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Abstract
Order dispatch is one of the central problems to ride-
sharing platforms. Recently, value-based reinforce-
ment learning algorithms have shown promising per-
formance to solve this task. However, in real-world
applications, the demand-supply system is typically
nonstationary over time, posing challenges to re-
utilizing data generated in different time periods to
learn the value function. In this work, motivated
by the fact that the relative relationship between the
values of some states is largely stable across various
environments, we propose a pattern transfer learning
framework for value-based reinforcement learning
in the order dispatch problem. Our method effi-
ciently captures the value patterns by incorporating
a concordance penalty. The superior performance of
the proposed method is supported by experiments.

1 Introduction

One major task for large-scale ride-sourcing platforms, such
as Uber and DiDi Chuxing, is to develop an order dispatch
algorithm which matches order requests with idle drivers in
real time. A high-quality dispatch algorithm can alleviate the
traffic congestion problem, increase revenue for drivers, and
serve customers better with higher answer rates [Xu et al.,
2018].

In recent years, value-based reinforcement learning (RL) al-
gorithms have been widely used in the order dispatch problem
[Tang et al., 2019; Zhou et al., 2021]. One major challenge to
these algorithms is how to accurately estimate the value func-
tions with limited real-time data. Although there are usually
lots of logged historical data in ride-sourcing platforms, given
the non-stationarity of the environment, the complex spatial-
temporal dependency of this problem, and the multi-agent
nature of this task, it is not clear how to re-utilize historical
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data generated by a different policy in a different time period,
in a principled way [Qin et al., 2020]. Naively combining all
data sources may cause huge bias, while simply discarding
historical data may cause large variance in value estimation
and hence affect the dispatch quality. Most existing methods
fail to address this important problem.

Figure 1: State values over two different time periods. Left and right
panels denotes source and target environment, respectively. Com-
puted with the data and setting introduced in Section 5 using Equation
(2). A darker color indicates a higher value. The second row displays
a zoom-in area, where it is clear that the absolute values in differ-
ent time periods significantly differ while the relative relationship
between states is consistent, which is referred to as the concordance
relationship. Overall, the concordance relationship holds on more
than 80% state pairs.

This paper is concerned with the following question: how
should we utilize data generated in a different environment to
improve the efficiency of value function estimation in a new
environment? Such a goal may sound ambitious, and certain
task-specific structures must be utilized. In this work, we
focus on the concordance pattern, motivated by the follow-
ing observations: in a demand-supply network, although the
absolute value of a state may vary a lot across different envi-
ronments, the relative relationship between some states tends
to be stationary. For example, as shown in Figure 1, there exist
some "hot zones" in the center of the town, which have higher
values than the values of the "cold zones" in the suburbs. This
relationship is stationary across different periods, and can be



characterized by the concordance relationship between the
value functions in different environments. Such a relationship
also exists between, for example, the value of the rush hours
and the normal hours. Therefore, such a pattern relationship
can then be used to improve the efficiency of value estima-
tion, by appropriately integrating a concordance penalty with
a value-based RL algorithm.

In this paper, we investigate pattern transfer learning for the
order dispatch problem. Our contributions are three-fold:

• Conceptually, we demonstrate a concrete approach to
transfer the structural information learned from existing
offline data to improve the efficiency of online value
estimation. The high-level idea of utilizing a structural
penalty function in transfer RL is generally applicable
and is new to the literature.

• Methodologically, we develop a novel transfer RL algo-
rithm for the order dispatch problem. The key ingredients
of our method lay in appropriately constructing a concor-
dance function and applying the concordance penalty to
the value-based objective function.

• Empirically, we evaluate different algorithms in a well-
calibrated simulator. The proposed method achieves su-
perior performance and demonstrates the usefulness of
pattern transfer.

2 Related Work

Order dispatching is a longstanding topic in the literature
on intelligent transportation systems. Traditional methods
typically only consider short-term performance. For example,
Liao [2003] proposes to match the nearest driver to each order,
Zhang and Pavone [2016] uses the queue data structure to
dispatch with the first-come-first-serve strategy, and Zhang
et al. [2017] aims to optimize the success rate of the order
matches by matching driver-order pairs within a short time
window.

However, these methods might lead to a sub-optimal policy
in the long run, because they do not consider the long-term
spatial equilibrium between the orders and drivers. Xu et al.
[2018] made an important step forward by modeling the order
dispatch problem as a Markov Decision Process (MDP) and
designing a value-based RL algorithm, which can optimize
resource allocation in a farsighted view and has shown great
success in applications. Further extensions have been proposed
in the literature. For example, Li et al. [Li et al., 2019]
extended the single-agent setting in Xu et al. [2018] to a multi-
agent setting, which is more capable of modeling the complex
interactions between drivers and orders. Tang et al. [Tang et
al., 2019] extended the tabular-like value function in Xu et al.
[2018] to deep value networks. Our work builds on this line of
research and considers the non-stationary nature of the order
dispatch problem.

Transfer RL aims to boost the training process in a target
environment by leveraging and transferring external knowl-
edge from one or multiple source environments [Zhu et al.,
2020]. Existing transfer RL approaches can be roughly catego-
rized into reward shaping [Williams and Baird, 1993; Devlin
and Kudenko, 2012], learning from demonstrations [Bertsekas,

2011; Kim et al., 2013], policy transfer [Rusu et al., 2015;
Czarnecki et al., 2019], inter-task mapping [Gupta et al., 2017;
Torrey et al., 2005], representation reuse [Rusu et al., 2016],
and learning disentangled representation [Dayan, 1993; Schaul
et al., 2015]. See Zhu et al. [2020] for a recent survey.

However, research on transfer RL in the order dispatch
problem is limited. To the best of our knowledge, the only
existing method is proposed by Wang et al. [2018], where sev-
eral representation resue-type methods are adapted to transfer
the pre-trained neural network model in the source environ-
ment to the target environment. Such an approach requires
the value function to be modeled by a deep neural network
so as to share the weights of hidden layers. Therefore, it is
not directly applicable to other settings, such as the tabular
setting as in [Xu et al., 2018]. Our approach, on the contrary,
is generally applicable to value function parameterized by any
function class. In addition, our method is more interpretable
in the transferring process. Specifically, in this work, we fo-
cus on the concordance relationship, which yields intuitive
explanations and provides additional insights. Finally, our
penalty-based approach can be easily extended when other
kinds of domain knowledge about the connection between the
source and the target environment are available, and it is of
separate interest.

3 Setup

Order dispatch problem can be formalized as a semi-Markov
decision process (SMDP) model [Sutton et al., 1999], which
is an extension of the MDP model in that SMDP allows the
actions to be temporally extended. Various RL algorithms
based on SMDP models have achieved great success in real-
world order dispatch applications [Xu et al., 2018; Wang et
al., 2018; Tang et al., 2019; Qin et al., 2020]. Formally, the
components of the SMDP can be built as follows:

State. We consider an episodic setting with each day as
one episode. The time and locations are discretized as T time
points and N hexagon grids, respectively. The state space is
S = T ×G, where T ≡ {0, 1, . . . , T} and G ≡ {1, . . . , N}.
At each time t ∈ T , the state of a driver is a temporal-spatial
pair s = (t, i), where i ∈ G is the driver’s location.

Action. An available driver can either be assigned to serve
an order or to stay idle.

Reward. If one driver accepts an order with revenue R
and the order takes time ∆t, then we consider the reward
Rγ =

∑∆t
t=0 γ

t R
∆t , where γ is the discount factor. If the driver

chooses to stay idle, the reward is 0.
State transition. For an available driver at state s = (t, i),

if the action is to serve an order, the driver will transit to state
s′ = (t + ∆t, i′), where ∆t is the time cost and i′ is the
destination; otherwise, the driver will keep idling and transit
to state s′ = (t+ 1, i).

Value function. We use Vπ(s) to denote the expected dis-
counted cumulative reward that one random driver can collect
starting from state s to the end of the day, suppose the dispatch
system follows the policy π. To simplify the notation, we may
drop the subscript π, and use Vt,i to denote V ((t, i)).



Policy. The dispatching problem is a cooperative multi-
agent RL task. At each decision point, the central agent will
receive a list of order requests. A policy π will assign these
orders to idle drivers. The goal is to learn an optimal policy
that maximizes the expected long-term reward.

4 Pattern Transfer Learning in Order Dis-
patch

4.1 Value-based order dispatch
With such an SMDP model, we can design a generalized
policy iteration (GPI) approach [Sutton and Barto, 2018] to
optimize the long-term cumulative reward. A GPI framework
alternates between a policy evaluation step where we evaluate
the value of each state, and a policy improvement step where
we behave greedily with respect to the value so as to improve
the current policy. The framework is summarized in Algorithm
1, with two key components detailed below. We note that
similar frameworks have been considered in the literature [Xu
et al., 2018; Tang et al., 2019; Qin et al., 2020], and the main
differences lay in the details of the key components. In this
work, a value transfer approach is designed to utilize existing
offline data to evaluate the policy value more efficiently.

Algorithm 1 Generalized Policy Iteration for Order Dispatch-
ing

1: Data: transition buffer D.
2: for day 1, 2, . . . do
3: Learn a value function V̂ from the data in D using a

policy evaluation method (e.g., (6) or (2)).
4: Within each dispatch window throughout the day,

match orders and drivers in a collectively greedy way
with respect to V̂ by solving (1).

5: Add the new transition tuples into D.
6: end for

Policy evaluation. At the beginning of each day, a data
buffer of transitions tuples D = {(sj , aj , rj , s′j)} has been
collected in previous days, where sj is the initial state, aj is
the observed action, rj is the received reward, and s′j it the
finish state. We need to evaluate the value of each state V (s)
using the collected data. Various methods have been proposed,
such as dynamic programming [Xu et al., 2018] and deep-Q
network [Tang et al., 2019]. We will detail our procedure in
Section 4.3.

Online dispatch (policy improvement). Within each dis-
patch window, we need to match active orders and available
drivers with the objective of maximizing the long-term col-
lective cumulative rewards. We will act in a greedy way with
respect to the estimated value function V̂ . Specifically, as a
common procedure in the literature [Xu et al., 2018; Tang et
al., 2019], we consider a bipartite matching problem for every
possible driver-order pair:

arg max
{alk}∈C

m∑
l=0

n∑
k=0

Q̂(l, k)alk, (1)

where l ∈ {1, . . . ,m} corresponds to all available drivers, k ∈
{1, . . . , n} corresponds to the active orders, and alk ∈ {0, 1}
is the indicator of assigning order k to driver l with l = 0
or k = 0 denoting no match. Here, C contains constraints
including (i)

∑m
l=0 alk = 1,∀k, indicating that each order

can be assigned to at most one driver, (ii)
∑n
k=0 alk = 1,∀l,

meaning that each driver can take to at most one order, and
(iii) some other business constraints. The Q-function can be
derived as Q̂(l, k) = γ∆t(l,k)V̂i′k,t′lk +rk, where ∆t(l, k) is the
time cost, i′k is the finish location, t′lk is the finish time, rk is
the reward of order k. It is easy to verify that Q̂(l, 0) = V̂ (sl),
where sl is the current state of driver l. The Kuhn-Munkres
(KM) algorithm [Munkres, 1957] can be applied to solve (1),
and the advantage function trick in Xu et al. [2018] can be
used to reduce the computational cost.

4.2 Concordance relationship

As discussed in Section 1, we aim to utilize the pattern sim-
ilarity between the old (source) environment and the current
(target) environment through a concordance relationship be-
tween their value functions. More precisely, suppose we have
a value function V s learned by previous interactions with an
source SMDP environmentMs. V s could be learned by run-
ning Algorithm 1 or other RL algorithms in this environment,
or estimated from logged data. Our goal is to run Algorithm 1
in the target environmentMt with the objective of maximiz-
ing the cumulative rewards. We assumeMt andMs share the
same state space, rewarding system, and discount factor. How-
ever, due to environment non-stationarity, the spatial-temporal
distribution of orders and drivers may change significantly,
and so does the value function. Therefore, directly using the
old dataset or value functions may cause huge bias.

Motivated by the observations in Figure 1 that the relative
relationship between the value of the hot regions and of the
cold regions (or that between the rush hours and the normal
hours) will be relatively consistent, we aim to capture this
structural stability so as to transfer knowledge from the old
data to stabilize the value estimation. Formally, the concor-
dance relationship on a state pair (s1, s2) holds between two
value functions V and V ′ if and only if

[V (s1)− V (s2)][V ′(s1)− V ′(s2)] ≥ 0.

Given some pre-specified or estimated distribution µ over the
space of state pairs S × S, we define the concordance loss
between two value functions V and V ′ as

c(V, V ′;µ) ≡ E(s1,s2)∼µI
{

[V (s1)− V (s2)]

× [V ′(s1)− V ′(s2)] < 0
}
,

where I(·) denotes indicator function. Here, c(V, V ′;µ) is
the probability that the concordance relationship between V
and V ′ will be violated, evaluated on µ. The concordance
function has been widely employed in applications such as
classification tasks [Cortes and Vapnik, 1995] and optimal
decision making [Liang et al., 2017; Fan et al., 2017; Shi et
al., 2021]. However, to the best of our knowledge, it is used
in RL for the first time.



Let the optimal value function in the target environment
be V ∗. Motivated by the discussions above, we make the
following assumption throughout this paper: the concordance
relationship between V ∗ and V s will hold with high probabil-
ity, as evaluated on some appropriately chosen distribution µ.
More precisely, c(V ∗, V s;µ) ∈ [0, 1) is small.

In practice, for each state pair (s1, s2), µ(s1, s2) should in-
corporate important domain knowledge about the importance
of this pair as well as our belief that the concordance relation-
ship on this pair will hold between V ∗ and V s. As an example,
in this paper, we focus on the value concordance relationship
between hot regions and cold regions. Specifically, let E be a
set of user-specified location pairs on which the concordance
relationship is believed to hold, we define

µ(s1, s2) = (T |E|)−1I[(g(s1), g(s2)) ∈ E, t(s1) = t(s2)],

where |E| is the cardinality of E, and g(s) and t(s) is the
location and time component of the state s, respectively.

4.3 Policy evaluation with concordance penalty

In this section, we discuss how to improve the efficiency of
value function estimation by utilizing the dataset collected
in the source environment through a concordance penalty
function. To simplify the notation, for every t, we denote
Vt = {Vt,i}Ni=1. We similarly define V s

t and V̂t.
A straightforward approach to estimate the value function

is dynamic programming (DP) [Xu et al., 2018]. Let V̂T,i = 0

for every i ∈ G. For t = T − 1, T − 2, . . . , 0, V̂t,i for every
i ∈ G is calculated as

V̂t,i =
1

|D(t, i)|
∑

j∈D(t,i)

(γ∆t(aj)V̂t′j ,i′j + rj), (2)

where s′j = (i′j , t
′
j) and D(t, i) = {j : sj = (t, i)} denoting

tuples with current state (t, i).
To present our method, we note that the DP-based policy

evaluation step (2) is equivalent to minimizing the squared
temporal-difference (TD) error [Sutton and Barto, 2018].
Specifically, we first set V̂t,i = 0 for every i, and then
solve the following optimization problem recursively, for
t = T − 1, T − 2, . . . , 0:

V̂t = arg min
Vt

∑
j∈D(t)

[Vt,ij − γ∆t(aj)V̂t′j ,i′j −Rγ(aj)]
2. (3)

It is easy to verify that, the estimated value function V̂ by
solving (3) is the same with the output of (2).

With such an observation, we propose to estimate the value
function by minimizing the squared TD error with the con-
cordance constraint. For any time index t and any two value
functions V and V ′, we define the spatial concordance loss
between {Vt,i}Ni=1 and {V ′t,i}Ni=1 as

l({Vt,i}Ni=1, {V ′t,i}Ni=1;E) ≡
∑

(i,j)∈E

I
{

[Vt,i − Vt,j ]

× [V ′t,i − V ′t,j ] < 0
}
.

Then, let D(t) =
⋃
iD(t, i), we can obtain V̂t by solving

arg min
Vt

∑
j∈D(t)

[
Vt,ij − γ∆t(aj)V̂t′j ,i′j −Rγ(aj)

]2
s.t. l(Vt,V

s
t ;E) ≤ ε.

(4)

To solve this constrained optimization problem, a equivalent
penalized optimization problem is considered:

arg min
Vt

{ ∑
j∈D(t)

[
Vt,ij − γ∆t(aj)V̂t′j ,i′j −Rγ(aj)

]2
+ λ× l(Vt,V s

t ;E)
}
,

(5)

where λ > 0 is the Lagrange parameter. By the Lagrange
duality, we know that, for any ε > 0, there exists some λ > 0
such that the solution of (5) is the same with that of (4).

Finally, we note that problem (5) is not differentiable. In
practice, the hinge loss, which is a convex upper bound of
the concordance loss function, has been commonly used as a
surrogate loss function [Liang et al., 2017; Cortes and Vapnik,
1995]. Specifically, the hinge loss between Vt and V s

t , can be
written as

h(Vt,V
s
t ;E) =

∑
(i,j)∈E

{
I[V st,i < V st,j ][1− (Vt,j − Vt,i)]+

+ I[V st,i > V st,j ][1− (Vt,i − Vt,j)]+
}

Putting all the discussions together, we propose to replace
the DP-based policy evaluation step (2) by solving the follow-
ing optimization problem recursively, for t = T − 1, . . . , 0:

V̂t = arg min
Vt

{ ∑
j∈D(t)

[
Vt,ij − γ∆t(aj)V̂t′j ,i′j −Rγ(aj)

]2
+ λ× h(Vt,V

s
t ;E)

}
.

(6)

Optimization. Let the objective function of (6) be
L(Vt;V

s
t ,D(t), λ). For every i = 1, . . . , N , we can derive

the partial gradient as

∂

∂Vi,t
L(Vt;V

s
t ,D(t), λ)

= 2
∑

j∈D(i,t)

(Vt,ij − γ∆t(aj)V̂t′j ,i′j −Rγ(aj))

− λ
∑

j:(i,j)∈E

[
I(V st,i < V st,j , Vt,j − Vt,i < 1)

+ I(V st,i > V st,j , Vt,i − Vt,j < 1).
]

(7)

The explicit form of the gradient ∂
∂Vt
L(Vt;V

s
t ,D(t), λ) then

follows. To solve (6), we apply gradient descent with step sizes
chosen by a diminishing step size rule [Boyd et al., 2003]. We
have the following convergence guarantee.

Proposition 1 (Convergence) With a diminishing step size
rule, our gradient descent optimization algorithm will con-
verge to the solution of (6).



Proof. For the objective function, both the loss part and
the penalty part is a composition of a convex function and an
affine function, and hence it is convex. Besides, because the
hinge loss is a subdifferentiable function, it is easy to verify
that the objective function is also a subdifferentiable function.
Therefore, according to Boyd et al. [2003], a gradient descent
optimization algorithm with a diminishing step size schedule
for a convex subdifferentiable objective function will converge
to the global optimum.

5 Experiments

Simulator. To evaluate the proposed method, we build a
real data calibrated dispatch simulator. Such simulator are
constructed based on the open dataset from the DiDi ride-
sharing platform . This dataset contains drivers’ trajectories,
transition probability of idle drivers, information of order
requests and hexagonized map grids in Chengdu, China, for 30
days. Our simulator design follows the procedures introduced
in Xu et al. [2018]. Specifically, the order requests and drivers’
online time periods are kept the same with the real data. After
logging-in, the drivers will completely follow the dispatch
algorithm. Other information such as the transition probability
of idle drivers and the cancellation rates are all provided by
or fitted from the data. The difference between the simulated
results from our simulator and the official simulator is less
than 5% in terms of answer rate and total GMV.

Setting. Following Xu et al. [2018], we use the first 15 days
as the source environment and the latter 15 days as the target
environment. In the real dataset, there exists a huge difference
in the environment between weekdays and weekends. In this
experiment, we focus on the weekdays only. Different value-
based dispatch policies are run during 11 weekdays in the
latter half a month and their performance is recorded. All of
these policies use the KM algorithm (1) for dispatch, and the
only difference lies in the choice of the Q-values. For policies
relying on data generated in the target environment, we use
the greedy policy as the initial policy on the first day. The
following policies are considered:

• Greedy (Myopia): Only instant order rewards are con-
sidered. Replace Q̂(l, k) in (1) by Rlk.

• Source-only: The value functions are calculated using
the source data only. Details can be found in Xu et al.
[2018].

• Target-only: The value function is initialized with zero
and updated for the latter 15 days using TD updates (
Equation 3) with no penalty.

• Naively-combine: The value functions are calculated
from the first 15 days and updated for the latter 15 days
using TD updates with no penalty.

• Pattern-transfer: Our proposed concordance penalty-
based value evaluation methods.

Results. The performance of different methods is summa-
rized in Figure 2. We consider two choices of γ, 0.9 and
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0.95. In addition to the cumulative rewards, we also report the
answer rates (proportion of orders being answered) and the
completion rates (proportion of accepted orders being eventu-
ally completed). Both metrics are commonly used to reflect
the quality of a dispatch algorithm [Xu et al., 2018]. We sum-
marize our findings as follows. We focus on the cumulative
reward as the main evaluation metric.

• The proposed method outperforms the baselines by a sig-
nificant margin. Specifically, compared with the target-
only algorithm (i.e., no pattern transfer), the proposed
method enjoys a jumpstart in the first several days, con-
verges more quickly, and the convergence performance
is better. These improvements come from the efficient
pattern transfer via the concordance penalty;

• The performance of the target-only algorithm also im-
proves slowly as the data accumulates, but the rate of
improvement is much slower than the proposed method;

• Both the source-only and the naively-combine algorithms
suffer from the bias incurred by the non-stationarity of
the environment;

• The greedy policy does not consider the long-term perfor-
mance, will cause undesired demand-supply distribution,
and hence performs the worst.

To see the convergence speed of different methods under
the GPI framework more clearly, we conduct an extra experi-
ment, where we repeat the simulation of a single day multiple
times. Results are shown in Figure 3. The performance of our
method typically converges within 2 iterations and achieves
superior performance, while the value of the target-only algo-
rithm increases at a much slower rate. This experiment further
demonstrates the usefulness of the proposed pattern transfer
method.

6 Discussion

In this paper, we propose a novel pattern transfer method
for the online order-dispatch problem. At the heart of our
method is a concordance penalty, which efficiently captures
the value patterns. Integrated with the GPI framework, the
algorithm demonstrates superior performance in dealing with
non-stationary environments.

There are several future directions worthy of study. First,
we currently model the value function without function ap-
proximation. It would be interesting to couple our proposal
with some state-of-the-art universal function approximators,
e.g., deep neural networks. Second, we can consider applying
the pattern transfer learning method to more complex prob-
lems in intelligent transportation systems, such as multi-agent
RL for order dispatch, joint order dispatching and fleet man-
agement, etc. Third, the concordance relationship is only one
kind of pattern, and the idea of penalty-based transfer RL can
be more general than the setup considered in this paper. it is
practically interesting to apply the proposed methodology to
other domains to evaluate its empirical performance. Lastly,
providing theoretical guarantees for the proposed method is
also a meaningful next step.



Figure 2: Performance of different methods when γ = 0.9 (upper) and γ = 0.95 (lower). The x-axis represents consecutive weekdays in the
target environment. Our method outperforms the baseline methods under different metrics.

Figure 3: Results for different methods when the same day is repeatedly simulated for multiple times. The x-axis represents repeated iterations
of this single day in the target environment. Our method shows a stable performance within 2 iterations, while the target-only method requires
more iterations to improve and converge.
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