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ABSTRACT

Off-policy evaluation learns a target policy’s value with a historical dataset generated by a different
behavior policy. In addition to a point estimate, many applications would benefit significantly from
having a confidence interval (CI) that quantifies the uncertainty of the point estimate. In this paper, we
propose a novel deeply-debiasing procedure to construct an efficient, robust, and flexible CI on a target
policy’s value. Our method is justified by theoretical results and numerical experiments. A Python
implementation of the proposed procedure is available at https://github.com/RunzheStat/
D2OPE.

1 Introduction

Reinforcement learning (RL, Sutton & Barto, 2018) is a general technique in sequential decision making that learns
an optimal policy to maximize the average cumulative reward. Prior to adopting any policy in practice, it is crucial to
know the impact of implementing such a policy. In many real domains such as healthcare (Murphy et al., 2001; Luedtke
& van der Laan, 2017; Shi et al., 2020a), robotics (Andrychowicz et al., 2020) and autonomous driving (Sallab et al.,
2017), it is costly, risky, unethical, or even infeasible to evaluate a policy’s impact by directly running this policy. This
motivates us to study the off-policy evaluation (OPE) problem that learns a target policy’s value with pre-collected data
generated by a different behavior policy.

In many applications (e.g., mobile health studies), the number of observations is limited. Take the OhioT1DM dataset
(Marling & Bunescu, 2018) as an example, only a few thousands observations are available (Shi et al., 2020b). In these
cases, in addition to a point estimate on a target policy’s value, it is crucial to construct a confidence interval (CI) that
quantifies the uncertainty of the value estimates.

This paper is concerned with the following question: is it possible to develop a robust and efficient off-policy value
estimator, and provide rigorous uncertainty quantification under practically feasible conditions? We will give an
affirmative answer to this question.

Overview of the OPE Literature. There is a growing literature for OPE. Existing works can be casted into as direct
method (see e.g., Le et al., 2019; Shi et al., 2020c; Feng et al., 2020), importance sampling-based method (IS, Precup,
2000; Thomas et al., 2015b; Hanna et al., 2016; Liu et al., 2018; Nachum et al., 2019; Dai et al., 2020) and doubly
robust method (Jiang & Li, 2016; Thomas & Brunskill, 2016; Farajtabar et al., 2018; Tang et al., 2019; Uehara et al.,
2019; Kallus & Uehara, 2020; Jiang & Huang, 2020). Direct method derives the value estimates by learning the system
transition matrix or the Q-function under the target policy. IS estimates the value by re-weighting the observed rewards
with the density ratio of the target and behavior policies. Both direct method and IS have their own merits. In general,
IS-type estimators might suffer from a large variance due to the use of the density ratio, whereas direct method might
suffer from a large bias due to the potential misspecification of the model. Doubly robust methods combine both for
more robust and efficient value evaluation.
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Despite the popularity of developing a point estimate of a target policy’s value, less attention has been paid to
constructing its CI, which is the focus of this paper. Among those available, Thomas et al. (2015b) and Hanna et al.
(2016) derived the CI by using bootstrap or concentration inequality applied to the stepwise IS estimator. These
methods suffer from the curse of horizon (Liu et al., 2018), leading to very large CIs. Feng et al. (2020) applied the
Hoeffding’s inequality to derive the CI based on a kernel-based Q-function estimator. Similar to the direct method,
their estimator might suffer from a large bias. Dai et al. (2020) reformulated the OPE problem using the generalized
estimating equation approach and applied the empirical likelihood approach (see e.g., Owen, 2001) to CI estimation.
They derived the CI by assuming the data transactions are i.i.d. However, observations in reinforcement learning are
typically time-dependent. Directly applying the empirical likelihood method to weakly dependent data would fail
without further adjustment (Kitamura et al., 1997; Duchi et al., 2016). The resulting CI might not be valid. We discuss
this in detail in Appendix C.

Recently, Kallus & Uehara (2019) made an important step forward for OPE, by developing a double reinforcement
learning (DRL) estimator that achieves the semiparametric efficiency bound (see e.g., Tsiatis, 2007). Their method
learns a Q-function and a marginalized density ratio and requires either one of the two estimators to be consistent.
When both estimators converge at certain rates, DRL is asymptotically normal, based on which a Wald-type CI can be
derived. However, these convergence rates might not be achievable in complicated RL tasks with high-dimensional
state variables, resulting in an asymptotically biased value estimator and an invalid CI. See Section 2.2 for details.

Finally, we remark that our work is also related to a line of research on statistical inference in bandits (Van Der Laan
& Lendle, 2014; Deshpande et al., 2018; Zhang et al., 2020; Hadad et al., 2021). However, these methods are not
applicable to our setting.

Advances of the Proposed Method. Our proposal is built upon the DRL estimator to achieve sample efficiency. To
derive a valid CI under weaker and practically more feasible conditions than DRL, we propose to learn a conditional
density ratio estimator and develop a deeply-debiasing process that iteratively reduces the biases of the Q-function and
value estimator. Debiasing brings additional robustness and flexibility. In a contextual bandit setting, our proposal
shares similar spirits to the minimax optimal estimating procedure that uses higher order influence functions for learning
the average treatment effects (see e.g., Robins et al., 2008, 2017; Mukherjee et al., 2017; Mackey et al., 2018). As such,
the proposed method is:

• robust as the proposed value estimator is more robust than DRL and can converge to the true value in cases
where neither the Q-function nor the marginalized density ratio estimator is consistent. More specifically, it is
“triply-robust" and requires the Q-function, marginalized density ratio, or conditional density ratio estimator to
be consistent. See Theorem 1 for a formal statement.

• efficient as we can show it achieves the semiparametric efficiency bound as DRL. This in turn implies that the
proposed CI is tight. See Theorem 2 for details.

• flexible as it requires much weaker and practically more feasible conditions to achieve nominal coverage.
Specifically, our procedure allows the Q-estimator and marginalized density ratio to converge at an arbitrary
rate. See Theorem 3 for details.

2 Preliminaries

We first formulate the OPE problem. We next review the DRL method, as it is closely related to our proposal.

2.1 Off-Policy Evaluation

We assume the data in OPE follows a Markov Decision Process (MDP, Puterman, 2014) model defined by a tuple
(S,A, p, r, γ), where S is the state space, A is the action space, p : S2 ×A → [0, 1] is the Markov transition matrix
that characterizes the system transitions, r : S ×A → R is the reward function, and γ ∈ (0, 1) is a discounted factor
that balances the immediate and future rewards. To simplify the presentation, we assume the state space is discrete.
Meanwhile, the proposed method is equally applicable to continuous state space as well.

Let {(St, At, Rt)}t≥0 denote a trajectory generated from the MDP model where (St, At, Rt) denotes the state-action-
reward triplet at time t. Throughout this paper, we assume the following Markov assumption (MA) and the conditional
mean independence assumption (CMIA) hold:

P(St+1 = s|{Sj , Aj , Rj}0≤j≤t) = p(s;At, St), (MA),

E(Rt|St, At, {Sj , Aj , Rj}0≤j<t) = r(At, St), (CMIA).
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These two assumptions guarantee the existence of an optimal stationary policy (see e.g., Puterman, 2014). Following a
given stationary policy π, the agent will select action a with probability π(a|s) at each decision time. The corresponding
state value function and state-action value function (better known as the Q-function) are given as follows:

V π(s) =

+∞∑
t=0

γtEπ(Rt|S0 = s),

Qπ(a, s) =

+∞∑
t=0

γtEπ(Rt|A0 = a, S0 = s),

where the expectation Eπ is defined by assuming the system follows the policy π.

The observed data consists of n i.i.d. trajectories, and can be summarized as {(Si,t, Ai,t, Ri,t, Si,t+1)}0≤t<Ti,1≤i≤n
where Ti denotes the termination time of the ith trajectory. Without loss of generality, we assume T1 = · · · = Tn = T
and the immediate rewards are uniformly bounded. We consider evaluating the value of a given target policy π with
respect to a given reference distribution G, defined as

ηπ = Es∼GV π(s).

In applications such as video games where a large number of trajectories are available, one may set G to the initial
state distribution and approximate it by the empirical distribution of {Si,0}1≤i≤n. In applications such as mobile
health studies, the number of trajectories is limited. For instance, the OhioT1DM dataset contains data for six patients
(trajectories) only. In these cases, G shall be manually specified. In this paper, we primarily focus on the latter case
with a prespecified G. Meanwhile, the proposed method is equally applicable to the former case as well.

2.2 Double Reinforcement Learning

We review the DRL estimator in this section. We first define the marginalized density ratio under the target policy π as

ωπ(a, s) =
(1− γ)

∑+∞
t=0 γ

tpπt (a, s)

p∞(a, s)
, (1)

where pπt (a, s) denotes the probability of (At, St) = (a, s) following policy π with S0 ∼ G, and p∞ denotes the
limiting distribution of the stochastic process {(At, St)}t≥0. Such a marginalized density ratio plays a critical role in
breaking the curse of horizon.

Let Q̂ and ω̂ be some estimates for Qπ and ωπ, respectively. Kallus & Uehara (2019) proposed to construct the
following estimating function for every i and t:

ψi,t ≡
1

1− γ
ω̂(Ai,t, Si,t){Ri,t − Q̂(Ai,t, Si,t) + γEa∼π(·|Si,t+1)Q̂(a, Si,t+1)}+ Es∼G,a∼π(·|s)Q̂(a, s). (2)

The resulting value estimator is given by

η̂DRL =
1

nT

n∑
i=1

T−1∑
t=0

ψi,t.

One can show that η̂DRL is consistent when either Q̂ or ω̂ is consistent. This is referred to as the doubly-robustness
property. In addition, when both Q̂ and ω̂ converge at a rate faster than (nT )−1/4,

√
nT (η̂DRL − ηπ) converges weakly

to a normal distribution with mean zero and variance
1

(1− γ)2
E [ωπ(A,S){R+ γV π(S′)−Qπ(A,S)}]2 , (3)

where the tuple (S,A,R, S′) follows the limiting distribution of the process {(St, At, Rt, St+1)}t≥0. See Theorem 11
of Kallus & Uehara (2019) for a formal proof. A consistent estimator for (3) can be derived based on the observed data.
A Wald-type CI for ηπ can thus be constructed.

Moreover, it follows from Theorem 5 of Kallus & Uehara (2019) that (3) is the semiparametric efficiency bound for
infinite-horizon OPE. Informally speaking, a semiparametric efficiency bound can be viewed as the nonparametric
extension of the Cramer–Rao lower bound in parametric models Bickel et al. (1993). It provides a lower bound of the
asymptotic variance among all regular estimators Van der Vaart (2000). Many other OPE methods such as Liu et al.
(2018), are statistically inefficient in that the variance of their value estimator is strictly larger than this bound. As such,
CIs based on these methods are not tight.
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Figure 1: Empirical coverage probabilities for CIs based on DRL and the proposed triply-robust (TR) estimator,
aggregated over 200 replications in the toy example. The nominal level is 90% and γ = 0.95. From left to right,
we inject noises to the true Q-function and marginalized density ratio with standard errors proportional to (nT )−1/2,
(nT )−1/4, and (nT )−1/6, respectively. We vary the number of trajectories n and fix T = 50.

2.3 Limitations of DRL

We end this section by discussing the limitations of DRL. As we commented in Section 2.2, the validity of the Wald-type
CI based on DRL requires both nuisance function estimators to converge at a rate faster than (nT )−1/4. When this
assumption is violated, the resulting CI cannot achieve nominal coverage.

To elaborate this, we design a toy example with three states (denote by A, B and C) arranged on a circle. The agent
can move either clockwise or counter-clockwise. The reward is 1 if the agent reaches state A and 0 otherwise. We set
the behaviour policy to a random policy. The target policy is very close to the optimal one. We inject some random
errors to the true Q-function and marginalized density ratio to construct the CI based on DRL. It can be seen from
Figure 1 that DRL is valid when the nuisance estimators are (nT )−1/2-consistent but fails when they are (nT )−1/4- or
(nT )−1/6-consistent. See Appendix B for details.

We remark that the convergence rate assumption required by DRL is likely to be violated in complicated RL tasks
with high-dimensional state variables. Take the Q-function estimator as an example. Suppose the true Q-function
is Hölder smooth with exponent β and Q̂ is computed via the deep Q-network (Mnih et al., 2015) algorithm. Then
similar to Theorem 4.4 of Fan et al. (2020), we can show that Q̂ converges at a rate of (nT )−β/(2β+d) where d denotes
the dimension of the state. When d ≥ 2β, it is immediate to see that the assumption on Q̂ is violated. Learning the
marginalized density ratio is even more challenging than learning the Q-function. We expect that the convergence rate
assumption on ω̂ would be violated as well.

This motivates us to derive a valid CI under weaker and practically more feasible conditions. Our proposal requires
to specify a hyper-parameter that determines the order of our value estimator. The larger this parameter, the weaker
assumption our method requires. As an illustration, it can be seen from Figure 1 that our CI (denote by TR) achieves
nominal coverage when the nuisance estimators are (nT )−1/4- or even (nT )−1/6-consistent.

3 Deeply-Debiased OPE

3.1 An Overview of Our Proposal

We first present an overview of our algorithm. Our procedure is composed of the following four steps, including data
splitting, estimation of nuisance functions, debias iteration and construction of the CI.

Step 1. Data Splitting. We randomly divide the indices of all trajectories {1, · · · , n} into K ≥ 2 disjoint subsets.
Denote the kth subset by Ik and let Ick = {1, · · · , n} − Ik. Data splitting allows us to use one part of data (Ick) to train
RL models and the remaining part (Ik) to do the estimation of the main parameter, i.e., ηπ. We could aggregate the
resulting estimates over different k to get full efficiency. This allows us to establish the limiting distribution of the value
estimator under minimal conditions. Data splitting has been commonly used in statistics and machine learning (see e.g.,
Chernozhukov et al., 2017; Kallus & Uehara, 2019; Shi & Li, 2021).

Step 2. Estimation of Nuisance Functions. This step is to estimate three nuisance functions, including the Q-function
Qπ, the marginalized density ratio ωπ, and a conditional density ratio τπ. Several algorithms in the literature can be
applied to learn Qπ and ωπ , e.g., Le et al. (2019); Liu et al. (2018); Kallus & Uehara (2019); Uehara et al. (2019). The
conditional density ratio can be learned from the observed data in a similar fashion as ωπ. See Section 3.3 for more
details. We use Q̂k, ω̂k and τ̂k to denote the corresponding estimators, computed based on each data subset in Ick.
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Step 3. Debias Iteration. This step is the key to our proposal. It recursively reduces the biases of the initial Q-estimator,
allowing us to derive a valid CI for the target value under weaker and more practically feasible conditions on the
estimated nuisance functions. Specifically, our CI allows the nuisance function estimator to converge at arbitrary rates.
See Section 3.2 for details.

Step 4. Construction of the CI. Based on the debiased Q-estimator obtained in Step 3, we construct our value estimate
and obtain a consistent estimator for its variance. A Wald-type CI can thus be derived. See Section 3.4 for details.

In the following, we detail some major steps. We first introduce the debias iteration, as it contains the main idea of our
proposal. We next detail Step 2 and Step 4.

3.2 Debias Iteration

3.2.1 The intuition for debias

To motivate the proposed debias iteration, let us take a deeper look at DRL. Note that the second term on the right-
hand-side of (2) is a plug-in estimator of the value based on the initial Q-estimator. The first term corresponds to
an augmentation term. The purpose of adding this term is to offer additional protection against potential model
misspecification of the Q-function. The resulting estimator’s consistency relies on either Qπ or ωπ to be correctly
specified. As such, (2) can be understood as a de-biased version of the plug-in value estimator Es∼G,a∼π(·|s)Q̂(a, s).

Similarly, we can debias the initial Q-estimator Q̂(a0, s0) for any (a0, s0). Toward that end, we introduce the conditional
density ratio. Specifically, by setting G(•) to a Dirac measure I(• = s0) and further conditioning on an initial action
a0, the marginalized density ratio in (1) becomes a conditional density ratio τπ(a, s, a0, s0), defined as

(1− γ){I(a = a0, s = s0) +
∑+∞
t=1 γ

tpπt (a, s|a0, s0)}
p∞(a, s)

,

where pπt (a, s|a0, s0) denotes the probability of (At, St) = (a, s) following policy π conditional on the event that
{A0 = a0, S0 = s0}, and I(·) denotes the indicator function. By definition, the numerator corresponds to the
discounted conditional visitation probability following π given that the initial state-action pair equals (s0, a0). In
addition, one can show that ωπ(a, s) = Es0∼G,a0∼π(·|s0)τ

π(a, s, a0, s0).

By replacing ω̂k in (2) with some estimated conditional density ratio τ̂k, we obtain the following estimation function

D(i,t)
k Q(a, s) = Q(a, s) +

1

1− γ
τ̂k(Ai,t, Si,t, a, s){Ri,t + γEa′∼π(·|Si,t+1)Q(a′, Si,t+1)−Q(Ai,t, Si,t)}, (4)

for any Q. Here, we refer D(i,t)
k as the individual debiasing operator, since it debiases any Q based on an individual

data tuple (Si,t, Ai,t, Ri,t, Si,t+1).

Similar to (2), the augmentation term in (4) is to offer protection against potential model misspecification of the
Q-function. As such, D(i,t)

k Q(a, s) is unbiased to Qπ(a, s) whenever Q = Qπ or τ̂k = τπ .

3.2.2 The two-step debias iteration

Based on the above discussions, a debiased version of the Q-estimator is given by averaging D(i,t)
k Q̂k over the data

tuples in Ik, i.e.,

Q̂
(2)
k =

1

|Ik|T
∑
i∈Ik

∑
0≤t<T

D(i,t)
k Q̂k.

The bias of this estimator will decay at a faster rate than the initial Q-estimator Q̂k, as shown in the following lemma.

Lemma 1 For any k, suppose Q̂k and τ̂k converge in L2-norm to Qπ and τπ at a rate of (nT )−α1 and (nT )−α2 ,
respectively. With weakly dependent data (see Condition (A1) in Section 4 in detail), we have

E(a,s)∼p∞ |EQ̂
(2)
k (a, s)−Q(a, s)| = O{(nT )−(α1+α2)}.

To save space, we defer the detailed definition of L2-norm convergence rate in Appendix .2. Suppose the square bias
and variance of Q̂k are of the same order. Then we can show that the aggregated bias E(a,s)∼p∞ |EQ̂k(a, s)−Q(a, s)|
decays at a rate of (nT )−α1 . Consequently, Lemma 1 implies that the bias of Q̂(2)

k decays faster than Q̂k.
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Figure 2: Root mean squared error (RMSE) of the proposed estimators in the toy example, computed over 200
replications. From left to right, we inject non-degenerate noises into Qπ and ωπ, Qπ and τπ, ωπ and τπ, respectively.
It can be seen that the RMSE decays as the sample size increases, when one of the three models is correctly specified.

To illustrate the usefulness of the debiased Q-estimator Q̂(2)
k , we propose to construct an estimating function ψ(2)

i,t for

any (i, t) ∈ Ik by replacing Q̂ in (2) with Q̂(2)
k . This yields our second-order estimator

η̂
(2)
TR = (nT )−1

∑
i,t

ψ
(2)
i,t .

As we will show in Theorem 1, the proposed estimator η̂(2)
TR converges to the true value when one model for Qπ , ωπ or

τπ is correctly specified. As such, it is triply-robust. See Figure 2 as an illustration. In addition, similar to Lemma 1,
the bias of η̂(2)

TR decays at a faster rate than the DRL estimator. Specifically, we have the following results.

Lemma 2 Suppose the conditions in Lemma 1 hold and ω̂k converges in L2-norm to ωk at a rate of (NT )−α3 for any
k. Let α = min(1, α1 + α2 + α3). Then

|Eη̂(2)
TR − ηπ| = O{(nT )−α}.

In contrast, the bias of the DRL estimator decays at a rate of (nT )−α1−α3 . To ensure the resulting CI achieves valid
coverage, we require the bias to decay at a rate faster than its variance which is typically of the order O{(nT )−1/2}.
As such, DRL requires min(α1, α3) > 1/4 whereas our second-order triply robust estimator relaxes this condition by
requiring min(α1, α2, α3) > 1/6, as shown in Figure 1.

3.2.3 The m-step debias iteration

To further relax the convergence rate requirement, we can iteratively debias the Q-estimator to construct higher-order
value estimates. Specifically, for any order m ≥ 2, we iteratively apply the debiasing operator to the initial Q-estimator
m− 1 times and average over all individual tuples, leading to the following estimator,

Q̂
(m)
k =

(
|Ik|T

(m− 1)

)−1∑
D(i1,t1)
k · · · D(im−1,tm−1)

k Q̂k.

Here, the sum is taken over all possible combinations of disjoint tuples (i1, t1), (i2, t2), · · · , (im−1, tm−1) in the set
{(i, t) : i ∈ Ik, 0 ≤ t < T}. Note that the definition involves repeated compositions of debiasing operator. For m = 3,
we present the detailed form in the appendix. In general, Q̂(m)

k (a, s) corresponds to an order (m − 1) U-statistic
(see e.g., Lee, 2019) for any (a, s). The resulting value estimator η̂(m)

TR is given by (nT )−1
∑
i,t ψ

(m)
i,t where for any

(i, t) ∈ Ik, the estimating function ψ(m)
i,t is obtained by replacing Q̂ in (2) with Q̂(m)

k .

We make a few remarks. First, when m = 1, Q̂(m)
k corresponds to the initial Q-estimator. As such, the proposed

estimator reduces to the DRL estimator. When m = 2, the definition here is consistent to the second-order triply-robust
estimator.

Second, for large m, calculating Q̂(m)
k is computationally intensive. In practice, we may approximate it using the

incomplete U-statistics Lee (2019); Chen et al. (2019) to facilitate the computation. For instance, to calculate Q̂(3)
−k(a, s),

we could approximate it by averaging D̂(i1,t1)
k D̂(i2,t2)

k Q̂k(a, s) over M pairs sampled from the set {(i1, t1, i2, t2) :
i1, i2 ∈ Ik, (i1, t1) 6= (i2, t2)}. We require M to diverge with nT such that the approximation error is asymptotically
negligible. The computational complexity of our whole algorithm is analyzed in Appendix B.4 in the supplement.

Third, the bias of the Q-estimator and that of the resulting value decrease as the order m increases. Specifically, we
have the following results.

6



Deeply-Debiased Off-Policy Interval Estimation

Lemma 3 Suppose the conditions in Lemma 2 hold. Let α∗ = α1 +(m−1)α2 and α = min(1, α1 +(m−1)α2 +α3).
Then E(a,s)∼p∞ |EQ̂

(m)
k (a, s)−Q(a, s)| = O{(nT )−(α∗)} and |Eη̂(m)

TR − ηπ| = O{(NT )−α}.

To ensure α < 1/2, it suffices to require α1 + (m− 1)α2 +α3 > 1/2. As long as α1, α2, α3 > 0, there exists some m
that satisfies this condition. As such, the resulting bias decays faster than (nT )−1/2. This yields the flexibility of our
estimator as it allows the nuisance function estimator to converge at an arbitrary rate. When m = 2, Lemmas 1 and 2
are directly implied by Lemma 3.

3.3 Learning the Nuisance Functions

This step is to estimate the nuisance functions used in our algorithm, including Qπ, ωπ, and τπ, based on each data
subset Ick, for k = 1, · · · ,K.

The Q-function. There are multiple learning methods available to produce an initial estimator for Qπ. We employ
the fitted Q-evaluation method (Le et al., 2019) in our implementation. Based on the Bellman equation for Qπ (see
Equation (4.6), Sutton & Barto, 2018), it iteratively solves the following optimization problem,

Q̂` = arg min
Q

∑
i∈Ick

∑
t<T

{γEa′∼π(·|Si,t+1)Q̂
`−1(a′, Si,t+1) +Ri,t −Q(Ai,t, Si,t)}2,

for ` = 1, 2, · · · , until convergence.

We remark that the above optimization problem can be conveniently solved via supervised learning algorithms. In our
experiments, we use random forest (Breiman, 2001) to estimate Qπ .

The Marginalized Density Ratio. We next discuss the method for learning ωπ. In our implementation, we employ
the method of Uehara et al. (2019). The following observation forms the basis of the method: when the process
{(St, At)}t≥0 is stationary, ωπ satisfies the equation EL(ωπ, f) = 0 for any function f , where L(ωπ, f) equals[

Ea∼π(·|St+1){ωπ(At, St)(γf(a, St+1)− f(At, St))}+ (1− γ)Es∼G,a∼π(·|s)f(a, s). (5)

As such, ωπ can be learned by solving the following mini-max problem,

arg min
ω∈Ω

sup
f∈F
{EL(ω, f)}2, (6)

for some function classes Ω and F . The expectation in (6) is approximated by the sample mean. To simplify the
calculation, we choose F to be a reproducing kernel Hilbert space (RKHS). This yields a closed form expression
for supf∈F{EL(ω, f)}2. Consequently, ωπ can be learned by solving the outer minimization via stochastic gradient
descent. To save space, we defer the details to Appendix A.2 in the supplementary article.

The Conditional Density Ratio. Finally, we develop a method to learn τπ based on the observed data. Note that τπ
can be viewed as a version of ωπ by conditioning on the initial state-action pair. Similar to (5), we have

E
[
Ea∼π(·|St+1)τ

π(At, St, a0, s0){γg(a, St+1)− g(At, St)}
]

+ (1− γ)g(a0, s0) = 0,

for any g and state-action pair (a0, s0), or equivalently,

E
[
Ea∼π(·|St+1)τ

π(At, St, a0, s0){γf(a, St+1, a0, s0)− f(At, St, a0, s0)}
]

+ (1− γ)f(a0, s0, a0, s0) = 0, (7)

for any function f and (a0, s0). Integrating (a0, s0) on the left-hand-side of (7) with respect to the stationary state-action
distribution p∞, we obtain the following lemma.

Lemma 4 Suppose the process {(At, St)}t≥0 is strictly stationary. For any function f , τπ satisfies the equation
h(τπ, f) = 0 where h(τπ, f) is given by

E
[
(1− γ)f(Ai1,t1 , Si1,t1 , Ai1,t1 , Si1,t1)− τπ(Ai2,t2 , Si2,t2 , Ai1,t1 , Si1,t1)×

{f(Ai2,t2 , Si2,t2 , Ai1,t1 , Si1,t1)− γEa∼π(·|Si2,t2+1)f(Si2,t2+1, a;Si1,t1 , Ai1,t1)}
]
,

for any i1 6= i2 such that (Si1,t1 , Ai1,t1 , Si1,t1+1) and (Si2,t2 , Ai2,t2 , Si2,t2+1) are independent.
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Similar to Lemma 15 of Kallus & Uehara (2019), we can also show that τπ is the only function that satisfies Lemma 4.
Motivated by this lemma, τπ can be learned by solving the following mini-max optimization problem

arg min
τ∈T

sup
f∈F

h2(τ, f), (8)

for some function classes T and F . For any τ and f , we estimate h(τ, f) based on the observed data. Setting F to an
RKHS and T to a class of deep neural networks, the above optimization can be solved in a similar fashion as (6). We
defer the details to Appendix A.3 to save space.

3.4 Construction of the CI

In this step, we construct a CI based on η̂(m)
TR . Specifically, under mild assumptions, the asymptotic variance of

√
nT η̂

(m)
TR

can be consistently estimated by the sampling variance estimator of {ψ(m)
i,t }i,t (denote by {σ̂(m)}2). For a given

significance level α, the corresponding two-sided CI is given by [η̂
(m)
TR −zα/2(nT )−1/2σ̂(m), η̂

(m)
TR +zα/2(nT )−1/2σ̂(m)]

where zα corresponds to the upper αth quantile of a standard normal random variable.

4 Robustness, Efficiency and Flexibility

We first summarize our results. Theorem 1 establishes the triply-robust property of our value estimator η̂(m). Theorem
2 shows the asymptotic variance of η̂(m) achieves the semiparametric efficiency bound (3). As such, our estimator is
sample efficient. Theorem 3 implies that our CI achieves nominal coverage under weaker and much practically feasible
conditions than DRL. All of our theoretical guarantees are derived under the asymptotic framework that requires either
the number of trajectories n or the number of decision points T per trajectory to diverge to infinity. Results of this type
provide useful theoretical guarantees for different types of applications, and are referred as bidirectional theories.

We next introduce some conditions.

(A1) The process {(St, At, Rt)}t≥0 is strictly stationary and exponentially β-mixing (see e.g., Bradley, 2005, for a
detailed explanation of this definition).

(A2) For any k, Q̂k, τ̂k and ω̂k converge in L2-norm to Qπ, τπ and ωπ at a rate of (nT )−α1 , (nT )−α2 and (nT )−α3

for any α1, α2 and α3 > 0, respectively.

(A3) τπ and ωπ are uniformly bounded away from infinity.

Condition (A1) allows the data observations to be weakly dependent. When the behavior policy is not history-
dependent, the process {(St, At, Rt)}t≥0 forms a Markov chain. The exponential β-mixing condition is automatically
satisfied when the Markov chain is geometrically ergodic (see Theorem 3.7 of Bradley, 2005). Geometric ergodicity
is less restrictive than those imposed in the existing reinforcement learning literature that requires observations to be
independent (see e.g., Dai et al., 2020) or to follow a uniform-ergodic Markov chain (see e.g., Bhandari et al., 2018;
Zou et al., 2019). We also remark that the stationarity assumption in (A1) is assumed for convenience, since the Markov
chain will eventually reach stationarity.

Condition (A2) characterizes the theoretical requirements on the nuisance function estimators. This assumption is
mild as we require these estimators to converge at any rate. When using kernels or neural networks for function
approximation, the corresponding convergence rates of Q̂k and ω̂k are provided in Fan et al. (2020); Liao et al. (2020).
The convergence rate for τ̂k can be similarly derived as ω̂k.

Condition (A3) essentially requires that any state-action pair supported by the density function (1− γ)
∑
t≥0 γ

tpπt is
supported by the stationary behavior density function as well. This assumption is similar to the sequential overlap
condition imposed by Kallus & Uehara (2020).

Theorem 1 (Robustness) Suppose (A1) and (A3) hold, and Q̂k, τ̂k, ω̂k are uniformly bounded away from infinity
almost surely. Then for any m, as either n or T diverges to infinity, our value estimator η̂(m)

TR is consistent when Q̂k, τ̂k
or ω̂k converges in L2-norm to Qπ , τπ or ωπ for any k.

Theorem 1 does not rely on Condition (A2). It only requires one of the three nuisance estimators to converge. As such,
it is more robust than existing doubly-robust estimators.
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Figure 3: Results for Cartpole. We fix n = 20 and vary τ in the upper subplots, and fix τ = 0.3 and vary n in the lower
subplots. The subplots from left to right are about the coverage frequency with α = 0.9, the coverage frequency with
α = 0.95, the mean log width of CIs with α = 0.95, the RMSE of value estimates, and the bias of value estimates,
respectively. The yellow line (TR, m = 2) and green line (TR, m = 3) are largely overlapped.

Theorem 2 (Efficiency) Suppose (A1) and (A2) hold, and Q̂k, τ̂k, ω̂k, τπ, ωπ are uniformly bounded away from
infinity almost surely. Then for any m, as either n or T approaches infinity,

√
nT (η̂

(m)
TR − Eη̂(m)

TR )
d→ N(0, σ2) where

σ2 corresponds to the efficiency bound in (3).

We make some remarks. In the proof of Theorem 2, we show that η̂(m)
TR is asymptotically equivalent to an mth order

U-statistic. According to the Hoeffding decomposition (Hoeffding, 1948), we can decompose the U-statistic into the
sum ηπ +

∑m
j=1 η̂j , where ηπ is the main effect term that corresponds to the asymptotic mean of the value estimator,

η̂1 is the first-order term

1

nT (1− γ)

n∑
i=1

T−1∑
t=0

ωπ(Ai,t, Si,t){Ri,t + γEa∼π(·|Si,t+1)Q
π(a, Si,t+1)−Qπ(Ai,t, Si,t)},

and η̂j corresponds to a jth order degenerate U-statistic for any j ≥ 2. See Part 3 of the proof of Theorem 2 for
details. Note that the DRL estimator is asymptotically equivalent to ηπ + η̂1. Under (A1), these η̂js are asymptotically
uncorrelated. As such, the variance of our estimator is asymptotically equivalent to

m∑
j=1

Var(η̂j) =

m∑
j=1

(
nT

j

)−1

σ2
j ,

where σ2
j s are bounded. When j = 1, we have σ2

j = σ2. For j ≥ 2, Var(η̂j) decays at a faster rate than Var(η̂1) =

σ2(nT )−1. As such, the variance of our estimator is asymptotically equivalent to that of DRL.

However, in finite sample, the variance of the proposed estimator is strictly larger than DRL, due to the presence of
high-order variance terms. This is consistent with our experiment results (see Section 5) where we find the proposed CI
is usually slightly wider than that based on DRL. This reflects a bias-variance trade-off. Specifically, our procedure
alleviates the bias of the DRL estimator to obtain valid uncertainty quantification. The resulting estimator would have a
strictly larger variance than DRL in finite samples, although the difference is asymptotically negligible. We also remark
that in interval estimation, the first priority is to ensure the CI has nominal coverage. This requires an estimator’s bias
to decay faster than its variance. The second priority is to shorten the length of CI (the variance of the estimator) if
possible. In that sense, variance is less significant than bias.

Theorem 3 (Flexibility) Suppose the conditions in Theorem 2 hold. Then as long asm satisfies α1+(m−1)α2+α3 >
1/2, the proposed CI achieves nominal coverage.

Theorem 3 implies that our CI allows the nuisance functions to diverge at an arbitrary rate for sufficiently large m.

5 Experiments

In this section, we evaluate the empirical performance of our method using two synthetic datasets: CartPole from the
OpenAI Gym environment Brockman et al. (2016) and a simulation environment (referred to as Diabetes) to simulate
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Figure 4: Results for Diabetes. We fix n = 20 and vary τ in the upper subplots, and fix τ = 1.0 and vary n in the lower
subplots. Same legend as Figure 3. The yellow line (TR, m = 2) and green line (TR, m = 3) are largely overlapped.

the OhioT1DM data (Shi et al., 2020b). In the second environment, the goal is to learn an optimal policy as a function
of patients’ time-varying covariates to improve their health status. In both settings, following Uehara et al. (2019), we
first learn a near-optimal policy as the target policy, and then apply softmax on its Q-function divided by a temperature
parameter τ to set the action probabilities to define a behaviour policy. A larger τ implies a larger difference between
the behaviour policy and the target policy.

We denote the proposed method as TR and present results with m = 2 and 3. The choice of m represents a trade-off. In
theory, m shall be as large as possible to guarantee the validity of our CI. Yet, the computation complexity increases
exponentially in m. In our experiments, we find that setting m = 3 yields satisfactory performance in general.

For point estimation, we compare the bias and RMSE of our method with DRL and the estimator computed via fitted-Q
evaluation (FQE). For interval estimation, we compare the proposed CI with several competing baselines, including
CoinDICE (Dai et al., 2020), stepwise IS-based estimator with bootstrapping Thomas et al. (2015a), stepwise IS-based
estimator with Bernstein inequality Thomas et al. (2015b), and the CI based on DRL. For each method, we report the
empirical coverage probability and the average length of the constructed CI.

We set T = 300 and γ = 0.98 for CartPole, and T = 200 and γ = 0.95 for Diabetes. For both environments, we
vary the number of trajectories n and the temperature τ to design different settings. Results are aggregated over 200
replications. Note that FQE and DR share the same subroutines with TR, and hence the same hyper-parameters are
used. More details about the environments and the implementations can be found in Section B of the supplement.

The results for CartPole and Diabetes are depicted in Figures 3 and 4, respectively. We summarize our findings as
follows. In terms of interval estimation, first, the proposed CI achieves nominal coverage in all cases, whereas the CI
based on DRL fails to cover the true value. This demonstrates that the proposed method is more robust than DRL. In
addition, the average length of our CI is slightly larger than that of DRL in all cases. This reflects the bias-variance
tradeoff we detailed in Section 4. Second, CoinDice yields the narrowest CI. However, its empirical coverage probability
is well below the nominal level in all cases. As we have commented in the introduction, this is due to that their method
requires i.i.d. observations and would fail with weakly dependent data. Please refer to Appendix C for details. Third,
the stepwise IS-based estimators suffer from the curse of horizon. The lengths of the resulting CIs are much larger than
ours. Moreover, the CI based on bootstrapping the stepwise IS-estimator fails to achieve nominal coverage. This is
because the standard bootstrap method is not valid with weakly dependent data.

In terms of point estimation, TR yields smaller bias than DRL in all cases. FQE suffers from the largest bias among the
three methods. The RMSEs of DRL and TR are comparable and generally smaller than that of FQE. This demonstrates
the efficiency of the proposed estimator.

6 Discussion

6.1 Order Selection

In this paper, we develop a deeply-debiased procedure for off-policy interval estimation. Our proposal relies on the
specification of m, the number of the debias iteration. The choice of m represents a trade-off. In theory, m shall be as
large as possible to reduce the bias of the value estimator and guarantee the validity of the resulting CI. Yet, the variance
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of the value estimator and the computation of our procedure increase with m. In the statistics literature, Lepski’s
method is a data-adaptive procedure for identifying optimal tuning parameter where cross-validation is difficult to
implement, as in our setup (see e.g., Su et al., 2020). It can be naturally coupled with the proposed method for order
selection, to balance the bias-variance trade-off. Practical version of Lepski’s method was developed using bootstrap in
Chernozhukov et al. (2014). This idea is worthwhile to explore and we leave it for future research.

6.2 Nonasymptotic Confidence Bound

Non-asymptotic confidence bound is typically obtained by applying concentration inequalities (e.g., Hoeffding’s
inequality or Bernstein inequality Van Der Vaart & Wellner, 1996) to a sum of uncorrelated variables. In our setup, the
proposed estimator is a U-statistic. We could apply concentration inequalities to U-statistics (see e.g., Feng et al., 2020)
to derive the confidence bound. Alternatively, we may apply self-normalized moderate deviation inequalities (Peña
et al., 2008) to derive the non-asymptotic bound. The resulting confidence bound will be wider than the proposed CI.
However, it is valid even with small sample size.

6.3 Hardness of Learning of τπ

Learning τπ could be much challenging than ωπ. In our current numerical experiments, all the state variables are
continuous and it is challenging to obtain the ground truth of the conditional density ratio which involves estimation of a
high-dimensional conditional density. As such, we did not investigate the goodness-of-fit of the proposed estimator for
τπ . It would be practically interesting to explore the optimal neural network structure to approximate τπ and investigate
the finite-sample rate of convergence of our estimator. However, this is beyond the scope of the current paper. We leave
it for future research.

6.4 Extension to Exploration

Finally, we remark that based on the proposed debiased Q-estimator, a two-sided CI can be similarly to quantify its
uncertainty. It allows us to follow the “optimism in the face of uncertainty" principle for online exploration. This is
another topic that warrants future investigation.
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.1 Third-Order Q-Estimator

We detail the form of Q̂(3)
k . According to the definition, we have

Q̂
(3)
k =

1

|Ik|T (|Ik|T − 1)

∑
i1∈Ik,0≤t1<T
i2∈Ik,0≤t2<T
(i1,t1)6=(i2,t2)

D(i1,t1)
k D(i2,t2)

k Q̂k.
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For any state-action pair (a, s), it follows that

Q̂
(3)
k (a, s) =

(1− γ)−1

|Ik|T (|Ik|T − 1)

∑
i1∈Ik,0≤t1<T
i2∈Ik,0≤t2<T
(i1,t1)6=(i2,t2)

τ̂k(Ai1,t1 , Si1,t1 , a, s){Ri1,t1 + γEa′∼π(·|Si1,t1+1)D
(i2,t2)
k Q̂k(a′, Si1,t1+1)

−D(i2,t2)
k Q̂k(Ai1,t1 , Si1,t1)}+

1

|Ik|T
∑

i2∈Ik,0≤t2<T
D(i2,t2)
k Q̂k(a, s).

The right-hand-side is equal to

Q̂k(a, s) +
(1− γ)−1

|Ik|T
∑

i∈Ik,0≤t<T
τ̂k(Ai,t, Si,t, a, s){Ri,t + γEa′∼π(·|Si,t+1)Q̂k(a′, Si,t+1)− Q̂k(Ai,t, Si,t)}

+
(1− γ)−2

|Ik|T (|Ik|T − 1)

∑
i1∈Ik,0≤t1<T
i2∈Ik,0≤t2<T
(i1,t1)6=(i2,t2)

τ̂k(Ai1,t1 , Si1,t1 , a, s){γEa′∼π(·|Si,t+1)τ̂k(Ai2,t2 , Si2,t2 , a
′, Si1,t1+1)

−τ̂k(Ai2,t2 , Si2,t2 , Ai1,t1 , Si1,t1) + (1− γ)τ̂k(Ai2,t2 , Si2,t2 , a, s)}
×{Ri2,t2 + γEa′∼π(·|Si2,t2+1)Q̂k(a′, Si2,t2+1)− Q̂k(Ai2,t2 , Si2,t2)}.

.2 Definition of the L2-norm Convergence

A sequence of variables {Xn}n≥0 is said to converge in L2-norm to X if and only if E|Xn −X|2 → 0 as n→∞.

A Q-estimator Q̂ is said to converge in L2-norm to Qπ at a rate of (nT )−α if√
E(a,s)∼p∞E|Q̂(a, s)−Qπ(a, s)|2 = O{(nT )−α}.

Similarly, a conditional density ratio estimator τ̂ is said to converge in L2-norm to τπ at a rate of (nT )−α if√
E(a,s)∼p∞E(a∗,s∗)∼p∞E|τ̂(a, s, a∗, s∗)− τπ(a, s, a∗, s∗)|2 = O{(nT )−α}.

Finally, a marginalized density ratio estimator ω̂ is said to converge in L2-norm to ωπ at a rate of (nT )−α if√
E(a,s)∼p∞E|ω̂(a, s)− ωπ(a, s)|2 = O{(nT )−α}.

.3 Proof of Lemma 3

To simplify the presentation, in the proof we assume the data consist of independent tuples in Lemma 1. With weakly
dependent data, the aggregated bias will be upper bounded by the same order of magnitude (see the proof of Theorem 1
for details).

We first study the bias of the Q-estimator. We will prove a slightly stronger result, showing that

E(a,s)∼p∞ |EQ̂
(m)
k (a, s)−Qπ(a, s)|2 = O{(nT )−2α1−2(m−1)α2}. (9)

We prove this assertion by induction. Consider the case where m = 2. By the doubly-robustness property, we have
Qπ(a, s) = E[Q̂k(a, s) + τ̂k(Ai,t, Si,t, a, s){Ri,t + Ea′∼π(·|Si,t+1)Q̂k(a′, Si,t+1)− Q̂k(Ai,t, Si,t)}]. It follows that

EQ̂(2)
k (a, s)−Qπ(a, s) = ED(i,t)

k Q̂k(a, s)−Qπ(a, s) = E{τ̂k(Ai,t, Si,t, a, s)− τπ(Ai,t, Si,t, a, s)}
×{Qπ(Ai,t, Si,t)− γEa′∼π(·|Si,t+1)Q

π(a′, Si,t+1) + γEa′∼π(·|Si,t+1)Q̂k(a′, Si,t+1)− Q̂k(Ai,t, Si,t)}.
(10)

By Cauchy-Schwarz inequality, E(a,s)∼p∞ |EQ̂(2)(a, s)−Qπ(a, s)|2 is upper bounded by

E(a,s)∼p∞E|τ̂k(Ai,t, Si,t, a, s)− τπ(Ai,t, Si,t, a, s)|2
{

2E|Q̂k(Ai,t, Si,t)−Qπ(Ai,t, Si,t)|2

+ 2Ea∼π(·|Si,t+1)E|Q̂k(a, Si,t+1)−Qπ(a, Si,t+1)|2
}
.

14
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Under the convergence rate requirement, it is upper bounded by {(nT )−α1−α2}. This proves the assertion with m = 2.

Suppose the assertion holds with m = m0 ≥ 2. We aim to show it holds with m = m0 + 1. Similar to (10), since the
data tuples are i.i.d., we have

EQ̂(m0+1)
k (a, s)−Qπ(a, s) = ED(i,t)

k EQ̂(m0)
k (a, s)−Qπ(a, s) = E{τ̂k(Ai,t, Si,t, a, s)− τπ(Ai,t, Si,t, a, s)}×

[Qπ(Ai,t, Si,t)− γEa′∼π(·|Si,t+1)Q
π(a′, Si,t+1) + γEa′∼π(·|Si,t+1)E{Q̂

(m0)
k (a′, Si,t+1)|Si,t+1} − E{Q̂(m0)

k (Ai,t, Si,t)|Ai,t, Si,t}].

By Cauchy-Schwarz inequality, E(a,s)∼p∞ |EQ̂(m0+1)(a, s)−Qπ(a, s)|2 is upper bounded by

E(a,s)∼p∞E|τ̂k(Ai,t, Si,t, a, s)− τπ(Ai,t, Si,t, a, s)|2
[
2E|E{Q̂(m0)

k (Ai,t, Si,t)|Ai,t, Si,t} −Qπ(Ai,t, Si,t)|2

+ 2Ea∼π(·|Si,t+1)E|E{Q̂
(m0)
k (a, Si,t+1)|Si,t+1} −Qπ(a, Si,t+1)|2

]
.

(11)

The above bound is of the order O{(nT )−2α1+2m0α2}. The assertion is thus proven.

We next consider the bias of the resulting value. Since η(m)
TR is a simple average of {ψ(m)

i,t }i,t, it suffices to provide an

upper bound for ψ(m)
i,t for a given tuple (i, t) ∈ Ik. We decompose Q̂(m)

k into the sum of the following two parts:(
|Ik|T

(m− 1)

)−1 ∑
(il,tl)=(i,t) for some l

D(i1,t1)
k · · · D(im−1,tm−1)

k Q̂k

+

(
|Ik|T

(m− 1)

)−1 ∑
(il,tl)6=(i,t) for any l

D(i1,t1)
k · · · D(im−1,tm−1)

k Q̂k.

Since the functions Q̂k, τ̂k and the immediate rewards are uniformly bounded, the first term is upper bounded by

c(m− 1)

(
|Ik|T

(m− 1)

)−1(|Ik|T − 1

(m− 2)

)
=
c(m− 1)2

|Ik|T
= O(n−1T−1),

where c denotes some positive constant. Similarly, we can show the second term can be well-approximated by

Q̂
(m)
k,i,t = (m− 1)

(
|Ik|T − 1

(m− 2)

)−1 ∑
(il,tl)6=(i,t) for any l

D(i1,t1)
k · · · D(im−1,tm−1)

k Q̂k,

with the approximation error upper bounded by O(n−1T−1).

Since ψ(m)
i,t is a linear function Q̂(m), we have maxi,t |ψ(m)

i,t − φ
(m)
i,t | = O(n−1T−1) where φ(m)

i,t is a version

of ψ(m)
i,t with Q̂(m) replaced with Q̂(m)

i,t . It suffices to show the bias maxi,t |Eφ(m)
i,t − ηπ| converges at a rate of

(nT )−α1−(m−1)α2−α3 . Since the tuples of indices (i, t), (i1, t1), · · · , (im, tm) are different, the corresponding data
observations are independent. This assertion can be proven in a similar manner as (9).

.4 Proof of Theorem 1

For any k, let r1, r2, r3 denote the rate of convergence of Q̂k, τ̂k and ω̂k, respectively. These rates of convergence will
approach zero when the corresponding nuisance estimators are consistent.

In Part 1, we prove a version Lemma 3 holds under the exponential β-mixing condition in (A1) as well. Specifically, the
aggregated bias of the Q-estimator decays at a rate of O(r1r

(m−1)
2 ), and the bias of the corresponding value estimator

decays at a rate of O(r1r
(m−1)
2 r3). When one of the three estimated nuisance functions is consistent, the bias decays to

zero.

In Part 2, we show the variance of the value estimator decays to zero. By Chebyshev’s inequality, this implies that our
value estimator is consistent. The proof is thus completed.

Part 1. To simplify the proof, we assume Ik contains a single element i. The bias is given by(
T

m− 1

)−1 ∑
t1<···<tm−1

(ED(i,t1)
k · · · D(i,tm−1)

k Q̂k −Qπ).
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We next apply Berbee’s coupling lemma (see e.g., Lemma 4.1 in Dedecker & Louhichi, 2002) to bound the bias.
Consider a given ordered tuple (t1, t2, · · · , tm−1). Following the discussion below Lemma 4.1 in (Dedecker &
Louhichi, 2002), we can construct i.i.d. data tuples {(S0

i,tl
, A0

i,tl
, R0

i,tl
, S0
i,tl+1)}1≤l≤m−1 such that the event

(S0
i,tl
, A0

i,tl
, R0

i,tl
, S0
i,tl+1) = (Si,tl , Ai,tl , Ri,tl , Si,tl+1), ∀1 ≤ l ≤ m− 1,

holds with probability at least 1 −
∑m−2
l=1 β(tl+1 − tl − 1) where β(·) denotes the β-mixing coefficients of

{(St, At, Rt)}t≥0. This allows us to decompose each of the individual bias |ED(i,t1)
k · · · D(i,tm−1)

k Q̂m −Qπ| into the
following two terms

|ED(i,t1)
k · · · D(i,tm−1)

k Q̂k −Qπ|I{(S0
i,tl
, A0

i,tl
, R0

i,tl
, S0
i,tl+1) = (Si,tl , Ai,tl , Ri,tl , Si,tl+1), ∀1 ≤ l ≤ m− 1}

+|ED(i,t1)
k · · · D(i,tm−1)

k Q̂k −Qπ|I{(S0
i,tl
, A0

i,tl
, R0

i,tl
, S0
i,tl+1) 6= (Si,tl , Ai,tl , Ri,tl , Si,tl+1), ∃1 ≤ l ≤ m− 1}.

Based on Lemma 3, the first term can be upper bounded by O(T−α1−(m−1)α2). Under the boundedness property, the
second term is upper bounded by c{

∑m−2
l=1 β(tl+1 − tl − 1)} for some constant c > 0. Averaging over all possible

combinations of individual debiasing operators yields the following upper bound

O(T−α∗) + c

(
T

m− 1

)−1 ∑
t1<···<tm−1

m−2∑
l=1

β(tl+1 − tl − 1).

Under (A1), we have β(t) = O(ρt) for some 0 < ρ < 1 and any t ≥ 0. The second term is upper bounded by
O(T−1). This yields the upper bound O(T−α∗) when Ik consists of a single element. In general, we can show the bias
is upper bounded by O{(nT )−α∗}. Using similar arguments, we can show the bias of the value is upper bounded by
O{(nT )−α}. This completes the proof for Part 1.

Part 2. For 1 ≤ k ≤ K, let η̂(m)
TR,k = (nT/K)−1

∑
i∈Ik

∑T−1
t=0 ψ

(m)
i,t . By Cauchy-Schwarz inequality, it suffices to

show the Var(η̂(m)
TR,k)→ 0 for each k. Using similar arguments in the proof of Lemma 3, we can show the difference

(nT/K)−1
∑
i∈Ik

∑T−1
t=0 (ψ

(m)
i,t − φ

(m)
i,t ) is upper bounded by O(n−1T−1). Consequently, it suffices to upper bound

the variance of η̂(m)
TR,k,U = (nT/K)−1

∑
i∈Ik

∑T−1
t=0 φ

(m)
i,t .

A key observation is that, conditional on the estimators Q̂k, τ̂k and ω̂k, η̂(m)
TR,k,U corresponds to an m-th order U-statistic.

Under the given conditions, the kernel function associated with the U-statistic is uniformly bounded. We first consider
the variance of η̂(m)

TR,k,U conditional on the nuisance estimators. To simplify the proof, we similarly assume that Ik
consists of a single trajectory, as in Part 1. By definition, the conditional variance is given by(

m!

T !

)2 ∑
disjoint t1,··· ,tm
disjoint t′1,··· ,t

′
m

cov
(
E(a,s)∼(π,G)D

(i,t1)
k · · · D(i,tm−1)

k Q̂k(a, s) +
1

1− γ
ω̂k(Ai,tm , Si,tm){Ri,m

−γEa∼π(·|Si,m+1)D
(i,1)
k · · · D(i,m−1)

k Q̂k(a, Si,m+1) +D(i,1)
k · · · D(i,m−1)

k Q̂k(Ai,tm , Si,tm)},

E(a,s)∼(π,G)D
(i,t′1)
k · · · D(i,t′m−1)

k Q̂k(a, s) +
1

1− γ
ω̂k(Ai,t′m , Si,t′m){Ri,t′m − γ

×Ea∼π(·|Si,t′m+1)D
(i,1)
k · · · D(i,m−1)

k Q̂k(a, Si,t′m+1) +D(i,t′1)
k · · · D(i,t′m−1)

k Q̂k(Ai,t′m , Si,t′m)}
∣∣∣ Q̂k, τ̂k, ω̂k) ,

where E(a,s)∼(π,G) denotes the expectation by assuming s ∼ G and a ∼ π(·|s). Using similar arguments in Part 1, we
can show that the above conditional variance decays to zero. In addition, E(η̂

(m)
TR,k,U |Q̂k, τ̂k, ω̂k) is to converge to ηπ,

when one of the nuisance estimator is consistent. Under the given conditions, η̂(m)
TR,k,U is bounded. This further yields

that Var{E(η̂
(m)
TR,k,U |Q̂k, τ̂k, ω̂k)} → 0. Together with the fact that the conditional variance of η̂(m)

TR,k,U decays to zero,

the variance of η̂(m)
TR,k,U decays to zero. The proof is thus completed.

.5 Proof of Theorem 2

In the proof of Theorem 1, we have shown that η̂(m)
TR,k− η̂

(m)
TR,k,U = O(n−1T−1). This in turn implies that η̂(m)

TR − η̂
(m)
TR,U =

O(n−1T−1) where η̂(m)
TR,U is a simple average of {η̂(m)

TR,k,U}k. It suffices to focus on η̂(m)
TR,U .
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The rest of the proof is divided into three parts. We first define η̂(m),∗
TR,U as a version of η̂(m)

TR,U with the Q-, marginalized

density ratio and conditional density ratio estimators replaced by their oracle values, and prove that
√
nT (η̂

(m),∗
TR,U −ηπ)

d→
N(0, σ2). We next show that the difference η̂(m),∗

TR,U − η̂
(m)
TR,U + Eη̂(m)

TR,U − ηπ is op{(nT )−1/2}. The assertion thus
follows from an application of Slutsky’s theorem. Finally, in Part 3, we present the variance decomposition formula for
Var(η̂(m),∗

TR,U ).

Part 1: A key observation is that, the oracle version of the estimator η̂(m),∗
TR,U − ηπ corresponds to an m-th order

U-statistic. The corresponding symmetric kernel function is given by

h({(Sij ,tj , Aij ,tj , Rij ,tj , Sij ,tj+1)}mj=1) =
1

m(1− γ)

m∑
j=1

E(a,s)∼(π,G)

∏
l 6=j

D(il,tl)Qπ(a, s) +
1

1− γ
ωπ(Aij ,tj , Sij ,tj )

×

Rij ,tj + γEa∼π(·|Sij ,tj+1)

∏
l 6=j

D(il,tl)Qπ(a, Sij ,tj+1)−
∏
l 6=j

D(il,tl)Qπ(Aij ,tj , Sij ,tj )


− ηπ.

Here, D(i1,t1) denotes a version of D(i1,t1)
k by replacing the estimator τ̂k with the oracle value τπ. Under (A1) and

the boundedness assumption in (A3), the conditions in Theorem 1 (c) of Denker & Keller (1983) are satisfied. The
asymptotic normality of η̂(m),∗

TR,U is thus proven. In addition, the asymptotic variance of
√
nT (η̂

(m),∗
TR,U − ηπ) is given by

(nT )−1m2E|
∑
i,t h1(Si,t, Ai,t, Ri,t, Si,t+1)|2 where

h1(s1, a1, r1, s
′
1) = E

(s2,a2,r2,s′2),··· ,(sm,am,rm,s′m)
iid∼ p∞

h({(sj , aj , rj , s′j)}mj=1).

Here, we use p∞ to denote the limiting distribution of the stochastic process {(St, At, Rt, St+1)}t≥0.

Since the expectation of the temporal-difference error r+γEa′∼π(·|s′)Q
π(a′, s′)−Q(a, s) is zero under the distribution

p∞, the function h1(s1, a1, r1, s
′
1) equals

1

m(1− γ)
ωπ(a1, s1){r1 + γEa′1∼π(·|s′1)Q

π(a′1, s
′
1)−Q(a1, s1)}.

Consequently, the asymptotic variance σ2 equals

1

nT (1− γ)2
E

∣∣∣∣∣∣
∑
i,t

ωπ(Ai,t, Si,t){Ri,t + γEa′∼π(·|Si,t+1)Q
π(a′, Si,t+1)−Qπ(Ai,t, Si,t)}

∣∣∣∣∣∣
2

.

Under MA and CMIA, for any index i, the sequence of temporal-difference errors {εi,t}t≥0 = {Ri,t +
γEa′∼π(·|Si,t+1)Q

π(a′, Si,t+1)−Qπ(Ai,t, Si,t)}t≥0 forms a martingale difference sequence. As such, the elements in
{ωπ(Ai,t, Si,t)εi,t}t≥0 are pairwise uncorrelated. Consequently,

σ2 =
1

nT (1− γ)2

∑
i,t

E
∣∣ωπ(Ai,t, Si,t){Ri,t + γEa′∼π(·|Si,t+1)Q

π(a′, Si,t+1)−Qπ(Ai,t, Si,t)}
∣∣2 ,

and is equal to (3). This completes the proof for Part 1.

Part 2: For any 1 ≤ k ≤ K, we similarly define η̂(m),∗
TR,k,U as the oracle version of η̂(m)

TR,k,U . In this Part, we focus on

proving
√
nT{η̂(m)

TR,k,U − η̂
(m),∗
TR,k,U − E(η̂

(m)
TR,k,U |Q̂k, τ̂k, ω̂k) + ηπ} = op(1). This in turn implies that

√
nT (η̂

(m)
TR,k,U −

η̂
(m),∗
TR,k,U − Eη̂(m)

TR,k,U + ηπ) = op(1) and hence
√
nT (η̂

(m)
TR,U − η̂

(m),∗
TR,U − Eη̂(m)

TR,U + ηπ) = op{(nT )−1/2}.

We next show
√
nT{η̂(m)

TR,k,U − η̂
(m),∗
TR,k,U − E(η̂

(m)
TR,k,U |Q̂k, τ̂k, ω̂k) + ηπ} = op(1). To simplify the proof, we assume Ik

consists of a single element i. Note that η̂(m)
TR,k,U − η̂

(m),∗
TR,k,U can be decomposed into the sum

∑m
j=0 η̂j,k where η̂0,k is

the main effect term, η̂1,k is the first-order linear term and η̂j,k is the high-order U-statistic for any j ≥ 2. Specifically,

η̂0,k = E(a,s)∼(π,G){Q̂k(a, s)−Qπ(a, s)},
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corresponding to the difference between two plug-in estimators. Its conditional variance equals zero given Q̂k and we
have η̂0,k = E(η̂0,k|Q̂k). (1− γ)η̂1,k equals

1

T

T−1∑
t=0

ω̂k(Ai,t, Si,t)[Q
π(Ai,t, Si,t)− Q̂k(Ai,t, Si,t)− γEa∼π(·|Si,t+1){Qπ(a, Si,t+1)− Q̂k(a, Si,t+1)}]

+
1

T

T−1∑
t=0

E(a,s)∼(π,G)τ̂k(Ai,t, Si,t, a, s)[Q
π(Ai,t, Si,t)− Q̂k(Ai,t, Si,t)− γEa∼π(·|Si,t+1){Qπ(a, Si,t+1)− Q̂k(a, Si,t+1)}]

+
1

T

T−1∑
t=0

{ω̂k(Ai,t, Si,t) + E(a,s)∼(π,G)τ̂k(Ai,t, Si,t, a, s)− 2ωπ(Ai,t, Si,t)}εi,t.

Using similar arguments in the proof of Part 1, the conditional variance of the third line given ω̂k and τ̂k is equal to
T−1E{ω̂k(Ai,t, Si,t) +E(a,s)∼(π,G)τ̂k(Ai,t, Si,t, a, s)− 2ωπ(Ai,t, Si,t)}2ε2

i,t. It is of the order op(T−1) given that ω̂k
and τ̂k coverages to ωπ and τπ , respectively. As such, we have

1

T

T−1∑
t=0

{ω̂k(Ai,t, Si,t) + E(a,s)∼(π,G)τ̂k(Ai,t, Si,t, a, s)− 2ωπ(Ai,t, Si,t)}εi,t

=E

[
1

T

T−1∑
t=0

{ω̂k(Ai,t, Si,t) + E(a,s)∼(π,G)τ̂k(Ai,t, Si,t, a, s)− 2ωπ(Ai,t, Si,t)}εi,t

∣∣∣∣∣ ω̂k, τ̂k
]

+ op(T
−1/2).

(12)

As for the first line, similar to the proof of Theorem 1, we will apply Berbee’s coupling lemma to bound its conditional
variance. Specifically, following the discussion below Lemma 4.1 of Dedecker & Louhichi (2002), we can construct a
sequence of data tuples {O0

i,t = (S0
i,tl
, A0

i,tl
, R0

i,tl
, S0
i,tl+1)}1≤l≤m−1 such that

1

T

T−1∑
t=0

ω̂k(Ai,t, Si,t)[Q
π(Ai,t, Si,t)− Q̂k(Ai,t, Si,t)− γEa∼π(·|Si,t+1){Qπ(a, Si,t+1)− Q̂k(a, Si,t+1)}]

=
1

T

T−1∑
t=0

ω̂k(A0
i,t, S

0
i,t)[Q

π(A0
i,t, S

0
i,t)− Q̂k(A0

i,t, S
0
i,t)− γEa∼π(·|S0

i,t+1){Qπ(a, S0
i,t+1)− Q̂k(a, S0

i,t+1)}], (13)

with probability at least 1− Tβ(q)/q such that the sequences {U0
i,2t : i ≥ 0} and {U0

i,2t+1 : i ≥ 0} are i.i.d. where
U0
i = (O0

i,tq, O
0
i,tq+1, · · · , O0

i,tq+q−1). Due to the independence, the conditional variance of (13) is upper bounded by
Op(q

2T−1−2α1), under Condition (A2). Take q to be proportional to log T , the probability 1− Tβ(q)/q will approach
1, under Condition (A1). As such, the conditional variance of (13) is op(T−1) and we have

1

T

T−1∑
t=0

ω̂k(A0
i,t, S

0
i,t)[Q

π(A0
i,t, S

0
i,t)− Q̂k(A0

i,t, S
0
i,t)− γEa∼π(·|S0

i,t+1){Qπ(a, S0
i,t+1)− Q̂k(a, S0

i,t+1)}]

= E

[
1

T

T−1∑
t=0

ω̂k(A0
i,t, S

0
i,t)[Q

π(A0
i,t, S

0
i,t)− Q̂k(A0

i,t, S
0
i,t)− γEa∼π(·|S0

i,t+1){Qπ(a, S0
i,t+1)− Q̂k(a, S0

i,t+1)}]

∣∣∣∣∣ Q̂k, ω̂k
]

+op(T
−1/2).

This in turn implies that

1

T

T−1∑
t=0

ω̂k(Ai,t, Si,t)[Q
π(Ai,t, Si,t)− Q̂k(Ai,t, Si,t)− γEa∼π(·|Si,t+1){Qπ(a, Si,t+1)− Q̂k(a, Si,t+1)}]

= E

[
1

T

T−1∑
t=0

ω̂k(Ai,t, Si,t)[Q
π(Ai,t, Si,t)− Q̂k(Ai,t, Si,t)− γEa∼π(·|Si,t+1){Qπ(a, Si,t+1)− Q̂k(a, Si,t+1)}]

∣∣∣∣∣ Q̂k, ω̂k
]

+op(T
−1/2).

(14)

Using similar arguments, we can show the second line satisfies a similar relation as well. This together with (12) and
(14) yields that η̂1,k = E(η̂1,k|Q̂k, ω̂k, τ̂k) + op(T

−1/2).

18



Deeply-Debiased Off-Policy Interval Estimation

η̂2,k equals {T (T − 1)}−1
∑
t1 6=t2 η̂2,t1,t2,k where (1− γ)2η̂2,t1,t2,k equals

γEa∼π(·|Si,t1+1)[{ω̂k(Ai,t1 , Si,t1) + E(a,s)∼(π,G)τ̂k(Ai,t1 , Si,t1 , a, s)}τ̂k(Ai,t2 , Si,t2 , a, Si,t1+1)

−2ωπ(Ai,t1 , Si,t1)τπ(Ai,t2 , Si,t2 , a, Si,t1+1)]εi2,t2
−[{ω̂k(Ai,t1 , Si,t1) + E(a,s)∼(π,G)τ̂k(Ai,t1 , Si,t1 , a, s)}τ̂k(Ai,t2 , Si,t2 , Ai,t1 , Si,t1)

−2ωπ(Ai,t1 , Si,t1)τπ(Ai,t2 , Si,t2 , Ai,t1 , Si,t1)]εi2,t2
+{ω̂k(Ai,t1 , Si,t1) + E(a,s)∼(π,G)τ̂k(Ai,t1 , Si,t1 , a, s)}τ̂k(Ai,t2 , Si,t2 , Ai,t1 , Si,t1)

×{Qπ(Ai,t2 , Si,t2)− Q̂k(Ai,t2 , Si,t2)− Ea∼π(·|Si,t2+1){Qπ(a, Si,t2+1)− Q̂k(a, Si,t2+1)}}
−γ{ω̂k(Ai,t1 , Si,t1) + E(a,s)∼(π,G)τ̂k(Ai,t1 , Si,t1 , a, s)}Ea∼π(·|Si,t1+1)τ̂k(Ai,t2 , Si,t2 , a, Si,t1+1)

×{Qπ(Ai,t2 , Si,t2)− Q̂k(Ai,t2 , Si,t2)− Ea∼π(·|Si,t2+1){Qπ(a, Si,t2+1)− Q̂k(a, Si,t2+1)}}.

Other high-order terms can be similarly derived. Using similar arguments in proving η̂1,k = E(η̂1,k|Q̂k) + op(T
−1/2),

we can show η̂j,k = E(η̂j,k|Q̂k, ω̂k, τ̂k) + op(T
−1/2) for any j ≥ 2. This further implies that η̂(m)

TR,k,U − η̂
(m),∗
TR,k,U −

E(η̂
(m)
TR,k,U |Q̂k, τ̂k, ω̂k) + ηπ = op(T

−1/2), since Eη̂(m),∗
TR,k,U = ηπ. More generally, when Ik consists of multiple

trajectories, we can similarly show that η̂(m)
TR,k,U − η̂

(m),∗
TR,k,U − E(η̂

(m)
TR,k,U |Q̂k, τ̂k, ω̂k) + ηπ = op(n

−1/2T−1/2). This
completes the proof of Part 2.

Part 3: Finally, we discuss the variance decomposition formula. Similar to Step 2, we can decompose η̂(m),∗
TR,U into the

sum
∑m
j=0 η̂

∗
j where η̂∗0 is the main effect ηπ = E(a,s)∼(π,G)Q

π(a, s), η̂∗1 is the first-order term

1

nT (1− γ)

n∑
i=1

T−1∑
t=0

ωπ(Ai,t, Si,t){Ri,t + γEa∼π(·|Si,t+1)Q
π(a, Si,t+1)−Qπ(Ai,t, Si,t)}.

For any j ≥ 2, η̂∗j corresponds to a degenerate U-statistic whose explicit form is given by(
m

j

)
j!

(nT )!

∑
disjoint (i1,t1),··· ,(ij ,tj)

hr({(Sil,tl , Ail,tl , Ril,tl , Sil,tl+1
)}jl=1),

where

hr({(sl, al, rl, s′l)}
j
l=1) =

j∑
r=1

(
j

r

)
(−1)j−rE

(sl+1,al+1,rl+1,s′l+1),··· ,(sm,am,rm,s′m)
iid∼ p∞

h({(sj , aj , rj , s′j)}mj=1),

where the kernel h is defined in Part 1. For instance,

η̂∗2 =
1

(1− γ)2nT (nT − 1)

∑
(i1,t1) 6=(i2,t2)

[
ωπ(Ai1,t1 , Si1,t1){γEa′∼π(·|Si1,t1+1)τ

π(Ai2,t2 , Si2,t2 , a
′, Si1,t1+1)

−τπ(Ai2,t2 , Si2,t2 , Ai1,t1 , Si1,t1)}+ (1− γ)ωπ(Ai2,t2 , Si2,t2)] εi2,t2 .

Other high-order terms can be similarly derived.

.6 Proof of Theorem 3

By Theorem 2, we have
√
nT (η̂(m) − Eη̂(m))

d→ N(0, σ2) for any m. Under the given conditions, using similar
arguments in Part 1 of the proof of Theorem 1, Eη̂(m) converges to ηπ at a rate of o{(nT )−1/2}. This further implies
that
√
nT (η̂(m) − ηπ)

d→ N(0, σ2).

To prove the validity of our CI, it suffices to show the sampling variance estimator (σ̂(m))2 is consistent. The consistency
can be proven using similar arguments in Part 2 of the proof of Theorem 2. We omit the details to save space.

A More on the estimation of the nuisance functions

A.1 Fitted-Q evaluation

We review the fitted-Q evaluation (FQE) algorithm proposed in Le et al. (2019), which is the subroutine we use to learn
the Q-function. FQE is an iterative algorithm based on the Bellman’s equation:

Q(a, s) = Ea′∼π(·|s) (Rt + γQ(a′|St+1)|At = a, St = s) .
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Based on this equation, we iteratively update the estimate by

Qm(a, s) = arg min
Q

∑
i′∈Ik

∑
t<T

{
γEa′∼π(·|Si,t+1)Qm−1(a′|Si,t+1) +Ri,t −Q(Ai,t, Si,t)

}2
,

for m = 1, 2, · · · . The optimization problem can be solved with various supervised learning algorithms. We summarize
FQE in Algorithm 1.

Algorithm 1 Fitted-Q evaluation
Input: Data {Sj,t, Aj,t, Rj,t, Sj,t+1}j,t, policy π, function class F , decay rate γ, number of iterations M
Randomly pick Q0 ∈ F
for m = 1, . . . ,M do

Update target values Zj,t = Rj,t + γQm−1(Sj,t+1, π(Sj,t+1)) for all (j, t);
Solve a regression problem to update the Q-function:
Qm = arg minQ∈F

1
n

∑n
i=1{Q(Sj,t, Aj,t)− Zj,t}2

end for
Output: The estimated Q-function QM (·, ·)

A.2 Learning the density ratio ω

The estimation of the density ratio ω is based on the following key observation.

Lemma 5 For any function f , we have L(ω, f) = 0, where L(ω, f) is

Ea∼π(·|Si,t+1){ω(Ai,t, Si,t)(γf(a, Si,t+1)− f(Ai,t, Si,t))}+ (1− γ)ES0∼G,a∼π(·|S0)f(a, S0). (15)

Conversely, ω is the only function satisfying this condition.

Therefore, as suggested in Uehara et al. (2019), ω can be learned by solving the following mini-max problem

arg min
ω∈Ω

sup
f∈F

L(ω, f)2, (16)

for some functional class Ω and F . The expectation in (15) is approximated by the sample mean. To simplify the
calculation, we can choose F to be a reproducing kernel Hilbert space (RKHS) , with which the inner maximization has
a closed form solution, and then ω can be learned by solving the outer minimization via stochastic gradient descent.
Let κ(·, ·; ·, ·) be the kernel function of the RKHS. Consider sampling a random minibatch {Sig,tg , Aig,tg , Sig,tg+1 :

g ∈M} from a data subset Ik. We form the objective function D(ω) as
(|M|

2

)−1∑
g1,g2∈M,g1 6=g2 D(ω, g1, g2) where

D(ω, g1, g2) is equal to

2(1− γ)ω(Xig1 ,tg1
)
{
γEa∼π(•|Sig1 ,tg1+1)

s′∼G,a′∼π(•|s′)

κ(Sig1 ,tg1+1, a; s′, a′)− Es′∼G,a′∼π(•|s′)κ(Xig1 ,tg1
; s′, a′)

}
+ω(Xig1 ,tg1

)ω(Xig2 ,tg2
)
{
γ2Ea1∼π(•|Sig1 ,tg1+1)

a2∼π(•|Sig2 ,tg2+1)

κ(Sig2 ,tg2+1, a2;Sig1 ,tg1+1, a1)

−2γEa∼π(•|Sig1 ,tg1+1)κ(Sig1 ,tg1+1, a;Xig2 ,tg2
) + κ(Xi2,t2 ;Xi1,t1)

}
+(1− γ)2E s′,s′′∼G

a′∼π(•|s′),a′′∼π(•|s′′)
κ(a′, s′; a′′, s′′),

where Xi,t denotes the state-action pair (Ai,t, Si,t). Thus, in each step, we take a random minibatch from the observed
data. Then we update the model parameter

θ ← θ − ε∆θD(ωθ/zωθ ),

where zωθ is a normalizing constant such that

zωθ =
1

|M|
∑
g∈M

ωθ(Aig,tg , Sig,tg ).

Note that ω satisfies Eω(π,At, St) = 1. For a given ω̂k, we can further normalize the density ratio by ω̂k(•) =
ω̂k(•)/{

∑
j,t ω̂k(Aj,t, Sj,t)/(nT )}. This yields the final estimates.
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A.3 Learning the conditional sampling ratio τ

Following the same analogy, our algorithm for estimating τ is motivated by the following key observation.

Lemma 6 For any two pairs (i, t) and (i′, t′) such that Oi,t and Oi′,t′ are independent, we have for any function f
that E∆(τ, f, π; i, t, i′, t′) = 0, where ∆(τ, f, π; i, t, i′, t′) is

τ(Si′,t′ , Ai′,t′ ;Ai,t, Si,t)
{
γEa∼π(·|Si′,t′+1)f(Si′,t′+1, a;Ai,t, Si,t)

−f(Si′,t′ , Ai′,t′ ;Ai,t, Si,t)
}

+ (1− γ)f(Ai,t, Si,t, Ai,t, Si,t).

Conversely, τ is the only function satisfying this condition.

Therefore, τ can be learned by solving the following mini-max problem

arg min
ω∈Ω

sup
f∈F

∣∣∣∣∣∣
∑

(i,t)6=(i′,t′)

∆(ω, f, π; i, t, i′, t′)

∣∣∣∣∣∣
2

, (17)

for some functional class Ω and F . The optimization for τ can be implemented in a similar way as that for ω.
Specifically, We set F to a unit ball of a reproducing kernel Hilbert space (RFHS), i.e., F = {f ∈ H : ‖f‖H = 1},
where

H =

f(·) =
∑

(i,t) 6=(i′,t′)

bi,t,i′,t′κ(Xi′,t′ , Xi,t; ·) : bi,t,i′,t′ ∈ R

 ,

for some positive definite kernel κ(·; ·), where Xi,t is a shorthand for the state-action pair (Ai,t, Si,t). The optimization
problem in (17) is then reduced to

arg min
ω∈Ω

∑
(i1,t1) 6=(i′1,t

′
1)

(i2,t2) 6=(i′2,t
′
2)

D(ω, π; i1, t1, i
′
1, t
′
1, i2, t2, i

′
2, t
′
2),

where D(ω, π; i1, t1, i
′
1, t
′
1, i2, t2, i

′
2, t
′
2) is given by

ω(Xi′1,t
′
1
;Xi1,t1)

(1− γ)−1

{
γEa∼π(•|Si′1,t′1+1)κ(Si′1,t′1+1, a,Xi1,t1 ;Xi2,t2 , Xi2,t2)− κ(Xi′1,t

′
1
, Xi1,t1 ;Xi2,t2 , Xi2,t2)

}
+
ω(Xi′2,t

′
2
;Xi2,t2)

(1− γ)−1

{
γEa∼π(•|Si′2,t′2+1)κ(Si′2,t′2+1, a,Xi2,t2 ;Xi1,t1 , Xi1,t1)− κ(Xi′2,t

′
2
, Xi2,t2 ;Xi1,t1 , Xi1,t1)

}
+ω(Xi′1,t

′
1
;Xi1,t1)ω(Xi′2,t

′
2
;Xi2,t2)

{
γ2Ea1∼π(•|Si′1,t′1+1)

a2∼π(•|Si′2,t′2+1)

κ(Si′2,t′2+1, a,Xi2,t2 ;Si′1,t′1+1, a1, Xi1,t1)

−γEa1∼π(•|Si′1,t′1+1)κ(Si′1,t′1+1, a,Xi1,t1 ;Xi′2,t
′
2
, Xi2,t2)− γEa2∼π(•|Si′2,t′2+1)κ(Si′2,t′2+1, a,Xi2,t2 ;Xi′1,t

′
1
, Xi1,t1)

+κ(Xi′2,t
′
2
, Xi2,t2 ;Xi′1,t

′
1
, Xi1,t1)

}
+ (1− γ)2κ(Xi1,t1 , Xi1,t1 ;Xi2,t2 , Xi2,t2).

In our implementation, we set Ω to the class of neural networks. The detailed estimating procedure is given in Algorithm
2.

B Additional numerical details

In this section, we report more details of the simulation environments and the algorithm implementations.

B.1 More about the toy example

The behaviour policy is chosen as a Bernoulli distribution with equal probabilities, and the target policy is chosen
as follows: if the agent is at state A, then it takes action to transit to B or C with equal probabilities, while if it is at
state B or C, it takes action to transit to A with probability 1.0. The movement is uncertain: with probability 0.9 the
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Algorithm 2 Estimation of the density ratio.
Input: The data subset in I`.
Initial: Initial the density ratio ω = ωβ to be a neural network parameterized by β.
for iteration = 1, 2, · · · do

a. Randomly sample batchesM,M∗ from the data transitions.
b. Update the parameter β by

β ← β − ε
(
|M|

2

)−2 ∑
(i1,t1),(i′1,t

′
1)∈M

(i1,t1)6=(i′1,t
′
1)

∑
(i2,t2),(i′2,t

′
2)∈M

(i2,t2) 6=(i′2,t
′
2)

∇βD(
ωβ
zωβ

, π; i1, t1, i
′
1, t
′
1, i2, t2, i

′
2, t
′
2),

where zωβ is a normalization constant

zωβ (·;Ai,t, Si,t) =
1

|M∗|
∑

(i′,t′)∈M∗
ωβ(Xi′,t′ ;Xi,t).

end for
Output: the density ratio ωβ .

transition will follow the action, and with 0.1 the agent will just stay where it is. The initial states are equally distributed
over the three states. In Figure 1, when the convergence rate of nuisance estimators is set as (nT )−α, to inject noises
in the nuisance functions, we add a noise following N (0, (0.2n−α)2) to Q(s, a) when Q is contaminated, and add a
noise followingN (0, (0.04n−α)2) to the corrsponding density ratio when ω or τ is contaminated. In Figure 2, to inject
noises in the nuisance functions, we add a fixed noise following N (0, 0.22) to Q(s, a) when Q is contaminated, and
add a fixed noise following N (0, 0.042) to the corresponding density ratio when ω or τ is contaminated. The length of
trajectories is fixed as 50 for all settings.

B.2 More about the simulation settings

B.2.1 The modified Cartpole environment

Following Uehara et al. (2019), we slightly modified the original Cartpole environment in Brockman et al. (2016)
to better fit the off-policy evaluation task. Specifically, we add small Gaussian noise with mean zero and standard
deviation 0.02 on the original deterministic transition dynamics, and define a new state-action-dependent reward as
(1 − (x2)/11.52 − (θ2)/288), where x is the cart position and θ is the pole angle, to replace the original constant
rewards.

B.2.2 The Diabetes environment

We use the simulation environment about an mobile health application on diabetes control calibrated in Shi et al.
(2020b). The state vector is 15-dimensional and it contains the measurements of four hourly covariates and the hourly
amounts of insulin injected in the past four hours, and the action space is discrete with 5 levels on different amounts
of insulin injection. The reward is a deterministic function of the glucose level, the state transition for the glucose is
a linear function estimated from real data, and the noise for the glucose is set to have standard deviation 10 in our
experiment. The objective is to learn an optimal policy that maps patients’ time-varying covariates into the amount of
insulin injected to optimize patients’ health status. More details can be found in Shi et al. (2020b).

B.2.3 Construction of the Behaviour and target policies

For both environment, we first run deep-Q network to get a near-optimal Q-function Q(s, a), and then apply softmax
on its Q-value divided by an adjustable temperature τ to define the action probability of a behaviour policy as

πb(a|s) ∝ exp(
Q(s, a)

τ
)

For Cartpole, we model the Q-function as a dense neural network with 2 hidden layers of dimension 256, and set the
optimizer as Adam with batch size 64 and learning rate 0.01. For Diabetes, we model the Q-function as a dense neural
network with 2 hidden layers of dimension 64, and set the optimizer as Adam with batch size 128 and learning rate
0.0001.
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B.3 Implementation details

For the Cartpole experiment, to implement our method, we set K = 2 and sample 5% of the total pairs in calculation
of the incomplete U-statistics. To estimate the Q-function, we use random forests to model the Q-function, with the
number of trees set as 1000 and their max depth as 20. To estimate ω, we model it as a dense neural network with 5
hidden layers of dimension 512, connected via ReLu, and model the kernel k (·, ·) as a Laplacian kernel with bandwidth
chosen by the median heuristic. We optimize the problem via Adam with batch size 256 and learning rate 0.001. To
estimate τ , we model it as a dense neural network with 3 hidden layers of dimension 512, and optimize the problem via
Adam with batch size 32 and learning rate 0.0001, with the other hyper-parameters the same with those of ω.

For the Diabetes experiment, to implement our method, we keep the other hyper-parameters the same with those for
Cartpole, except that we sample 20% of the total pairs in calculation of the incomplete U-statistics, adjust the number
of trees as 1000 and their max depth as 50, and adjust the learning rate for ω as 0.0001 and the learning rate for τ as
0.00005.

To implement the IS-based CI construction methods, for simplicity, we directly use the true behaviour policies. The
open-source code 2 is used to implement CoinDice. We use the default hyper-parameters, except for the following
adjustments to get a better results for CoinDice. For CartPole, we set the learning rate as 0.005, batch size as 32,
distribution regularizer as 0.05, neural network regularizers as 1, and set the neural networks as having one hidden layer
of dimension 64. For Diabetes, we adjust the distribution regularizer as 2.5 and set the neural networks as having two
hidden layers of dimension 256. In our experiments, we find Coindice is sensitive to these hyper-parameters, and tuned
intensively to report results with the best combination.

B.4 Computational complexity

In this section, we analyze the computational complexity for the proposed value estimator η̂(m)
TR . The construction of the

CI is straightforward and has the same complexity. Let N = nT and let the dimension of the action plus that of the state
be p. There are four main dominating parts of the computation: the calculation of Q̂, ω̂, and ω̂∗, and the construction of
the final estimator. For simplicity, we assume the standard dense networks with feedforward pass and back-propagation
are used for the first three parts, and let the maxmium latent layer width and the depth for all the neural networks be w
and d. For calculation of Q̂, assume FQE converges in M1 iterations, then according to the theory of neural networks,
the complexity for the part is O(NM1w

dp). For calculation of ω̂ and ω̂∗, assume the training iterations of neural
networks be M2, then we have the complexity for these two part is O(NM2w

dp). For the last part, to calculate η̂(m)
TR ,

suppose we sample M3 states from the reference distribution and use M4 samples in the calculation of the incomplete
U-statistics, the complexity is O((M3 +N)M4). Putting the above results together, the total complexity for calculating
η̂

(m)
TR and its CI is

O(nT (M1 +M2)wdp+ (M3 + nT )M4)

Note that the computation for the last part can be easily implemented in parallel, and for computing estimates of
different order, the first three parts can be shared.

C More on the CoinDice method

We discuss why CoinDice would fail to achieve valid CI estimation in this section. As we have commented in the
introduction, CoinDice uses the empirical likelihood approach for interval estimation, assuming the data transactions
are i.i.d. It is known that directly applying the empirical likelihood method without further adjustment will fail to handle
weakly dependent data.

To elaborate this, let us consider a simple example. Given a sequence of stationary random variables {Zt}1≤t≤n, we
aim to construct a CI for its mean. The CI based on the empirical likelihood method is given as follows

{EPZ : Df (P||Pn) ≤ ρ/n},

for some ρ > 0, where Pn denotes the empirical distribution of {Zt}t.
Here, the choice of ρ is essential to the validity of the resulting CI. When the observations {Zt}t are i.i.d., one may set
ρ to P(χ2

1 ≤ ρ) = 1− α for a given significance α. However, such a choice of ρ would fail with weakly dependent

2https://github.com/google-research/dice_rl
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observations. More specifically, ρ shall be chosen such that

P

(
χ2

1 ≤
ρVar(Z1)

Var(Z1) + 2
∑+∞
j=2 cov(Z1, Zj)

)
= 1− α,

to ensure the validity of the resulting CI. See Theorem 5 and Theorem 11 of Duchi et al. (2016) for details.

When the observations are weakly dependent, the factor Var(Z1)/{Var(Z1) + 2
∑+∞
j=2 cov(Z1, Zj)} is not equal to

one in general. Consequently, directly applying the empirical likelihood method by assuming the data are i.i.d. will
result in an invalid CI. CoinDice estimates the value via the marginalized important-sampling estimator instead of the
doubly-robust estimator. As such, the summands in their estimator are positively corrected. The corresponding factor is
smaller than 1. Hence, applying CoinDice leads to a narrow but invalid CI.
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