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Abstract

Political scientists increasingly use supervised machine learning to code
multiple relevant labels from a single set of texts. The current “best practice”
of individually applying supervised machine learning to each label ignores
information on inter-label association(s), and is likely to under-perform as
a result. We introduce multi-label prediction as a solution to this problem.
After reviewing the multi-label prediction framework, we apply it to code
multiple features of (i) access to information requests made to the Mexican
government and (ii) country-year human rights reports. We find that multi-
label prediction outperforms standard supervised learning approaches, even
in instances where the correlations among one’s multiple labels are low.



1 Introduction
Supervised machine learning has dramatically expanded researchers’ abilities to mea-

sure and classify important concepts from political texts (e.g., Laver et al. 2003; Mitts

2019; Greene et al. 2019). Recent methodological innovations have likewise served to

further tailor these methods to the needs of political scientists (e.g., Cantú and Saiegh

2011; D’Orazio et al. 2014; Chang and Masterson 2020; Miller et al. 2020). Despite

these advancements, political scientists continue to primarily apply supervised machine

learning to political texts in an independent manner for each target variable considered.

Doing so treats each target variable as an unrelated quantities of interest during super-

vised classification. This standard, independent classification approach is consistent with

the supervised machine learning frameworks discussed in past political science reviews of

automated text analysis (Grimmer and Stewart 2013; Barberá et al. 2020).

However, political scientists also commonly endeavor to code multiple separate target

variables from a single corpus of text, often with a future intention of using said measures

as explanatory and/or outcome variables. For instance, Mitts (2019) uses a supervised

approach to independently classify 175,015 tweets across four non-mutually exclusive la-

bels: (1) sympathy for ISIS, (2) life in ISIS territories, travel to Syria, or foreign fighters,

(3) the Syrian War, or (4) anti-West rhetoric, and then analyzes each as a distinct depen-

dent variable in four separate statistical models. Kostyuk and Zhukov (2019) likewise use

supervised classification to separately code political event attributes pertaining to event

type, initiator/target, tactics, and casualties from 72,010 news reports and blog posts.

These attributes are then leveraged to create a measure of Ukrainian kinetic operations,

whose effects on a (separately coded) cyber-warfare variable are considered via vector

autoregression. Appendix B offers 10 similar published examples.

In these contexts, substantial gains in classification accuracy—and thus also in vari-

able measurement and any subsequent regression-based inferences—can be obtained by

treating one’s target variables as interdependent, and leveraging each variable’s super-

vised predictions as features during the supervised classification of all other variables. We

introduce one such supervised machine learning framework here: multi-label prediction.
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Multi-label prediction offers substantial benefits over even the most flexible of in-

dependent classification alternatives, in that the former uniquely leverages pertinent

auxiliary information that is already freely available—via the additional label-to-feature

relations across one’s remaining labels—during classification. In doing so, multi-label pre-

diction avoids the significant training costs associated with searching over a potentially

infinite set of combinations and/or transformations of one’s original document features

to arrive at this same on-hand information for classification. To illustrate these points

below, we first formally present the multi-label framework, review a number of pertinent

caveats and extensions, and introduce metrics to judge multi-label classification perfor-

mance. Our main contribution is to introduce these items alongside guidance for applied

text-as-data research. However, we also find that—as in other domains (Madjarov et

al. 2012)—a(n ensemble) classifier chain multi-label approach has the best predictive

performance over the largest number of relevant metrics and across a variety of types of

text-as-data. We then verify that the predictions from this ensemble classifier chain multi-

label approach also provides preferable (outcome and/or explanatory) variable measures

for post-classification regression analyses, when compared to independent classification.

To arrive at these findings, we first illustrate our proposed multi-label approach’s

broader benefits through an application to the coding of access to information (ATI)

request texts—a form of “big data” from citizen-government interactions with which po-

litical science research has engaged (e.g., Chen et al. 2016; Berliner et al. 2018; Berliner et

al. 2020). Our second application then evaluates multi-target prediction within the con-

text of the growing literature on the automated coding of human rights abuses from

country-year human rights reports (Greene et al. 2019; Murdie et al. 2020; Park et

al. 2020a). In both applications, and an accompanying Monte Carlo simulation, multi-

label prediction outperforms several alternative, independent supervised classification

approaches—even in circumstances of low correlation among target variables. Our appli-

cations and simulations further demonstrate that multi-label prediction performs much

better than independent classification in instances where (i) correlations among target

variables are high and/or (ii) the number of available features or labeled cases for classi-
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fication is relatively low.

2 Multi-label Framework
This section begins by reviewing a set of key components to single variable classifi-

cation, before generalizing this to instances where researchers seek to classify multiple

variables (i.e., multi-label contexts). For supervised machine codings of text-as-data, we

can define the main objective of classification algorithms as separating the classes of a

variable using only human-coded training data. Ideally in such contexts, a model learns

the underlying structure of a variable using said training data, and this structure then

generalizes well to unseen (i.e., out-of-sample) data. If the target variable has only two

possible values—for example, if the goal is to predict if a person will vote or not—we refer

to this task hereafter as “binary classification.” On the other hand, if there are more than

two possible classes for a single target variable, we term this variable as “nominal” and

characterize this task as “multi-class classification.” The latter would include, e.g., efforts

to classify candidate vote choice in a multi-party system with more than two parties.

More formally, let X denote the input space and Y the output space (target). The

goal is to learn a function f : X −→ Y that maps an instance from the input space to the

output space. This function is learned from the training set {xi, yi | 1 ≤ i ≤ m}, where

xi ∈ X represents the features of an instance that will be mapped to a corresponding

class (or label) yi ∈ Y representing its characteristics. One fundamental assumption

adopted by traditional classification algorithms is that each class is mutually exclusive.

These are valid assumptions for the individual binary and categorical vote choice variables

mentioned above.

However, as noted in the introduction, there are many learning tasks for which these

simplifying assumption might not be reasonable. These situations commonly arise in

researchers’ efforts to code multiple, non-mutually exclusive traits—which we define as

labels1—from corpora of political texts, as the examples from Mitts (2019) and Kostyuk

and Zhukov (2019) illustrate above. Alternatively, for the aforementioned vote choice

1Whereas, we reserve “class” for only mutually-exclusive traits.
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examples, a similar situation would arise in cases where a researcher is interested in

predicting how a voter will vote across (e.g.,) six distinct ballot initiatives during a given

election. As a third example, we note that more recent innovations in semantic role

labeling can often require classification of an even larger (but more incomplete) number

of overlapping labels per text-unit than the examples described thus far. In any of the

above cases, a set of labels must ideally be assigned to each observation in order to express

its non-exclusive characteristics in a manner that accounts for the mapping of multiple

labels to a single observation (e.g., an individual voter). This assignment paradigm is

referred to hereafter as “multi-label learning,” whereby the goal of one’s classification task

becomes learning a function that can predict the proper label sets for unseen examples

(Zhang and Zhou 2013).

For multi-label problems, political scientists continue to use independent label prediction—

as illustrated by the examples highlighted in our introduction and Appendix. We refer to

this standard approach as “binary relevance” (BR) hereafter. BR effectively decomposes

multi-label problems into multiple independent binary label prediction tasks. In breaking

one’s classification tasks into a set of wholly independent, binary classification tasks, BR

directly invokes the simplifying assumptions mentioned above. However, because any and

all relationships between labels are accordingly ignored, BR will often achieve subopti-

mal performance in instances where this simplifying assumption does not hold. This is a

substantial limitation, given that (as elaborated upon below) the effective exploitation of

label correlations (i) is essential for accurate multi-label classification and (ii) is the main

way to cope with the challenge of large output spaces that multi-label problems typically

entail (Zhang and Zhang 2010).

As such, multi-label learning tasks require a distinct classification strategy from that

which is used for the assignment of a single label (per observation) within the BR or

multi-class classification paradigms defined above. Ignoring these multi-label attributes

and classifying all labels independently likely to yields worse classification performance,

and hence poorer measurement, of said variables. Depending on how researchers use these

classified variables in subsequent statistical models, measurement shortcomings from in-
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dependent classification could lead to biased and/or unreliable inferences. Indeed, to

the extent that the latter classification approach leads to higher measurement error in

one’s post-classification independent (dependent) variable(s), inconsistency (inefficiency)

in one’s regression estimates—and a higher corresponding risk of bias and incorrect infer-

ences when said measurement error arises in either one’s independent or variable(s)—can

arise (Wansbeek and Meijer 2000; deHaan et al. 2019).

Multi-label learning algorithms were developed to address these types of concerns in

the context of news story and web-page categorization (McCallum 1999; Ueda and Saito

2003). In both usage cases, texts are classified into multiple non-mutually exclusive cate-

gories. After being successfully applied to problems involving text, multi-label algorithms

have been widely used on diverse other tasks, such as automatic annotation of images

and videos (Qi et al. 2007; Boutell et al. 2004), bioinformatics (Clare and King 2001),

and web mining (Tang et al. 2009).

2.1 Formal definition
We now turn to formally define multi-label classification. For reference, we provide a

summary of the mathematical notation used within this section in Appendix Table C.1.

The multi-label paradigm can be more formally defined as follows: let X ∈ Rd be a d-

dimensional input space and the label space with q possible classes be Y = {0, 1}q. Similar

to the standard classification task defined above, the goal is to learn a mapping function—

in this case, defined as h : X −→ Y—from the training set D = {xi, Yi | 1 ≤ i ≤ m}.

For each instance (xi, Yi), the input xi = (xi1, ..., xid) is a d-dimensional vector and the

output is Yi is a q-dimensional set of labels. Therefore, for each new unseen example of

x ∈ X , the multi-label classifier h(·) predicts a set of labels h(x) ⊆ Y .

For supervised text-as-data classification problems, the output of a multi-label model

can thereby be seen as a real-valued function f : X x Y −→ R, where f(x, y) can be

interpreted as a compatibility or confidence function that evaluated how compatible or

likely y ∈ Y is the correct label of x. The classifier function h(·) can be obtained by

taking the output with largest compatibility score h(x) = arg max
y∈Y

f(x, y) or by using a

thresholding function t : X −→ R such that h(x) = {y|f(x, y) ≥ t(x), y ∈ Y}.
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Based on the formal definition presented above, it is evident that traditional super-

vised classification problems can be viewed as a simplified version of multi-label learning,

where each target has only one (binary or nominal) label. The generality of multi-label

classification makes this task much more difficult to solve, given that each directional

inter-label relationship must be accounted for as a predictive feature in a manner that

accounts for permutations. That is, in order to accommodate inter-label relationships,

one ideally needs to not only apply a classifier once to each label (as is presently done

within political science), but rather to classify each label once for every possible ordering

(i.e., subset) of all remaining labels—since these remaining labels, and the order by which

they themselves are classified, now have bearing on each label’s subsequent prediction. In

this regard, the key challenge of multi-label classification is thus the output space, which

grows exponentially as the number of labels increase. For example, a problem with 5 bi-

nary labels has 32 different label subsets. If we increase this number to 15 binary labels,

the number of possible combinations grows to 32,768.

To address these shortcomings, researchers have identified several ways to efficiently

leverage the relations among labels within multi-label classification tasks. Two longstand-

ing strategies include accounting for (i) pairwise correlations between any two labels (Qi

et al. 2007; Ueda and Saito 2003) or (ii) rankings between relevant and irrelevant labels

(Brinker et al. 2006; Elisseeff and Weston 2002). In comparison to BR, these alternative

approaches better manage the trade-off between performance and computational cost

within multi-label classification tasks.

However, these approaches encounter problems when the relations among labels be-

comes more complex than simple pairwise associations—which is oftentimes the case for

real-world social science data. This is especially the case for many efforts to code quanti-

ties of interest from political texts. For example, with regards to the country-year human

rights application presented below, CIRI’s separate, non-mutually exclusive human-rights

labels for state torture, political imprisonment, extrajudicial killings, and disappearances

(Cingranelli and Richards 2010) are likely to be highly interdependent facets of states’

overarching strategies of repression, as opposed to simply being linked via pairwise asso-
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ciations. In such cases, multi-label alternatives that accommodate the influences of all

labels when predicting each label (Yan et al. 2007; Cheng and Hüllermeier 2009; Ji et

al. 2008), can achieve superior performance, albeit at the expense of higher computational

costs and more constrained scalability.

2.2 Categorization of Multi-label learning algorithms
Methods for multi-label classification can be divided into two general categories: prob-

lem transformation methods and algorithm adaptation methods. The former tackles

the multi-label classification problem by reformulating this classification problem into

other tasks, such as binary classification (Read et al. 2009) or multi-class classification

(Tsoumakas and Vlahavas 2007). On the other hand, algorithm adaptation methods

tackle the multi-label problem by adapting learning algorithms to directly deal with

multi-labeled data (Zhang and Zhou 2007), oftentimes in manners that better account

for the label associations in one’s data. We first discuss algorithm adaptation below, be-

fore returning to problem transformation, and then a broader summary of all approaches.

2.2.1 Algorithm Adaptation

By tailoring existing algorithms to multi-label contexts, algorithm adaptation meth-

ods possess an inherent appeal in that they (i) often employ algorithms that are already

familiar to researchers from single label contexts and (ii) most closely match the underly-

ing data generating process (d.g.p) of one’s multi-label data. Yet, such methods typically

must sacrifice at least some ability to explicitly, and flexibly, accommodate inter-label

correlations to achieve these aims. In multi-label contexts, this often leaves algorithm

adaptation methods open to the same critiques that were previously highlighted for BR.

A canonical algorithm adaption method is the Multi-label k-Nearest Neighbor (ML-

kNN) algorithm (Zhang and Zhou 2007). As the name suggests, this algorithm adaptation

model is itself built upon the more widely known k-Nearest Neighbor (kNN) algorithm

(Dudani 1976). In all (ML-)kNN approaches—and for each datapoint in a test set—the

model identifies its k-nearest neighbors in the training set. Whereas standard kNN then

assigns a label for a single trait to that datapoint based upon the most common label

shared by that datapoint’s k-nearest neighbors, ML-kNN instead considers the set of
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trait labels for each datapoint based upon a membership counting vector of its k-nearest

neighbors’ corresponding label-sets. Using the statistical information gained from these

neighbors’ label sets, all labels are then assigned to that datapoint via Bayesian inference.

Under this Bayesian framework, prior and posterior probabilities can then be directly

estimated from a human-labeled text-as-data training set based on frequency counting.2

The process of estimating prior probabilities for each label can also help to mitigate prob-

lems commonly faced by text-as-data researchers such as class-imbalance. This algorithm

has been used in several real-world multi-label learning problems—in each case outper-

forming other multi-label learning algorithms that were considered at the time (Zhang

and Zhou 2007).

However, one of ML-kNN’s main limitations is that it does not explicitly consider

the correlation between labels. As such, ML-kNN discards relevant information, and and

accordingly risks assigning labels with sub-optimal accuracy rates that are no better than

the BR approach outlined above. Several extensions have been proposed to address this

potential deficiency. Examples include extensions that (i) incorporate all of the compo-

nents of the counting vector Cj in the (non)assignment of label j (Younes et al. 2011)

or (ii) consider the labels of neighbored instances as “features” of a logistic regression

whose output is the label is to be estimated (Cheng and Hüllermeier 2009). Nevertheless,

the applicability of this algorithm adaptation framework in a manner that fully accom-

modates correlations between labels remains limited. This leads us to tentatively favor

problem transformation methods, to which we now turn.

2.2.2 Problem Transformation

Rather than tailoring a multi-label algorithm to an existing multi-label data structure,

problem transformation methods first “break up” one’s multiple labels—including nomi-

nal labels—into a simpler set of (often binary) labels. The latter methods then leverage

these restructured data in a manner that more explicitly accounts for inter-label correla-

tions. As such, problem transformation methods sacrifice information on the underlying

d.g.p, and original structure, of one’s multi-label data so as to better accommodate label

2More details can be found in Zhang and Zhou (2007).
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correlations during classification—and the added computation that this often entails.

One of the most well-known and accessible problem transformation algorithms is the

Classifier Chain (CC; Read et al. 2009). In a similar manner to strategies of multiple

imputation by chained equations (vanbuurenFlexibleImputationMissing2012), the

primary goal of the CC model is to transform the multi-label problem into a chain of

binary classifiers, where the prediction of subsequent classifiers is based on the prediction

of preceding elements of the chain. See Appendix C.1. for a more formal treatment.

The CC method does well at balancing predictive power and computational efficiency.

Accordingly, it has now been successfully applied to domains as varied as music, scene,

yeast, genbase and medical classifications (Madjarov et al. 2012). It is important to high-

light, however, that the the ordering of the labels considered affects the CC algorithm’s

performance, so it is often necessary to run the model with several random permutations

over the label space with and without replacement. To address this, we propose CC ex-

tensions that utilize ensemble methods within our applications further below, which we

label as “Ensemble CC” (ECC) hereafter. This proposed innovation draws upon earlier

CC extensions that have previously sought to optimize label ordering via (e.g.) genetic

algorithms (Goncalves et al. 2013) or Monte Carlo methods (Read et al. 2014).

The multi-label problem can also be modeled as an ensemble of multi-class classifiers,

where each component in the ensemble targets a random subset of the label space Y upon

which a multi-class classifier is induced by what is known as the Label Powerset (LP;

Boutell et al. 2004).3

This LP algorithm has been successfully applied to image classification, where it

achieved commensurate performance (Boutell et al. 2004). However, it is important to

note that LP has two major limitations. First, the prediction of new labels is limited by

label sets that appear in the training set. That is, the model is not able to generalize

to unseen combinations of labels. Secondly, the label space grows exponentially (2q), so

when Y is large, training becomes complex and computationally expensive.

3In other words, each distinct set (combination) of labels is mapped to a new class.

For a more formal treatment, see Appendix C.2.
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To overcome these two drawbacks, the LP algorithm can be extended under a random

k-labelsets (RAkEL) framework (Tsoumakas and Vlahavas 2007). This extension’s main

innovation lies in its use of N different LP classifiers on k different random subsets of

one’s label space to guarantee computational efficiency. The approach then ensembles

these N LP classifiers for a final prediction. The degree of label correlations is accordingly

controlled for by k. For unseen examples, each of the N different classifiers predict their

corresponding labels. The final output is determined by the ensemble of all N classifiers.

As an illustration, imagine a four-label classification task, y = [L1, L2, L3, L4], with

two training examples y1 = [0, 0, 1, 1] and y2 = [1, 0, 0, 0]. With LP, the output of the

model would be restricted to predicting either [0, 0, 1, 1] or [1, 0, 0, 0] as these are examples

already seen during training. On the other hand, RAkEL allows the model to generalize

to combinations of labels that are not present in the training set. For instance, for a

RAkEL classifier with k = 2 that divides the label space in k1 = [L1L2] and k2 = [L3L4],

a classifier N1 is trained on the subset k1 = [0, 0], [1, 0] and another classifier N2 is trained

on the subset k2 = [1, 1], [0, 0]. The final output is assembled for all combinations seen

by N classifiers. In this case, the model is able to predict [0,0,1,1],[1,0,0,0],[0,0,0,0] and

[1,0,1,1], wherein the last two examples were not present in the training set.

RAkEL has achieved good performance in multi-label domains involving document,

image and protein classification (Tawiah and Sheng 2013). There are two types of RAkEL

models: one considers only disjoint (non-overlapping) subsets (RAkELd) and a second

that considers overlapping intervals (RAkELo). In our applications, we consider RAkELd.

2.3 Summary of Approaches
We provide (i) an overview of the computational costs associated with each multi-

label approach in Appendix D and (ii) a summary of our (tentatively favored) problem

transformation approaches, alongside the earlier-described BR approach, in Figure 1.

Since these latter methods are based on transforming the multi-label problem into binary

or multi-class classification, the training procedure is identical to standard supervised

learning algorithms.4 Likewise, these methods’ flexibility in incorporating different base

4Consequently, the models are trained using cross-entropy as a loss function below.
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Figure 1: Relationships Among Problem Transformation Approaches

classifiers of one’s choosing helps to ensure comparable underlying interpretability rel-

ative to BR on this dimension. That being said, ECC, LP, and RAkEL’s reliance on

varying degrees of ensembling does raise practical challenges for these three approaches’

interpretability, relative to simpler BR frameworks. Given that multi-label text-as-data

problems are primarily oriented towards the measurement and accurate prediction of la-

bels for future use—rather than explanation—this tradeoff in improved accuracy for some

loss in interpretability is preferable for many researchers.

With the above caveats in mind, we note that many of the multi-label approaches

reviewed above have exhibited good-to-excellent performance in text-as-data contexts in

past comparisons of multi-label methods (Madjarov et al. 2012). Yet, in terms of relative

performance, none of these multi-label methods has emerged as consistently superior to
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the others.5 In light of this, our empirical applications compare the performance of a

wide array of multi-label and standard supervised classification approaches. However, in

order to do so, special consideration must first be given to choices of comparison metrics,

given the multi-label context being considered. We hence now turn to discussing model

comparison in multi-label contexts, before turning to our applications in full.

3 Model comparison
In single-label learning systems, performance is often evaluated by conventional met-

rics such as F-score, precision, recall, area under the curve (AUC) and accuracy. How-

ever, the evaluation of multi-label models is much more complex as each observation is

associated with several labels simultaneously. Rather than simply denoting whether a

prediction for a given observation is right or wrong, the latter quality implies that one

needs to also evaluate (and hence aggregate over, in some manner) the share of correct

labels predicted in multi-label contexts.

The multi-label evaluation metrics that have been designed for these purposes can be

divided in three general categories: example-based, label-based and ranking-based metrics

(Madjarov et al. 2012). Example-based metrics evaluate average differences between one’s

model prediction sets and the true label set of one’s evaluation dataset. On the other

hand, label-based metrics assess the predictive performance for each label separately and

then average the performance over all labels. Finally, ranking-based metrics use the

fraction of label pairs that are incorrectly ordered to evaluate the model. As multi-label

metrics may be unfamiliar to some political scientists, we provide a summary table of

each metric used in this paper in Table 1, and then formally present each metric below.

5Despite the impressive performance of deep neural networks (DNNs) in several areas,

DNNs have not shown dominant cross-domain performance when compared to classic

multi-label models. That being said, Xu et al. (2019) do present a selection of high

performing DNNs for hierarchical (Baker and Korhonen 2017) and time-series (Smith and

Jin 2014) multi-output learning contexts. Appendix Section E.5 accordingly provides a

comparison of our baseline and primary multi-label approaches to two DNN approaches.
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Metric Type Summary Best Performance Value
Hamming Loss Example-based Computes the percentage of labels that were misclassified. 0

Subset Accuracy Example-based Computes the percentage of instances/examples that had
all of their labels classified correctly.

1

F1-Macro Label-based Calculates the F1-score for each label independently,
then averages them. All labels are treated equally.

1

F1-Micro Label-based All labels are aggregated before calculating the F1-score,
making F-Micro more ideal for problems with class imbalance.

1

Ranking Loss Ranking-based Calculates the average number of incorrectly ordered label pairs. 0

Table 1: Multi-label Evaluation Metrics

3.1 Example-based metrics
Hamming loss is an example-based metric that computes the fraction of misclassified

labels for each observation. It considers both prediction errors (when the prediction is

incorrect) and omission errors (when the label is not predicted at all), where lower values

are more optimal. For example, a hamming loss of 10% means that 90% of all labels were

classified correctly. It can be formally defined as:

LHamming(Y, Ŷ ) =
1

nlabels

nlabels∑
k=1

1(ŷk ̸= yk) (1)

where nlabels is the total number of labels, 1 is the indicator function, ŷ is the k-th

predicted label and y is the actual label.

Subset accuracy is a stricter metric than hamming loss. Instead of evaluating the

fraction of correctly classified labels, subset accuracy only considers a prediction as correct

if all of an observation’s predicted labels are identical to its true label set:

SubSetAcc(Y, Ŷ ) =
1

m

m∑
i=1

1(Ŷi = Yi) (2)

where m is the total number of examples in the test set, 1 is the indicator function, Ŷi

is the i-th predicted label set, and Yi is the ground-truth label. This metric can thus be

interpreted as reporting the percentage of all observations that have all labels correctly

classified, with higher values on this metric being more optimal.
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3.2 Label-based metrics
For label-based metrics, we consider Macro- and Micro-F1 scores. Each is based on

precision and recall.6 Precision indicates the proportion of predicted positives that are

truly positive while recall denotes the proportion of actual positives that are classified

correctly. Macro-F1 is the harmonic mean of the precision and recall averaged across all

labels. The precision-macro (pmacro) and recall-macro (rmacro) are defined as follows:

pmacroj =
TPj

TPj + FPj

(3)

rmacroj =
TPj

TPj + FNj

(4)

where TPj, FPj, FNj denote the true positive, false positive and false negative rate for

the label j respectively and q is the number of labels for each example. Macro-F1 can be

defined in terms of these metrics as

Macro− F1 =
1

q

q∑
j=1

2 pmacroj . rmacroj

pmacroj + rmacroj

(5)

On the other hand, for Micro-F1 both precision and recall are defined differently:

pmicroj =

∑q
j=1 TPj∑q

j=1 TPj +
∑q

j=1 FPj

(6)

rmicroj =

∑q
j=1 TPj∑q

j=1 TPj +
∑q

j=1 FNj

(7)

Finally, Micro-F1 is defined as follows:

Micro− F1 =
2 pmicroj . rmicroj

pmicroj + rmicroj

(8)

Micro-F1 calculates the metrics by counting the total number of true positives, false

6As such, these particular metrics may not be feasible for applications where extremely

imbalanced or incomplete labels preclude the calculation of precision and/or recall.
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negatives, and false positives. That is, the scores of all labels are aggregated to com-

pute the metric. On the other hand, Macro-F1 calculates the metrics for each label

independently, and then averages them.

3.3 Ranking-based metrics
Ranking loss evaluates the fraction of label pairs that are incorrectly ordered. As such,

it considers only the relative rankings (i.e., orderings) of one’s label predictions—in terms

of which labels exhibit higher versus lower predicted probabilities in that label set—and

the correspondence between these rankings and a true label set. It can be defined as:

Rloss =
1

m

m∑
i=1

1

|Yi||Ȳi|
|{(y′, y′′|f(xi, y

′) ≤ f(xi, y
′′), (y′, y′′) ∈ Yi x Ȳi}| (9)

where Ȳ is the complementary set of Y in Y . In this case, ranking loss is interpreted such

that the lower the ranking loss, the better the performance. In a similar manner to AUC

in single-label prediction contexts, one strength of ranking loss is its reliance on relative

orderings of label predictions rather than on arbitrary thresholds (e.g., 0.5). This ensures

that predictive evaluations via ranking loss will be less sensitive to factors that lead to

consistently (high or low) predictions relative to a chosen threshold.7

To illustrate this, imagine a set of true labels Y1true = [1, 0, 0], Y2true = [1, 1, 0]

and a corresponding set of label predictions given by a chosen classifier of f1pred =

[0.4, 0.1, 0.2], f2pred = [0.9, 0.8, 0.6]. Using a threshold rule of 0.5 (1 if f(·) ≥ 0.5, 0

otherwise), we would obtain a relatively uninformative hamming loss of 33% and subset

accuracy of 0%, as Y1pred = [0, 0, 0], Y2pred = [1, 1, 1]. On the other hand, the resulting

ranking loss would be zero (i.e., perfect).

4 Applications

4.1 Mexican ATI Requests
Our first application examines access-to-information (ATI) requests made to the Mex-

ican federal government during the period 2003-2015. ATI requests in this context have

7E.g., such as class-imbalance or one’s choice of base classifier.
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been previously analyzed in efforts to assess the degree to which Mexican citizens use this

ATI system to hold their government publicly accountable (Berliner et al. 2018), or to

understand government responsiveness (Almanzar et al. 2018; Berliner et al. 2020). We

provide additional background on Mexico’s ATI system in the Appendix. The textual

content of information requests contains requesters’ open-ended descriptions of their de-

sired information, as entered into an online ATI request system’s primary request field,

supplemental information field, and attachments field. Attachments were webscraped,

converted to machine readable text via optical character recognition, and then combined

with other request text fields to form our primary textual entries of interest. Altogether,

this process produced a sample of 1,025,953 requests for our consideration.

We are interested in a wide variety of traits associated with each of these request texts,

pertaining to qualities such as the use of legalistic and technical language, the number

of distinct pieces of information requested, and the appropriateness of the request for

the targeted agency. Developing accurate and fine-grained measures of attributes like

these will enhance understandings of the nature and dynamics of citizen demand for

information, and of the request-specific determinants of government responsiveness—

both in general and as it varies across agencies and time. We accordingly drew a random

sample of 4,925 requests—stratified by year—from our full sample of request texts. Six

Mexico City-based coders coded these request texts for distinct ATI-request traits. For

this paper, we retained 26 total (ATI-request trait) labels for classification. Our original

request traits—and overall human coding approach—are discussed in the Appendix.

With this sample of 4,925 human coded requests, we then trained all classifiers on this

sample, classifying all 1,021,028 remaining (non-human coded) ATI requests for each of

our 26 labels. All relevant text processing steps that were applied to the raw texts prior

to classification—and the hyperparameters used for each model—are described in the

Appendix. The overall level of correlation for our 26 labels is not high, suggesting that

this application is a “hard test” for the potential benefits of multi-label classification. On

average, the correlation between our pairs of hand-coded labels is 0.06 with the lowest

and highest pairwise correlations being 0 and 0.40, respectively.
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We next evaluate the value added of the multi-label framework (i.e., of considering

inter-label relations for our document-level labels). In order to do so, we compare the

results obtained from four plausible approaches to handling multi-label data. The first

pair of general approaches that we consider are Binary Relevance (BR) and MLkNN.

Recall that neither of these two approaches consider label relations. By contrast, the

second pair of general multi-label approaches that we consider (CC and LP) do consider

label correlations.

Within each of these general approaches, we then implement and consider several of

the extensions described further above. Turning first to the CC approach, we consider

its basic implementation and also a version where the label ordering was permuted. For

the latter CC approach, the final output was composed of the average of each permuted

chain, and is hereafter labeled ECC for “Ensemble CC.”8 Similarly, for the LP approach,

we considered both its standard definition and the RAkEL extension. The base classifier

for each of these methods was a standard logistic regression.

For the MLkNN, we only considered the standard version since its proposed extensions

are not yet readily available. On the other hand, we evaluate four different varieties of

BR classifiers. The first, presented as Standard BR, used a simple Random Forest with

the same parameters applied to all labels. For the second BR variant, we perform a grid

search to find the best performing classifier and corresponding hyperparameters for each

label. This approach is labeled as BR Optimized below.

For the third BR variant, BR Optimized Threshold, we kept the same classifier for all

labels. However, instead of using the standard 0.5 classification threshold, we optimized

the threshold for each label by selecting 20 different splits of the training data and se-

lecting the threshold value for each label that maximized the F1-score. Finally, to more

directly address class-imbalance in some labels, we used an oversampling technique to

generate synthetic samples from the minority class, known as SMOTE (Lusa et al. 2013).

Using this technique, we trained the final BR classifier that we consider, hereafter referred

8As this algorithm was not present in Python’s scikit-multilearn package (Szymański

and Kajdanowicz 2017), we have made its implementation available in our repository.
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to as BR Optimized SMOTE.

The multi-label results obtained from all classifiers considered are summarized in

Table 2. The algorithms used were based on the implementations provided by Python’s

scikit-multilearn package (Szymański and Kajdanowicz 2017) and sklearn (Pedregosa

et al. 2011)9. Each model was evaluated using 80% of the data for training and 20% for

testing with 10 different splits. Further details on hyperparameter selection for each

algorithm considered appear in Table E.2 of the Appendix.

Turning to Table 2, we find that ECC achieves the best performance among all tested

classifiers. That is, we can determine from Table 2 that ECC routinely outperforms our

alternate approaches, and can also observe that ECC is a top three performer across all

metrics used. This finding supports our contentions regarding the importance of taking

into account relationships between labels for multi-label classification of political text-as-

data. The complete results for all metrics considered here can be found in Table E.1 of

the Appendix and are consistent with this summary interpretation. These results suggest

that ECC also exhibits the lowest average deviation when compared to other algorithms.

Additional discussion of the predicted proportions for each label is likewise presented in

the Appendix.

For the four BR classifiers considered in Table 2, the optimized version achieved the

lowest hamming loss whereas the SMOTE version achieved the highest F1-macro. The

latter finding underscores our earlier contentions regarding F1-macro being a poor metric

for class imbalanced data. Regarding the former finding, we can note that each of the

classifiers used in the BR optimized-component of this application was selected based

upon the accuracy score for its corresponding label individually. Therefore, these BR

classifiers were optimized by minimizing the hamming loss. Regarding the remaining

classifiers in Tables 2 and E.1, we can further observe in this case that the results for

MLkNN10 are remarkably worse than all other models.

We can thus conclude that multi-label approaches that give careful consideration to

9See the ml3 library (Probst et al. 2017) for multi-label methods in R.
10Recall that MLkNN, like our BR approaches, does not consider label relations.
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Algorithm Subset Accuracy Hamming Loss Ranking Loss F1-micro F1-macro
Classifier Chain (CC) ✓
Ensemble CC (ECC) ✓ ✓ ✓ ✓ ✓
RAkELd, k = q/4
RAkELd, k = q/2
Label Powerset ✓
Binary Relevance (BR) ✓ ✓
BR Optimized ✓
BR Optimized SMOTE ✓ ✓
BR Optimized Thresholds ✓ ✓ ✓
MLkNN

Table 2: Results for 10 different data splits. The top three performers for each metric
are highlighted. Full details appear in Table E.1 of the Appendix.

the relationships between one’s labels tend to outperform less label-aware approaches

that are more common in the political science literature. To this end, our CC approaches

tended to exhibit higher subset accuracy than BR and comparable results for other met-

rics. This finding, and those outlined above, suggest that multi-label classification allows

researchers to achieve superior labels within multi-label classification tasks, even in con-

texts where the correlation between these multiple labels is relatively low. This provides

strong support for the multi-label approach in a real-world text-as-data context. Our next

application offers researchers further guidance on when, specifically, multi-label methods

are likely to be more or less effective.

4.2 Country-Year Human Rights Practices
Our second application allows us to evaluate the benefits of using multi-label al-

gorithms in the context of a separate political science text-as-data domain. For this

application, we specifically compare the best performing multi-label algorithm from our

first application (ECC) to BR using a set of extant human rights texts and labels. Our

human rights data include a combination of (i) country-year textual reports on human

rights practices and (ii) overlapping labels of states’ annual human rights practices, as

human-labeled from these same texts by the CIRI data project (Cingranelli and Richards

2010). As noted in the introduction, automating the measurement of human rights abuses

from the human rights texts is an area of growing interest in political science (Fariss et

al. 2015; Greene et al. 2019; Murdie et al. 2020; Park et al. 2020a, 2020b). Our applica-
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tion of multi-label methods to these data thus stands to advance the state of the art for

these automated endeavors.

The text-as-data component to this application is a corpus of US State Department

Country Reports on Human Rights Practices for the years 1981 to 2011.11 Each docu-

ment corresponds to the State Department’s assessment of a particular country’s annual

domestic human rights practices during the previous calendar year. We match these re-

ports to 14 indicators, from the CIRI project, of specific types of human rights violations

and practices at the country-year level. These indicators were human-coded by the CIRI

project from the US State Department texts outlined above, and encompass categories of

human rights abuse that range from targeted killings and torture to violations of women’s

political rights and freedom of speech. To simplify interpretation, we (i) dichotomize each

(originally ordinal) CIRI variable and (ii) then reverse-code each dichotomized variable

such that higher values imply worse (as opposed to better) human rights performance.

We provide further details on these CIRI variables in the Appendix F.

In total, there are 4,756 reports, each with 14 binary indicators for (country-year)

violations of different human rights wherein a 0 denotes “no violations” of a given violation

type and 1 denotes a human rights violation of a certain type. As noted above—and unlike

our first application—these labels were directly drawn from an existing human-coded

country-year dataset (i.e., CIRI), rather than from human-labeling of our own. These

human rights labels are furthermore much more highly correlated than the previous ATI

Requests application. On average, the correlation between each current label is 0.33,

with a maximum value of 0.60 and a minimum 0.06.

With respect to the text features considered, we begin with the full document term

matrix (DTM) of raw term counts from our human rights reports of interest. This DTM

format is consistent with formats used by past text-as-data research into these same

State Department human rights reports (Fariss et al. 2015), and in our case follows the

preprocessing steps applied by Bagozzi and Berliner (2018) to a similar corpus of human

rights reports. After implementing these preprocessing steps, our final DTM contains

11While these reports are available for later years, CIRI is only available through 2011.
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2,445 unique stemmed unigrams as features.

In addition to these DTM-features, the ECC algorithm also allows us to incorporate

the label correlation information between our CIRI human rights violation target mea-

sures within our multi-label classification tasks. We anticipate that the latter information

will be highly relevant, given that—as mentioned in Section 2 above—many of the specific

CIRI violations considered here (e.g., disappearances, killings, and torture) are likely to

arise (and be correlated with one another) under a common strategy of state repression.

We are hence interested in quantifying the added improvement that is gained by account-

ing for these interdependencies. Within these evaluations, this second application also

(uniquely) varies the set of retained features that we use in classification, so as to assess

whether our findings with respect to the ECC’s added improvements vary in relation to

the number of features that a given researcher has available for use in classification.

We thus evaluated the performance of ECC and binary relevance (BR) with respect

to the classification of our 14 binary human rights violation categories when including dif-

ferent subsets of DTM features, which are chosen at random. We posit that if a classifier

has enough information from its original features to adequately classify all target labels,

there is probably very little to gain in leveraging the relationships between target labels

during classification.12 On the other hand, if there are insufficient features to properly

classify all target labels, the additional information available to the researcher via any

empirical correlations between each multi-label label will likely improve prediction signif-

icantly. This suggests that our multi-label approach will improve in relative performance

over BR as the number of available features for classification declines.

We utilize our human rights data within a series of experiments to evaluate the above

contentions. These experiments corresponded to our evaluation of ECC and BR model

performance across 10 different data splits (80% for training, 20% for testing) for each

feature level considered. The number of features ranged from all features available to as

low as 20% of the total number of features drawn at random. In evaluating the ECC and

BR approaches, we consider three base classifiers in each case: support vector machine

12In fact, doing so could even potentially reduce classification performance.
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(SVM) with linear kernel, random forest, and logistic regression.

The results from these experiments are presented in Figure 2, considering five of the

model performance criteria outlined above: subset accuracy, hamming loss, F1-macro, F1-

micro and ranking loss. For all results plotted in Figure 2, BR and ECC base classifiers

were chosen according to best overall performance. The best base classifier for BR was

a SVM with linear kernel, whereas for the ECC the best performing base classifier was a

random forest. Our conclusions are comparable when we standardize the base classifier

across BR and ECC.

Examining the performance criteria in Figure 2, we can first observe that ECC rou-

tinely outperforms BR no matter the model performance metric or percentage of retained

features considered. As above, this result provides strong support for the use of ECC

(and hence multi-label methods) in contexts where a researcher is faced with multi-label

data. Further, when only a small percentage of features are available (20%), the gap in

performance between ECC and BR is the widest. For instance, this gap is 11.09% for

subset accuracy with 20% of features available. This implies that the desirability of ECC

over the more commonly used BR is especially pronounced when researchers are faced

with a multi-label problem but have a limited number of features for prediction. As the

number of available features increases, we find that the difference in performance between

ECC and BR becomes less and less notable.

Hence, when features are abundant, the benefits of ECC become less salient, suggest-

ing that researchers whose prediction tasks already include an exceptionally large number

of (relevant) features may find BR to be sufficient. By contrast, researchers faced with a

more limited set of features—in terms of total number, relevance, or related traits (e.g.,

sparsity)—are likely to especially benefit from using ECC or other multi-label methods.

These trade-offs notwithstanding, as both applications suggest, multi-label methods typ-

ically exhibit advantages over BR approaches even in cases where one’s feature set is

relatively large and even when one’s multi-label targets exhibit a relatively low level of

correlation.
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Figure 2: Performance of Binary Relevance (BR) and Ensemble Classifier Chain (ECC)
for the proposed metrics. Shaded regions denote the standard deviation of the bootstrap
splits. For the metrics reported in the left-hand panels, higher values imply better per-
formance. For the metrics reported in the right-hand panels, lower values imply better
performance.

4.3 Monte Carlo Simulations
The applications presented above assess the performance of a wide range of multi-

label classifiers in two distinct empirical settings and across different levels of available

features. However, these applications do not provide insight into the relative performance

of these approaches under differing (i) scenarios of available training data and (ii) end-

use cases for one’s classified labels. Accordingly, our Appendix further compares our best

performing multi-label approach (ECC) to BR across a series of Monte Carlo simulations.

We find that ECC outperforms BR for every classification metric considered—and

especially for subset accuracy and hamming loss. Across three auxiliary regression set-

ups, we then confirm in this context that ECC’s superior classification performance also

ensures that the parameter estimates obtained when subsequently using ECC’s classified

labels as regressors and/or regressands are superior in accuracy and coverage to those

recovered by BR—and increasingly so as one’s available training (test) data decrease
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(increase).

5 Conclusion
Supervised machine learning is now a commonly used means for coding measures

from political and social texts. While such tools are typically applied independently to a

single human-labeled variable of interest at a time, many political science projects now

seek to code multiple, distinct human-labeled target variables from a single set of texts.

We demonstrate that substantial gains can be made by recognizing this data structure,

and by using multi-label prediction to leverage each target variable’s predictions when

predicting subsequent target variables. Given current trends in political text classification

(Barberá et al. 2020; Chang and Masterson 2020; Miller et al. 2020)—and related trends

in automated image and audio analyses (Dietrich et al. 2019; Williams et al. 2020; Torres

and Cantú 2020)—the need for multi-label methods is only likely to grow in the future.

This paper has accordingly sought to introduce political scientists to multi-label pre-

diction, and to highlight where and how it may benefit their own research. Our applica-

tions and simulations demonstrate that multi-label classification increasingly outperforms

standard classification approaches (i) as the correlation across one’s target variables in-

creases and/or (ii) when one’s share of training (test) data declines (increases). We also

offer further insight into precisely when multi-label methods offer significant advantages

in our second application’s determination that the relative strengths of multi-label classi-

fication will decidedly increase as the number of available features declines. To facilitate

these insights, we likewise provide a comprehensive overview of the requisite performance

criteria for evaluations of multi-label predictions. Together, these insights will help to

ensure that future multi-label classifications of political texts are as accurate as possible.
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