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Abstract
Consider a stochastic process that lives on n-semiaxes emanating from a common origin. 
On each semiaxis it behaves as a Brownian motion and at the origin it chooses a semiaxis 
randomly. In this paper we study the first hitting time of the process. We derive the Laplace 
transform of the first hitting time, and provide the explicit expressions for its density and 
distribution functions. Numerical examples are presented to illustrate the application of our 
results.
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transform · Bromwich integral
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1 Introduction

Suppose we have a system of semiaxes emanating from a common origin (a simple graph) 
and a particle moving on this system. On each semiaxis, the particle behaves as a Brown-
ian motion; and once at the origin, it instantaneously chooses a semiaxis for its next voyage 
randomly according to a given transition probability. We set an upper boundary on each 
semiaxis (see Fig. 1), and study the first time that the boundary is hit by the particle.

The study of first hitting time of Brownian motion with linear boundary goes back to 
Doob (1949). Other types of boundary have also been considered. The second-order bound-
ary was studied by Salminen (1988) using the infinitesimal generator method. The square-
root boundary was considered by Breiman (1967) via the Doob’s transform approach. Wang 
and Pötzelberger (1997) obtained the crossing probability for Brownian motion with a piece-
wise linear boundary using the Brownian bridge. Scheike (1992) derived an exact formula 
for the broken linear boundary. Peskir (2002) provided a general result for the continuous 
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boundary using the Chapman-Kolmogorov formula, and gave the probability density func-
tion of the first hitting time in terms of a Volterra integral system.

For the first hitting time of Brownian motion with a two-sided boundary, the Laplace 
transform and density are well-known, see Borodin and Salminen (1996) Section II.1.3. 
Escribá (1987) studied the crossing problem with two sloping line boundaries. Che and 
Dassios (2013) used a martingale method to derive the crossing probability with a two-
sided boundary involving random jumps. Sacerdote et  al. (2014) constructed a Volterra 
integral system for the probability density function of the first hitting time of Brownian 
motion with a general two-sided boundary.

In this paper, we are interested in the Brownian motion moving on a simple graph. The 
construction of Brownian motion on general metric graphs can be seen in Georgakopoulos 
and Kolesko (2014), Kostrykin et al. (2012) and Fitzsimmons and Kuter (2015). This pro-
cess contains the Walsh Brownian motion as a special case, which was first considered in the 
epilogue of Walsh (1978), and further studied by Rogers (1983), Baxter and Chacon (1982), 
Salisbury (1986) and Barlow et  al. (1989). More recently, Karatzas and Yan (2019) intro-
duced a class of planar processes called ‘semimartingales on rays’, which can be viewed as a 
generalization of the Walsh Brownian motion.

We will study the first hitting time of the Brownian motion on a simple graph. We derive 
the Laplace transform of the first hitting time, and provide the explicit inverse methods for 
its density and distribution functions. In particular, our results can be reduced to the first 
hitting time of Walsh Brownian motion. Papanicolaou et  al. (2012) and Yor (1997) Sec-
tion 17.2.3 derived the Laplace transform of the first hitting time of Walsh Brownian motion 
when the entering probabilities of the semiaxes are uniformly distributed; Fitzsimmons and 
Kuter (2015) generalized this result to an arbitrary entering probability.

This paper is motivated by the real-time gross settlement system (RTGS, and known 
as CHAPS in the UK, see McDonough 1997 and Padoa-Schioppa 2005). The participat-
ing banks in the RTGS system are concerned about liquidity risk and wish to prevent the 
considerable liquidity exposure between two banks. There is evidence suggesting that in 
CHAPS, banks usually set bilateral or multilateral limits on the exposed position with oth-
ers (see Becher et  al. 2008 and 2008), this mechanism was studied by Che and Dassios 
(2013) using a Markov model. For a single bank, namely bank A, let a reflected Brownian 
motion be the net balance between bank A and bank i, and let ui be the bilateral limit set 
up by bank A for bank i, Che and Dassios (2013) calculated the probability that the limit is 
exceeded in a finite time.

Fig. 1  A simple graph with five semiaxes and upper boundaries
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We generalize this model by considering an individual bank A and n counterparties. 
Assume that bank A uses an internal queue to manage its outgoing payments, and once the 
current payment to bank i is settled, it has probability Pij to make another payment to bank 
j, where i, j ∈ {1,… , n} . Let a reflected Brownian motion be the net balance between bank 
A and bank i. To avoid the considerable exposure to liquidity risk, a limit bi has been set for 
the net balance between bank A and bank i (this limit might be set by either the participat-
ing banks or the central bank, see Padoa-Schioppa 2005), and they are interested in the first 
time that such a limit is exceeded. In practice, an individual bank could set multiple limits 
or even remove the limit on different types of counterparties. This problem can be reduced 
to the calculation of the first hitting time of Brownian motion on a simple graph. For more 
details about the RTGS system, see Che (2011) and Soramäki et al. (2007). Applications 
of the current paper also include the communication in a network, see Deng and Li (2009).

We construct the Brownian motion on the simple graph in Sect. 2, then calculate the 
Laplace transform of the first hitting time and present some special cases of the result in 
Sect. 3. Two inverse methods for the Laplace transform are provided in Sect. 4. Numerical 
examples are presented in Sect. 5. Section 6 proposes a continuous extension of our results. 
The proofs of the main results are attached in Appendix 1.

2  Construction of the Underlying Process and the First Hitting Time

In this section, we construct the Brownian motion on a simple graph and define the first 
hitting time we are interested in. Let n be a finite positive integer, we denote by S a simple 
graph containing n semiaxes emanating from the common origin, i.e., S ∶= {S1,… , Sn} , 
and fix a transition probability matrix � ∶= (Pij)n×n , so that 

∑n

j=1
Pij = 1 , for i = 1,… , n . 

We require the Markov chain induced by � to have only one closed communicating class, 
so there exists a unique stationary distribution (see Norris 1998).

Consider a planar process X(t) on the simple graph S. We represent the position of 
X(t) by (||X(t)||,Θ(t)) , where ||X(t)|| denotes the distance between X(t) and the origin, 
and Θ(t) ∈ {S1,… , Sn} indicates the current semiaxis of the process. Let ||X(t)|| have the 
same distribution as a reflected Brownian motion. We expect Θ(t) to be constant during 
each excursion of X(t) away from the origin and have the same distribution as � when X(t) 
returns to the origin. To this end, we set

Then, X(t) behaves as a Brownian motion on each semiaxis, as long as it does not hit the 
origin. Once at the origin, it instantaneously chooses a new semiaxis according to �.

There are some special cases of X(t). When P1j = P2j = ⋯ = Pnj , for j = 1,… , n , X(t) 
reduces to a Walsh Brownian motion. When n = 2 , P11 = P21 = � and P12 = P22 = 1 − � , 
for � ∈ (0, 1) , X(t) recovers the skew Brownian motion; we also obtain a standard Brown-
ian motion by setting � =

1

2
 . When n = 1 and P11 = 1 , X(t) becomes a reflected Brownian 

motion.
Next, we define the first hitting time of X(t). On each semiaxis Si , there is a unique upper 

boundary bi > 0 , our target is to study the first hitting time � defined as

ℙ(X(t) = (0, Sj) ∣ X(t
−) = (0, Si)) = Pij, i, j ∈ {1,… , n}.

(1)�i ∶= inf{t ≥ 0;||X(t)|| = bi,Θ(t) = Si}, � ∶= min
i=1,…,n

�i.
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We need to calculate the excursion length of X(t), but the problem is there is no first excur-
sion from zero; before any t > 0 , the process has made an infinite number of small excur-
sions away from the origin. To approximate the dynamic of a Brownian motion, Dassios 
and Wu (2010) introduced the “perturbed Brownian motion”, we will extend this idea here.

For every 0 < 𝜖 < min
i=1,…,n

bi , we define a perturbed process X�(t) = (||X�(t)||,Θ�(t)) on 
the simple graph S, where ||X�(t)|| has the same distribution as a reflected Brownian motion 
starting from � , as long as X�(t) does not hit the origin. Once at the origin, X�(t) not only 
chooses a new semiaxis according to � , but also jumps to � on the new semiaxis, thus,

We define the first hitting time �� similarly as before,

As � → 0 , X�(t) → X(t) in a pathwise sense, then �� → � in distribution. Hence we will 
first study the behaviour of X�(t) , then take the limit � → 0 to calculate the Laplace trans-
form of the first hitting time �.

When X(t) starts from a point other than the origin, we denote by X(0) = (b∗
p
, Sp) the 

initial state of X(t), where p ∈ {1,… , n} is arbitrary but fixed, and 0 < b∗
p
< bp (see Fig. 1). 

We also define the first hitting time of X(t) at the origin as � ∶= inf{t ≥ 0;||X(t)|| = 0} . 
Then, X(t) behaves as a Brownian motion starting from b∗

p
 during [0, �) , i.e., before hitting 

the origin. Once at the origin, X(t) chooses a new semiaxis according to � , and behaves as 
a Brownian motion on a simple graph starting from the origin.

We use �b∗
p
(.) for the expectation with respect to the probability measure that X(t) starts 

from (b∗
p
, Sp) , and in particular, �(.) when X(t) starts from the origin.

3  Laplace Transform of �

We derive the Laplace transform of the first hitting time � in this section.

Theorem 1 Let X(t) be a Brownian motion on the simple graph S, where � = (Pij)n×n and 
{bi}i=1,…,n are the transition probability matrix and upper boundaries of S. When X(t) 
starts from (b∗

p
, Sp) , the first hitting time � defined in (1) has the Laplace transform

and the expectation

where 
(
�1,�2,… ,�n

)
 denotes the stationary distribution of a Markov chain with transition 

probability matrix � = (Pij)n×n.

ℙ(X�(t) = (�, Sj) ∣ X
�(t−) = (0, Si)) = Pij, i, j ∈ {1,… , n}.

��
i
∶= inf{t ≥ 0;||X�(t)|| = bi,Θ

�(t) = Si}, �� ∶= min
i=1,…,n

��
i
.

�b∗
p

�
e−��

�
=
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)
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k=1
�kbk∑n

k=1
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bk
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We present a special case of Theorem 1 when X(t) starts from the origin.

Corollary 1 When X(t) starts from the origin, the Laplace transform of � is

and the expectation of � is

Proof The corollary is proved by setting b∗
p
= 0 in Theorem 1.   ◻

Remark 1 For simplicity, we will concentrate on the case that X(t) starts from the origin in 
the rest of the paper.

We are also interested in the first hitting time � conditional on the event {� = �i} , that 
is, X(t) hits the upper boundary bi on the semiaxis Si before arriving at any other upper 
boundaries bj , j ∈ {1,… , n} ⧵ {i} . Then, we have the following corollary.

Corollary 2 When X(t) starts from the origin, assume that X(t) hits the upper boundary bi 
before arriving at any other upper boundaries bj , j ∈ {1,… , n} ⧵ {i} , then

and the probability of the event {� = �i} is

Proof We set �
(
e
−𝛽𝜏𝜖

j 1{𝜏𝜖
j
<𝛿𝜖 ,Θ𝜖 (0)=Sj}

)
= 0 for j ∈ {1,… , n} ⧵ {i} , and keep the term 

�

(
e−𝛽𝜏

𝜖
i 1{𝜏𝜖

i
<𝛿𝜖 ,Θ𝜖 (0)=Si}

)
 unchanged in the system of Eq. (25). This means the perturbed 

process X�(t) will only hit the upper boundary bi . Then we follow the rest of the proof for 
Theorem 1 to derive the Laplace transform, and take the limit � → 0 to calculate the prob-
ability.   ◻  

As in Sect. 2, X(t) can be reduced to some special cases by choosing the parameters 
accordingly, then we can compare Corollary 1 to the results in the existing literature.

Example 1 (reflected Brownian motion) When n = 1 and P11 = 1 , X(t) reduces to a reflected 
Brownian motion. The stationary distribution of � = (Pij)1×1 is �1 = 1 . Let the upper 
boundary be b1 > 0 , then the first hitting time � has the Laplace transform

(2)�
�
e−��

�
=

∑n

k=1
�k

1

sinh(bk

√
2�)

∑n

k=1
�k

cosh(bk

√
2�)

sinh(bk

√
2�)

,

�(�) =

∑n

k=1
�kbk∑n

k=1

�k

bk

.

�
�
e−��1{�=�i}

�
=

�i
1

sinh(bi

√
2�)

∑n

k=1
�k

cosh(bk

√
2�)

sinh(bk

√
2�)

,

ℙ(� = �i) =

�i

bi∑n

k=1

�k

bk

.
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This is the Laplace transform of the first hitting time of a reflected Brownian motion at b1 , 
see Borodin and Salminen (1996) Section II.3.2.

Example 2 (skew Brownian motion) When n = 2 , P11 = P21 = � and P12 = P22 = 1 − � , for 
� ∈ (0, 1) , X(t) reduces to a skew Brownian motion (see Lejay 2006). The stationary distri-
bution of � = (Pij)2×2 is (�, 1 − �) . Let the upper boundaries be b1 > 0 and b2 > 0 , then the 
first hitting time � has the Laplace transform

Moreover, when � =
1

2
 , X(t) becomes a standard Brownian motion. In this case, the station-

ary distribution of � is 
(

1

2
,
1

2

)
 , and the first hitting time � has the Laplace transform

This is the Laplace transform of the first exit time of a standard Brownian motion from the 
two-sided barrier [−b1, b2] or [−b2, b1] , see Borodin and Salminen (1996) Section II.1.3.

Example 3 (Walsh Brownian motion) When n is a finite positive integer and P
1j = P

2j = …

= Pnj =∶ Pj , for j = 1,… , n , X(t) becomes a Walsh Brownian motion. The stationary dis-
tribution of � = (Pij)n×n is (P1,… ,Pn) . Let the upper boundaries be b1 > 0,… , bn > 0 , 
then the first hitting time � has the Laplace transform

This is the Laplace transform of the first hitting time of a Walsh Brownian motion, see 
Fitzsimmons and Kuter (2015). In particular, when P1 = ⋯ = Pn =

1

n
 , we revert to the 

main result of Papanicolaou et al. (2012) and Yor (1997) Section 17.2.3.

4  Inverse Laplace Transform

In this section we provide two methods to invert the Laplace transform (2). For simplic-
ity, we denote by g(x, t) and Ψ(x, t) the density and distribution functions of an inverse 
Gaussian random variable with parameter x:

(3)�
�
e−��

�
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1
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�
b1

√
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� .

(4)�
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e−��
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=

�
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√
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+ (1 − �)
1
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√
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�
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√
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√
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√
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√
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.

(5)�
�
e−��
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=
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√
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+
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√
2�)

cosh(b1

√
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where Φ(⋅) is the standard normal distribution function.
We first present an auxiliary result concerning the poles of the Laplace transform (2), 

this result will enable us to apply the inverse methods.

Lemma 1 Denote by −�∗ the poles of the Laplace transform (2), then −�∗ are negative real 
numbers. Moreover, when n > 1 and the upper boundaries {bi}i=1,…,n are rational num-
bers, we can find out the poles by solving the equation

with respect to y, and looking for 𝛽∗ > 0 which satisfies

where we have set bi =
ci

di
 , for i = 1,… , n , such that ci and di are positive integers, and 

Ci ∶= ci
∏

j={1,…,n}⧵{i} dj.

From now on, we denote by −�∗ the poles of (2). We sort all the poles in descend-
ing order as −𝛽∗

1
> −𝛽∗

2
> … , and denote the set of all poles by {−�∗

i
}i∈ℕ . We also make 

the convention that the expressions 
∑

−�∗ f (−�
∗) and 

∑
i∈ℕ f (−�

∗
i
) represent the summation 

with respect to all the poles in descending order.
Next, we apply the convolution method to invert the Laplace transform (2).

Theorem 2 Assume that bk are rational numbers, then there exist positive integers ck and 
dk , such that bk =

ck

dk
 , for k = 1,… , n . In this case, the density of the first hitting time � is

and the distribution of � is

g(x, t) ∶=
x√
2�t3

e
−

x2

2t and Ψ(x, t) ∶= 2 − 2Φ

�
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�
,
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k
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(∑
k odd

(−1)
k−1

2

(
Cj

k

)
yk
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= 0
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,
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where ∗ is the convolution notation, �(t) denotes the Dirac Delta function, and

In practice, the difficulty in evaluating the convolutions above restricts the usefulness 
of Theorem 2, so we provide a more explicit way to invert the Laplace transform (2).

Theorem 3 Assume that the upper boundaries {bi}i=1,…,n are rational numbers, then the 
density of the first hitting time � is

and the distribution of � is

Remark 2 Since the poles −�∗ are negative real numbers, the series (7) and (8) converge 
fast when t is large, but slowly when t is small. Inspired by the general Theta function 
transformation (see Bellman 1961 Section 19), we provide the alternative expressions for 
the density and distribution functions of � that converge fast for small t.

When {bi}i=1,…,n are rational numbers, there exist positive integers ci and di , such that 
bi =

ci

di
 , for i = 1,… , n . Denote by x ∶= e

−
√
2�

1

d1…dn , then Laplace transform (2) can be writ-
ten as a quotient of two polynomials M(x)/N(x). The series expansion with respect to x 
gives

Since e−
√
2�

k

d1…dn is the Laplace transform of an inverse Gaussian random variable with 
parameter k

d1…dn
 , we can invert (9) term by term to derive the density of �:

Then integrate the density over (0, t) for the distribution of �:

We provide some examples to illustrate the use of Theorem 3 and Remark 2.
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Example 4  (reflected Brownian motion) Consider the Laplace transform (3). To find the 
poles of the Laplace transform, we need to solve the equation coth(b1

√
2�) = 0 . Set 

� = −�∗ , we have coth(b1
√
−2�∗) = cos(b1

√
2�∗) = 0 , and b1

√
2�∗ =

2k−1

2
� , k ∈ ℤ

+ . 
Therefore, the Laplace transform (3) has the poles

Using Theorem 3, we calculate the density and distribution functions of � to be

These expressions converge fast when t is large, but slowly when t is small.
On the other hand, denote by x ∶= e−

√
2� , the negative binomial expansion implies

For every k ∈ ℤ
+ , x(2k−1)b1 = e−(2k−1)b1

√
2� is the Laplace transform of an inverse Gaussian 

random variable with parameter (2k − 1)b1 , then Remark 2 gives

These expressions converge fast for small t, but slowly for large t.

Example 5 (standard Brownian motion) Let b1 = 1 , b2 = 2 in Laplace transform (5), then

Using Lemma 1, we can derive the poles of the Laplace transform by solving y2 − 3 = 0 
and y = tan

�√
2�∗

�
 . Thus, the poles are

Using Theorem 3, we calculate the density and distribution functions of � to be

−�∗ = −
(2k − 1)2

8b2
1

�2, k ∈ ℤ
+.

f (t) =

∞∑
k=1

(−1)k−1�
(2k − 1)

2b2
1

e
−

(2k−1)2

8b2
1

�2t

,

F(t) =

∞∑
k=1

(−1)k−1
4

(2k − 1)�

(
1 − e

−
(2k−1)2

8b2
1

�2t

)
.

�
(
e−��

)
=

2

xb1 + x−b1
=

2xb1

x2b1 + 1
= 2

n∑
k=1

(−1)k−1x(2k−1)b1 .

f (t) = 2

∞∑
k=1

(−1)k−1g
(
(2k − 1)b1, t

)
and F(t) = 2

∞∑
k=1

(−1)k−1Ψ
(
(2k − 1)b1, t

)
.

�
�
e−��

�
=

1

sinh(
√
2�)

+
1

sinh(2
√
2�)

cosh(
√
2�)

sinh(
√
2�)

+
cosh(2

√
2�)

sinh(2
√
2�)

.

−�∗ = −
1

2
�2

(
k +

1

3

)2

, k ∈ ℤ.
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and

These expressions converge fast when t is large, but slowly when t is small.
On the other hand, denote by x ∶= e−

√
2� , the negative binomial expansion implies

For every k ∈ ℤ
+ , we invert x3k−1 and x3k−2 using the inverse Gaussian density, then

These expressions converge fast for small t, but slowly for large t.

Example 6 (skew Brownian motion) Let � =
1

3
 and b1 = 1 , b2 = 2 in Laplace transform (4), 

it becomes

Using Lemma 1, we can derive the poles of the Laplace transform by solving y2 − 2 = 0 
and y = tan

�√
2�∗

�
 . Thus, the poles are

Using Theorem 3, we calculate the density and distribution functions of � to be

(10)

f (t) =
�

2
√
3

∞�
k=−∞

e
−

1

2
�2

�
k−

2

3

�2

t
�
k −

2

3

��
(−1)k+1 + 1

�

=
�

2
√
3

∞�
k=1

e
−

1

2
�2

�
k−

2

3

�2

t
�
k −

2

3

��
(−1)k+1 + 1

�

+
�

2
√
3

∞�
k=1

e
−

1

2
�2

�
k−

1

3

�2

t
�
k −

1

3

��
(−1)k+1 − 1

�
,

(11)

F(t) =
1√
3�

∞�
k=1

1�
k −

2

3

�
�
1 − e

−
1

2
�2

�
k−

2

3

�2

t

��
(−1)k+1 + 1

�

+
1√
3�

∞�
k=1

1�
k −

1

3

�
�
1 − e

−
1

2
�2

�
k−

1

3

�2

t

��
(−1)k+1 − 1

�
.

�
(
e−��

)
=

(x − x−1) + (x2 − x−2)

x3 − x−3
=

x(x + 1)

x3 + 1
=

∞∑
k=1

(−1)k−1
(
x3k−1 + x3k−2

)
.

(12)f (t) =

∞∑
k=1

(−1)k−1g(3k − 2, t) +

∞∑
k=1

(−1)k−1g(3k − 1, t),

(13)F(t) =

∞∑
k=1

(−1)k−1Ψ(3k − 2, t) +

∞∑
k=1

(−1)k−1Ψ(3k − 1, t).

�
�
e−��

�
=

1

3

1

sinh(
√
2�)

+
2

3

1

sinh(2
√
2�)

1

3

cosh(
√
2�)

sinh(
√
2�)

+
2

3

cosh(2
√
2�)

sinh(2
√
2�)

.

−�∗ = −
1

2
(k� + �)2, k ∈ ℤ, where � = arctan

�√
2

�
.
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These expressions converge fast when t is large, but slowly when t is small.
On the other hand, denote by x ∶= e−

√
2� , the series expansion implies

We invert it term by term to derive the density function, then integrate the density for the 
distribution function:

These expressions converge fast for small t, but slowly for large t.

Example 7 (Walsh Brownian motion) Let b1 = 1 , b2 = 2 , b3 = 3 and Pij =
1

3
 for i, j ∈ {1, 2, 3} 

in (6), then the stationary distribution of � = (Pij)3×3 is 
(

1

3
,
1

3
,
1

3

)
 , and

Using Lemma 1, we can derive the poles of the Laplace transform by solving y4 − 12y2 + 11 = 0 
and y = tan(

√
2�∗) . Thus, we know ±1 = tan(

√
2�∗) and ±

√
11 = tan(

√
2�∗) , and the poles 

are

Using Theorem 3, we calculate the density and distribution functions of � to be

(14)f (t) =
1

2
√
6

∞�
k=−∞

e
−

1

2
(�+k�)2t

(� + k�)
�
(−1)k +

√
3

�
,

(15)F(t) =
1√
6

∞�
k=−∞

1

(� + k�)

�
1 − e

−
1

2
(�+k�)2t

��
(−1)k +

√
3

�
.

�
(
e−��

)
=

2x + 2x3 + 4x2

3 + 3x4 + 2x2
=

2

3
x +

4

3
x2 +

2

9
x3 −

8

9
x4 −

22

27
x5 −

20

27
x6 + O

(
x7
)
.

(16)

f (t) =
2

3
g(1, t) +

4

3
g(2, t) +

2

9
g(3, t) −

8

9
g(4, t) −

22

27
g(5, t) −

20

27
g(6, t) + O(g(7, t)),

(17)

F(t) =
2

3
Ψ(1, t) +

4

3
Ψ(2, t) +

2

9
Ψ(3, t) −

8

9
Ψ(4, t) −

22

27
Ψ(5, t) −

20

27
Ψ(6, t) + O(Ψ(7, t)).

�
�
e−��

�
=

1

3

1

sinh(
√
2�)

+
1

3

1

sinh(2
√
2�)

+
1

3

1

sinh(3
√
2�)

1

3

cosh(
√
2�)

sinh(
√
2�)

+
1

3

cosh(2
√
2�)

sinh(2
√
2�)

+
1

3

cosh(3
√
2�)

sinh(3
√
2�)

.

−�∗ = −
1

2

�
1

4
� + k�

�2

and − �∗ = −
1

2
(� + k�)2, k ∈ ℤ, where � = arctan

�√
11

�
.

(18)

f (t) =
1

10

∞�
k=−∞

e
−

1

2

�
1

4
�+k�

�2

t
�
2
√
2(−1)k + 1

��
1

4
� + k�

�

+
1

15

∞�
k=−∞

e
−

1

2
(�+k�)2t

�
(−1)k

√
12√
11

+
6√
11

+ (−1)k+1
3
√
3√
11

�
(� + k�),
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These expressions converge fast when t is large, but slowly when t is small.
On the other hand, denote by x ∶= e−

√
2� , the series expansion implies

We invert it term by term to derive the density function, then integrate the density for the 
distribution function:

These expressions converge fast for small t, but slowly for large t.

5  Numerical Implementation

In this section, we present the numerical illustration for Examples 5, 6 and 7. We will plot 
the density and distribution functions in each example, and study the accuracy of these 
functions.

For Example 5, we first consider the density function when t is large. Since (10) con-
verges fast for large t, we truncate it at a fixed level n. Define the truncated function

We plot f 2(t) , f 4(t) and f 6(t) in Fig. 2a. To demonstrate the accuracy of the truncated func-
tions, we also invert the Laplace transform �(e−�� ) numerically using the Gaver-Stehfest 
method (see Cohen 2007), and view the resulting curve f̃ (t) as the benchmark in Fig. 2a.

We see from Fig. 2a that, when t is small, f 2(t) , f 4(t) and f 6(t) are not accurate because 
they are far from the benchmark. As t increases, f 6(t) converges to f̃ (t) earlier than f 4(t) 
and f 2(t) . When t is large enough, all the curves converge to f̃ (t).

(19)

F(t) =
1

5

∞�
k=−∞

1�
1

4
� + k�

�
�
1 − e

−
1

2

�
1

4
�+k�

�2

t

��
2
√
2(−1)k + 1

�

+
2

15

∞�
k=−∞

1

(� + k�)

�
1 − e

−
1

2
(�+k�)2t

��
(−1)k

√
12√
11

+
6√
11

+ (−1)k+1
3
√
3√
11

�
.

�
(
e−��

)
=
2
(
x11 + x10 + x9 − x8 − 2x7 − 2x5 − x4 + x3 + x2 + x

)
3x12 − x10 − x8 − 2x6 − x4 − x2 + 3

=
2

3
x +

2

3
x2 +

8

9
x3 −

4

9
x4 −

22

27
x5 +

2

27
x6 + O

(
x7
)
.

(20)

f (t) =
2

3
g(1, t) +

2

3
g(2, t) +

8

9
g(3, t) −

4

9
g(4, t) −

22

27
g(5, t) +

2

27
g(6, t) + O(g(7, t)),

(21)

F(t) =
2

3
Ψ(1, t) +

2

3
Ψ(2, t) +

8

9
Ψ(3, t) −

4

9
Ψ(4, t) −

22

27
Ψ(5, t) +

2

27
Ψ(6, t) + O(Ψ(7, t)).

(22)

f n(t) ∶=
�

2
√
3

n�
k=1

e
−

1

2
�2

�
k−

2

3

�2

t
�
k −

2

3

��
(−1)k+1 + 1

�

+
�

2
√
3

n�
k=1

e
−

1

2
�2

�
k−

1

3

�2

t
�
k −

1

3

��
(−1)k+1 − 1

�
.
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The difference between f n(t) and f̃ (t) is recorded in Table  1. We denote by 
dn ∶= |f̃ (t) − f n(t)| the truncation error of f n(t) , for n = 2, 4, 6 . We also set the error toler-
ance level to be 0.0001. Then, if dn < 0.0001 , we say f n(t) is sufficiently accurate; other-
wise, it is not sufficiently accurate. From Table 1, we know d6 < 0.0001 for t ≥ 0.054 , so 
f 6(t) is a sufficiently accurate approximation for the density function of � when t ≥ 0.054.

For the distribution function (11), we define the truncated function

and plot F2(t) , F4(t) and F6(t) in Fig.  2b. We also invert the Laplace transform �(e
−��)
�

 
numerically, and use the resulting curve F̃(t) as the benchmark in Fig. 2b.

We see from Fig. 2b that, when t is small, the truncated functions are not parallel to F̃(t) . 
As t increases, they become parallel to the benchmark. Since the gradient of the distribution 

Fn(t) ∶=
1√
3�

n�
k=1

1�
k −

2

3

�
�
1 − e

−
1

2
�2

�
k−

2

3

�2

t

��
(−1)k+1 + 1

�

+
1√
3�

n�
k=1

1�
k −

1

3

�
�
1 − e

−
1

2
�2

�
k−

1

3

�2

t

��
(−1)k+1 − 1

�
,

(a) (b)

(c) (d)

Fig. 2  Density and distribution functions in Example 5
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curve is the density, when the distribution curve is parallel to the benchmark, we know the 
approximation is relatively accurate.

Next, we consider the density function when t is small. Since (12) converges fast for small 
t, we truncate it at a fixed level n. Define the truncated function

we plot f 2(t) , f 4(t) and f 6(t) in Fig. 2c. We also use the same benchmark as before, i.e., 
f̃ (t) obtained by inverting the Laplace transform �(e−�� ) numerically.

We see from Fig. 2c that, when t is small, f 2(t) , f 4(t) and f 6(t) are accurate. As t increases, 
f 2(t) diverges from the benchmark earlier than f 4(t) and f 6(t) . When t is large enough, all the 
curves diverge from the benchmark.

The difference between f n(t) and f̃ (t) is recorded in Table  1. We denote by 
en ∶= |f̃ (t) − f n(t)| the truncation error of f n(t) , for n = 2, 4, 6 . From Table 1 we know, with 
the error tolerance level 0.0001, f 6(t) is sufficiently accurate when t ≤ 26.945.

For the distribution function (13), we define the truncated function

(23)f n(t) =

n∑
k=1

(−1)k−1g(3k − 2, t) +

n∑
k=1

(−1)k−1g(3k − 1, t),

Fn(t) =

n∑
k=1

(−1)k−1Ψ(3k − 2, t) +

n∑
k=1

(−1)k−1Ψ(3k − 1, t),

Table 1  Truncation error of (22) and (23) for n = 2, 4, 6

(a) Truncation error of (22)

t d
2

d
4

d
6

0.001 2.3776 4.4812 6.0890
... ... ... ...
0.053 0.8770 0.0577 0.0001
0.054 0.8578 0.0508 0.0000
... ... ... ...
0.134 0.1148 0.0001 0.0000
0.135 0.1118 0.0000 0.0000
... ... ... ...
0.551 0.0001 0.0000 0.0000
0.552 0.0000 0.0000 0.0000

(b) Truncation error of (23)

t e
2

e
4

e
6

2.732 0.0000 0.0000 0.0000
2.733 0.0001 0.0000 0.0000
... ... ... ...
11.688 0.0119 0.0000 0.0000
11.689 0.0119 0.0001 0.0000
... ... ... ...
26.945 0.0094 0.0021 0.0000
26.946 0.0094 0.0021 0.0001
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and plot F2(t) , F4(t) and F6(t) in Fig.  2d. We also invert the Laplace transform �(e
−�� )

�
 

numerically, and use the resulting curve F̃(t) as the benchmark in Fig. 2d. We see from the 
figure that, when t is small, the truncated functions are accurate. As t increases, the curves 
diverge from the benchmark. Hence the approximation is relatively accurate for small t.

In conclusion, with the truncation level n = 6 and the error tolerance level 0.0001, 
the truncated density function (22) is sufficiently accurate for t ≥ 0.054 ; while the trun-
cated density function (23) is sufficiently accurate for t ≤ 26.945.

A similar analysis is conducted for Example 6, with the results recorded in Fig.  3 
and Table 2. In conclusion, with the truncation level n = 6 and the error tolerance level 
0.0001, the truncated function of (14) is sufficiently accurate for t ≥ 0.055 ; while the 
truncated function of (16) is sufficiently accurate for t ≤ 3.181.

For Example 7, the numerical results are recorded in Fig. 4 and Table 3. In conclu-
sion, with the truncation level n = 6 and the error tolerance level 0.0001, the truncated 
function of (18) is sufficiently accurate for t ≥ 0.261 ; while the truncated function of 
(20) is sufficiently accurate for t ≤ 2.995.

(a) (b)

(c) (d)

Fig. 3  Density and distribution functions in Example 6
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6  Continuous Extension

In this section, we extend our results to a graph with infinite but countably many semiaxes. 
Assume that there are n semiaxes, the stationary distribution of the transition probability 
matrix is uniform, i.e., �k =

1

n
 , for k = 1,… , n . We let the upper boundaries be

Then, Corollary 1 implies that the Laplace transform of the first hitting time is

Taking n → ∞ , the Laplace transform becomes

bk =
k

n
(a2 − a1) + a1, for 0 < a1 < a2, k = 1,… , n.

�
�
e−��

�
=

∑n

k=1

1

n

1

sinh

�
bk

√
2�

�

∑n

k=1

1

n

cosh

�
bk

√
2�

�

sinh

�
bk

√
2�

�
=

∑n

k=1

1

n

1

sinh

��
k

n
(a2−a1)+a1

�√
2�

�

∑n

k=1

1

n

cosh

��
k

n
(a2−a1)+a1

�√
2�

�

sinh

��
k

n
(a2−a1)+a1

�√
2�

�
.

Table 2  Truncation error of (14) and (16) for n = 2, 4, 6

(a) Truncation error of (14)

t d
2

d
4

d
6

0.001 2.1157 3.9877 5.4186
... ... ... ...
0.054 0.7607 0.0477 0.0001
0.055 0.7444 0.0436 0.0000
... ... ... ...
0.134 0.1107 0.0001 0.0000
0.135 0.1080 0.0000 0.0000
... ... ... ...
0.536 0.0001 0.0000 0.0000
0.537 0.0000 0.0000 0.0000

(b) Truncation error of (16)

t e
2

e
4

e
6

0.301 0.0000 0.0000 0.0000
0.302 0.0001 0.0000 0.0000
... ... ... ...
1.431 0.0035 0.0000 0.0000
1.432 0.0035 0.0001 0.0000
... ... ... ...
3.181 0.0154 0.0066 0.0000
3.182 0.0155 0.0066 0.0001
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Since the poles of the Laplace transform come from both the numerator and denominator, 
we derive these poles by solving the equations

Denote by −�∗ the poles of (24), we use the residue theorem to calculate the density of the 
first hitting time:

On the other hand, we denote by x ∶= e−
√
2� , then (24) can be written as

(24)�
�
e−��

�
→

∫ a2
a1

1

sinh(x
√
2�)

dx

∫ a2
a1

cosh(x
√
2�)

sinh(x
√
2�)

dx

=

ln

�
tanh(

1

2
a2

√
2�)

tanh(
1

2
a1

√
2�)

�

ln

�
sinh(a2

√
2�)

sinh(a1

√
2�)

� .

tanh

�
1

2
a2

√
2�

�

tanh

�
1

2
a1

√
2�

� = 0and

sinh

�
a2

√
2�

�

sinh

�
a1

√
2�

� = 1.

f (t) =
∑
−�∗

Res(e�t�(e−�� ),−�∗).

(a) (b)

(c) (d)

Fig. 4  Density and distribution functions in Example 7



 Methodology and Computing in Applied Probability

1 3

we can apply the series expansion with respect to x, and invert the resulting function term 
by term.

Appendix

This appendix contains the proofs of the main results.

Proof of Theorem 1

Proof We first study the behaviour of X�(t) . Assume that X�(t) starts from semiaxis Si , i.e., 
X�(0) = (�, Si) , then it will either hit the upper boundary bi or return to the origin in finite 
time. Let �� ∶= inf{t ≥ 0;||X�(t)|| = 0} be the first time X�(t) returns to the origin, then we 
know (see Borodin and Salminen 1996 Section II.1.3),

�
(
e−��

)
=

ln

(
1+xa1−xa2−xa1+a2

1−xa1+xa2−xa1+a2

)

ln

(
xa1−xa1+2a2

xa2−x2a1+a2

) ,

Table 3  Truncation error of (18) and (20) for n = 2, 4, 6

(a) Truncation error of (18)

t d
2

d
4

d
6

0.001 0.5183 1.2908 1.3865
... ... ... ...
0.260 0.0537 0.0002 0.0001
0.261 0.0530 0.0002 0.0000
... ... ... ...
0.275 0.0437 0.0001 0.0000
0.276 0.0431 0.0000 0.0000
... ... ... ...
0.897 0.0001 0.0000 0.0000
0.898 0.0000 0.0000 0.0000

(b) Truncation error of (20)

t e
2

e
4

e
6

0.029 0.0000 0.0000 0.0000
0.030 0.0001 0.0000 0.0000
... ... ... ...
1.336 0.0225 0.0000 0.0000
1.337 0.0225 0.0001 0.0000
... ... ... ...
2.995 0.0314 0.0048 0.0000
2.996 0.0314 0.0048 0.0001
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When 𝜏𝜖
i
< 𝛿𝜖 , X�(t) hits the upper boundary bi before returning to the origin, and �� = ��

i
 ; 

while for 𝛿𝜖 < 𝜏𝜖
i
 , X�(t) returns to the origin without hitting bi , then jumps to 

(
�, Sj

)
 with 

probability Pij and restarts from semiaxis Sj . Using the strong Markov property, we have 
the following system of equations: for i = 1,… , n,

There are n equations in this system, hence it is possible to solve for �
(
e−��

�

1{Θ� (0)=Si}

)
 . 

However, we are only interested in the first hitting time � , then there is no need to solve 
the whole system. Instead, we apply the series expansion with respect to � on both sides of 
(25), we have

where K is the constant term and Aij(�) is the j-th coefficient of the expansion. Also,

where cij is the j-th coefficient of the series expansion, and

where lij is the j-th coefficient of the series expansion.
Then, we can write (25) as

This equation can be expanded to

�

�
e−𝛽𝜏

𝜖
i 1{𝜏𝜖

i
<𝛿𝜖 ,Θ𝜖 (0)=Si}

�
=

sinh

�
𝜖
√
2𝛽

�

sinh

�
bi

√
2𝛽

� ,

�

�
e−𝛽𝛿

𝜖

1{𝛿𝜖<𝜏𝜖
i
,Θ𝜖 (0)=Si}

�
=

sinh

��
bi − 𝜖

�√
2𝛽

�

sinh

�
bi

√
2𝛽

� .

(25)

�
(
e−𝛽𝜏

𝜖

1{Θ𝜖 (0)=Si}

)
= �

(
e−𝛽𝜏

𝜖
i 1{𝜏𝜖

i
<𝛿𝜖 ,Θ𝜖 (0)=Si}

)

+ �

(
e−𝛽𝛿

𝜖

1{𝛿𝜖<𝜏𝜖
i
,Θ𝜖 (0)=Si}

)( n∑
j=1

Pij�

(
e−𝛽𝜏

𝜖

1{Θ𝜖 (0)=Sj}

))
.

�
(
e−��

�

1{Θ� (0)=Si}

)
= K +

∞∑
j=1

�jAij(�),

�

�
e−𝛽𝜏

𝜖
i 1{𝜏𝜖

i
<𝛿𝜖 ,Θ𝜖 (0)=Si}

�
=

sinh(𝜖
√
2𝛽)

sinh(bi

√
2𝛽)

=

∞�
j=1

𝜖jcij,

�

�
e−𝛽𝛿

𝜖

I{𝛿𝜖<𝜏𝜖
i
,Θ𝜖 (0)=Si}

�
=

sinh

��
bi − 𝜖

�√
2𝛽

�

sinh

�
bi

√
2𝛽

� = 1 +

∞�
j=1

𝜖jlij,

K +

∞∑
j=1

�jAij(�) =

(
∞∑
j=1

�jcij

)
+

(
1 +

∞∑
j=1

�jlij

)(
n∑
j=1

Pij

(
K +

∞∑
k=1

�kAjk(�)

))
.

∞∑
j=1

�jAij(�) =

(
∞∑
j=1

�jcij

)
+ K

(
∞∑
j=1

�jlij

)
+

(
1 +

∞∑
j=1

�jlij

)(
n∑
j=1

Pij

∞∑
k=1

�kAjk(�)

)
.
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Note that every term in this equation contains � , and those terms with the same power of � 
must coincide. Hence for those terms containing �1 , we have

Since 𝜖 > 0 , we cancel � on both sides, this gives

We write the system of Eq. (26) in matrix form:

where � = (Pij)n×n is the transition probability matrix. We denote by Π ∶= (�1,… ,�n) the 
stationary distribution of � , such that 

∑n

i=1
�i = 1 and Π� = Π , and multiply the vector Π 

on both sides of (27), this gives

where we already know ci1 =
√
2�

sinh(bi

√
2�)

 and li1 = −
√
2�

cosh(bi

√
2�)

sinh(bi

√
2�)

.
But K is the constant term of the series expansion of �

(
e−��

�

�{Θ� (0)=Si}

)
 , hence

Equation (28) implies that, as � → 0 , the Laplace transform of ��1{Θ� (0)=Si}
 does not depend 

on the initial semiaxis Si . In fact, as � → 0 , the initial position of X�(t)1{Θ� (0)=Si}
 converges 

to the origin from semiaxis Si . On the other hand, we know that a Brownian motion will 
make an infinite number of very small excursions around the origin before any t > 0 . 
Hence, when the transition probability matrix � is aperiodic, the limiting process 
lim
�→0

X�(t)1{Θ� (0)=Si}
 will eventually choose the semiaxis according to the limiting distribu-

tion of � , which is identical to its stationary distribution Π (see Privault 2018). While for a 
periodic � , after an infinite number of transitions, the limiting process has a uniform prob-
ability to be in any semiaxis that belongs to the closed communicating class of � . Hence, 
the choice of semiaxis is also identical to the stationary distribution Π . The same argument 
also applies to the original process X(t).

In the meanwhile, the limiting process lim
�→0

X�(t)1{Θ� (0)=Si}
 behaves as a Brownian motion 

starting from 0 on each semiaxis, which is identical to X(t). Together with the argument 
above, we know lim

�→0
X�(t)1{Θ� (0)=Si}

→ X(t) in a pathwise sense, then lim
�→0

��1{Θ� (0)=Si}
→ � 

in distribution, and

�Ai1(�) = �ci1 + K�li1 +

n∑
j=1

Pij�Aj1(�).

(26)Ai1(�) = ci1 + Kli1 +

n∑
j=1

PijAj1(�), fori = 1,… , n.

(27)

⎛⎜⎜⎜⎝

A11(�)

A21(�)

…

An1(�)

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

c11
c21
..

cn1

⎞⎟⎟⎟⎠
+

⎛⎜⎜⎜⎝

P11 P12 .. P1n

P21 P22 .. P2n

… … .. …

Pn1 Pn2 .. Pnn

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

A11(�)

A21(�)

…

An1(�)

⎞⎟⎟⎟⎠
+ K

⎛⎜⎜⎜⎝

l11
l21
…

ln1

⎞⎟⎟⎟⎠
,

K = −
�1c11 + �2c21 +…+ �ncn1

�1l11 + �2l21 +…+ �nln1
=

∑n

k=1
�k

1

sinh(bk

√
2�)

∑n

k=1
�k

cosh(bk

√
2�)

sinh(bk

√
2�)

,

(28)lim
�→0

�
(
e−��

�

1{Θ� (0)=Si}

)
= K.

(29)lim
�→0

�
(
e−��

�

1{Θ� (0)=Si}

)
= �

(
e−��

)
.
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It follows from (28) and (29) that

When b∗
p
≠ 0 , the initial state of X(t) is X(0) = (b∗

p
, Sp) , for some p = 1,… , n . Then, X(t) 

will either hit the upper boundary bp before returning to the origin, or arrive at the origin 
without hitting bp . Using the similar method as above, we know

The expectation of � can be calculated by applying the moment generating function, then 
the theorem is proved.   ◻

Proof of Lemma 1

Proof The poles of (2) are equivalent to the roots of its denominator. We notice that the 
Laplace transform (2) has the limit lim

�→0
�(e�� ) = 1 , hence � = 0 is not a pole of (2). For this 

reason, we look for the solutions of the equation

Using the inverse Laplace transform (see Borodin and Salminen 1996 Appendix 2. 11) and 
the general Theta function transformation (see Bellman 1961 Section 19), we know

Then we invert both sides of (30), this gives

We assume that the roots of (31) have the format x + iy , for x, y ∈ ℝ , then

For the imaginary component of the equation, we calculate the integral

hence we must have y = 0 , for otherwise the imaginary component cannot be zero. This 
means the roots are real numbers. Next, we set � = x in Eq. (30), then we have

�
(
e−��

)
= K.

�b∗
p

�
e−��

�
=

sinh(b∗
p

√
2�)

sinh(bp

√
2�)

+
sinh((bp − b∗

p
)
√
2�)

sinh(bp

√
2�)

�
�
e−��

�
.

(30)
n�

k=1

�k
1√
2�

cosh(bk

√
2�)

sinh(bk

√
2�)

= 0.

L
−1

⎛⎜⎜⎜⎝

cosh

�
bk

√
2𝛽

�

√
2𝛽 sinh

�
bk

√
2𝛽

�
⎞⎟⎟⎟⎠
=

1√
2𝜋t

∞�
n=−∞

e
−

2b2
k
(2n+1)2

t =
1

2bk

∞�
n=−∞

e
−n2𝜋2 t

2b2
k , t > 0.

(31)
n∑

k=1

�k

2bk ∫
∞

0

e−�t
∞∑

n=−∞

e
−n2�2 t

2b2
k dt = 0.

n∑
k=1

�k

2bk ∫
∞

0

e−xt(cos (yt) − i sin (yt))

∞∑
n=−∞

e
−n2�2 t

2b2
k dt = 0.

∫
∞

0

e−xt sin(yt)e
−n2�2 t

2b2
k dt =

y(
x + n2�2 1

2b2
k

)2

+ y2
,
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Since coth(x) > 0 , for x ∈ ℝ
+ , this equation cannot hold for any positive real x, this means 

x must be negative real numbers. We denote by −�∗ the roots of Eq. (30), where 𝛽∗ > 0 , 
then we have

Next, we proceed to solve Eq. (32) under the assumption that the upper boundaries 
{bi}i=1,…,n are integers. For any positive integer n, the multiple-angle formula implies

Then, Eq. (32) can be written as

where we denote by y ∶= tan(
√
2�∗) . Note that y = 0 is not a solution to this equation, for 

otherwise Eq. (32) cannot hold. For this reason, we only need to consider the numerator 
part of (33):

This approach is also sufficient when {bi}i=1,…,n are rational numbers. Let ci and di be posi-
tive integers, such that bi =

ci

di
 , for i = 1,… , n , then

where we denote by � ∶=
1

d1…dn

√
2�∗ . Since ci

�∏
j={1,…,n}⧵{i} dj

�
 is a positive integer, we 

can replace bi
√
2�∗ by ci

�∏
j={1,…,n}⧵{i} dj

�
� in Eq. (32), and follow the rest of the proof. 

Then the lemma is proved.   ◻

n�
k=1

�k√
2x

coth

�
bk

√
2x
�
= 0.

(32)
n�

k=1

�k cot(bk

√
2�∗) = 0.

cot(n�) =

∑
k even

(−1)
k

2

�
n

k

�
tan(�)k

∑
k odd

(−1)
k−1

2

�
n

k

�
tan(�)k

.

(33)

n�
k=1

�k cot(bk

√
2�∗) =

n�
i=1

�i

∑
k even

(−1)
k

2

�
bi
k

�
tan(

√
2�∗)k

∑
k odd

(−1)
k−1

2

�
bi
k

�
tan(

√
2�∗)k

=

∑n

i=1
�i

� ∑
k even

(−1)
k

2

�
bi
k

�
yk
∏

j={1,…,n}⧵{i}

� ∑
k odd

(−1)
k−1

2

�
bj
k

�
yk
��

∏n

i=1

� ∑
k odd

(−1)
k−1

2

�
bi
k

�
yk

� = 0,

n∑
i=1

�i

(∑
k even

(−1)
k

2

(
bi
k

)
yk

∏
j={1,…,n}⧵{i}

(∑
k odd

(−1)
k−1

2

(
bj
k

)
yk

))
= 0.

bi

√
2�∗ =

ci

di

√
2�∗ = ci

� �
j={1,…,n}⧵{i}

dj

�
�,
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Proof of Theorem 2

Proof We rewrite the Laplace transform (2) as

From Borodin and Salminen (1996) Appendix  2. 11, we know the inverse Laplace 
transform

hence we can invert the numerator of (34) as follows:

Next, we proceed to invert the denominator part of (34). Since bk are rational numbers, 
there exist positive integers ck and dk , such that bk =

ck

dk
 , for k = 1,… , n . We denote by 

z ∶= e
−2

√
2�

1

d1…dn and mk ∶= ck
∏

p∈{1,…,n}⧵{k} dp , then the denominator can be written as

Then inverting the denominator part of (34) is equivalent to inverting the expression:

This can be viewed as the product of three Laplace transforms, hence we will invert them 
separately, and present the final result as their convolution.

For the first Laplace transform, we have

For the second Laplace transform, we know

(34)�
�
e−��

�
=

∑n

k=1
�k

√
2�

sinh(bk

√
2�)

∑n

k=1
�k

√
2�

cosh(bk

√
2�)

sinh(bk

√
2�)

.

L
−1

� √
2𝛽

sinh(bi

√
2𝛽)

�
=

√
2√
𝜋t5

∞�
n=0

�
(2n + 1)2b2

i
− t

�
e
−

(2n+1)2b2
i

2t , t > 0,

L
−1

�
n�

k=1

𝜋k

√
2𝛽

sinh(bk

√
2𝛽)

�
=

n�
k=1

�
𝜋k

√
2√
𝜋t5

∞�
n=0

�
(2n + 1)2b2

k
− t

�
e
−

(2n+1)2b2
k

2t

�
, t > 0.

n�
k=1

�k

√
2�

cosh

�
bk

√
2�

�

sinh

�
bk

√
2�

� =

n�
k=1

�k

√
2�

1 +

�
e
−2

√
2�

1

d1…dn

�ck
∏

p∈{1,…,n}⧵{k} dp

1 −

�
e
−2

√
2�

1

d1…dn

�ck
∏

p∈{1,…,n}⧵{k} dp

=

n�
k=1

�k

√
2�

1 + zmk

1 − zmk

=
√
2�

∑n

k=1

�
�k(1 + zmk )

∏
p∈{1,…,n}⧵{k}(1 − zmp )

�
∏n

k=1
(1 − zmk )

.

(35)
1√
2�

�
n�

k=1

(1 − zmk )

�
1

∑n

k=1

�
�k(1 + zmk )

∏
p∈{1,…,n}⧵{k} (1 − zmp )

� .

L
−1

�
1√
2𝛽

�
=

1√
2𝜋t

, t > 0.
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where �(t) denotes the Dirac Delta function and g(x, t) represents the inverse Gaussian den-
sity with parameter x. Then the inverse of 

∏n

k=1
(1 − zmk ) can be written as the convolution 

of this result.
For the third Laplace transform, since mk are integers, the expression

can be interpreted as a polynomial with variable z. We notice that all the poles of the 
Laplace transform come from the roots of this polynomial. On the other hand, these poles 
have been derived in Lemma 1. Hence we can rewrite the polynomial as

Thus, we have

where

Then we can invert 1/L(z) term by term:

Finally, the density of � can be written as the convolution of the results above.
For the distribution function of � , we need to invert E(e

−��)
�

 , but this is equivalent to 
replacing the term 1√

2�
 by 1√

2�3
 in (35). Since

we only need to change the resulting function accordingly, and the theorem is proved.  
 ◻

L
−1(1 − zmk ) = L

−1
�
1 − e−2

√
2𝛽bk

�
= 𝛿(t) − g

�
2bk, t

�
, t > 0,

L(z) ∶=

n∑
k=1

(
�k(1 + zmk )

∏
p∈{1,…,n}⧵{k}

(1 − zmp )

)

L(z) =

∞�
m=1

�
z − e

−2
√
−2�∗

m

1

d1…dn

�
.

1

L(z)
=

∞�
m=1

1

z − e
−2

√
−2�∗

m

1

d1…dn

=

∞�
m=1

Am

z − e
−2

√
−2�∗

m

1

d1…dn

=

∞�
m=1

Am

∞�
k=0

(−1)kzk
�
−e

−2
√
−2�∗

m

1

d1…dn

�−1−k

,

Am =

� �
p∈ℤ+⧵{m}

�
e
−2
√

−2�∗
p

1

d1…dn − e
−2

√
−2�∗

m

1

d1…dn

��−1

.

L
−1

�
1

L(z)

�
=

∞�
m=1

Am

∞�
k=0

(−1)kg

�
2k

d1 … dn
, t

��
−e

−2
√
−2�∗

m

1

d1…dn

�−1−k

.

L
−1

�
1√
2𝛽3

�
=

√
2t√
𝜋
, t > 0,
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Proof of Theorem 3

Proof The poles of the Laplace transform (2) have been derived in Lemma 1, we first show 
that they are simple poles. The denominator of (2) has the derivative:

and the limits of this derivative at the poles are non-zero, i.e.,

this implies that −�∗ are simple poles.

Next, we introduce an explicit inverse method for the Laplace transform (2). Denote by 
f̂ (𝛽) the Laplace transform (2), and f(t) its inverse. From the Bromwich integral (see 
Lang 2013), we know

This integral can be calculated via the residue theorem, that is,

Since the poles of (2) are simple poles, we can calculate the residues by evaluating the limit

it follows that

For the distribution function, we integrate f(t) over (0, t), and the theorem is proved.   ◻
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√
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√
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√
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