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Abstract. This paper studies second-order properties of the many instruments robust t-ratios

based on the limited information maximum likelihood and Fuller estimators for instrumental

variable regression models with homoskedastic errors under the many instruments asymptotics,

where the number of instruments may increase proportionally with the sample size n, and pro-

poses second-order refinements to the t-ratios to improve the size and power properties. Based

on asymptotic expansions of the null and non-null distributions of the t-ratios derived under

the many instruments asymptotics, we show that the second-order terms of those expansions

may have non-trivial impacts on the size as well as the power properties. Furthermore, we

propose adjusted t-ratios whose approximation errors for the null rejection probabilities are of

order O(n−1) in contrast to the ones for the unadjusted t-ratios of order O(n−1/2), and show

that these adjustments induce some desirable power properties in terms of the local maximinity.

Although these results are derived under homoskedastic errors, we also establish a stochastic

expansion for a heteroskedasticity robust t-ratio, and propose an analogous adjustment under

slight deviations from homoskedasticity.

1. Introduction

Instrumental variable regression is one of the most widely used methods in empirical economic
analysis. Particularly in microeconometric applications, researchers often use many instrumental
variables to improve efficiency of estimators and associated inference methods (e.g., Angrist and
Krueger, 1991). However, in such cases, it has been found that approximate distributions of the
estimators and statistics based on the conventional asymptotic theory can be inaccurate. For
example, the two stage least squares (TSLS) estimator tends to have large bias. Although the
limited information maximum likelihood (LIML) estimator is less biased, its distribution is often
more dispersed than the limiting distribution based on the conventional asymptotics (see, e.g.,
Anderson, Kunitomo and Sawa, 1982, and Anderson, Kunitomo and Matsushita, 2010, 2011).

In order to give more accurate approximations under many instruments, Kunitomo (1980,
1982) and Morimune (1983) considered a limiting sequence where the number of instruments K
is allowed to increase proportionally with the sample size n (called the large-K asymptotics), and
derived the limiting distribution of the LIML estimator when the disturbances are normal and
there is one endogenous regressor in the regression model. Bekker (1994) derived multivariate
first-order approximations to the distributions of several estimators under the large-K asymp-
totics with the normal disturbances, while Hansen, Hausman and Newey (2008), van Hasselt
(2010), and Anderson, Kunitomo and Matsushita (2010) extended those results to non-normal
cases. Hausman et al. (2012) considered a more general model, where the reduced form may
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be nonlinear and the disturbances may be heteroskedastic, and suggested to use t-ratios based
on heteroskedasticity and many instrument robust versions of the LIML and Fuller (1977) esti-
mators and their asymptotic variance estimators. It should be noted that existing works on the
large-K asymptotics mostly focus on the first-order asymptotic properties of the estimators and
test statistics and their higher-order properties are largely unexplored.1

This paper studies second-order properties of the t-ratios based on the LIML and Fuller esti-
mators for instrumental variable regression models with homoskedastic errors under the large-K
asymptotics, and proposes higher-order refinements to the t-ratios to improve the size and power
properties. To explore the finite sample properties of the t-ratios with many instruments, asymp-
totic expansions of the null and non-null distributions of the large-K robust t-ratios associated
with the LIML and Fuller estimators are derived under the large-K asymptotics. Moreover, to
assess the effects of variance estimation, we derive asymptotic expansions of the LIML and Fuller
estimators under the large-K asymptotics. Based on these asymptotic expansions, it is shown
that the finite sample distributions of the large-K t-ratios can be quite different from those of
the corresponding standardized estimators although they have the same asymptotic normal dis-
tribution under the large-K asymptotics. In fact, the absolute values of the second-order terms
of the asymptotic expansions of the standardized LIML and Fuller estimators and their large-K
t-ratios are the same but have opposite signs. Also the null distributions of the large-K t-ratios
can be skewed and largely deviated from the standard normal distribution. For two-sided testing,
although the second-order terms cancel out under the null hypothesis, we find that these second-
order terms may have non-trivial impacts on the power properties. Based on these expansions,
we propose adjusted t-ratios whose approximation errors for the null rejection probabilities are of
order O(n−1) in contrast to the ones for the unadjusted t-ratios of order O(n−1/2). Furthermore,
we show that these adjustments induce some desirable power properties in terms of the local
maximinity. Although these results are derived under homoskedastic errors, we also establish a
stochastic expansion for the heteroskedasticity robust t-ratio based the heteroskedasticity and
many instruments robust versions of the LIML estimator by Hausman et al. (2012), and pro-
pose an analogous adjustment under slight deviations from homoskedasticity. These findings are
illustrated by some simulation studies.

This paper also contributes to the literature of the asymptotic higher-order expansion ap-
proach, which has been developed extensively to investigate the finite sample properties of econo-
metric methods (see, e.g., Rothenberg, 1984, and Ullah, 2004, for an overview). For simultaneous
equation models, it has been used to give more accurate approximations to distributions of es-
timators and test statistics, or to compare their higher-order properties, see, Anderson (1974),
Sargan (1975), Phillips (1977), Rothenberg (1988), Fujikoshi et al. (1982), Morimune (1989), to
name a few. Our main contribution in this context is that, to the best of our knowledge, this is
the first paper which investigates higher-order properties of testing methods under the large-K
asymptotics.

1Exceptions are Kunitomo (1980) and Morimune (1983) who established asymptotic expansions for the distribu-
tions of the LIML and k-class estimators, respectively, for the case of the normal disturbances and one endogenous
regressor.
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The paper is organized as follows. In Section 2, we introduce our setup and estimators (Section
2.1) and define the the large-K robust t-ratios (Section 2.2). Section 3 presents our main results:
asymptotic expansions of the large-K t-ratios under the null hypothesis (Section 3.1), asymptotic
expansions under the local alternatives and adjusted t-ratios (Section 3.2), and a discussion for
the case of heteroskedastic disturbances (Section 3.3). Section 4 illustrates our findings by some
simulation results.

2. Setup, estimators and test statistics

2.1. Setup and estimators. We first introduce our basic setup and some estimators. Consider
a single structural equation

y1 = Y2β + Z1γ + u, (1)

where y1 is an n-vector of dependent variables, Y2 is an n×G2 matrix of endogenous regressors,
Z1 is an n × K1 matrix of exogenous regressors, u is an n-vector of error terms, and β and γ

are G2 and K1 dimensional vectors of unknown parameters, respectively. We assume that (1) is
the first equation in a simultaneous system of G2 + 1 linear stochastic equations relating G2 + 1

endogenous variables Y = (y1, Y2), and K1 +K2 exogenous variables Z = (Z1, Z2), where Z2 is
an n×K2 matrix of instrumental variables for (1). Let K = K1 +K2. The reduced form of Y
is defined as

Y = ZΠ + V = (Z1, Z2)

(
Π1

Π2

)
+ (v1, V2), (2)

where Π1 = (π11,Π12) and Π2 = (π21,Π22) are K1 × (1 + G2) and K2 × (1 + G2) matrices,
respectively, of the reduced form coefficients, and (v1, V2) is an n×(1+G2) matrix of disturbances.

We impose the following assumptions on the reduced form.

Assumption 1. Z is nonrandom. Π22 is of rank G2. The rows of V are independently dis-

tributed, and each row of V has mean 0 and nonsingular covariance matrix Ω =

(
ω11 ω12

ω21 Ω22

)
.

As in Hansen, Hausman and Newey (2008) and Hausman et al. (2012), we consider the case
of nonrandom Z. We could allow Z to be random by modifying our assumptions, expectation,
and probability to be conditional on Z as in Chao et al. (2012). The last assumption implies
that the error term u is homoskedastic. We discuss the case of heteroskedastic errors in Section
3.3.

In order to relate (1) and (2), we postmultiply (2) by (1,−β′)′. Then it can be written as in
(1) with u = v1 − V2β, where the components of u are independently distributed with mean 0

and variance σ2 = ω11 − 2β′ω21 + β′Ω22β. Also, it holds γ = π11 −Π12β and π21 = Π22β.
Let P = Z(Z ′Z)−1Z ′ and M = I − P . The k-class estimator is defined as(

β̂k

γ̂k

)
=

[
Y ′2Y2 − kY ′2MY2 Y ′2Z1

Z ′1Y2 Z ′1Z1

]−1(
Y ′2(I − kM)y1

Z ′1y1

)
. (3)
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This estimator covers (i) OLS (k = 0), (ii) TSLS (k = 1), (iii) LIML (k = λ̂), and (iv) Fuller
(1977) (k = λ̂− a/(n−K) for some a > 0) as special cases, where λ̂ is the smallest root of∣∣∣∣∣

(
Y ′

Z ′1

)
P (Y, Z1)− λ̂

(
Y ′

Z ′1

)
M(Y,Z1)

∣∣∣∣∣ = 0.

Under the conventional asymptotics, where the number of instruments K is fixed, both the
LIML and TSLS estimators are consistent and follow the same limiting normal distribution.
However, it has been known that the exact distributions of these estimators can be quite different
from the normal distribution. When K is large, the TSLS estimator can be severely biased
(see, e.g., Anderson, Kunitomo and Matsushita, 2010). On the other hand, the distribution
of the LIML estimator is more dispersed than the limiting distribution under the conventional
asymptotics. The Fuller estimator has moments of all orders, and is known to have good finite
sample properties in some situations (see, e.g., Hahn, Hausman and Kuersteiner, 2004, and
Hansen, Hausman and Newey, 2008).

Bekker (1994) pointed out that the large-K asymptotic theory, where K may grow propor-
tionally to n, may be suited better to applications, even when the number of instruments is not
large. Under the large-K asymptotics, the (first-order) asymptotic distributions of the LIML
and TSLS estimators are rather different. The LIML estimator is consistent and asymptotically
normal while the TSLS estimator loses consistency. Also the LIML estimator attains the asymp-
totic efficiency bound when the number of instruments is large (see, Kunitomo, 1982, Chioda
and Jansson, 2009, and Anderson, Kunitomo and Matsushita, 2010).

In contrast, this paper is concerned with higher-order properties of the t-ratios for testing
parameter hypotheses under the large-K asymptotics, which will be introduced in the next
subsection.

2.2. Many instruments robust t-statistics. Let ι be a (G2 +K1)-vector of zeros, apart from
its j-th element which is unity. We are interested in testing the null hypothesis

H0 : ι′

(
β

γ

)
= 0,

i.e., the j-th coefficient in (1) is zero, against the one-sided or two-sided alternative hypothesis.
The focus of this paper is to investigate higher-order properties of the t-tests for H0 under the

large-K asymptotics. In particular, we impose the following assumptions.

Assumption 2.

(i): K = Kn satisfies

K

n
= c+O(n−1) for some c ∈ [0, 1). (4)

(ii): The distribution of the rows of V have finite 8th moments and belong to the class
of elliptically contoured distributions, i.e., the characteristic function of the rows of V
(say, vi) has the form of E[eit′vi ] = ϕ(t′Υt) for some ϕ(·) and positive definite Υ, where
i =
√
−1. Furthermore, max1≤i≤n ||D′2zi||2 = o(n).
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(iii): For some positive definite matrix Q, it holds

1

n
D′2Z

′ZD2 = Q+O(n−1), (5)

where D2 =

(
Π12 IK1

Π22 0

)
.

Assumption 2 (i) says that the number of instruments K can grow at either the same rate
(c > 0) as the sample size or at slower rate (c = 0), where the latter includes the conventional
fixed-K asymptotics as a special case. Assumption 2 (ii) greatly simplifies our higher-order
analysis in the following section. See Anderson (2003, Section 2.7) for a discussion on elliptically
contoured distributions. Assumption 2 (iii), also imposed in e.g., Kunitomo (1980) and Morimune
(1989), is necessary for our asymptotic expansion.

Under Assumptions 1 and 2, the results in Anderson, Kunitomo and Matsushita (2010) can
be adapted to derive the limiting distributions of the LIML estimator (β̂′LI , γ̂

′
LI)
′ and Fuller

estimator (β̂′F , γ̂
′
F )′ as

√
n

(
β̂LI − β
γ̂LI − γ

)
d→ N(0,Ψ∗),

√
n

(
β̂F − β
γ̂F − γ

)
d→ N(0,Ψ∗),

where

Ψ∗ = σ2Q−1 +
c

1− c
Q−1

[(
Ω22σ

2 0

0 0

)
− q2q

′
2σ

4

]
Q−1 +Q−1[(Ξ3 + Ξ′3) + ηΞ4]Q−1. (6)

For Ψ∗, we use the following notation

q2 =
1

σ2
(ω′21 − β′Ω22, 0

′)′, Ξ3 =
1

1− c
lim
n→∞

D′2
1

n

n∑
i=1

zi(Pii − c)E[u2
iw
′
2i],

η =
1

(1− c)2
lim
n→∞

1

n

n∑
i=1

(Pii − c)2, Ξ4 = E[u2
iw2iw

′
2i]− σ2E[w2iw

′
2i],

where w2i = (v′2i, 0
′)′ − uiq2 and Pii = z′i(Z

′Z)−1zi. Compared to the conventional variance
formula σ2Q−1 under the fixed-K asymptotics, there are two additional terms in Ψ∗ due to the
large-K asymptotics, which vanish when the number of instruments grows at a slower rate (i.e.,
c = 0).

Under Assumption 2 (iii), the asymptotic variance Ψ∗ simplifies to (see, Anderson, Kunitomo
and Matsushita, 2010)

Ψ = σ2Q−1 +

(
c

1− c
+ ηκ

)
Q−1

[(
Ω22σ

2 0

0 0

)
− q2q

′
2σ

4

]
Q−1, (7)

where κ = (E[u4
i ]/σ

4−3)/3. Note that Ψ is identical to Bekker’s (1994) variance when the error
terms are normally distributed. By taking the sample counterparts, a consistent estimator of Ψ
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is given by

Ψ̂ = σ̂2Q̂−1

+

(
K

n−K
+ η̂κ̂

)
Q̂−1

(
1

n−KY
′

2MY2σ̂
2 − 1

(n−K)2
Y ′2MY b̂b̂′Y ′MY2 0

0 0

)
Q̂−1, (8)

where

σ̂2 =
1

n−K
b̂′Y ′MY b̂, b̂ = (1,−β̂′)′, Q̂ =

1

n

(
Y ′2PY2 − λY ′2MY2 Y ′2Z1

Z ′1Y2 Z ′1Z1

)
,

η̂ =

(
n

n−K

)2 1

n

n∑
i=1

(
Pii −

K

n

)2

, κ̂ =
1

3

{
1

σ̂4

1

n

n∑
i=1

(y1i − y′2iβ̂ − z′1iγ̂)4 − 3

}
,

and (β̂, γ̂, λ) = (β̂LI , γ̂LI , λ̂) for the LIML estimator, or (β̂F , γ̂F , λ̂ − a/(n − K)) for the Fuller
estimator.

Based on this variance estimator, the large-K t-ratio for testing H0 is given by

tK =
1√
Ψ̂j

ι′
√
n

(
β̂

γ̂

)
, (9)

where Ψ̂j is the j-th diagonal element of Ψ̂. In the next section, we study higher-order properties
of the t-test based on this statistic under the large-K asymptotics.

3. Main results

3.1. Asymptotic expansions under null hypothesis. We first present an asymptotic expan-
sion of the null distribution of the t-ratio in (9) under the large-K asymptotics in (4). Let Φ(·)
and φ(·) be the standard normal distribution and density functions, respectively, and Ψj be the
j-th diagonal element of Ψ in (7).

Theorem 1. Suppose Assumptions 1 and 2 hold true. Then the asymptotic expansion of the null
distribution of the large-K t-ratio tK in (9) using the Fuller estimator (β̂, γ̂, λ) = (β̂F , γ̂F , λ̂ −
a/(n−K)) is given by

P{tK ≤ τ} = Φ(τ)− 1√
n

1√
Ψj

[
τ2ι′Ψ +

a

1− c
σ2ι′Q−1

]
q2φ(τ) +O(n−1), (10)

for each τ ∈ R. Furthermore, the expansion for tK using the LIML estimator (β̂, γ̂, λ) =

(β̂LI , γ̂LI , λ̂) is obtained by setting a = 0 in (10).

This theorem says that (i) the approximation errors in rejection probability of both tests are
of order O(n−1/2), (ii) the approximation errors become larger as the degree of endogeneity
q2 = E[v2iui]/σ

2 increases, and (iii) the approximation error of tK by the Fuller estimator is not
always smaller than that of tK by the LIML estimator. In particular, if the number of endogenous
regressors is one (i.e., G2 = 1), the absolute value of the second-order term in (10) by the Fuller
estimator is always larger than the one by the LIML estimator unless q2 = 0. This point implies
that improvement of the Fuller estimator over the LIML estimator does not necessarily imply
improvement of the size property of the t-test under the large-K asymptotics.
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It should be noted that the finite sample distributions of the t-ratios and corresponding esti-
mators may be different due to estimation of the asymptotic variances in the denominators of
t-ratios. In fact, we can derive the asymptotic expansions of the distributions of the LIML and
Fuller estimators as follows. Let φΨ be the density function of N(0,Ψ).

Theorem 2. Suppose Assumptions 1 and 2 hold true. Then the asymptotic expansion of the
density f of

√
n((β̂−β)′, (γ̂−γ)′)′ using the Fuller estimator (β̂, γ̂, λ) = (β̂F , γ̂F , λ̂−a/(n−K))

is given by

f(ξ) = φΨ(ξ)

{
1 +

1√
n

[
(q′2ξ)(G1 +K1 + 1− ξ′Ψξ) +

a

1− c
q′2σ

2Q−1Ψξ

]}
+O(n−1), (11)

for each ξ ∈ RG2+K1. Furthermore, the expansion of the density f of
√
n((β̂ − β)′, (γ̂ − γ)′)′

using the LIML estimator (β̂, γ̂, λ) = (β̂LI , γ̂LI , λ̂) is obtained by setting a = 0 in (11).

We note that the expansion for the LIML estimator is derived based on Fujikoshi et al. (1982),
but the expansion for the Fuller estimator is new in the literature. Based on Theorem 2, we can
see that under H0,

P

{
1√
Ψj

ι′
√
n

(
β̂

γ̂

)
≤ τ

}
= Φ(τ) +

1√
n

1√
Ψj

[
τ2ι′Ψ +

a

1− c
σ2ι′Q−1

]
q2φ(τ) +O(n−1),

for each τ ∈ R. Comparing this expansion with (10), we can see that the distributions of the
LIML and Fuller estimators on the one hand and large-K t-ratio on the other are distorted in
opposite directions.2

3.2. Asymptotic expansions under local alternative hypothesis and adjusted t-ratios.
In order to investigate power properties of the large-K t-ratios, we now derive asymptotic ex-
pansions of their distributions under the local alternative hypothesis:

H1n : ι′

(
β

γ

)
=

1√
n
ι′ζ,

for some ζ ∈ RG2+K1 . Let Φζ and φζ be the cumulative distribution and density functions of
N(Ψ

−1/2
j ι′ζ, 1), respectively.

Theorem 3. Suppose Assumptions 1 and 2 hold true. Then asymptotic expansions of the power
functions of the one-sided and two-sided large-K t-tests under H1n are given by

P{tK ≥ τ} = 1− Φζ(τ)

+
1√
n

1√
Ψj

(ι′Ψq2)

τ2 −

(
ι′ζ√
Ψj

)2
+

aσ2

1− c
ι′Q−1q2

φζ(τ) +O(n−1),

P{|tK | ≥ τ} = 1− {Φζ(τ)− Φζ(−τ)}

+
1√
n

1√
Ψj

(ι′Ψq2)

τ2 −

(
ι′ζ√
Ψj

)2
+

aσ2

1− c
ι′Q−1q2

 {φζ(τ)− φζ(−τ)}+O(n−1),

2Bekker (1994) provided a skewed approximation for the distribution of the LIML estimator, not its t-ratio.
Because the directions of the skewness of the distributions of the LIML estimator and the t-ratio under the null
are opposite, Bekker’s skewed approximation might make the size property of the test even worse.
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for each τ ∈ R, respectively. The expansions for the t-ratios using the LIML estimator is obtained
by setting a = 0.

This theorem says that the large-K t-tests are locally biased up to the order O(n−1/2) unless
the degree of endogeneity q2 is zero because ∂

∂ζP{tK ≥ τ} = O(n−1/2) and ∂
∂ζP{|tK | ≥ τ} =

O(n−1/2) unless q2 = 0 (Rao, 1973, pp.454).
Based on the asymptotic expansions in Theorems 1 and 3, we propose a simple adjustment

to the t-ratio, which does not include the term of order O(n−1/2) in the expansion of the null
distribution:

tadjK = tK −
1√
n

1√
Ψ̂j

{
ι′Ψ̂q̂2t

2
K0 +

an

n−K
σ̂2ι′Q̂−1q̂2

}
, (12)

where q̂2 = 1
σ̂2

1
n−K (Y2, 0)′MY (1,−β̂′)′ and

tK0 =
1√
Ψ̂0j

ι′
√
n

(
β̂

γ̂

)
, (13)

with Ψ̂0j , the j-th diagonal element of Ψ̂ with (β̂, γ̂) replaced by the constrained LIML or Fuller
estimator under H0. We note that computation of the adjusted statistic tadjK does not involve
the constant c in Assumption 2 (i), which is replaced with K/n in finite samples.

The asymptotic expansion of the null distribution of the adjusted statistic is obtained as
follows.

Theorem 4. Suppose Assumptions 1 and 2 hold true. Then the asymptotic expansion of the
null distribution of the adjusted t-ratio in (12) is given by

P{tadjK ≤ τ} = Φ(τ) +O(n−1), (14)

for each τ ∈ R.

This theorem says that the approximation error in rejection probability of the one-sided test
using the adjusted t-ratio tadjK is of order O(n−1), which improves the (unadjusted) large-K t-test
whose error is O(n−1/2). We note that this result holds true for any a > 0. Popular choices
are a = 0 (LIML), 1 (Fuller, 1977), or K2 −G2 (Anderson, Kunitomo and Morimune, 1986). In
order to study the effect of a on the null distribution of tadjK , we need a detailed analysis on the
higher-order terms of order O(n−1) in (14), which is beyond the scope of this paper.3

Next we present the local power properties of the adjusted t-tests.

3Morimune (1983) derived the large-K asymptotic expansions for the distributions of the k-class estimators up to
the order O(n−1) for the case of the normal disturbances and one endogenous regressor, and suggested a choice
of a based on the expansion.
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Theorem 5. Suppose Assumptions 1 and 2 hold true. Then the asymptotic expansions of the
power functions of the one-sided and two-sided adjusted t-tests under H1n are given by

P{tadjK ≥ τ} = 1− Φζ(τ) +
1√
n

− 1√
Ψj

(ι′Ψq2)

(
ι′ζ√
Ψj

)2
φζ(τ) +O(n−1),

P{|tadjK | ≥ τ} = 1− {Φζ(τ)− Φζ(−τ)}+
1√
n

− 1√
Ψj

(ι′Ψq2)

(
ι′ζ√
Ψj

)2
 {φζ(τ)− φζ(−τ)}+O(n−1),

for each τ ∈ R, respectively.

Similar to Theorem 4, we note that the terms of order O(n−1/2) do not depend on a. This is
due to the fact that the adjustment term in (12) eliminates dependence on a from the conditional
mean of the second-order term of tadjK given the first-order component (see eq. (36) in Appendix).
Indeed this elimination occurs both under H0 and H1n.

Note that the adjusted t-tests do not dominate the unadjusted t-tests in terms of the second-
order power uniformly in ζ. However, compared to the two-sided t-test using the LIML estimator
with a = 0 (denoted by tLIK ), the two-sided adjusted t-test tadjK has some desirable power property
with regard to the second-order local maximinity. More precisely, we obtain the following result.

Proposition 1. Suppose Assumptions 1 and 2 hold true. Under H1n, there exists ∆ > 0 such
that

lim
n→∞

√
n

[
min

ζ∈RG2+K1 :(ι′ζ)2=δ
P{|tadjK | ≥ τ} − min

ζ∈RG2+K1 :(ι′ζ)2=δ
P{|tK | ≥ τ}

]
> 0,

for all δ ∈ (0,∆).

This proposition says that the adjusted t-ratio tadjK for two-sided hypothesis testing is more
powerful than the unadjusted one tK on the basis of the minimum power attainable for alterna-
tives within a given distance from the null hypothesis. This result is similar to Mukerjee (1992)
for the comparison between the conditional and usual likelihood ratio statistics. Note that since
√
n
[
P{|tadjK | ≥ τ} − P{|tK | ≥ τ}

]
→ 0 from Theorems 3 and 5 by setting ζ = 0, the above power

superiority of tadjK is not a consequence of size distortion.

3.3. Discussion: Heteroskedastic errors. This paper should be considered as a starting point
toward more general higher-order theory for inference on instrumental variable regression models
under the large-K asymptotics. In particular, it is interesting to extend our analysis for the case
of heteroskedastic error terms. It should be noted that the LIML and Fuller estimators can be
inconsistent with many instruments and heteroskedasticity of unknown form (see, e.g., Hausman
et al., 2012). Hausman et al. (2012) proposed heteroskedasticity robust versions of the LIML and
Fuller estimators and associated t-tests based on their asymptotic variance estimators. In this
subsection, we study higher-order properties of the heteroskedasticity and many instruments
robust t-tests by Hausman et al. (2012) and propose an adjusted t-statistic, which exhibits
desirable size properties under slight deviations from homoskedasticity.

Throughout this subsection, letX = (Y2, Z1) and P ∗ be an n×nmatrix such that P ∗ij = Pij for
i 6= j and Pii = 0. The heteroskedasticity robust version of the LIML (called HLIM) estimator

9



for θ = (β′, γ′)′ by Hausman et al. (2012) is defined as

θ̂HLIM = (X ′P ∗X − α̂X ′X)−1(X ′P ∗y1 − α̂X ′y1), (15)

where α̂ is the smallest root of∣∣∣∣∣
(
Y ′

Z ′1

)
P ∗(Y, Z1)− α̂

(
Y ′

Z ′1

)
(Y, Z1)

∣∣∣∣∣ = 0.

Hausman et al. (2012) established consistency and asymptotic normality of this estimator under
the large-K asymptotics allowing heteroskedastic errors. Hausman et al. (2012) also proposed a
consistent estimator for the asymptotic variance of θ̂HLIM and the t-ratio for testing H0 : ι′θ = 0,
that is

tHK =
ι′
√
nθ̂HLIM√
Ψ̂H,j

, (16)

where Ψ̂H,j is the j-th diagonal component of Ψ̂H = Q̂−1
H Σ̂HQ̂

−1
H with

Q̂H =
1

n
(X ′P ∗X − α̂X ′X),

Σ̂H =
1

n

n∑
k=1

n∑
i 6=k

n∑
j 6=k

X̂iPikû
2
kPkjX̂

′
j +

1

n

n∑
i=1

n∑
j 6=i

X̂iX̂
′
j ûiûjP

2
ij ,

ûi = yi −X ′i θ̂HLIM , X̂i = Xi − q̂2ûi, and q̂2 = X ′û/(û′û).
By an analogous but more lengthy argument as the proof of Theorem 1, we can derive the

following asymptotic expansion for the heteroskedasticity robust t-ratio tHK . To this end, we
modify our assumptions as follows.

Assumption 1H. Z is nonrandom. Π22 is of rank G2. The rows of V are independently
distributed, and the i-th row of V has mean 0 and nonsingular covariance matrix Ωi.

Assumption 2H. Suppose Assumption 2 (i) and (ii) hold true. Also, for some positive definite
matrix QH , it holds

1

n

n∑
i=1

D′2ziz
′
i(1− Pii)D2 = QH +O(n−1).

These assumptions are adapted from Hausman et al. (2012) to our context. Assumptions 1H
and 2H are analogous to Assumptions 1 and 2, respectively, except for heteroskedasticity in V .
Nonrandomness of Z is also imposed in Hausman et al. (2012).

Under these assumptions, a stochastic expansion of the the heteroskedasticity robust t-ratio
tHK in (16) is obtained as follows.

Proposition 2. Suppose Assumptions 1H and 2H hold true. Then under H0, it holds

tHK = TH +
1√
n
t
(1)
H +Op(n

−1), (17)

where

TH =
ι′e

(0)
H√

ΨH,j

, t
(1)
H =

ι′e
(1)
H√

ΨH,j

− 1

2

Ψ
(1)
H,j

ΨH,j
TH ,

10



ΨH,j is the j-th diagonal element of ΨH = Q−1
H ΣHQ

−1
H , Ψ

(1)
H,j is the j-th diagonal element of

Ψ
(1)
H = −Q−1

H Q
(1)
H ΨH −ΨHQ

(1)
H Q−1

H +Q−1
H Σ

(1)
H Q−1

H , Σ
(1)
H =

√
n(Σ̂H − ΣH), σ2

i = E[u2
i ],

ΣH = lim
n→∞

 1

n

n∑
i,j,k,i 6=j,j 6=k

σ2
kD
′
2ziPikPkjz

′
jD2 +

1

n

n∑
i 6=j

P 2
ij{E[w2iw

′
2i]σ

2
j + E[w2iui]E[w2juj ]}

 ,
Q

(1)
H =

1√
n

n∑
i=1

D′2zi(1− Pii)(v′2i, 0′) +
1√
n

n∑
i=1

(v′2i, 0
′)′(1− Pii)ziD2 +

1√
n

n∑
i 6=j

Pij(v
′
2i, 0

′)′(v′2j , 0
′)

−α(1)

{
Q̄+

(
Ω̄22 0

0 0

)}
,

and e(0)
H , e(1)

H , and α(1) are defined in Appendix A.6.

Note that the asymptotic expansion of tHK takes an analogous form as the one of tK in eq. (28)
in Appendix for homoskedastic errors. Motivated by this proposition, we propose the following
adjusted statistic for heteroskedastic errors:

tH,adjK = tHK −
1√
n

1√
Ψ̂H,j

ι′Ψ̂H q̂2(tHK0)2, (18)

where

tHK0 =
ι′
√
nθ̂HLIM√
Ψ̂H0,j

, (19)

and Ψ̂H0,j is the j-th diagonal element of Ψ̂H0 = Q̂−1
H Σ̂H0Q̂

−1
H with

Σ̂H0 =
1

n

n∑
k=1

n∑
i 6=k

n∑
j 6=k

X̂iPikû
2
0kPkjX̂

′
j +

1

n

n∑
i=1

n∑
j 6=i

X̂iX̂
′
j û0iû0jP

2
ij ,

û0i = yi −X ′i θ̃HLIM with the constrained HLIM estimator θ̃HLIM under H0, X̂i = Xi − q̂20û0i,
and q̂20 = X ′û0/(û

′û).
By restricting the effect of heteroskedasticity, we can obtain analogous results to Theorems 1

and 4 as follows. Let q̄2 = limn→∞
1
n

∑n
i=1E[(v′2i, 0)′ui]/σ̄

2 with σ̄2 = limn→∞
1
n

∑n
i=1E[u2

i ].

Proposition 3. Suppose Assumptions 1H and 2H hold true. Additionally assume 1
n

∑n
i=1(Ωi −

Ω̄)⊗ (Ωi − Ω̄)→ 0. Then under H0,

P{tHK ≤ τ} = Φ(τ)− 1√
n

1√
ΨH,j

(τ2ι′ΨH)q̄2φ(τ) +O(n−1),

P{tH,adjK ≤ τ} = Φ(τ) +O(n−1).

This proposition says that under the slight deviations from homoskedasticity (in the sense
of 1

n

∑n
i=1(Ωi − Ω̄) ⊗ (Ωi − Ω̄) → 0), the adjusted statistic tH,adjK shows better null rejection

properties. Without this condition, many additional higher-order terms emerge and adjustment
on the t-ratio will be substantially more complicated. Full investigation without this condition
is left for future research.
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4. Simulation

In this section, we conduct a simulation study to examine quality of the preceding asymptotic
approximations to the finite sample distributions of the t-ratios. We consider the data generating
process (DGP):

y1i = y2iβ0 + z1iγ0 + ui,

y2i = z′iπ2 + v2i, (20)

for i = 1, . . . , n, where π2 = (d, . . . , d)′, zi = (z1i, z
′
2i)
′, z1i = 1, and z2i ∼ N(0, IK−1). The error

terms are generated as (ui, v2i) = (ε1i, ρε1i +
√

1− ρ2ε2i), where ε1i and ε2i are independent and
drawn from N(0, 1).4 We set β0 = γ0 = 0 and ρ = 0.4, 0.8, and the sample size is set as n = 200

for all cases. For each Monte Carlo replication, we set the value of d to fix the value of the
concentration parameter as µ2 = 30, 60 (given the realized values of {zi}), where

µ2 =
π′2

[∑n
i=1 z2iz

′
2i −

∑n
i=1 z2iz

′
1i (
∑n

i=1 z1iz
′
1i)
−1∑n

i=1 z1iz
′
2i

]
π2

V ar(v2i)
. (21)

Null distributions of t-ratios for β0. First, we investigate the null distributions of the five types

of t-ratios – the standard t-ratio with the LIML estimator (tLI =
√
nι′β̂LI/

√
σ̂2(Q̂−1)j), the

large-K t-ratio with the LIML estimator (tLIK ), the large-K t-ratio with the Fuller estimator
(tFK), the adjusted large-K t-ratio with the LIML estimator (tadj,LIK ), and the adjusted large-K
t-ratio with Fuller estimator (tadj,FK ). The number of Monte Carlo repetitions in each experiment
is 50,000.

Tables 1 and 2 report the null rejection frequencies of the one-sided and two-sided tests at the
nominal 5% significance level, respectively. Our findings are summarized as follows.

i): The size distortions of the standard t-ratio (tLI) tend to be large when µ2 is small and
K is large. As K increases, the tails of tLI become thicker and its rejection frequencies
tend to be larger than the nominal level.

ii): Compared to tLI , the rejection frequencies of the large-K t-ratios (tLIK and tFK) are
smaller and avoid over-rejection. Although tLIK and tFK work well for two-sided testing,
they show some asymmetric behaviors for one-sided testing. More precisely, tLIK and tFK
(sometimes severely) under-reject for one-sided testing against H1 : β < 0. Overall tLIK
and tFK show similar performances, but tLIK is slightly better than tFK for testing against
H1 : β < 0.

iii): Compared to tLI and the (unadjusted) large-K t-ratios (tLIK and tFK), the proposed
adjusted t-ratios (tadj,LIK and tadj,FK ) work well for all cases. Their rejection frequencies
are overall close to the nominal level, and do not show undesirable asymmetries for one-
sided testing as in the unadjusted test statistics tLIK and tFK . The performances of tadj,LIK

and tadj,FK are similar.

4In our preliminary simulation, we also consider the t3 and t5 distributions as other examples of the elliptically
contoured distribution. Although these distributions do not have finite 8th moments (i.e., the first condition in
Assumption 2 (ii) is violated), we find that the simulation results are similar to the normal case.
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Overall, the adjusted ratios, tadj,LIK and tadj,FK , perform well for all cases. In particular, the
adjustments improve the size distortions for one-sided testing because the null distributions of
the adjusted t-ratios are less skewed and closer to the standard normal distribution, which agrees
with our results of the asymptotic expansions in Section 2.

Power comparison. Next, we conduct power comparisons of the two-sided unadjusted and ad-
justed large-K t-tests. We generate 5,000 datasets from the DGP in (20) for various values
of β and report power curves at 5% significance level. Figures 1-2 display the power curves.
Among various cases tried in preliminary simulations, we present the cases of µ2 = 30 as typical
examples. From these figures, we can see that: (i) due to the kinks of the power curves of the
(unadjusted) large-K t-tests (tLIK and tFK) for small negative values of β, the adjusted large-K
t-tests (tadj,LIK and tadj,FK ) have better local maximin power properties, and (ii) for negative (or
positive) values of β, the adjusted large-K t-tests are more (or less) powerful than the unadjusted
large-K t-tests.

Heteroskedastic errors. Finally, we study finite sample performances of the heteroskedastic ver-
sions of the large-K t-ratios discussed in Section 3.3. In particular, we consider heteroskedastic
error terms with uHi = (1+0.01z∗22i )ui, where z∗2i is the first element of z2i. Tables 3 and 4 report
the null rejection frequencies of the one-sided and two-sided tests at the nominal 5% significance
level, respectively. We can see that the null distributions of the adjusted t-ratios reduce the
skewness (asymmetries in the rejection frequencies for the positive and negative alternatives)
and are closer to the standard normal distribution. Also our preliminary simulation suggests
that the power curves are similar to the case of homoskedastic errors.
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Appendix A. Proofs

A.1. Proof of Theorem 2. Let θ = (β′, γ′)′, θ̂LI = (β̂′LI , γ̂
′
LI)
′, θ̂F = (β̂′F , γ̂

′
F )′,

ê =

{ √
n(θ̂LI − θ) if λ = λ̂,
√
n(θ̂F − θ) if λ = λ̂− a/(n−K),

and X = [Y2, Z1]. By the definitions of the LIML and Fuller estimators in (3), we have

X ′(P − λM)Xê =
√
nX ′(P − λM)(y,X)

(
1

−θ

)
. (22)

Using the definition

D = (D1, D2) =

((
π11

π21

)
,

(
Π12 IK1

Π22 0

))
,

it can be written as

(Y, Z1)′(P − λM)(Y,Z1)

= {ZD + (V, 0)}′(P − λM){ZD + (V, 0)}

= D′Z ′ZD +D′Z ′(V, 0) + (V, 0)′ZD + (V, 0)′(PZ − λM)(V, 0). (23)

Also we note that
√
K(V ′PV/K − Ω) = Op(1) and

√
n−K(V ′MV/(n−K)− Ω) = Op(1). By

substituting (23) into (22) and putting

ê = e(0) +
1√
n
e(1) +Op(n

−1),

λ̂ = λ(0) +
1√
n
λ(1) +

1

n
λ(2) +Op(n

−3/2),

under Assumption 2 (i), we can determine successively (e(0), e(1)) and (λ(0), λ(1), λ(2)) as

λ(0) = c∗, λ(1) =
c∗
σ2

[√
n

K
u′Pu−

√
n

n−K
u′Mu

]
,

λ(2) =
c∗
σ2

{
− n
K
e(0)′Qe(0)

−
√

n

n−K
1

σ2

[√
n

K
u′Pu−

√
n

n−K
u′Mu

] [√
n−K(

1

n−K
u′Mu− σ2)

]}
,

e(0) = Q−1

[
1√
n
D′2Z

′u+

√
c√
K
W ′2Pu−

√
cc∗√

n−K
W ′2Mu

]
, (24)

e(1) = −Q−1

[{
1√
n
D′2Z

′(V2, 0) +

√
c√
K
W ′2P (V2, 0)−

√
cc∗√

n−K
W ′2M(V2, 0)

}
e(0)

+
1√
n
W ′2ZD2e

(0) − (1− c)λ(1)

{(
Ω22 0

0 0

)
− q2q

′
2σ

2

}
e(0)

+
√

1− cλ(1) 1√
n−K

W ′2Mu

]
+ a(1 + c∗)σ

2Q−1q2,

where W2 = (V2, 0) − uq′2, q2 = 1
σ2 (ω′21 − β′Ω22, 0

′)′, and c∗ = c/(1 − c). Each λ(l) is obtained
by premultiplying (1,−β′,−γ′) to (22). Each e(l) is obtained by using the last G1 +K1 rows of
(22).
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It should be noted that W2 and u are uncorrelated when the rows of V are independently
distributed. Moreover, we notice that E[w2iw

′
2iw2iui] = 0 and E[w2iw

′
2iw2iu

3
i ] = 0 when W2 and

u follow some elliptically contoured distribution (by Assumption 2 (ii)). Using these facts, the
Cornish-Fisher expansions of 1√

n
D′2Z

′u, 1√
K
W ′2PZu, and

1√
n−KW

′
2Mu may be written as

1√
n
D′2Z

′u = X +Op(n
−1),

1√
K
W ′2Pu = Y +Op(n

−1),

1√
n−K

W ′2Mu = Z +Op(n
−1),

where X , Y, and Z are some normally distributed random vectors. Thus, ê can be written as

ê = E +
1√
n
e(1) +Op(n

−1), (25)

where E = Q−1(X +
√
cY +

√
cc∗Z).

We derive an asymptotic expansion of the distribution of ê by inverting the characteristic
function of ê up to order n−1/2:

E[exp(is′E)] +
1√
n
E[is′E[e(1)|E ] exp(is′E)] +O(n−1), (26)

where s is a (G1 +K1)× 1 vector of real variables and i =
√
−1. The conditional expectation of

e(1) given the first order term E can be written as

E[e(1)|E ] = −{EE ′ − a(1 + c∗)Q
−1σ2}q2 +Op(n

−1/2).

Therefore, the probability P (ê ≤ ξ) is approximated to the order n−1/2 by the Fourier inversion
of the characteristic function (26). The inversion of the first term is ΦΨ(ξ). We also use the next
Fourier inversion formula, which is a generalization of Fujikoshi et al. (1982): for E ∼ N(µ,Σ)

and any polynomials h(·) and g(·),

F−1[h(−is)E[g(E) exp(is′E)]]E=ξ = h

(
∂

∂ξ

)
g(ξ)φµ,Σ(ξ), (27)

where φµ,Σ(ξ) is the density function of N(µ,Σ) and ∂/∂ξ′ = (∂/∂ξ1, · · · , ∂/∂ξG1+K1). The
conclusion follows by applying this formula.

A.2. Proof of Theorem 1. To derive the asymptotic expansion of the null distribution of the
large-K t-ratio, we first expand each term of Ψ̂ in (8). Let E1 and E2 such that

1

K
(V, 0)′P (V, 0) =

(
Ω 0

0 0

)
+

1√
K
E1,

1

n−K
(V, 0)′M(V, 0) =

(
Ω 0

0 0

)
+

1√
n−K

E2.
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Using (23), and a (1 +G2 +K1)× (G2 +K1) choice matrix J2 = (0, IG2+K1)′, we have

Q̂ = Q+
1√
n

[
1√
n
D′2Z

′(V2, 0) +
1√
n

(
V ′2

0′

)
ZD2

+
√
cJ ′2E1J2 +

√
cc∗J

′
2E2J2 − λ(1)

(
Ω22 0

0 0

)]
+Op(n

−1),

where the equality follows from Assumption 2 (iii). Thus Q̂−1 is expanded as

Q̂−1 = Q−1 − 1√
n
Q−1BQ−1 +Op(n

−1),

where

B =
1√
n
D′2Z

′(V2, 0) +
1√
n

(V2, 0)′ZD2 +
√
cJ ′2E1J2 +

√
cc∗J

′
2E2J2 − λ(1)

(
Ω22 0

0 0

)
.

Also, note that

1

n−K
b̂′Y ′MY b̂

=

{
b− 1√

n

(
0

e
(0)
β

)
+Op(n

−1)

}′

×

{
Ω +

1√
n

[√
n−K
1− c

(
1

n−K
V ′MV − Ω

)]}{
b− 1√

n

(
0

e
(0)
β

)
+Op(n

−1)

}

= σ2 +
1√
n

[
−2(0, e

(0)′
β )Ωb+

√
n−K
1− c

b′
(

1

n−K
V ′MV − Ω

)
b

]
+Op(n

−1),

where b = (1,−β′)′ and e(0)
β is the first G2 elements of e(0) in (24). Similarly,

1

(n−K)2
Y ′MY b̂b̂′Y ′MY

= Ωbb′Ω +
1√
n

[
−Ωb(0, e

(0)′
β )Ω +

√
n−K
1− c

Ωbb′
(

1

n−K
V ′MV − Ω

)

−Ω

(
0

e
(0)
β

)
b′Ω +

√
n−K
1− c

(
1

n−K
V ′MV − Ω

)
bb′Ω

]
+Op(n

−1).

Combining these terms, we have

Ψ̂ = Ψ +
1√
n

Ψ(1) +Op(n
−1),
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where

Ψ(1) = Q−1

[
−2e(0)′q2σ

2 +

√
n−K
1− c

(
1

n−K
u′Mu− σ2

)]

−Q−1BQ−1σ2 + (c∗ + κη)Q−1AQ−1 − (c∗ + κη)Q−1BQ−1

[(
σ2Ω22 0

0 0

)
− q2q

′
2σ

4

]
Q−1

−(c∗ + κη)Q−1

[(
σ2Ω22 0

0 0

)
− q2q

′
2σ

4

]
Q−1BQ−1 + κ∗ηQ−1

[(
σ2Ω22 0

0 0

)
− q2q

′
2σ

4

]
Q−1,

κ∗ =
1

3σ2

[
− 4

n

n∑
i=1

u3
iw
′
2ie

(0) − 4

n

n∑
i=1

u3
i z
′
iD2e

(0)

+
√
n

(
1

n

n∑
i=1

u4
i − E[u4

i ]

)
− 2E[u4

i ]

σ2

√
n−K
1− c

(
1

n−K
u′Mu− σ2

)]
,

A = −2

(
Ω22 0

0 0

)
e(0)′q2σ

2 +

√
n−K
1− c

(
Ω22 0

0 0

)(
1

n−K
u′Mu− σ2

)

+

√
1

1− c
J ′2E2J2σ

2 + q2σ
2e(0)′

(
Ω22 0

0 0

)

−q2

√
n−K
1− c

(
1

n−K
u′M(V2, 0)− q′2σ2

)
σ2 +

(
Ω22 0

0 0

)
e(0)q′2σ

2

−
√
n−K
1− c

(
1

n−K
(V2, 0)′Mu− q2σ

2

)
q′2σ

2.

Under H0, the large-K t-ratio (9) is approximated as

tK =
ê√
Ψj

√
Ψj

Ψ̂j

=
ι′
(
e(0) + 1√

n
e(1) +Op(n

−1)
)

√
Ψj

(
1− 1

2
√
n

Ψ
(1)
j

Ψj
+Op(n

−1)

)

= T +
1√
n
t(1) +Op(n

−1), (28)

where

T =
ι′e(0)√

Ψj

, t(1) =
ι′e(1)√

Ψj

− 1

2

Ψ
(1)
j

Ψj
T .

The first-order term T is asymptotically distributed as N(0, 1). We derive an asymptotic expan-
sion of the distribution function of the large-K t-ratio by inverting the characteristic function up
to O(n−1/2):

E[exp(isT )] +
1√
n
E[isE[t(1)|T ] exp(isT )] +O(n−1).

By using Kunitomo and Matsushita (2009, Lemma A.3) and the fact that any odd moment of the
elliptically contoured distribution is 0 (by Assumption 2 (ii)), the expectation of t(1) conditional
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on T is calculated as

E[t(1)|T ] = − 1√
Ψj

[
(ι′Ψq2)T 2 − a

1− c
σ2ι′Q−1q2

]
− 1

2

[
− 4√

Ψj

(ι′Ψq2)T 2

]

=
1√
Ψj

[
T 2ι′Ψ +

a

1− c
σ2ι′Q−1

]
q2 +Op(n

−1/2), (29)

where the first equality follows from Lemma 1. The probability P{tK ≤ ξ} is approximated to
the order n−1/2 using the same formula as (27).

The validity of the expansion is given by similar arguments to those in Kunitomo and Mat-
sushita (2009) and in Fujikoshi et al. (1982). The random variables that appear in our analyses
are x1 = 1√

n
D′2Z

′u, x2 = 1√
n
D′2Z

′W2, x3 =
√
K(u′Pu/K − σ2), x4 =

√
n−K(u′Mu/(n−K)−

σ2), x5 = 1√
K
W ′2Pu, x6 = 1√

n−KW
′
2Mu, x7 =

√
K(W ′2PW2/K−C2), and x8 =

√
n−K(W ′2MW2/(n−

K)−C2), where C2 = E[w2iw
′
2i]. We use the space Jn where each element of xi (for i = 1, . . . , 8)

is in the interval (−2c
√

log n, 2c
√

log n) and c is a standard deviation of each random variable.
Then, if E[||vi||8] <∞, we can take a positive constant d which satisfies

P{||xj || >
√

Λn log n} ≤ d

n(log n)2
,

where Λn as the maximum of the characteristic roots of the covariance matrix of xj (j = 1, . . . , 8)

(Bhattacharya and Ghosh, 1978). Then, P (Jn) = 1−O(n−1), which can be proved in the same
way as in Anderson (1974). We see that each element of e(l) and t(l) is a homogeneous polynomial
of degree l + 1 in the elements of xj . The remainder terms of (25) and (28) are of the order
O(n−1) uniformly in Jn. Therefore, the analysis subsequent to (B.3) in Fujikoshi et al. (1982)
is applicable.

Lemma 1. Based on the setup and notation of the proof of Theorem 1, it holds E[Ψ
(1)
j |T ] =

−4
√

Ψj(ι
′Ψq2) +Op(n

−1/2).

Proof of Lemma 1. Decompose

Ψ
(1)
j = ι′{−2Q−1Q(1)Ψ +Q−1Σ(1)Q−1}ι

= −2ι′Q−1Q(1)Ψι+ ι′Q−1ι

{
−2e(0)′q2σ

2 +

√
n−K
1− c

(
1

n−K
u′Mu− σ2

)}
+ ι′Q−1Q(1)Q−1ισ2

+(c∗ + κη)ι′Q−1AQ−1ι+ κ∗ηι′Q−1

{(
σ2Ω22 0

0 0

)
− q2q

′
2σ

4

}
Q−1ι

≡ Ψ
(1)
j1 + Ψ

(1)
j2 + Ψ

(1)
j3 + Ψ

(1)
j4 + Ψ

(1)
j5 .
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For Ψ
(1)
j5 , we have E[Ψ

(1)
j5 |T ] = Op(n

−1/2). For Ψ
(1)
j1 , we have

E[Ψ
(1)
j1 |T ] = − 2√

Ψj

(ι′Ψι)(ι′Ψq2)T − 2√
Ψj

(ι′ΨQΨι)(ι′Q−1q2)T +Op(n
−1/2)

= − 2√
Ψj

(ι′Ψι)(ι′Ψq2)T

− 2√
Ψj

(
ι′Q−1

[
Qσ2 + (c∗ + κη)

{(
σ2Ω22 0

0 0

)
− q2q

′
2σ

4

}]
Ψι

)
(ι′Q−1q2)T +Op(n

−1/2)

= − 2√
Ψj

(ι′Ψι)(ι′Ψq2)T − 2√
Ψj

(ι′Ψι)(ι′Q−1σ2q2)T

− 2√
Ψj

(c∗ + κη)

{
ι′Q−1

(
σ2Ω22 0

0 0

)
Ψι

}
(ι′Q−1q2)T

+
2√
Ψj

(c∗ + κη)(ι′Q−1q2q
′
2σ

4Q−1ι)(ι′Ψq2)T +Op(n
−1/2), (30)

For Ψ
(1)
j2 , we have

E[Ψ
(1)
j2 |T ] = − 2√

Ψj

(ι′Q−1σ2ι)(ι′E[e(0)e(0)′]q2)T +Op(n
−1/2) = − 2√

Ψj

(ι′Q−1σ2ι)(ι′Ψq2)T +Op(n
−1/2).

(31)
For Ψ

(1)
j3 , we have

E[Ψ
(1)
j3 |T ] = E[ι′Q−1Q(1)Q−1ισ2|T ] =

2√
Ψj

(ι′Ψι)(ι′Q−1σ2q2)T +Op(n
−1/2). (32)

For Ψ
(1)
j4 , note that

ι′Q−1AQ−1ι = ι′Q−1

[
−2

(
σ2Ω22 0

0 0

)
e(0)′q2 +

√
n−K
1− c

(
Ω22 0

0 0

)(
1

n−K
u′Mu− σ2

)

+

√
1

1− c
J ′2E2J2σ

2 + q2e
(0)′

(
σ2Ω22 0

0 0

)

−q2

√
n−K
1− c

(
1

n−K
u′M(V2, 0)− q′2σ2

)
σ2 +

(
σ2Ω22 0

0 0

)
e(0)q′2

−
√
n−K
1− c

(
1

n−K
(V2, 0)′Mu− q2σ

2

)
q′2σ

2

]
Q−1ι

≡ Aj1 + · · ·+Aj7.

Observe that E[Aj2 +Aj3 +Aj5 +Aj7|T ] = Op(n
−1/2), and

E[Aj1|T ] = − 2√
Ψj

(
ι′Q−1

(
σ2Ω22 0

0 0

)
Q−1ι

)
(ι′Ψq2)T +Op(n

−1/2),

E[Aj4 +Aj6|T ] =
2√
Ψj

(
ι′Q−1

(
σ2Ω22 0

0 0

)
Ψι

)
(ι′Q−1q2)T +Op(n

−1/2).
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Combining these results,

E[Ψ
(1)
j4 |T ] = − 2√

Ψj

(c∗ + κη)

(
ι′Q−1

(
σ2Ω22 0

0 0

)
Q−1ι

)
(ι′Ψq2)T

+
2√
Ψj

(c∗ + κη)

(
ι′Q−1

(
σ2Ω22 0

0 0

)
Ψι

)
(ι′Q−1q2)T +Op(n

−1/2). (33)

Combining (30)-(33), the conclusion follows. Note that the sum of the last term of (30), (31)
and the first term of (33) equals −2

√
Ψj(ι

′Ψq2).

A.3. Proof of Theorem 3. Under H1n, the large-K t-ratio can be written as

tK =
1√
Ψ̂j

ι′
√
n

(
β̂

γ̂

)
=

1√
Ψ̂j

ι′
√
n

(
β̂ − β
γ̂ − γ

)
+

ι′ζ√
Ψ̂j

=

(
T +

ι′ζ√
Ψj

)
+

1√
n

(
t(1) −

Ψ
(1)
j ι′ζ

2Ψj

√
Ψj

)
+Op(n

−1), (34)

where T in the first-order term is distributed as N(0, 1). Since the expectation of Ψ
(1)
j conditional

on T is calculated as E[Ψ
(1)
j |T ] = −4

√
Ψj(ι

′Ψq2)T +Op(n
−1/2) by Lemma 1, we have

E

[
t(1) −

Ψ
(1)
j ι′ζ

2Ψj

√
Ψj

∣∣∣∣∣ T∗ = T +
ι′ζ√
Ψj

]

=
1√
Ψj

[
T 2
∗ ι
′Ψ +

a

1− c
σ2ι′Q−1

]
q2 −

1√
Ψj

(ι′Ψq2)

(
ι′ζ√
Ψj

)2

+Op(n
−1/2). (35)

Then the probability P{tK ≤ τ} is approximated to the order O(n−1/2) using the inversion
formula (27):

P{tK < τ}

= Φζ(τ)− 1√
n

 1√
Ψj

{
τ2(ι′Ψ) +

a

1− c
σ2Q−1

}
q2 −

1√
Ψj

(ι′Ψq2)

(
ι′ζ√
Ψj

)2
φζ(τ) +O(n−1).

The result for the two-sided test is obtained by P{|tK | ≤ τ} = P{tK ≤ τ} − P{tK ≤ −τ}.

A.4. Proof of Theorems 4 and 5. We only present the proof for Theorem 5 since the proof
of Theorem 4 for the null distribution follows directly by setting ζ = 0.

By using (34), the adjusted t-ratio under H1n can be written as

tadjK = tK −
1√
n

1√
Ψ̂j

{
(ι′Ψ̂q̂2)t2K0 +

an

n−K
σ̂2ι′Q̂−1q̂2

}
+Op(n

−1)

=

(
T +

ι′ζ√
Ψj

)
+

1√
n

(
t(1) −

Ψ
(1)
j ι′ζ

2Ψj

√
Ψj

)

− 1√
n

1√
Ψj

(ι′Ψq2)

(
T +

ι′ζ√
Ψj

)2

− 1√
n

1√
Ψj

a

1− c
σ2ι′Q−1q2 +Op(n

−1).
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Thus, using (35), the expectation of the O(n−1/2) term conditional on T∗ = T + ι′ζ√
Ψj

is calculated
as

E

(t(1) −
Ψ

(1)
j ι′ζ

2Ψj

√
Ψj

)
− 1√

Ψj

(ι′Ψq2)

(
T +

ι′ζ√
Ψj

)2

− 1√
Ψj

a

1− c
σ2ι′Q−1q2

∣∣∣∣∣∣ T ∗


= − 1√
Ψj

(ι′Ψq2)

(
ι′ζ√
Ψj

)2

+Op(n
−1/2). (36)

The probability P{tadjK ≤ τ} is approximated to the order n−1/2 using the inversion formula (27):

P{tadjK ≤ τ} = Φζ(τ)− 1√
n

− 1√
Ψj

(ι′Ψq2)

(
ι′ζ√
Ψj

)2
φζ(τ) +O(n−1).

The result for the two-sided test is obtained by P{|tadjK | ≤ τ} = P{tadjK ≤ τ} − P{tadjK ≤ −τ}.

A.5. Proof of Proposition 1. By Theorem 3 and Theorem 5, we obtain

lim
n→∞

√
n

[
min

ζ∈RG2+K1 :(ι′ζ)2=δ
P{|tadjK | ≥ τ} − min

ζ∈RG2+K1 :(ι′ζ)2=δ
P{|tFK | ≥ τ}

]
= min

ζ∈RG2+K1 :(ι′ζ)2=δ
− 1√

Ψj

(ι′Ψq2)
δ

Ψj
{φζ(τ)− φζ(−τ)}

− min
ζ∈RG2+K1 :(ι′ζ)2=δ

− 1√
Ψj

{
(ι′Ψq2)

(
δ

Ψj
− τ2

)
− aσ2

1− c
ι′Q−1q2

}
{φζ(τ)− φζ(−τ)}.

Since minζ∈RG2+K1 :(ι′ζ)2=δ{φζ(τ)−φζ(−τ)} is negative, the right hand side becomes positive as far

as |ι′Ψq2| δΨj <
∣∣∣(ι′Ψq2)

(
δ

Ψj
− τ2

)
− aσ2

1−c ι
′Q−1q2

∣∣∣ or equivalently δ ∈ (0,

∣∣∣∣ τ2Ψj
2 +

aσ2

1−c (ι′Q−1q2)Ψj

2(ι′Ψq2)

∣∣∣∣)
by using the fact that if |a| < |b|/2, then |a− b| − |a| > (|b| − |a|)− |b|/2 > |b|/2− |a| > 0. Thus,

the conclusion follows by setting ∆ =

∣∣∣∣ τ2Ψj
2 +

aσ2

1−c (ι′Q−1q2)Ψj

2(ι′Ψq2)

∣∣∣∣.

A.6. Proof of Proposition 2. Let êH =
√
n(θ̂HLIM − θ) and X = (Y2, Z1). By the definition

of the HLIM estimator in (15), we have

(y1, X)′(P ∗ − α̂I)XêH =
√
n(y1, X)′(P ∗ − α̂I)(y1, X)

(
1

−θ

)
. (37)

By the definition D = (D1, D2) =

((
π11

π21

)
,

(
Π12 IK1

Π22 0

))
, it can be written as

(Y,Z1)′(P ∗ − α̂I)(Y,Z1)

= {ZD + (V, 0)}′(P ∗ − α̂I){ZD + (V, 0)}

= D′
n∑
i=1

ziz
′
i(1− Pii)D +D′

n∑
i=1

zi(1− Pii)(v′i, 0) +
n∑
i=1

(v′i, 0)′(1− Pii)ziD + (V, 0)′P ∗(V, 0)

−α̂{ZD + (V, 0)}′{ZD + (V, 0)}. (38)
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Also we note that V ′P ∗V/
√
n = Op(1) and

√
n(V ′V/n−Ω̄) = Op(1), where Ω̄ = limn→∞

1
n

∑n
i=1E[viv

′
i].

By substituting (38) into (37) and putting

êH = e
(0)
H +

1√
n
e

(1)
H +Op(n

−1),

α̂ = α(0) +
1√
n
α(1) +

1

n
α(2) +Op(n

−3/2), (39)

under Assumption 2 (i), we can determine successively (e
(0)
H , e

(1)
H ) and (α(0), α(1), α(2)). Let

w2i = (v′2i, 0)′ − uiq̄2, q̄2 = limn→∞
1
n

∑n
i=1E[(v′2i, 0)′ui]/σ̄

2, σ̄2 = limn→∞
1
n

∑n
i=1E[u2

i ], Ω̄22 =

limn→∞
1
n

∑n
i=1E[v2iv

′
2i], and Q̄ = limn→∞

1
n

∑n
i=1D

′
2ziz

′
iD2. For α̂, by premultiplying (1,−β′,−γ′)

to (37), we have

α̂ =
1√
n

1√
n
u′P ∗u− 1√

n

(
1√
n
u′P ∗X

)
êH

σ̄2 +
(

1
nu
′u− σ̄2

)
− σ̄2√

n
q̄′2êH − 1√

n

(
1
nu
′X − σ̄2q̄′2

)
êH

=
1√
n

[
1

σ̄2

1√
n
u′P ∗u

]
+

1

n

[
− 1

σ̄2

(
1√
n

n∑
i=1

ui(1− Pii)z′iD2 +
1√
n
u′P ∗V − 1√

n
u′P ∗uq̄′2

)
e

(0)
H

]

− 1

n

[
1

σ̄2

(
1√
n
u′P ∗u

) √
n

σ̄2

(
1

n
u′u− σ̄2

)]
+Op(n

−3/2)

=
1√
n

[
1

σ̄2

1√
n
u′P ∗u

]
+

1

n

[
− 1

σ̄2
e

(0)′
H QHe

(0)
H −

1

σ̄2

(
1√
n
u′P ∗u

) √
n

σ̄2

(
1

n
u′u− σ̄2

)]
+Op(n

−3/2),

where the second equality follows from a Taylor expansion and direct calculation, and the third
equality is due to the definition

e
(0)
H = Q−1

H

 1√
n

n∑
i=1

D′2zi(1− Pii)ui +
1√
n

n∑
i 6=j

Pijw2iuj

 . (40)
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For êH , by using the last G2 +K1 rows of (37), we have

êH =

{
1

n
X ′(P ∗ − α̂I)X

}−1 1√
n
X ′(P ∗ − α̂I)u

= Q−1
H

 1√
n

n∑
i=1

D′2zi(1− Pii)ui +
1√
n

n∑
i 6=j

Pijw2iuj

− α(1)Q−1
H

1

n

n∑
i=1

w2iui +
1√
n
e

(0)′
H QHe

(0)
H QH q̄2

− 1√
n
Q−1
H

[
1√
n

n∑
i=1

D′2zi(1− Pii)(v′2i, 0) +
1√
n

n∑
i=1

(v′2i, 0)′(1− Pii)z′iD2

+
1√
n

(V2, 0)′P ∗(V2, 0)− α(1)

{
Q̄+

(
Ω̄22 0

0 0

)}]
e

(0)
H +Op(n

−1)

= Q−1
H

 1√
n

n∑
i=1

D′2zi(1− Pii)ui +
1√
n

n∑
i 6=j

Pijw2iuj

− α(1)Q−1
H

1

n

n∑
i=1

w2iui

− 1√
n
Q−1
H

 1√
n

n∑
i=1

D′2zi(1− Pii)(v′2i, 0) +
1√
n

∑
i 6=j

Pijw2i(v
′
2j , 0)

+
1√
n

n∑
i=1

w′2i(1− Pii)z′iD2 − α(1)

{
Q̄+

(
Ω̄22 0

0 0

)
− q̄2q̄

′
2

}]
e

(0)
H +Op(n

−1),

where the second equality follows from the assumption on QH and (39) with the expression

α(1) =
1

σ̄2

1√
n
u′P ∗u, α(2) = − 1

σ̄2
e(0)′Qne

(0) − 1

σ̄2

(
1√
n
u′P ∗u

) √
n

σ̄2

(
1

n
u′u− σ̄2

)
(41)

and the third equality follows from the definition of e(0)
H in (40).

Combining these results, we obtain the expansion in (39) with e(0)
H in (40), α(1) and α(2) in

(41), α(0) = 0,

e
(1)
H = −α(1)Q−1 1√

n

n∑
i=1

w2iui −
1√
n
Q−1

 1√
n

n∑
i=1

D′2zi(1− Pii)(v′2i, 0) +
1√
n

∑
i 6=j

Pijw2i(v
′
2j , 0)

+
1√
n

n∑
i=1

w′2i(1− Pii)z′iD2 − α(1)

{
Q̄+

(
Ω̄22 0

0 0

)
− q̄2q̄

′
2

}]
e

(0)
H .(42)

Therefore, the conclusion follows from

tHK =
êH√
ΨH,j

√
ΨH,j

Ψ̂H,j

=
ι′
(
e

(0)
H + 1√

n
e

(1)
H +Op(n

−1)
)

√
ΨH,j

1− 1

2
√
n

Ψ
(1)
H,j

ΨH,j
+Op(n

−1)


= TH +

1√
n
t
(1)
H +Op(n

−1), (43)

where

TH =
ι′e

(0)
H√

ΨH,j

, t
(1)
H =

ι′e
(1)
H√

ΨH,j

− 1

2

Ψ
(1)
H,j

ΨH,j
TH .
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A.7. Proof of Proposition 3. Lengthy calculations yield that

E[ι′e
(1)
H |TH ] = −(ι′ΨH q̄2)T 2

H +Op(n
−1/2),

E[Ψ
(1)
H,j |TH ] = −2E[ι′Q−1

H Q
(1)
H ΨHι|TH ] + E[ι′Q−1

H Σ
(1)
H Q−1

H ι|TH ],

−2E[ι′Q−1
H Q

(1)
H ΨHι|TH ] = −2

√
ΨH,j(ι

′ΨH q̄2)TH −
2√
ΨH,j

(ι′ΨHQHΨHι)(ι
′Q−1

H q̄2)TH +Op(n
−1/2),

E[ι′Q−1
H Σ

(1)
H Q−1

H ι|TH ] = −2
√

ΨH,j(ι
′ΨH q̄2)TH

+
2√
ΨH,j

(ι′ΨHQHΨHι)(ι
′Q−1

H q̄2)TH +Op(n
−1/2). (44)

Since proofs are similar, we only present the proof of (44) below. Based on these conditional
expectations, we obtain

E[t
(1)
H |TH ] = E

 ι′e
(1)
H√

ΨH,j

− 1

2

Ψ
(1)
H,j

ΨH,j
TH

∣∣∣∣∣∣ TH


= − 1√
ΨH,j

(ι′ΨH q̄2)T 2
H −

1

2

[
− 4√

ΨH,j

(ι′ΨH q̄2)T 2
H

]
+Op(n

−1/2)

=
1√
ΨH,j

(ι′ΨH q̄2)T 2
H + +Op(n

−1/2).

Therefore, we obtain an analogous expression for the conditional expectation in (29), and the
conclusion follows by the same argument in the proof of Theorem 2 using the inversion formula
in (27).

Proof of (44). Decompose

Σ
(1)
H =

√
n

 1

n

n∑
k=1

n∑
i 6=k

n∑
j 6=k

X̂iPikû
2
kPkjX̂

′
j +

1

n

n∑
i=1

n∑
j 6=i

X̂iX̂
′
j ûiûjP

2
ij − ΣH


≡ S0 + S1 + S2,

24



where

S0 =
√
n

 1

n

n∑
k=1

n∑
i 6=k

n∑
j 6=k

(D′2zi + w2i)Piku
2
kPkj(D

′
2zj + w2j)

′

+
1

n

n∑
i=1

n∑
j 6=i

(D′2zi + w2i)(D
′
2zj + w2j)

′uiujP
2
ij − ΣH

 ,

S1 =
1√
n

n∑
k=1

n∑
i 6=k

n∑
j 6=k

(D′2zi + w2i)Pik(û
2
k − u2

k)Pkj(D
′
2zj + w2j)

′

− 2√
n

n∑
k=1

n∑
i 6=k

n∑
j 6=k

q̄2(ûi − ui)Piku2
kPkj(D

′
2zj + w2j)

′

− 2√
n

n∑
k=1

n∑
i 6=k

n∑
j 6=k

(q̂2 − q̄2)uiPiku
2
kPkj(D

′
2zj + w2j)
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Then we can obtain
√
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√

ΨH,j(ι
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where the first equality follows by ûk = uk − 1√
n
X ′ke

(0)
H + Op(n

−1) and Chebyshev’s inequality,
the second equality follows from Xi = D′2zi + w2i + uiq̄2, Assumption 2H, and the assumption
1
n

∑n
i=1(Ωi− Ω̄)⊗ (Ωi− Ω̄) = op(1), and the third equality follows from the definition of ΨH . By
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similar arguments, we can obtain
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and
√
nE[ι′Q−1

H (S13 + S23)Q−1
H ι|TH ] = Op(n

−1/2). Combining these results, we obtain (44).
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Appendix B. Tables and figures

tLI tLIK tFK tadj,LIK tadj,FK
ρ µ2 K β < 0 β > 0 β < 0 β > 0 β < 0 β > 0 β < 0 β > 0 β < 0 β > 0
0.4 60 5 0.033 0.063 0.029 0.058 0.023 0.060 0.052 0.050 0.051 0.050

60 10 0.039 0.072 0.028 0.060 0.022 0.062 0.054 0.053 0.053 0.052
60 20 0.049 0.088 0.026 0.061 0.020 0.063 0.055 0.055 0.053 0.054

30 5 0.024 0.073 0.016 0.061 0.010 0.063 0.057 0.051 0.052 0.055
30 10 0.029 0.088 0.014 0.063 0.008 0.064 0.055 0.058 0.051 0.058
30 20 0.043 0.114 0.011 0.064 0.008 0.066 0.056 0.063 0.051 0.063

0.8 60 5 0.018 0.077 0.016 0.075 0.009 0.085 0.055 0.055 0.051 0.055
60 10 0.018 0.078 0.014 0.073 0.008 0.083 0.056 0.053 0.053 0.052
60 20 0.022 0.087 0.014 0.075 0.008 0.085 0.055 0.053 0.052 0.052

30 5 0.003 0.089 0.002 0.083 0.001 0.097 0.061 0.058 0.051 0.057
30 10 0.003 0.096 0.002 0.085 0.003 0.098 0.061 0.058 0.050 0.057
30 20 0.004 0.110 0.001 0.086 0.000 0.098 0.058 0.058 0.047 0.057

Table 1. Null rejection frequencies of one-sided large-K t-tests at 5% significance
level (homoskedastic case)

ρ µ2 K tLI tLIK tFK tadj,LIK tadj,FK
0.4 60 5 0.048 0.042 0.043 0.055 0.054

60 10 0.056 0.042 0.043 0.057 0.056
60 20 0.073 0.041 0.042 0.058 0.057

30 5 0.047 0.036 0.037 0.062 0.058
30 10 0.061 0.037 0.037 0.064 0.060
30 20 0.089 0.038 0.038 0.068 0.063

0.8 60 5 0.052 0.049 0.056 0.061 0.058
60 10 0.052 0.047 0.054 0.060 0.056
60 20 0.059 0.048 0.054 0.058 0.056

30 5 0.058 0.054 0.063 0.069 0.059
30 10 0.064 0.055 0.064 0.068 0.059
30 20 0.075 0.056 0.064 0.065 0.055

Table 2. Null rejection frequencies of two-sided large-K t-tests at 5% significance
level (homoskedastic case)
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Figure 1. Power curves of two-sided tests: n = 200 (sample size), K = 20
(number of instruments), ρ = 0.4 (correlation of u and v2), µ2 = 30 (concentration
parameter in (21)), homoskedastic case

Figure 2. Power curves of two-sided tests: n = 200 (sample size), K = 20
(number of instruments), ρ = 0.8 (correlation of u and v2), µ2 = 30 (concentration
parameter in (21)), homoskedastic case
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tHK tH,FK tH,adjK
ρ µ2 K β < 0 β > 0 β < 0 β > 0 β < 0 β > 0
0.4 60 5 0.037 0.068 0.029 0.071 0.055 0.061

60 10 0.035 0.066 0.027 0.069 0.054 0.059
60 20 0.033 0.067 0.025 0.070 0.053 0.061

30 5 0.023 0.072 0.013 0.075 0.049 0.065
30 10 0.023 0.072 0.013 0.074 0.048 0.067
30 20 0.022 0.073 0.012 0.075 0.046 0.069

0.8 60 5 0.021 0.081 0.010 0.092 0.046 0.056
60 10 0.021 0.080 0.009 0.092 0.046 0.056
60 20 0.020 0.080 0.010 0.093 0.045 0.055

30 5 0.005 0.092 0.000 0.106 0.026 0.060
30 10 0.004 0.092 0.000 0.106 0.025 0.060
30 20 0.003 0.094 0.000 0.110 0.020 0.062

Table 3. Null rejection frequencies of one-sided large-K t-tests at 5% signifi-
cance level (heteroskedastic case). tH,FK refers to the t-ratio based on the HFUL
estimator by Hausman et al. (2012)

ρ µ2 K tHK tH,FK tH,adjK
0.4 60 5 0.054 0.052 0.062

60 10 0.051 0.049 0.059
60 20 0.053 0.050 0.061

30 5 0.048 0.046 0.058
30 10 0.049 0.047 0.060
30 20 0.049 0.046 0.061

0.8 60 5 0.060 0.060 0.050
60 10 0.056 0.060 0.050
60 20 0.055 0.059 0.049

30 5 0.062 0.071 0.039
30 10 0.062 0.071 0.039
30 20 0.064 0.073 0.039

Table 4. Null rejection frequencies of two-sided large-K t-tests at 5% signifi-
cance level (heteroskedastic case). tH,FK refers to the t-ratio based on the HFUL
estimator by Hausman et al. (2012)
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