′′, q) such that
x′′ < x before hitting the diagonal d2, then the equality in (26) yields that U∗

i (x
′′, q) ≥

U∗
i (x, q) > 0 holds, so that (x′′, q) ∈ C∗

i,2.
Hence,wemay conclude that there exist functions a∗

i (s) and b
∗
i (q) satisfying the inequal-

ities a∗
i (s) < ai(s) ∧ s, for all s > si, and b∗

i (q) > bi(q) ∨ q, for all q < qi, as well as the
equalities a∗

1(s) = s, a∗
3(s) = 0, for all s ≤ si, and b

∗
1(q) = q, b∗

3(q) = ∞, for all q ≥ qi, such
that the continuation regions C∗

i,j, for j = 1, 2, in (34) and (35) have the form:

C∗
i,1 = {

(x, s) ∈ E1
∣∣ a∗

i (s) < x ≤ s
}

and C∗
i,2 = {

(x, q) ∈ E2
∣∣ q ≤ x < b∗

i (q)
}

(38)

while the stopping regions D∗
i,j, for j = 1, 2, in (36) and (37) are given by:

D∗
i,1 = {

(x, s) ∈ E1
∣∣ x ≤ a∗

i (s)
}

and D∗
i,2 = {

(x, q) ∈ E2
∣∣ x ≥ b∗

i (q)
}

(39)
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Figure 3. A computer drawing of the continuation and stopping regions C∗
2,1 and D∗

2,1 formed by the
optimal exercise boundary a∗

2(s) and its estimates a2(s) and a2(s).

Figure 4. A computer drawing of the continuation and stopping regions C∗
2,2 and D∗

2,2 formed by the

optimal exercise boundary b∗
2(q) and its estimates b2(q) and b2(q).
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Figure 5. A computer drawing of the continuation and stopping regions C∗
3,2 and D∗

3,2 formed by the
optimal exercise boundary b∗

3(q) and the points K3 and K3α/(α + 1).

for every i = 1, 2, 3, respectively (see Figures 1–5 for the computer drawings of the optimal
stopping boundaries a∗

i (s) and b∗
i (q), for i = 1, 2, 3).

(iv)We finally specify the behaviour of the optimal exercise boundaries a∗
3(s) and b

∗
3(q).

For the ease of presentation, in the rest of this section, we indicate by (X(x), S(s,x)) and
(X(x),Q(q,x)) the dependence of the processes (X, S) and (X,Q) defined in (1) and (5) from
their starting points (x, s) ∈ E1 and (x, q) ∈ E2. Let us first fix some (x, s) ∈ C∗

3,1 such that
L3 = s3 < s < L3α/(α + 1), under α < −1, so thatV∗

3 (x, s) > 0 holds. Then, consider the
optimal stopping time τ ∗

3 = τ ∗
3 (x, s) for the problem (25), for i = 3, for this starting point

(x, s) of the process (X, S) from (1) and (5). Then, using the property that the function
H3,1(x, s) = r(L3 − s)(s/x)α is decreasing in s on (L3, L3α/(α + 1)), under α < −1, for
each x>0 fixed, and the fact that ∂sG3(s, s) = 1, by virtue of the structure of the running
maximum S(s,x) of the process X(x), for any other starting point (x, s′) ∈ E1 such that L3 <

s′ < s < L3α/(α + 1), we have:

V∗
3 (x, s′) ≥ E

[∫ τ∗
3

0
e−ru H3,1

(
X(x)
u , S(s′,x)

u
)
du +

∫ τ∗
3

0
e−ru dS(s′,x)

u

]

≥ E

[∫ τ∗
3

0
e−ru H3,1

(
X(x)
u , S(s,x)

u
)
du +

∫ τ∗
3

0
e−ru dS(s,x)

u

]
= V∗

3 (x, s) > 0 (40)

so that (x, s′) ∈ C∗
3,1 too. Thus, we may conclude that the left-hand boundary a∗

3(s) is
increasing on (L3, L3α/(α + 1)), under α < −1. Moreover, for any starting point (x, s) ∈
C∗
3,1 such that s > s3 = L3, using the fact that the function H3,1(x, s) is decreasing in s on
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Figure 6. A computer drawing of the continuation and stopping regions C∗
3,1 and D∗

3,1 formed by the
optimal exercise boundary a∗

3(s) and the points L3 and L3α/(α + 1).

(L3,∞), under −1 ≤ α < 0, for each x>0 fixed, by means of arguments similar to the
ones used above, we may conclude that V∗

3 (x, s′) ≥ V∗
3 (x, s) > 0 holds, for all s > s′ > L3,

and thus, we have (x, s′) ∈ C∗
3,1, and the boundary a∗

3(s) is increasing on (L3,∞), under
−1 ≤ α < 0.

Let us now fix some (x, q) ∈ C∗
3,2 such that K3α/(α + 1) < q < q3 = K3, under α >

0, so that U∗
3 (x, q) > 0 holds. Then, using the fact that the function H3,2(x, q) = r(q −

K3)(q/x)α is increasing in q on (K3α/(α + 1),K3), under α > 0, for each x>0 fixed, by
virtue of the structure of the running minimum Q(q,x) of the process X(x), for any other
starting point (x, q′) ∈ E2 such that K3 < q < q′ < K3α/(α + 1), we have:

U∗
3 (x, q

′) ≥ E

[∫ ζ ∗
3

0
e−ru H3,2

(
X(x)
u ,Q(q′,x)

u
)
du −

∫ ζ ∗
3

0
e−ru dQ(q′,x)

u

]

≥ E

[∫ ζ ∗
3

0
e−ru H3,2

(
X(x)
u ,Q(q,x)

u
)
du −

∫ ζ ∗
3

0
e−ru dQ(q,x)

u

]
= U∗

3 (x, q) > 0

(41)

so that (x, q′) ∈ C∗
3,2 too. Thus, we may conclude that the right-hand boundary b∗

3(q) is
increasing on (K3α/(α + 1),K3), under α > 0 (see Figures 6 and 5 for the computer draw-
ings of locations of the optimal stopping boundaries a∗

3(s) and b∗
3(q) with respect to the

points L3, L3α/(α + 1) and K3, K3α/(α + 1)).
�
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2.3. The free-boundary problems

By means of standard arguments based on the application of Itô’s formula, it is shown that
the infinitesimal operator L of the process (X, S) or (X,Q) from (2) and (5) has the form:

L = (r − δ)x ∂x + σ 2x2

2
∂xx in 0 < x < s or 0 < q < x (42)

∂s = 0 at 0 < x = s or ∂q = 0 at 0 < x = q (43)

(see, e.g. [37, Subsection 3.1]). In order to find analytic expressions for the unknown value
functions V∗

i (x, s) and U∗
i (x, q) from (25) and (26) and the unknown boundaries a∗

i (s)
and b∗

i (q) from (38) and (39), for every i = 1, 2, 3, we apply the results of general theory
for solving optimal stopping problems for Markov processes presented in [41, Chapter IV,
Section 8] among others (see also [41, Chapter V, Sections 15-20] for optimal stopping
problems for maxima processes and other related references). More precisely, for the origi-
nal optimal stopping problems in (25) and (26), we formulate the associated free-boundary
problems (see, e.g. [41, Chapter IV, Section 8]) and then verify in Theorem 4.1 below that
the appropriate candidate solutions of the latter problems coincide with the solutions of
the original problems. In other words, we reduce the optimal stopping problems of (25)
and (26) to the following equivalent free-boundary problems:

(LVi − rVi)(x, s) = −Hi,1(x, s) for (x, s) ∈ Ci,1 \ {(x, s) ∈ E1 | x = s} (44)

(LUi − rUi)(x, q) = −Hi,2(x, q) for (x, q) ∈ Ci,2 \ {(x, q) ∈ E2 | x = q} (45)

Vi(x, s)
∣∣
x=ai(s)+ = 0 and Ui(x, q)

∣∣
x=bi(q)− = 0 (46)

∂xVi(x, s)
∣∣
x=ai(s)+ = 0 and ∂xUi(x, q)

∣∣
x=bi(q)− = 0 (47)

∂sVi(x, s)
∣∣
x=s− = −∂sGi(s, s) and ∂qUi(x, q)

∣∣
x=q+ = −∂qFi(q, q) (48)

Vi(x, s) = 0 for (x, s) ∈ Di,1 and Ui(x, q) = 0 for (x, q) ∈ Di,2 (49)

Vi(x, s) > 0 for (x, s) ∈ Ci,1 and Ui(x, q) > 0 for (x, q) ∈ Ci,2 (50)

(LVi − rVi)(x, s) < −Hi,1(x, s) for (x, s) ∈ Di,1 (51)

(LUi − rUi)(x, q) < −Hi,2(x, q) for (x, q) ∈ Di,2 (52)

where Ci,j and Di,j are defined as C∗
i,j and D∗

i,j, for j = 1, 2, in (38) and (39) with the
unknown functions ai(s) and bi(q) instead of a∗

i (s) and b
∗
i (q), where the functionsHi,1(x, s)

and Hi,2(x, q), for every i = 1, 2, 3, are defined in (23) and (24), respectively. Here,
the instantaneous-stopping as well as the smooth-fit and normal-reflection conditions
of (46)–(48) are satisfied, for all s > si and q < qi, for i = 1, 2, 3, with some 0 ≤ s1 ≤ a1 =
rL1/δ′ and q1 ≥ b1 = rK1/δ

′, as well as s2 = 0, s3 = L3 and q2 = ∞, q3 = K3. Observe
that the superharmonic characterization of the value function (see, e.g. [41, Chapter IV,
Section 9]) implies thatV∗

i (x, s) andU∗
i (x, q) are the smallest functions satisfying (44)–(46)

and (49)–(50) with the boundaries a∗
i (s) and b

∗
i (q), for every i = 1, 2, 3, respectively. Note

that the inequalities in (51) and (52) follow directly from the arguments of parts (ii)–(iii)
of Subsection 2.2 above.
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3. Solutions to the free-boundary problems

In this section, we obtain solutions to the free-boundary problems in (44)–(52) and derive
first-order nonlinear ordinary differential equations for the candidate optimal stopping
boundaries.

3.1. The candidate value functions

It is shown that the second-order ordinary differential equations in (44) and (45) have the
general solutions:

Vi(x, s) = Ci,1(s)xγ1 + Ci,2(s)xγ2 + Ai,1(s)x1−α sα + Ai,2(s)x−α sα (53)

when α < 0, for 0 < x ≤ s, and

Ui(x, q) = Di,1(q)xγ1 + Di,2(q)xγ2 + Bi,1(q)x1−α qα + Bi,2(q)x−α qα (54)

when α > 0, for 0 < q ≤ x, respectively. Here, Ci,j(s) and Di,j(q), for i = 1, 2, 3 and j = 1,
2, are some arbitrary (continuously differentiable) functions, and γj, for j = 1, 2, are given
by:

γj = 1
2

− r − δ

σ 2 − (−1)j
√(

1
2

− r − δ

σ 2

)2
+ 2r

σ 2 (55)

so that γ2 < 0 < 1 < γ1 holds. The functions Ai,j(s) and Bi,j(q), for i = 1, 2, 3 and j = 1,
2, are specified by A1,1(s) = 1, A1,2(s) = −L1, A2,1(s) = L2, A2,2(s) = −s, A3,1(s) = 0,
A3,2(s) = L3 − s, and B1,1(q) = −1, B1,2(q) = K1, B2,1(q) = −K2, B2,2(q) = q, B3,1(q) =
0, B3,2(q) = q − K3. Then, by applying the conditions of (46)–(48) to the functions in (53)
and (54), we obtain the equalities:

Ci,1(s)a
γ1
i (s) + Ci,2(s)a

γ2
i (s) + Ai,1(s)a1−α

i (s)sα + Ai,2(s)a−α
i (s)sα = 0 (56)

γ1 Ci,1(s)a
γ1
i (s) + γ2 Ci,2(s)a

γ2
i (s) + Ai,1(s)(1 − α)a1−α

i (s)sα − Ai,2(s)α a−α
i (s)sα = 0

(57)

C′
i,1(s)s

γ1 + C′
i,2(s)s

γ2 + A′
i,1(s)s + Ai,1(s)α + A′

i,2(s) + Ai,2(s)α/s = −∂sGi(s, s) (58)

for all s > si, and

Di,1(q)b
γ1
i (q) + Di,2(q)b

γ2
i (q) + Bi,1(q)b1−α

i (q)qα + Bi,2(q)b−α
i (q)qα = 0 (59)

γ1 Di,1(q)b
γ1
i (q) + γ2 Di,2(q)b

γ2
i (q) + Bi,1(q)(1 − α)b1−α

i (q)qα − Bi,2(q)α b−α
i (q)qα = 0

(60)

D′
i,1(q)q

γ1 + D′
i,2(q)q

γ2 + B′
i,1(q)q + Bi,1(q)α + B′

i,2(q) + Bi,2(q)α/q = −∂qFi(q, q)
(61)
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for all q < qi, respectively. Hence, by solving the systems of equations in (56)–(57)
and (59)–(60), we obtain that the candidate value functions admit the representations:

Vi(x, s; ai(s)) = Ci,1(s; ai(s))xγ1 + Ci,2(s; ai(s))xγ2 + Ai,1(s)x1−α sα + Ai,2(s)x−α sα (62)

for ai(s) < x ≤ s and s > si, with

Ci,j(s; ai(s)) = Ai,1(s)(γ3−j + α − 1)ai(s) + Ai,2(s)(γ3−j + α)

(γj − γ3−j)a
γj+α

i (s)s−α
(63)

for j = 1, 2, and

Ui(x, q; bi(q)) = Di,1(q; bi(q))xγ1 + Di,2(q; bi(q))xγ2 + Bi,1(q)x1−α qα + Bi,2(q)x−α qα

(64)
for q ≤ x < bi(q) and q < qi, with

Di,j(q; bi(q)) = Bi,1(q)(γ3−j + α − 1)bi(q) + Bi,2(q)(γ3−j + α)

(γj − γ3−j)b
γj+α

i (q)q−α
(65)

for i = 1, 2, 3 and j = 1, 2, respectively. Moreover, by means of straightforward computa-
tions, it can be deduced from the expressions in (62) and (64) that the first- and second-
order partial derivatives ∂xVi(x, s; ai(s)) and ∂xxVi(x, s; ai(s)) of the function Vi(x, s; ai(s))
take the form:

∂xVi(x, s; ai(s)) = Ci,1(s; ai(s))γ1 xγ1−1 + Ci,2(s; ai(s))γ2 xγ2−1

+ Ai,1(s)(1 − α)x−α sα − Ai,2(s)α x−α−1 sα (66)

and

∂xxVi(x, s; ai(s)) = Ci,1(s; ai(s))γ1(γ1 − 1)xγ1−2 + Ci,2(s; ai(s))γ2(γ2 − 1)xγ2−2

− Ai,1(s)(1 − α)α x−α−1 sα + Ai,2(s)α(α + 1)x−α−2 sα (67)

on the interval ai(s) < x ≤ s, for each s > si and every i = 1, 2, 3 fixed, while the first-
and second-order partial derivatives ∂xUi(x, q; bi(q)) and ∂xxUi(x, q; bi(q)) of the function
Ui(x, q; bi(q)) take the form:

∂xUi(x, q; bi(q)) = Di,1(q; bi(q))γ1 xγ1−1 + Di,2(q; bi(q))γ2 xγ2−1

+ Bi,1(q)(1 − α)x−α qα − Bi,2(q)α x−α−1 qα (68)

and

∂xxUi(x, q; bi(q)) = Di,1(q; bi(q))γ1(γ1 − 1)xγ1−2 + Di,2(q; bi(q))γ2(γ2 − 1)xγ2−2

− Bi,1(q)(1 − α)α x−α−1 qα + Bi,2(q)α(α + 1)x−α−2 qα (69)

on the interval q ≤ x < bi(q), for each q < qi and every i = 1, 2, 3 fixed.
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3.2. The candidate stopping boundaries

By applying the conditions of (58) and (61) to the functions in (63) and (65), we con-
clude that the candidate boundaries satisfy the first-order nonlinear ordinary differential
equations:

a′
i(s) = �i,1,1(s, ai(s))sγ1 + �i,1,2(s, ai(s))sγ2 − �i,1(s)

�i,1,1(s, ai(s))sγ1 + �i,1,2(s, ai(s))sγ2
(70)

for s > si, and

b′
i(q) = �i,2,1(q, bi(q))qγ1 + �i,2,2(q, bi(q))qγ2 − �i,2(q)

�i,2,1(q, bi(q))qγ1 + �i,2,2(q, bi(q))qγ2
(71)

for q < qi, respectively. Here, the functions �1,j(s, ai(s)), �1,j(s, ai(s)) and �2,j(q, bi(q)),
�2,j(q, bi(q)) are defined by:

�i,1,j(s, ai(s)) = (γj + α − 1)(γ3−j + α − 1)Ai,1(s)ai(s) + (γj + α)(γ3−j + α)Ai,2(s)

(γj − γ3−j)a
γj+α+1
i (s)s−α

(72)

�i,1,j(s, ai(s)) = (A′
i,1(s)s+Ai,1(s)α)(γ3−j + α − 1)ai(s)+ (A′

i,2(s)s+Ai,2(s)α)(γ3−j +α)

(γj − γ3−j)a
γj+α

i (s)s1−α

(73)

�i,1(s) = ∂sGi(s, s) + A′
i,1(s)s + Ai,1(s)α + A′

i,2(s) + Ai,2(s)α/s (74)

for s > si, and

�i,2,j(q, bi(q)) = (γj + α − 1)(γ3−j + α − 1)Bi,1(q)bi(q) + (γj + α)(γ3−j + α)Bi,2(q)

(γj − γ3−j)b
γj+α+1
i (q)q−α

(75)

�i,2,j(q, bi(q))

= (B′
i,1(q)q + Bi,1(q)α)(γ3−j + α − 1)bi(q) + (B′

i,2(q)q + Bi,2(q)α)(γ3−j + α)

(γj − γ3−j)b
γj+α

i (q)q1−α
(76)

�i,2(q) = ∂qFi(q, q) + B′
i,1(q)q + Bi,1(q)α + B′

i,2(q) + Bi,2(q)α/q (77)

for q < qi, and every i = 1, 2, 3 and j = 1, 2.

3.3. Themaximal andminimal admissible solutions a∗
i (s) and b

∗
i (q), i = 1, 2, 3

We further consider themaximal andminimal admissible solutions of first-order nonlinear
ordinary differential equations as the largest and smallest possible solutions a∗

i (s) and b
∗
i (q)

of the equations in (70) and (71) with (72)–(73) and (75)–(76) which satisfy the inequali-
ties a∗

i (s) < s ∧ ai(s) and b∗
i (q) > q ∨ bi(q), for all s > si and q < qi, and every i = 1, 2, 3,

with some 0 ≤ s1 ≤ a1 and q1 ≥ b1 as well as s2 = 0, s3 = L3 and q2 = ∞, q3 = K3. Here,
we recall that a1(s) ≡ a1 = rL1/δ′ and b1(q) ≡ b1 = rK1/δ

′ as well as a2(s) = rs/(δ′L2)
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and b2(q) = rq/(δ′K2), while a3(s) = s and b3 = q, for all s>0 and q > 0. By virtue of the
classical results on the existence and uniqueness of solutions for first-order nonlinear ordi-
nary differential equations, we may conclude that these equations admit (locally) unique
solutions, in view of the facts that the right-hand sides in (70) and (71) with (72)–(74)
and (75)–(77) are (locally) continuous in (s, ai(s)) and (q, bi(q)) and (locally) Lipschitz
in ai(s) and bi(q), for each s > si and q < qi fixed, and every i = 1, 2, 3 (see also [37,
Subsection 3.9] for similar arguments based on the analysis of other first-order nonlin-
ear ordinary differential equations). Then, it is shown by means of technical arguments
based on Picard’s method of successive approximations that there exist unique solutions
ai(s) and bi(q) to the equations in (70) and (71) with (72)–(73) and (75)–(76), for s > si
and q < qi, started at some points (ai(si,0), si,0) and (bi(qi,0), qi,0), for i = 1, 2, 3, such that
si,0 > si and qi,0 < qi, for every i = 1, 2, 3 (see also [23, Subsection 3.2] and [37, Exam-
ple 4.4] for similar arguments based on the analysis of other first-order nonlinear ordinary
differential equations).

Hence, in order to construct the appropriate functions a∗
i (s) and b

∗
i (q)which satisfy the

equations in (70) and (71) and stays strictly above and below the appropriate diagonal, for
s > si and q < qi, and every i = 1, 2, 3, respectively, we can follow the arguments from
[40, Subsection 3.5] (among others) which are based on the construction of sequences of
the so-called bad-good solutions which intersect the upper or lower bounds or diagonals.
For this purpose, for any sequences (si,l)l∈N and (qi,l)l∈N such that si,l > si and qi,l < qi
as well as si,l ↑ ∞ and qi,l ↓ 0 as l → ∞, we can construct the sequence of solutions
ai,l(s) and bi,l(q), l ∈ N, to the equations (70) and (71), for all s > si and q < qi such that
ai,l(si,l) = ai(si,l) and bi,l(qi,l) = bi(qi,l)holds, for every i = 1, 2, 3 and each l ∈ N. It follows
from the structure of the equations in (70) and (71) as well as the functions in (72)–(73)
and (75)–(76) that the inequalities a′

i,l(si,l) < a′
i(si,l) ∧ 1 and b′

i,l(qi,l) < b′
i(qi,l) ∨ 1 should

hold for the derivatives of the appropriate functions, for each l ∈ N (see also [36, pages 979-
982] for the analysis of solutions of another first-order nonlinear differential equation).
Observe that, by virtue of the uniqueness of solutions mentioned above, we know that
each two curves s �→ ai,l(s) and s �→ ai,m(s) as well as q �→ bi,l(q) and q �→ bi,m(q) cannot
intersect, for l,m ∈ N, l �= m, and thus, we see that the sequence (ai,l(s))l∈N is increasing
and the sequence (bi,l(q))l∈N is decreasing, so that the limits a∗

i (s) = liml→∞ ai,l(s) and
b∗
i (q) = liml→∞ bi,l(q) exist, for each s > si and q < qi, and every i = 1, 2, 3, respectively.
We may therefore conclude that a∗

i (s) and b∗
i (q) provides the maximal and minimal solu-

tions to the equations in (70) and (71) such that a∗
i (s) < ai(s) ∧ s and b∗

i (q) > bi(q) ∨ q
holds, for all s > si and q < qi, with some 0 ≤ s1 ≤ a1 = rL1/δ′ and q1 ≥ b1 = rK1/δ

′, as
well as s2 = 0, s3 = L3 and q2 = ∞, q3 = K3.

Moreover, since the right-hand sides of the first-order nonlinear ordinary differen-
tial equations in (70) and (71) with (72)–(73) and (75)–(76) are (locally) Lipschitz in
s and q, respectively, one can deduce by means of Gronwall’s inequality that the func-
tions ai,l(s) and bi,l(q), l ∈ N, are continuous, so that the functions a∗

i (s) and b∗
i (q) are

continuous too, for every i = 1, 2, 3. The appropriatemaximal admissible solutions of first-
order nonlinear ordinary differential equations and the associated maximality principle
for solutions of optimal stopping problems which is equivalent to the superharmonic
characterization of the payoff functions were established in [37] and further developed
in [5,14,17–20,22–25,30,35,36,39,40,43] among other subsequent papers (see also [41,
Chapter I; Chapter V, Section 17] for other references).
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4. Main results and proofs

In this section, based on the expressions computed above, we formulate and prove themain
results of the paper.

Theorem 4.1: Let the processes (X, S) and (X,Q) be given by (1) and (5), with some r>0,
δ > 0, and σ > 0, and the inequality δ′ ≡ 2r − δ − σ 2 > 0 be satisfied. Suppose that the
random times θ and η are defined by (4). Then, the value functions of the perpetual Ameri-
can withdrawable standard and lookback put and call options from (25) and (26) admit the
expressions:

V∗
i (x, s) =

⎧⎪⎨
⎪⎩
Vi(x, s; a∗

i (s)), if a∗
i (s) < x ≤ s and s > si

0, if 0 < x ≤ a∗
i (s) and s > si

0, if 0 < x ≤ s ≤ si

(78)

whenever α ≡ 2(r − δ)/σ 2 − 1 < 0, and

U∗
i (x, q) =

⎧⎪⎨
⎪⎩
Ui(x, q; b∗

i (q)), if q ≤ x < b∗
i (q) and 0 < q < qi

0, if x ≥ b∗
i (q) and 0 < q < qi

0, if x ≥ q ≥ qi

(79)

whenever α > 0.
Here, the function Vi(x, s; ai(s)) is given by (62) with (63), whenever α < 0, and the

optimal exercise boundary a∗
i (s) provides the maximal solution of the first-order nonlin-

ear ordinary differential equation in (70) with (72)–(74) satisfying the inequalities [ai(s) <

]a∗
i (s) < ai(s) ∧ s, for all s > si and every i = 1, 2, 3, where a1(s) = rL1α/(δ′(α − 1))

and a1(s) = rL1/δ′, a2(s) = rsα/(δ′L2(α − 1)) and a2(s) = rs/(δ′L2), while ai(s) = 0 and
a3(s) = s, under α < 0, with some 0 ≤ s1 ≤ a1 as well as s2 = 0 and s3 = L3.

The function Ui(x, q; bi(q)) is given by (64) with (65), whenever α > 0, and the optimal
exercise boundary b∗

i (q) provides the minimal solution of the first-order nonlinear ordinary
differential equation in (71) with (75)–(77) satisfying the inequalities bi(q) ∨ q < b∗

i (q)[<
bi(q)], for all q < qi and every i = 1, 2, 3, where b1(q) = rK1/δ

′ and b1(q) = rK1α/(δ′(α −
1)), b2(q) = rq/(δ′K2) and b2(q) = rqα/(δ′K2(α − 1)), underα > 1, as well as b1(q) = ∞
and b2(q) = ∞, under 0 < α ≤ 1, while b3(q) = q and b3(q) = ∞, with some q1 ≥ b1 as
well as q2 = ∞ and q3 = K3.

Since both parts of the assertion stated above are proved using similar arguments, we
only give a proof for the case of the two-dimensional optimal stopping problem of (26)
related to the perpetual American withdrawable standard and lookback call options.
Observe that we can put s = x and q = x to obtain the values of the original perpet-
ual American withdrawable standard and lookback put and call option pricing problems
of (21) and (22) from the values of the optimal stopping problems of (25) and (26).

Proof: In order to verify the assertion stated above, it remains for us to show that the
function defined in (79) coincides with the value function in (26) and that the stopping
time ζ ∗

i in (27) is optimal with the boundary b∗
i (q) specified above. For this purpose, let



22 P. V. GAPEEV AND L. LI

bi(q) be any solution of the ordinary differential equation in (71) satisfying the inequal-
ity bi(q) > bi(q) ∨ q, for all q < qi and every i = 1, 2, 3, where b1(q) ≡ b1 = rK1/δ

′,
b2(q) = rq/(δ′K2), and b3(q) = q, with some q1 ≥ b1 as well as q2 = ∞ and q3 = K3. Let
us also denote by Ubi

i (x, q) the right-hand side of the expression in (79) associated with
bi(q), for every i = 1, 2, 3. Then, it is shown by means of straightforward calculations
from the previous section that the function Ubi

i (x, q) solves the system of (45) with the
right-hand sides of (49)–(50) and (52) and satisfies the right-hand conditions of (46)–(48).
Recall that the function Ubi

i (x, q) is C2,1 on the closure C̄i,2 of Ci,2 and is equal to zero on
Di,2, which are defined as C̄∗

i,2, C
∗
i,2 and D∗

i,2 in (38) and (39) with bi(q) instead of b∗
i (q),

for i = 1, 2, 3, respectively. Hence, taking into account the assumption that the bound-
ary bi(q) is continuously differentiable, for all q < qi, by applying the change-of-variable
formula from [38, Theorem 3.1] to the process e−rtUbi

i (Xt ,Qt) (see also [41, Chapter II,
Section 3.5] for a summary of the related results and further references), we obtain the
expression:

e−rt Ubi
i (Xt ,Qt)

= Ubi
i (x, q) +

∫ t

0
e−ru (LUbi

i − rUbi
i )(Xu,Qu)I(Xu �= bi(Qu),Xu �= Qu) du

+
∫ t

0
e−ru ∂qUbi

i (Xu,Qu)I(Xu = Qu) dQu + Mi
t (80)

for all t ≥ 0, for every i = 1, 2, 3. Here, the processMi = (Mi
t)t≥0 defined by:

Mi
t =

∫ t

0
e−ru ∂xUbi

i (Xu,Qu)I(Xu �= Qu)σ Xu dBu (81)

is a continuous local martingale with respect to the probability measure Px,q. Note that,
since the time spent by the process (X,Q) at the boundary surface ∂Ci,2 = {(x, q) ∈
E2 | x = bi(q)} as well as at the diagonal d2 = {(x, q) ∈ E2 | x = q} is of the Lebesgue mea-
sure zero (see, e.g. [7, Chapter II, Section 1]), the indicators in the second line of the formula
in (80) as well as in the expression of (81) can be ignored. Moreover, since the component
Q decreases only when the process (X,Q) is located on the diagonal d2 = {(x, q) ∈ E2 | x =
q}, the indicator in the third line of (80) can also be set equal to one. Observe that the inte-
gral in the third line of (80) will actually be compensated accordingly, due to the fact that
the candidate value function Ubi

i (x, q) satisfies the modified normal-reflection condition
of the right-hand part of (48) at the diagonal d2.

It follows from straightforward calculations and the arguments of the previous section
that the functionUbi

i (x, q) satisfies the second-order ordinary differential equation in (45),
which together with the right-hand conditions of (46)–(47) and (49) as well as the fact that
the inequality in (52) holds imply that the inequality (LUbi

i − rUbi
i )(x, q) ≤ −Hi,2(x, q) is

satisfied with Hi,2(x, q) given by (24), for all 0<q< x such that x �= bi(q), and i = 1, 2, 3.
Moreover, we observe directly from the expressions in (64) and (68) and (69) with (65) that
the functionUbi

i (x, q) is convex and decreases to zero, because its first-order partial deriva-
tive ∂xUbi

i (x, q) is negative and increases to zero, while its second-order partial derivative
∂xxUbi

i (x, q) is positive, on the interval q ≤ x < bi(q), under α > 0, for each q < qi and
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every i = 1, 2, 3 fixed. Thus, we may conclude that the right-hand inequality in (50) holds,
which togetherwith the right-hand conditions of (46)–(47) and (49) imply that the inequal-
ity Ubi

i (x, q) ≥ 0 is satisfied, for all (x, q) ∈ E2. Let (κi,n)n∈N be the localizing sequence of
stopping times for the processMi from (81) such that κi,n = inf{t ≥ 0 | |Mi

t| ≥ n}, for each
n ∈ N. It therefore follows from the expression in (80) that the inequalities:

∫ ζ∧κi,n

0
e−ru Hi,2(Xu,Qu) du +

∫ ζ∧κi,n

0
e−ru ∂qFi(Qu,Qu) dQu

≤ e−r(ζ∧κi,n) Ui(Xζ∧κi,n ,Qζ∧κi,n)

+
∫ ζ∧κi,n

0
e−ru Hi,2(Xu,Qu) du +

∫ ζ∧κi,n

0
e−ru ∂qFi(Qu,Qu) dQu

≤ Ubi
i (x, q) + Mi

τ∧κi,n (82)

hold, for any stopping time ζ of the process X and each n ∈ N fixed. Then, taking the
expectation with respect to Px,q in (82), by means of Doob’s optional sampling theorem,
we get:

Ex,q
[∫ ζ∧κi,n

0
e−ru Hi,2(Xu,Qu) du +

∫ ζ∧κi,n

0
e−ru ∂qFi(Qu,Qu) dQu

]

≤ Ex,q
[
e−r(ζ∧κi,n) Ubi

i (Xζ∧κi,n ,Qζ∧κi,n)

+
∫ ζ∧κi,n

0
e−ru Hi,2(Xu,Qu) du +

∫ ζ∧κi,n

0
e−ru ∂qFi(Qu,Qu) dQu

]

≤ Ubi
i (x, q) + Ex,q

[
Mi

ζ∧κi,n

] = Ubi
i (x, q) (83)

for all 0 < q ≤ x and every i = 1, 2, 3, and each n ∈ N. Hence, letting n go to infinity and
using Fatou’s lemma, we obtain from the expressions in (83) that the inequalities:

Ex,q
[∫ ζ

0
e−ru Hi,2(Xu,Qu) du +

∫ ζ

0
e−ru ∂qFi(Qu,Qu) dQu

]

≤ Ex,q
[
e−rζ Ubi

i (Xζ ,Qζ ) +
∫ ζ

0
e−ru Hi,2(Xu,Qu) du +

∫ ζ

0
e−ru ∂qFi(Qu,Qu) dQu

]

≤ Ubi
i (x, q) (84)

are satisfied, for any stopping time ζ and all 0 < q ≤ x such that q < qi, for i = 1, 2,
3. Thus, taking the supremum over all stopping times ζ and then the infimum over all
boundaries b in the expressions of (84), we may therefore conclude that the inequalities:

sup
ζ

Ex,q
[∫ ζ

0
e−ru Hi,2(Xu,Qu) du +

∫ ζ

0
e−ru ∂qFi(Qu,Qu) dQu

]

≤ inf
bi

Ubi
i (x, q) = Ub∗

i
i (x, q) (85)
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hold, for all 0 < q ≤ x, where b∗
i (q) is the minimal solution of the ordinary differential

equation in (71) as well as satisfying the inequality b∗
i (q) > bi(q) ∨ q, for all q < qi and

every i = 1, 2, 3. By using the fact that the function Ubi
i (x, q) is (strictly) increasing in

the value bi(q), for each q < qi fixed, we see that the infimum in (85) is attained over any
sequence of solutions (bi,m(q))m∈N to (71) satisfying the inequality bi,m(q) > bi(q) ∨ q,
for all q < qi, for each m ∈ N and every i = 1, 2, 3, and such that bi,m(q) ↓ b∗

i (q) as
m → ∞, for each q < qi fixed, and every i = 1, 2, 3. It follows from the (local) unique-
ness of the solutions to the first-order (nonlinear) ordinary differential equation in (71)
that no distinct solutions intersect, so that the sequence (bi,m(q))m∈N is decreasing and the
limit b∗

i (q) = limm→∞ bi,m(q) exists, for each q < qi fixed. Since the inequalities in (84)
hold for b∗

i (q) too, we see that the expression in (85) holds, for b∗
i (q) and (x, q) ∈ E2, as

well. We also note from the inequality in (83) that the functionUbi
i (x, q) is superharmonic

for the Markov process (X,Q) on E2. Hence, taking into account the facts that Ubi
i (x, q)

is increasing in bi(q) > bi(q) ∨ q, for all q < qi and every i = 1, 2, 3, and the inequality
Ubi
i (x, q) ≥ 0 holds, for all (x, q) ∈ E2, we observe that the selection of the minimal solu-

tion b∗
i (q) which stays strictly above the diagonal d2 = {(x, q) ∈ E2 | x = q} and the curve

x = bi(q), for i = 1, 2, 3, is equivalent to the implementation of the superharmonic char-
acterization of the value function as the smallest superharmonic function dominating the
payoff function (cf. [37] or [41, Chapter I and Chapter V, Section 17]).

In order to prove the fact that the boundary b∗
i (q) is optimal, we consider the sequence

of stopping times ζi,m,m ∈ N, defined as in the right-hand part of (27) with bi,m(q) instead
of b∗

i (q), where bi,m(q) is a solution to the first-order ordinary differential equation in (71)
and such that bi,m(q) ↓ b∗

i (q) asm → ∞, for each q < qi and every i = 1, 2, 3 fixed. Then,
by virtue of the fact that the functionUbi,m

i (x, q) from the right-hand side of the expression
in (79) associated with the boundary bi,m(q) satisfies the equation of (45) and the right-
hand condition of (46), and taking into account the structure of ζ ∗

i in (27), it follows from
the expression which is equivalent to the one in (80) that the equalities:∫ ζi,m∧κi,n

0
e−ru Hi,2(Xu,Qu) du +

∫ ζi,m∧κi,n

0
e−ru ∂qFi(Qu,Qu) dQu

= e−r(ζi,m∧κi,n) Ubi,m
i (Xζi,m∧κi,n ,Qζi,m∧κi,n)

+
∫ ζi,m∧κi,n

0
e−ru Hi,2(Xu,Qu) du +

∫ ζi,m∧κi,n

0
e−ru ∂qFi(Qu,Qu) dQu

= Ubi,m
i (x, q) + Mi

ζi,m∧κi,n
(86)

hold, for all 0 < q ≤ x such that q < qi, for each n,m ∈ N and every i = 1, 2, 3. Observe
that, by virtue of the arguments from [45, Chapter VIII, Section 2a], the property:

Ex,q

[
sup
t≥0

(∫ ζ ∗
i ∧t

0
e−ru Hi,2(Xu,Qu) du +

∫ ζ ∗
i ∧t

0
e−ru ∂qFi(Qu,Qu) dQu

)]
< ∞ (87)

holds, for all (x, q) ∈ E2. Hence, letting m and n go to infinity and using the condi-
tion of (46) as well as the property ζi,m ↓ ζ ∗

i (Px,q-a.s.) as m → ∞, we can apply the
Lebesgue dominated convergence theorem to the appropriate (diagonal) subsequence in
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the expression of (86) to obtain the equality:

Ex,q

[∫ ζ ∗
i

0
e−ru Hi,2(Xu,Qu) du +

∫ ζ ∗
i

0
e−ru ∂qFi(Qu,Qu) dQu

]
= Ub∗

i
i (x, q) (88)

for all 0 < x ≤ q such that q < qi and every i = 1, 2, 3, which together with the inequalities
in (85) directly implies the desired assertion. We finally recall that the results of part (ii) of
the proof of Theorem 2.1 above, which are obtained by standard comparison arguments
applied to the value functions of the appropriate optimal stopping problems, show that
the inequality b∗

i (q) < bi(q), for all 0 < q < qi and every i = 1, 2, 3, should hold for the
optimal exercise boundary, that completes the verification. �
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