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Abstract

Estimates of climate change’s economic impacts vary widely, depending on applied
methodology. This uncertainty is a barrier for policy makers seeking to quantify ben-
efits of mitigation. In this Perspective we provide a comprehensive overview and cat-
egorization of the pathways and methods translating biophysical impacts into economic
damages. We highlight the open question of the persistence of impacts as well as key
methodological gaps, in particular the effect of including inequality and adaptation in the
assessments. We discuss the need for intensifying interdisciplinary research, focusing on
the uncertainty of econometric estimates of damages as well as the identification of the
most socio-economically relevant types of impacts. A structured model inter-comparison
related to economic impacts is noted as crucial next step.

Introduction

Support for the great societal transformations required to reach the goals of the Paris Agree-

ment can be built by a comprehensive integrated assessment weighting the costs of mitigation

and adaptation measures against the corresponding avoided impacts. Mitigation strategies and

their associated costs can be robustly assessed due to extensive collaborative modeling efforts

and model intercomparisons, helping to assess ranges and uncertainties (1, 2). The assessment

of biophysical climate change impacts like changes in yields, water availability or sea-level

rise as been greatly advanced in recent years by consistent cross-sectoral modeling initiatives

like the Intersectoral Impact Model Intercomparison Project (ISIMIP) (3). However, a robust

understanding and quantitative assessment of their full future socioeconomic impacts remains

a significant challenge. The quantitative estimates of global economic impacts provided in

the literature vary widely (4), depending on the methods used to assess them and the types of

impacts included. In particular, the great advances of empirical studies linking climatic condi-

tions and different aspects of socioeconomic systems (5) have widened the range of estimates,

related also to the debate whether temperature affects level or growth of productivity (6–8).

Integrating such empirical findings into global cost-benefit models leads to larger social costs

of carbon and more stringent mitigation pathways, as does the integration of distributional as-
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pects (9–12). This disparate and inconclusive understanding of economic impacts is a chal-

lenge for researchers, policy makers and stakeholders alike. Multiple literature reviews have

addressed aspects of this complex topics, focusing broadly on linkages between climate and the

economy and related policy implications (13), on key open research questions (14), on econo-

metric advances (5, 15, 16) or damage functions in cost-benefit models (17). The goal of this

paper is to add a comprehensive, accessible and structured overview of the methods used to

derive final economic damages from biophysical impacts, explicitly without consideration of

adaptation or mitigation measures, including their advantages and disadvantages. This is aimed

as a foundation for researchers from different disciplines (e.g. economists, integrated assess-

ment modelers, biophysical impact modelers) to advance the integrated research on economic

impacts, and as a guide for policy makers to contextualize new cost estimates and their un-

certainties. While not aiming for a complete literature review, we provide an overview of key

methodological characteristics of recent global studies of economic impacts. Furthermore, we

contribute a discussion of the key empirical question of persistence of impacts, highlight the

status of modeling adaptation and inequality as key determinants of final impacts, and outline

next research steps.

Translating biophysical into economic damages

Quantifying the total economic losses resulting from climate change requires a comprehensive

analysis of social welfare. Generally, they include i) direct losses of income and production; ii)

the value of resources, goods, and services which become unavailable or of reduced quality; iii)

damage to productive capital and infrastructure; iv) reductions in ecosystem services; v) effect

on morbidity and mortality and vi) the loss of subjective well-being from less tangible benefits

such as the extinction of species or deterioration of ecosystems. These are divided into market

impacts (i–iii), directly valued within markets, and non-market impacts (iv-vi), which are not
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traded. In order to compare different policy options, market and non-market impacts are trans-

lated into commensurate units of “welfare”. Welfare is assumed to increase with consumption,

i.e. the purchase of goods and services, but also depends upon non-market determinants. This

allows for the evaluation and comparison of different policies balancing income levels with

subjective benefits. Non-market damages can be included through a translation into monetary

units, such as the willingness-to-pay to avoid a given subjective loss, or by employing a welfare

damage function accounting for both aspects of damages. Since the units of welfare are arbi-

trary, total economic damages are often reported as the equivalent loss in consumption which

would result in the same welfare loss as the combined market and non-market damages (the

Hicksian equivalent variation).

Figure 1 shows a taxonomy of the different possible approaches to derive economic dam-

ages from physical climate change, with examples of models. The result crucially depends on

the type of feedback and dynamic processes captured in the different modeling approaches.

As the models employed at the different levels depicted in Figure 1 increase in comprehensive-

ness, they invariably use parameterization to simplify constituent processes. For example, while

process-based crop models represent biophysical growth processes of individual plants, statisti-

cal yield models parameterize the relationship between weather and yields, while encompassing

the dynamic feedbacks between farmers and their fields. Detailed examples are discussed in the

Supplementary Material (see also Figure S2). Model parameterization forces the models to as-

sume forms of stationarity and undermine the representation of adaptation at scales below the

model’s scale. In particular, macro- and microeconomic econometric estimates assume station-

arity of the biophysical process as reflected in the observational record. Computable general

equilibrium (CGE) models allow redistribution of economic activity, but typically assume that

supply and demand elasticities are constant (though see (18) for a relaxation of this assumption).

This may be inadequate when projecting climate change impacts and adaptation policies over
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the long term (e.g., to 2100), as it fails to capture potentially radical changes in technical sys-

tems, investment patterns and consumption dynamics (see (19) for a general discussion of the

issue of constant elasticity of subsitution in energy-climate- economy models). Note, that also

models that describe fundamental biophysical relationships reflect current technologies (e.g.

crop varieties, distribution systems, protective gear) and are likely to misrepresent impacts in

the distant future.

A main differentiation in the assessment of impacts is between bottom-up and top-down ap-

proaches. Bottom-up approaches quantify impacts specifically for individual impact channels.

The valuation of biophysical impact indicators is a crucial step. Different techniques can be

used, ranging from simple conversion factors like the value of statistical life to the use of partial

equilibrium models (20,21), CGE models (22,23), or agent-based models (ABM) (24–26) (e.g.

process-based crop models are used to calculate regional crop failures which are then valuated

by agro-economic partial equilibrium models). By contrast, in top-down approaches climate

damages are quantified by econometrically estimating aggregate impacts on economic output.

Furthermore, we classify different end points for a final assessment: the direct economic im-

pact, which is simply the sum of sectoral impacts, and two types of final impacts capturing

system readjustment. These are the final impact accounting for interplay between different im-

pacts and sectors, and the final impact accounting additionally for dynamic effects like savings

or capital accumulation in the economic system. The latter is normally obtained using growth

models (27, 28). These feedback effects can increase or decrease overall damages (i.e. have an

adaptation effect) and are crucial for a complete or overall picture.

Aggregate damage functions, relating temperature change to output change, can be derived from

all end points. They are used in cost-benefit (CBA) models for policy optimization. Diaz &

Moore (17) provide a detailed review of the functions applied in the most prominent CBA mod-

els DICE (29), PAGE (30) and FUND (31). These damage functions tend to yield rather small
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losses (e.g., in the case of DICE, 2.1 % for a 3°C temperature increase over pre-industrial levels

and of 8.5 % at 6°C), possibly due to the high level of aggregation, outdated underlying im-

pact estimates and ambitious assumptions about adaptation and substitutability. One attempt to

improve them includes meta-analysis of economic damage assessments (see e.g. (4, 29), which

can lead to larger effects. Damage functions have been criticized for embedding many, typ-

ically opaque assumptions and poor linkages to the underlying processes (32). A number of

studies extend the standard damage function in the DICE model to account for uncertainty in

damages (33), the possibility of tipping points (34), or natural capital (35). Another increasing

body of literature applies empirical damage estimates, yielding larger damages, either directly

on output (9, 36) or through changes in capital depreciation or productivity (10, 37). As in this

paper we focus on the damage assessemnts, see (17) for a further review of the critiques as well

as a research agenda to improve damage functions.

A key issue in economic damage assessment is the coverage of impact channels (see Supple-

mentary Figure S1 and associated discussion, Table 1). No approach is complete, but while

this is fairly transparent for bottom-up approaches detailing the channels captured, the coverage

is less clear for top-down approaches or aggregate damage functions. Top-down econometric

estimates generally capture market effects driven by temperature fluctuations, e.g. productivity

effects, but not sea-level rise, extreme events or non-market effects, some of which are included

in the CBA models. All available estimates are lower bounds in that context, and for many of

the missing channels we do not know how large the additional effect will be. First steps are

being taken now to remedy this gap, e.g. in the context of the Climate Impact Lab (38).

Modeling approaches for global aggregate economic impacts

The estimates of global aggregate economic effects of climate change in the literature vary

widely, reflecting the methodological diversity described above. In the following we provide a
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comparative overview (Table 1 and Figure 2) and methodological discussion for results along

the different end points outlined in Figure 1. Supplementary Table 1 provides a categorization

of individual studies from the literature with more methodological detail. Note that, for reasons

of clarity and manageability we focus on studies from recent years, since earlier studies mostly

have been updated or are build upon (4). We do not discuss the end point of final economic

impacts with dynamic effects here since such estimates are rarely provided in the literature

without the application in policy optimization (though see (27) for estimations of the size of

the dynamic effects). This constitutes an important gap in analyses, preventing for example the

calculation of benefits of mitigation or the quantification of the contribution of dynamic effects

to the overall damage.

Final economic impacts based on top-down econometrics

Top-down estimates of macroeconomic damages provide a simple representation for use in in-

tegrated assessment models, and recent panel-based econometric research improve their empir-

ical basis (see (4) for a discussion of earlier cross-sectional estimates). However, these results

come with important assumptions and limitations, described below. A robust observed rela-

tionship exists between changes in aggregate economic output (GDP per capita) and changes in

regional temperatures. This relationship has been observed at multiple scales: global-national

(6,7,39–41), global-ADM1 (8), global-household (42), EU-national (43), USA-ADM1 (40,44),

USA-ADM2 (45), USA-metro (43), Brazil-ADM1, and Indonesia-ADM1 (43). Main differ-

ences include the measure of temperature (level or change), the functional form (typically lin-

ear, polynomial or binned), and the inclusion of interaction terms and fixed effects. Innovations

have focused on functional forms that explore nonlinearity, adaptation (8, 40), and the effect

of different sectors, seasons, and periods (41, 44). Resulting estimates vary widely, with GDP

losses under RCP8.5 in 2100 between 7% (40) and 23% (7), and very high uncertainties (39). It
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remains an open question whether all countries are affected in a similar way (7) or if a negative

relation only exists for poor countries, due to their level of development as well as dependence

on sectors with high climate exposure like agriculture (6, 46).

One of the most important open questions is for how long climate-induced economic losses

persist. In general, shifts in climate can have an immediate, transitory, and long-run effect (8).

A shock to growth in one year can lead to higher, equivalent or permanently lower long-term

outcomes, depending on rebound effects (47). Several authors have proposed functional forms

for the dynamics of persistence (see Figure 3). Low impacts can derive from an quick return to

the baseline per capita GDP after one-year temperature shocks (Level effects, (8)), while larger

impacts emerge when the return is slow or non-existent (Growth effects, (40, 45, 48)), although

this order may be reversed (49). Growth effects can also appear when temperature levels in-

stead of temperature change are used as temperature measure, leading to an accumulation of

damages for permanent temperature increases ( (7) vs. (8)). The question of whether a climate

shock results in permanently lower economic output is fundamentally an empirical question.

One approach to resolving it is to construct a multi-annual impulse response curve, describing

the effect of temperatures from multiple past years (5, 6). Unfortunately, data sets are short,

estimates are noisy and the question remains unresolved at the national (39) and subnational

(e.g., disagreement between (8) and (43)) scales. In the face of this uncertainty, we should dis-

tinguish the empirical question of persistence from the effects of the modelling decisions taken

when using these results. An empirical relationship can be modelled with different persistence

assumptions, offering a way to represent this uncertainty.

Two basic approaches are used in IAMs to project economic output. When the trajectory

of economic output is derived from exogenous growth rates we call this a “growth projection”;

when it is derived from a scenario of economic output levels we call it a “level projection”. Ap-

plied to a single-year response, growth projections produce growth effects and level projections
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level effects, and a wide gap opens between the two as time progresses (Figure 3). However,

both modelling approaches could result in either effect: a growth projection can produce a level

effect when there is full rebound, and a level projection can become a growth effect with an

infinite impulse response. In the face of empirical uncertainty, either projection approach can

be applied to an empirical relationship like the one described above (36, 50).

Either assumption seems plausible a priori. Physically, a growth rate effect could emerge

because of capital destruction, under-investment, or human capital effects, resulting in long-

term feedback (27). Level effects could result if the determinants of economic growth are unaf-

fected by climate change (e.g., if damages are applied after savings), reflecting resilience (with

rebound) or adaptation (with a diminishing impulse response). Some authors have developed

models of partial persistence in response, based on existing approaches (36, 48).

Besides persistency, other dimensions of the response of economies to climate change are

not captured by current top-down empirical assessments. Most importantly, these include dis-

tributional effects (between producers and consumers, rich and poor, and rural and urban), non-

market effects, the effects of sea-level rise or extreme events. Recent work suggests that aggre-

gation masks the important effect of precipitation on growth in developing countries which is

usually found to be insignificant (51). Finally, these empirical estimates assume basic stationar-

ity of the climate-economic system: that historical responses can inform future responses. This

will no longer hold if climate shifts drastically (for example, with widespread desertification),

or when the economy changes strongly. This reflects the challenge of econometric analysis to

distinguish the effects of weather (isolated shocks) from climate (persistent states that admit

adaptation). While econometric papers studying GDP effects generally find that the response

to shocks has not changed much over the historical record, suggesting little adaptation, new

methods are emerging to estimate weather responses’ climate contribution directly (15, 38, 52).

Finally, integrated assessment models cannot directly use parameter coefficients derived
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from econometric estimates (see also (16)).. These estimates rely on temperature shocks, and

their temperature variables are local and include annual variability, which is typically missing

from IAMs. Jensen’s inequality implies that the expected value of one of these convex func-

tions applied to variable temperatures will not equal the result of one of these functions applied

to the expected value of temperature. Two basic approaches can be used to resolve this. One

option is to stochastically downscale global temperatures to variable, local temperature, with

the inclusion of random noise accounting for temporal and spatial autocorrelation (48). Alter-

natively, the econometric models can be applied to weather data from GCM projections, and

then a statistical relationship can be found between the average of these impacts and long-run

climatic mean temperature (38).

Bottom-up approaches

Macroeconomic losses from climate change can be estimated using bottom-up approaches, ei-

ther through the enumeration of direct economic impacts, or by assessing aggregate impacts

using a sector-detailed CGE model, agent-based supply-chain models or agent-based IAMs re-

solving impacts on indivdual economic agents (e.g., firms, households, or economic sectors).

The most prominently covered impact channels in these approaches include agriculture, labor

productivity, tourism, health (infectious diseases, heat-related mortality), energy demand, sea-

level rise, and more recently extreme events (tropical cyclones, fluvial floods).

Enumeration is given by the assessment of damages from individual impact channels, either

econometrically (53), by coupling biophysical impact models with a CGE model (54), or via

the valuation of literature-based relations of a given impact with temperature (55). These are

then simply summed up for the aggregate result. However, the enumeration approach ignores

possible direct feedback effects between different impact channels, even before accounting for

their impact on the economy. It also usually ignores resulting interactions within the economic
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system (except in the case of CGE coupling).

However, the assessment of direct economic impacts only tells part of the story. Alterna-

tively, individual impact channels can be applied jointly in a multi-channel CGE model, which

gives the aggregate equilibrium effects of climate change impacts (22,23,56–58). Such models

apply impacts directly on stocks like land or capital, factor productivity and demand. They

account for the propagation of impacts across sectors and their economic effects, in particu-

lar in terms of the redistribution of economic activity (i.e., structural change, changes in trade

patterns, prices and carbon emissions). Similarly, global agent-based supply chain models can

capture the spreading of, and changes in trade patterns resulting from, local climate damages

induced by extreme weather events across sectors and in the global trade network (59). All of

these mechanisms can increase or decrease the final aggregate impact. It is not a priori clear in

which direction this goes (28).

Most CGE models suffer from similarly limited spatial resolution as compact IAMs, due to the

computational challenges posed by solving optimization problems with high spatial and tempo-

ral dimensionality (60). (58) provides an exception, with a large-dimensional CGE climate and

trade model including 139 countries and 57 commodity sectors. CGE models do not effectively

incorporate uncertainty, save for a few rare and small dimensional cases (61). Finally, although

CGE models can account for heterogeneity in land (62), labour (63) and capital (64), global

CGE multi-channel climate change models do not, which is a serious limitation for damage

functions that aim at incorporating extensive damages from sea-level rise or age cohort effects

in labour.

Existing global assessments of damages using CGE models yield fairly low numbers (see

Table 1), either because they have a limited time horizon (65), the global aggregate masks large

regional differences (e.g. over 20% in annual long run losses for some countries in (60)) or

11



more importantly the damage functions used in global CGE models are, by construction, very

specific to commodity sector or factors of production and do not, at least until now, cover the

full range of possible impacts. In (58) and (55), for example, economic damages are limited to

losses in labour and agricultural productivity, limited damages from sea level rise (i.e., losses

in arable land only) and impacts on tourism. Therefore, comparing bottom-up assessments to

each other requires detailed knowledge on included impact channels. Comparing them to top-

down assessments or those based on aggregate damage functions is of limited value. The first

agent-based integrated assessment model (24) captures climate impacts through micro-shocks

and finds much larger impacts than standard IAMs or CGEs (up to 85% GDP loss in 2100 for

labor productivity shocks). The reason is the presence of non-linearities and an endogenous

emergence of economic tipping points through the interaction of heterogeneous agents.

One main issue for all types of bottom-up studies based on biophysical modeling is the

reliance on one climate-impact model combination per channel. The handling of a multitude of

very different process-based modeling approaches and the aggregation of data with high spatial

and temporal resolution leads to a trade-off between the number of impact channels covered

explicitly and the handling of the uncertainty stemming from impact modeling. However, this

uncertainty can be large (66). Results from projects like ISIMIP should be better utilized to

provide input for CGE modeling, allowing for properly quantifying the uncertainty surrounding

the resulting policy advice.

Methodological Gaps

A number of open methodological questions are valid to all types of studies discussed above

and crucial for a robust assessment of economic damages.
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Aggregation of Impacts

The empirical assessment and modeling of impacts described above is performed at the geospa-

tial scale, country-level, or macro-region level, and with varying distributional resolution (in

most studies only one representative household per unit of observation). With regard to the

spatial dimension, aggregation (e.g., from country level to global) removes the substantial het-

erogeneity in impacts, and can even lead to a cancellation of positive and negative impacts. A

significant advance achieved by (67) and (68), presenting dynamic spatial growth models at a

1°x1° spatial resolution. The same challenge likely applies to different income levels in the

same spatial unit of observation and its correlation with impacts, which is addressed in more

detail in the following section, due to its prominence in current research.

Moreover, the assessment of climate change impacts spans time frames from single-year ob-

servations to decades and centuries. The resulting inter-temporal aggregation has been subject

to a large debate with a focus on the social discount rate, see (69). This aggregation dimension is

in particular relevant when aggregating impacts for computing the Social Cost of Carbon (70).

Finally, in many cases, the impacts are uncertain, for example due to different impact or climate

models used or parametric uncertainties. Different methods and tools to aggregate uncertain

impact estimates and parameters have been proposed and applied, see (71) for an overview.

As such, an aggregation across different dimensions is required when summarizing impact

estimates. Notably, the common choice of decreasing marginal utility of consumption (i.e.

declining satisfaction for an additional unit of consumption with increasing consumption), and

the related questions of inequality, intertemporal fluctuation, and risk aversion matter for this

aggregation. Note also that the dimensions of aggregation can interact, see (72) for an example.
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The role of inequality

When aggregating economic impacts, their distributional effect plays an important role (see

also the review by (56)). Together with the spatial distribution of biophysical climate impacts

(exposure), inequalities in income, wealth, education, health, etc. are crucial drivers of how

severely different people are affected (vulnerability), and if or how quickly they can recover

from the impact (resilience). A regressive distribution of climate impacts, together with the

common assumption of decreasing marginal utility, leads to aggregate welfare losses being

larger than average monetary losses (e.g. (73)). These regressive impacts are rarely captured in

most damage assessments, and especially not in those with high levels of sectoral and spatial

aggregation.

Regarding inequality between countries, recent climate-econometric results indicate that

the distribution of economic damages from climate change is likely regressive (6–8), so that cli-

mate impacts could exacerbate current and future global inequality (74–76). As an example for

CGE analyses of climate impacts including heterogeneity between a large number of countries,

we show the spatial distribution of country-level GDP damages and its variation with income

level from one particular model (58) working with 139 countries (Figure 4, see also section on

bottom-up approaches).

In addition to inequality between countries, large disparities prevail also within countries.

A number of recent econometric studies have combined spatial climatic data with distributional

data and survey-based socioeconomic outcomes for selected countries (53, 77, 78) finding re-

gressive impacts. Moving towards global coverage, district level data (8, 43) has so far been

the maximum degree of spatial resolution, confirming the regressivity of climate impacts. A re-

gressive distribution within countries is also obtained when extrapolating the between-country

trend to the subnational scale (79).

Despite this, most IAM analyses do not include within-country inequality and the distribu-
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tion of climate impacts yet, making it a high priority for future research (80, 81). A number

of approaches have already been pursued: for example, adding quintiles of the income dis-

tribution to the RICE model (12, 82), simulations based on micro surveys focusing on poor

households (83), calibrating multi-household general equilibrium models to survey data (84),

and considering the interaction with national redistribution schemes (85).

Building upon these initial steps, capturing both the full spatial heterogeneity and the distri-

butional effects of climate damages in impact models and IAMs would represent a major step

forward in assessing the economic impacts of climate change.

The Role of Adaptation

The effects of climate change adaption are often given little or no consideration in the aggre-

gation of impacts, mainly because it is difficult to disentangle the adaptation, which is multi-

faceted and multi-sectoral, from the resulting impact. Short-run adaptation to weather fluctu-

ations should be distinguished from long-run adaption to climate change (15), adaptation can

occur in various sectors under different forms, and the adaptation decision can occur at a small

scale (86) or at the wider global scale, in particular, the research and development of adaptive

technologies (6). Some studies found substantial impact reductions through adaptation to future

climate (38,87,88), but empirical evidence for adaptation to ongoing climate is mixed (7,89,90).

Different assumptions on the level of future adaptation lead to significantly different results for

the impacts of future climate change (7, 10).

A comprehensive integrated assessment should explicitly account for the costs and benefits

of adaptation, however, this is still rare in integrated assessment models. Endogenous adap-

tation has been introduced in the DICE model by splitting the global damage function into

residual damage and protection cost (86). A more comprehensive framework can be found in

the WITCH model where several investment channels are represented such as adaptive capacity,
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proactive adaptation, and reactive adaptation (91). The PAGE and FUND models also repre-

sent adaptation (17). However, in most cases, explicit adaptation is modeled as an exogenous

input in specific sectors where the adaptation costs and climate impact are both available, as

for example for sea-level rise (88). Some adaptation dynamics often already exists, even par-

tially, in integrated assessment models, whether explicitly or implicitly, for example through

the socio-economic development (i.e., enhancing adaptive capacity through poverty reduction

or education), savings and capital accumulation dynamics, or in the modeling of the damage

persistency. A clear identification of the effects of adaptation during the estimation process of

the impacts would help to integrate the damage functions in a coherent way in the assessment

models, as proposed in (38, 92).

Discussion and suggestions for the way forward

The impacts of climate change are affecting societies already today (93–96): decision makers in

politics, companies and the financial sector are setting the course for transformation processes

which will deeply change societies in the near and far future. However, available damage esti-

mates vary strongly. One challenge is the wide variety of metrics (e.g., GDP loss, changes in

welfare, social cost of carbon). But the underlying methodology plays a major role. Bottom-

up assessments serve well if the goal is a comparison of different types of impacts or impact

channels, a better understanding of feedback processes between impact channels, or a study

of channel or sector-specific adaptation measures. They offer transparency and greater process

detail. However, they are very resource-intensive, adding new impact channels and performing

uncertainty analysis is difficult. When using or comparing the - typically rather low - global

damage results of bottom-up assessments, the coverage of channels has to be taken into ac-

count. Agent-based modeling and innovative approaches with increased dimensionality open

new avenues.
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Top-down econometric assessments can provide relations which are more directly applicable

in IAMs. However, crucial questions remain, in particular regarding the degree of persistence

of damage, the treatment of adaptation and the applicability of such empirical relations for fu-

ture projections. This uncertainty should be made explicit when applying the empirical results

in IAMs, e.g. through applying different empirical relations or modeling different degrees of

persistence. Through collaboration between empirical and IAM modelers, improved empirical

studies should be designed, with the explicit link to future projections in mind.

It is clear now that the true magnitude of climate change impacts is determined by factors we

are just starting to capture, like extreme events, effects on economic growth, or distributional

consequences. Damage estimates including such factors can be significantly higher than previ-

ous estimates, shifting optimal emission pathways towards more stringency and in line with the

Paris Agreement targets. An increasing number of empirical and modeling-based estimates of

other impact channels, like biodiversity, mortality, conflict or migration is becoming available.

Priorities should be developed to avoid a certain randomness and to ensure that the economically

most relevant channels are represented. An expert elicitation of the ranking of channels could

help to set priorities in this regard. In addition, economic models could be applied in sensitivity

studies to assess how large an impact would have to be to yield a significant economic (growth)

effect (97). Biophysical models could then be used to assess if a given driver can feasibly yield

such an impact. On the other hand, the combination of top-down and bottom-up approaches

while avoiding double counting should be investigated.

Depending on the model type, models need to be advanced structurally in different respects.

Higher spatial and socio-economic resolution is required to capture distributional effects both

between and within countries. Adaptation needs a price, and both targeted adaptation measures

like sea walls and system responses like factor reallocation, structural change or migration need

to be captured where this is not the case yet. An advanced discussion of the evaluation frame-
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work of impacts, appropriate welfare measures and embedded normative assumptions is neces-

sary.

Finally, progress can come from combining models of different types as well as their structured

comparison, such as (88). For example, biophysical model outputs can be used as the indepen-

dent variables for estimating micro- and macroeconomic econometric models, with the potential

for both improving the predictability of these models and avoiding the parameterization of the

biophysical relationship. Structured inter-model comparisons of economic models with a focus

on damages can help to pinpoint the drivers of different outcomes and key dynamics for the

assessment of economic effects like investment dynamics or persistence of damage.

Integrated assessment needs to take a leap to move away from the simple aggregate damage

functions towards capturing the range of climate impact estimations better, to appropriately ac-

count for uncertainty and to specifically quantify avoided damages, to be truly useful for policy

advice. This research endeavour needs to bring together all the major modeling paradigms as

well as biophysical and empirical impact modelers.
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Figure legends

Physical climate change
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Figure 1: Taxonomy of approaches to capture economic impacts of climate change.
The different end points capture different levels of feedback effects. The column on the
right lists some examples for models and studies applying the methodologies. Model ref-
erences: global climate models (98), ISIMIP - www.isimip.org/impactmodels, Climate Im-
pact Lab - http://www.impactlab.org/, DIVA (20), POLES (21), ARIO (26), DSK (24), SEA-
GLAS (53),ICES (22), AIM (54), ENV-LINKAGES (23), GEM-E3 (57), GTAP-INT (58),
WITCH (99), REMIND (36), GCAM (100), DICE (29), FUND (31), PAGE (30)

32
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B. Final impacts, bottom−up
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C. Final impacts, top−down
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D. Damage functions
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Figure 2: Global GDP losses at increasing warming levels, estimated with different mod-
eling approaches. Panel A: direct economic impacts based on bottom-up assessment; Panel B:
final economic impacts with sectoral feedback effects based on bottom-up assessment; Panel C:
final economic impacts with sectoral feedback effects based on top-down econometric studies;
Panel D: aggregate damage functions from the prominent cost-benefit models DICE, FUND
and PAGE, and from the meta-analysis by (4) (with different specifications).
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Figure 3: Level and growth effects: Simulations of different models of levels and growth
effects, from a one-year weather shock (left) or a step-change in climate (right). The top panels
show the simulated shock for each column, consisting of a 1% GDP loss is incurred either only
once or continuously due to a change in climate in year 2. The middle panel shows percent
differences in GDP levels, relative to a baseline without damages. The bottom panels show
differences in growth rate per year relative to the baseline growth rate. Level effect Yt = Yt(1−
D): Damages are applied in each year to the baseline trajectory; this results in a compensating
rebound to a single-year shock and a return to a parallel, lower trend for permanent climate
shifts. Growth effect, Yt = Yt−1(1 + G − D): After a shock, growth follows a new baseline;
this results in permanently lower growth rates and a large gap from the baseline trajectory.
Kikstra et al. (48), Yt = Yt−1(1 + G − ρDt−1)(1 + Dt−1 − Dt): A parameter moderates
between level damages (ρ = 0) and growth damages (ρ = 1), without explicit reference to a
baseline trajectory (set to 0.528). Kahn et al. (40), Yt = Yt−1(1+G−|D̄t−1−Dt|): Deviations
from a N-year average climate determine damages (N = 30). Deryugina & Hsiang (45), Yt =
Ȳt−1(1 +G+

∑
s=0 ρ

sDt−s) = (ρYt−1 + (1− ρ)Ȳt−1)(1 +G−D): Damages persist according
to an exponential decay, with ρ = 0.825. Kalkuhl & Wenz (8), Yt = Yt−1(1 + G + ((β1 +
β2(13+Dt))∆Dt+(β3+β4(13+Dt))∆Dt−1+β5(13+Dt)): Damages are related to both first-
differences and contemporaneous temperatures, shown assuming 13◦ C baseline temperatures.

34



Figure 4: Climate impacts between countries (58): Left panel: Long run annual losses in
GDP using a 139-country/region climate change and trade model: Long run annual percentage
losses in GDP by country for an average global temperature increase in 2100 of 4°C. Losses in
GDP range from less than 2% to 28% (from lighter to darker red) between countries, with an
unweighted global average of over 7% (note the still incomplete and limited coverage of dam-
age channels). Losses in Antarctica capture island nations and other countries that do not have
sufficient resolution in the global map. Right panel: Inequality and climate change damages:
The long-run economic damages from climate change measured as percentage falls in annual
GDP (Impact) and income measured as current per capita GDP (Income), with the same temper-
ature increase and limited damage channels as in the left panel. The vertical blue line indicates
average global per capita GDP (calculated from the GTAP data base) and the size of each circle
represents the size of population by country. The graphic shows that larger long run annual
percentage losses in GDP tend to correspond to lower current income levels per capita. The
usual GTAP country indicators are used (e.g., ARE: United Arab Emirates; AUS: Australia;
BRA: Brazil; BRN: Brunei Darussalam; CHE: Switzerland; CHN: China; DEU: Germany;
ESP: Spain; GHA: Ghana; HKG: Hong Kong; HND: Honduras; IDN: Indonesia; IND: India;
ISR: Israel; JPN: Japan; KOR: South Korea; KWT: Kuwait; MYS: Malaysia; NGA: Nigeria;
NOR: Norway; PHL: Philippines; PRI: Puerto Rico; QAT: Qatar; SAU: Saudi Arabia; SEN:
Senegal; SGP: Singapore; THA: Thailand; TGO: Togo; USA: United States; VNM: Vietnam;
ZWE: Zimbabwe).

Tables
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Table 1: Comparative overview of aggregate global economic damage estimates following three main different approaches
as shown in Figure 1. Final economic impacts with dynamic effects are not included in this table as these are typically
combined with policy optimization in the literature. Instead, for comparison, aggregate damage functions as used in the most
prominent CBA models DICE, FUND and PAGE are shown, together with recent damage functions based on meta-analysis of
the damage literature (4). For the FUND and PAGE models we show the implied damage functions based on (17). The meta-
analysis by (4) provides three different specifcations: only non-catastrophic damages, total damages including catastrophic
events and total damages plus productivity effects based on the empirical literature. For space reasons we only provide one
example reference per approach, for a more extensive literature overview including methodological details of the studies see
Supplementary Table 1.
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Direct economic impacts Final economic impacts with sectoral feedback effects Aggregate damage functions
Bottom-up assessment Bottom-up assessment Top-down assessment

Approach Add up damages from individual sectors
(either from biophysical models or from
econometric studies)

Overall economic effect of direct sectoral
damages including equilibrium effects, au-
tonomous adaptation endogenous

Econometric study of aggregate climate ef-
fect as well as individual channels

Apply aggregate damage functions in
growth models to capture economic feed-
back e.g. from investment; often used for
CBA to derive abatement decisions

Impact
channels

various, most prominently agriculture, labor productivity, tourism, health (infectious
diseases, heat-related mortality), energy demand, limited sea-level rise

(Total) Factor Productivity or growth Output loss

Example Roson & Satori (2016) (55) Kompas et al. (2018) (58) Burke et al. (2015) (7) Howard & Sterner (2017) (4)

Global GDP
loss for differ-
ent warming
levels (see also
Figure 2)

1.5°C: 1%
4.3°C: 6-8%

(based on 2 studies)

1.8°C: 0.5%
4°C: 3%
(based on 3 studies)

1.5°C: <10%
4.3°C: 5-65%

(based on 6 studies)

1.5°C: slight gains under the FUND dam-
age function, up to 3% loss under Howard
& Sterner (2017) with productivity effects
4°C: 1-18% loss

Advantages Transparency; high detail on impact side
Close derivation from observed data; full
representation of (historical) uncertainty;
simple representation for use in IAMs
(with caveats)

simple function for use in IAMs; high flex-
ibility; difficult to derive

Includes non-market damages (e.g. mortal-
ity impacts via VSL); direct consideration
of explicit adaptation measures

Captures economic response dynamics for
different impact channels; high sectoral de-
tail; propagation of impacts across sectors

Disadvan-
tages

Little flexibility on impact side, rare uncertainty analysis (often a single biophysical
impact model per channel)

Focus on output/productivity effects – rarely includes other channels like extreme
events; opacity about included channels

No feedback/interaction effects between
sectors, from the general economy or to the
climate system

no forward-looking investment processes;
cannot capture economic transformations;
spatial resolution limited by I/O data

out-of-sample projections; unclear role of
adaptation; assumes stationarity in slow-
moving processes (e.g. cannot capture sea-
level rise); does not include non-market
damages

difficult to derive; high aggregation masks
spatial/social heterogeneity
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