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sports, etc. In this problem, a decision-maker is responsible for ranking K items by sequentially collecting

noisy pairwise comparisons from judges. The decision-maker needs to choose a pair of items for comparison

in each step, decide when to stop data collection, and make a final decision after stopping, based on a

sequential flow of information. Due to the complex ranking structure, existing sequential analysis methods

are not suitable.

In this paper, we formulate the problem under a Bayesian decision framework and propose sequential

procedures that are asymptotically optimal. These procedures achieve asymptotic optimality by seeking a

balance between exploration (i.e., finding the most indistinguishable pair of items) and exploitation (i.e.,

comparing the most indistinguishable pair based on the current information). New analytical tools are

developed for proving the asymptotic results, combining advanced change of measure techniques for handling

the level crossing of likelihood ratios and classic large deviation results for martingales, which are of separate

theoretical interest in solving complex sequential design problems. A mirror-descent algorithm is developed

for the computation of the proposed sequential procedures.
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1. Introduction This paper considers a sequential design problem for rank aggregation. In

this problem, a decision maker is responsible for ranking K items by adaptively collecting noisy

outcome of pairwise comparison from judges. Sequential rank aggregation has a wide range of

applications, including social choice [49], sports [23], search rankings [48], etc. Pairwise comparison

is the most popular approach for rank aggregation, as sufficient evidence from cognitive psychology

suggests that people make more accurate judgement when making pairwise comparisons (i.e., given

a pair of items and asked to indicate which item is preferred to the other) as compared to multi-

wise comparison [10] and some applications such as chess gaming have a natural form of pairwise

comparison.

In a rank aggregation problem, more comparisons usually lead to a more accurate global ranking.

However, each comparison comes with some cost, e.g., in crowdsourcing applications, a requester

has to pay crowd workers a fixed amount of monetary reward for each labeled pair. Therefore, to

design a cost-efficient ranking procedure, a decision maker faces the following three key challenges:

1. How to adaptively decide the next pair of objects for comparison based on the collected

information? The adaptive selection of pairs is important for saving the cost. For example, if we

are confident that object 1 is ranked higher than 2 and the object 2 is preferred over 3, there is no

need to compare objects 1 and 3.

2. When to stop asking for more comparisons?

3. When stopping the comparison process, how to aggregate the pairwise comparisons to infer

the global ranking?

Due to wide applications of rank aggregation, there are several recent machine learning works

devoted to the development of ranking algorithms with rigorous theoretical guarantees. For exam-

ple, Hajek et al. [25], Negahban et al. [46], Shah et al. [51] proposed algorithms and established

the estimation error rates under Bradley-Terry-Luce (BTL) model [11, 41], Thurstone model [55],

and a more general strong stochastic transitivity model [4, 44]. However, these works mainly focus

on a static setting with either given pairs or randomly drawn pairs. In contrast, under a sequential

setting, we are interested in designing an adaptive pair selection rule. Moreover, for recent active

ranking works (e.g., [26]), optimal stopping is usually not considered. For example, the common

studied PAC (Probably Approximately Correct) sample complexity bound from the machine learn-

ing literature usually involves some large universal constants and cannot be directly used for an

accurate stopping rule. Determining a right stopping time is critical for balancing accuracy and

cost in many applications (e.g., ranking via crowdsourcing). Therefore, to address the challenge of

optimal stopping, we adopt the sequential analysis framework from statistics that directly opti-

mizes over the random stopping time. On the other hand, due to the complex structure of ranking
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aggregation, this problem cannot be formulated and solved by existing sequential adaptive design

methods [20, 45].

Under a wide class of parametric comparison models (e.g., Bradley-Terry-Luce (BTL) model

[11, 41]), we develop new sequential analysis methods to conduct sequential experiments for pairwise

comparisons and to balance the ranking accuracy and cost. We first formulate the problem under

a general Bayesian decision framework. In particular, each item k is represented by a parameter

θk, which determines its underlying true rank among K items. For example, the parameter θk can

be viewed as the quality score for item k, and item i has a higher rank than item j if and only if

θi > θj. The pairwise comparison of items i and j follows a probabilistic comparison model (e.g.,

[11, 41, 55]) parameterized by θi and θj. Under the Bayesian framework, the parameter vector

for all product θ is drawn from some prior distribution. A sequential procedure chooses a pair

(i, j) for the next comparison in each stage and decides the stopping time T . Upon stopping, the

final decision is to choose the global rank R := (R1, . . . ,RK) from the set of all permutations of

{1,2, ...,K}. To measure the accuracy of a rank R, we adopt the widely used Kendall’s tau distance

[32], which measures the number of inconsistent pairs between the decision R and the underlying

true rank induced by the scores (θ1, ..., θK). Then, the loss function of this sequential design problem

is defined by combining the cost of data collection and the Kendall’s tau distance:∑
i<j

{
I(θi > θj)I(Ri >Rj) + I(θi < θj)I(Ri <Rj)

}
+ cT, (1)

where the constant c > 0 indicates the relative cost of each comparison and I(·) denotes an indicator

function. The goal is to optimize the expected loss in (1) over pair-selection rule, stopping rule T ,

and final decision R (see Section 2 for more details). To justify the performance of the proposed

policies, we adopt the notion of “asymptotic optimality” from [20] (see Eq. (7) below), that is widely

used in sequential analysis [35, 50, 52, 54]. While finding an exact optimal policy is computationally

intractable, we prove that the proposed policies are asymptotically optimal.

It is also worthwhile noting that although according to the final decision, our problem seems

to be a multi-hypothesis sequential testing problem with adaptive experiment selection considered

in [45], there exist fundamental differences. First, Naghshvar and Javidi [45] only consider simple

hypotheses, while the ranking problem, when viewed as a multi-hypothesis testing problem, consists

of composite hypotheses. Second, typically 0 − 1 loss is considered for measuring the decision

accuracy in multi-hypothesis testing, while our problem has a more complex loss function based on

the Kendall’s tau distance that is tailored to rank aggregation. Our problem is also a substantial

generalization of classical sequential test of two composite hypotheses [33, 34, 50]. In particular,

when the number of items is two (K = 2), our problem degenerates to testing two composite

hypotheses without adaptive experiment selection.
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1.1. Main contribution We summarize the main methodological and theoretical contribu-

tions of the paper as follows.

• Under a Bayesian decision framework and under a large class of parametric pairwise compar-

ison models, we derive an asymptotic lower bound (Theorem 1) for the Bayes risk of all possible

sequential ranking policies. Note that the Bayes risk of the sequential rank aggregation problem,

which combines the expected Kendall’s tau distance and the expected sample size, is more complex

than that of the traditional sequential hypothesis testing problems (e.g., [20, 33, 45]).

• We propose two sequential ranking policies. In particular, we provide two choices of stopping

rule and a class of randomized pair selection rules. We quantify the expected Kendall’s tau and

the sample size of the proposed methods (Theorems 2 and 3) and show that the Bayes risks match

the asymptotic lower bound, which further implies that the proposed methods are asymptotically

optimal (Corollary 1). Our randomized pair selection rule utilizes an epsilon-greedy strategy to

balance the exploration (i.e., randomly selecting pairs to gain information about the underlying

parameters {θk}Kk=1) and exploitation (i.e., choosing the best pair for comparison based on the

current information). The exploration is critical for learning the rank, while the exploitation is

critical for saving the sample size for comparison.

— For the exploration, we quantify the impact of the exploration rate on the estimation of

model parameters and provide an exponential probability bound as an auxiliary result (Lemma 1).

— For the exploitation, we consider a randomized adaptive selection rule (see Section 3).

Specifically, in each step, the probability of selecting each pair is obtained by solving a saddle point

optimization problem. We further develop a mirror descent algorithm for solving the optimization

(see Section 3.4).

• Technically, we develop new analytical tools for quantifying the level crossing probability of a

random function (e.g. likelihood function, martingale, or sub-martingale) double-indexed by model

parameters and the sample size. As such a probability tends to zero, the problem falls into the rare-

event analysis domain, where an exact exponential decay rate is challenging to obtain. Traditional

methods, such as the ones adopted in [20, 45], are based on exponential change-of-measure of the

log-likelihood ratio statistics, and are not directly applicable to the ranking problem considered

here. The method we use in the proof combines a mixture-type of change-of-measure method

recently proposed in [1, 37, 39] and large deviation results for martingales.

1.2. Related works Sequential hypothesis testing, initiated by the seminal works of [58]

and [59], is an important area of statistics for processing data taken in a sequential experiment,

where the total number of observations is not fixed in advance. A sequential test is characterized

by two components: (1) a stopping rule that decides when to stop the data collection process,
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and (2) a decision rule on choosing the hypothesis upon stopping. A large body of literature on

sequential tests with two hypotheses has been developed, a partial list of which includes [27, 34,

50]. Sequential testing with more than two hypotheses and sequential multiple testing have been

extensively studied in recent decades (see, e.g., [21, 22, 43, 53, 62]). For a comprehensive review

on sequential analysis, we refer the readers to the surveys and books [29, 35, 52, 54] and references

therein. In addition to optimizing over the stopping rule and final decision, [20] first introduces the

adaptive design into the sequential testing framework, followed by a large body of literature; see,

e.g. [2, 33, 45, 47, 57]. Sequential analysis finds many applications in different disciplines, including

clinical trials, educational testing, and industrial quality control (see, e.g., [5, 6, 7, 36, 60, 63]).

Rank aggregation has been an active research problem in recent years (see, e.g., [16, 18, 19, 24,

25, 31, 46, 51] and references therein) that finds many applications to social choice, tournament

play, search rankings, advertisement placement, etc. With the advent of crowdsourcing services,

one can easily ask crowd workers to conduct comparisons among a few objects in an online fashion

at a low cost [15, 17]. Therefore, active noisy sorting and ranking problems have received a lot of

attentions in recent years. For example, Braverman et al. [12], Braverman and Mossel [13], Mao

et al. [42] studied the active sorting problem where each query of (i, j) reveals the true ranking

between i and j with a fixed probability 1/2 +γ for some γ > 0, regardless of the distance between

i and j. In contrast, our model associates each item i with a preference score (a.k.a. utility) θi.

The comparison result between i and j would be based on the values of θi and θj according to

some probabilistic model (e.g., see Eq. (2)). Jamieson and Nowak [30] studied the ranking problem

with feature information for each item. Heckel et al. [26] investigated the active top-K ranking

under a general class of nonparametric models and also established a lower bound on the number

of comparisons for parametric models. However, as we mentioned, although rank aggregation has

been extensively studied in the machine learning community, it has not been investigated under

the sequential analysis framework, which incorporates the random stopping rule as a decision

variable. The techniques developed in this work will enable a sequential rank procedure with

optimal stopping and adaptive design.

1.3. Paper Organization The rest of the paper is organized as follows. In Section 2, we

introduce the setup of the problem. Section 3 presents the proposed policies and the theoretical

results, and provides further discussions on the proof sketch and model misspecification. The con-

cluding remarks are provided in Section 5. Technical proofs for the Theorems are provided in the

Section 6. Proofs for all the lemmas are provided in the supplementary material.
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2. Problem Setup We first introduce the comparison model and formulate the sequential

ranking problem. Consider the task of inferring a global ranking over K items. Let A = {(i, j) :

i, j ∈ {1, ...,K}, i < j} be the set of pairs for comparison. At each time n (n = 1,2, . . .), a pair

an := (an,1, an,2)∈A is selected for comparison. For example, a2 = (1,2) means that items 1 and 2

are compared at time two. The comparison outcome is denoted by a random variable Xn ∈ {0,1},

where Xn = 1 means item an,1 is preferred to item an,2 and Xn = 0 otherwise. The comparison

outcome Xn is assumed to follow a ranking model, such as the widely used Bradley-Terry-Luce

(BTL) model [11, 41] and Thurstone model [55]. Such a ranking model assumes that each item is

associated with an unknown latent score θi ∈ R, for i= 1, . . . ,K, where the global rank of the K

items is given by the rank of θ1, ...., θK . The distribution of Xn is determined by θi and θj, when

comparing pair (i, j). For example, given pair an := (an,1, an,2), the BTL model assumes that,

P(Xn = 1) =
exp(θan,1)

exp(θan,1) + exp(θan,2)
;

P(Xn = 0) =
exp(θan,2)

exp(θan,1) + exp(θan,2)
.

(2)

Under this model, θan,1 > θan,2 means that item an,1 is preferred to item an,2, reflected by P(Xn =

1)> 0.5. A common feature for many comparison models is that the distribution of the comparison

between items i and j only depends on the pairwise differences θi− θj. Consequently, such models

are not identifiable up to a location shift. To overcome this issue, we fix θ1 = 0 and treat θ =

(θ2, ..., θK) as the unknown model parameters. The result of this paper applies to a wide class of

comparison models and thus we denote the probability mass function of the comparison outcome

x given pair a as faθ (x). We point out that while we focus on the case where the distribution of

the pairwsise comparison only depends on θan,1− θan,2, our methods and results can be extended

to more general cases without this requirement.

We now describe components in a sequential design for rank aggregation: an adaptive selection

rule A, a stopping time T , and a decision rule R on the global rank. For the adaptive selection

rule A, we consider the class of randomized adaptive selection rules, which contains deterministic

selection rules as special cases. In particular, let A= {λn : n= 1,2, ...}, where λn = (λi,jn )(i,j)∈A ∈∆

denotes the probability of selecting the pair (i, j). Here, ∆ = {(λi,j) :
∑

(i,j)∈A λ
i,j = 1, λi,j ≥ 0} is

a probability simplex over K(K − 1)/2 pairs. At each time n, a pair an is selected according to

the categorical distribution λn, where λn adapts to the filtration sigma-algebra generated by the

selected pairs and the observed outcomes, that is, Fn = σ(X1, ...,Xn−1, a1, ..., an−1). The adaptive

comparison process will stop at time T , a stopping time with respect to the filtration {Fn}n≥0.

It is worthwhile to note that the random stopping time T is also the number of samples being

collected. Upon stopping, one needs to make a decision R := (R1, . . . ,RK), the global ranking of the
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K items. For example, when K = 3, R= (3,1,2) means that one decides θ2 > θ3 > θ1. We further

denote PK the set of permutations over {1, . . .K} and thus R ∈ PK . The adaptive selection rule

A= {λn : n= 1,2, ...}, the stopping time T , and the decision R together form a sequential ranking

policy, denoted by π= (A,T,R).

The performance of a sequential ranking policy is measured via its ranking accuracy and the

expected stopping time. Specifically, we measure the ranking accuracy by Kendall’s tau distance

[32], which is one of the most widely used measures for ranking consistency. More precisely, for

each R = (R1, ...,RK) ∈ PK , we convert it to the binary decisions over pairs {Ri,j ∈ {0,1} : i, j ∈
{1, ...,K}, i < j}, where Ri,j = I(Ri <Rj), and Ri,j = 1 means that item i is preferred to item j.

For example, if R= (3,1,2), we have R1,2 = 0 and R2,3 = 1. The Kendall’s tau distance between R

and the true ranking induced by (θ1, . . . , θK) is defined by

LK({Ri,j}) =
∑
i<j

{I(θi > θj)(1−Ri,j) + I(θi < θj)Ri,j}. (3)

On the other hand, the loss function associated with the random sample size T is defined as,

Lc(T ) = c×T, (4)

where the constant c > 0 indicates the relative cost of conducting one more pairwise comparison.

The choice of c depends on the nature of the ranking problem. Generally, if obtaining each sample

is expensive comparing to the cost due to the inaccuracy of the ranking, then a large c will be

chosen and vise versa. Note that c is not a tuning parameter to optimize over.

We define the risk associated with a sequential ranking policy under the Bayesian decision frame-

work, in which the model parameter θ is assumed to be random and follows a prior distribution.

To avoid confusion, we write Θ when θ is viewed as random, and denote by ρ(θ) the prior density

function of Θ = (Θ2, ...,ΘK). Recall that we have fixed Θ1 = 0 to ensure identifiability. The Bayes

risk combines the risks associated with Kendall’s tau distance of the decision and the sampling

cost,

Vc(ρ,π) =Eπ (LK({Ri,j}) +Lc(T )) (5)

=Eπ
{∑
i<j

I(Θi >Θj)(1−Ri,j) + I(Θi <Θj)Ri,j

}
+ cEπT,

where the expectation Eπ is taken under the policy π, with respect to the randomness of the

selected pairs, the observed comparison results, the stopping time, as well as the prior distribution

ρ. Of particular interest is the minimum risk under the optimal sequential ranking policy given the

prior distribution of Θ and sampling cost c

V ∗c (ρ) = inf
π
Vc(ρ,π). (6)
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For any given cost c, obtaining an analytical form of an optimal policy that achieves V ∗(ρ, c)

is typically infeasible. Following the literature of sequential analysis, a policy is usually evaluated

by the notion of asymptotic optimality [20]. In particular, a policy π is said to be asymptotically

optimal if

lim
c→0

Vc(ρ,π)

V ∗c (ρ)
= 1, (7)

i.e. when the relative sampling cost converges to 0. It is worthwhile noting that in the construction

of our policy, we certainly allow the cost c to be non-zero. The notion of asymptotic optimality in

(7) has been widely adopted in the sequential analysis literature as an optimality criterion (see,

e.g., [20, 33, 45, 50]). The limiting process c→ 0 should be interpreted as the sample size n goes to

infinity, which is a very common limiting process in statistical asymptotic theory. In asymptotic

theory, letting n grow to infinity is only for the theoretical study of the properties of an estimator,

while in practice no dataset has an infinite number of observations.

3. Sequential Policies and Asymptotic Optimality In Section 3.1, we propose two

sequential ranking policies π1 and π2. The asymptotic optimality of the two policies is presented

in Section 3.2. Then we provide the proof sketch in Section 3.3, the optimization algorithm for

efficient computation in Section 3.4, and the discussions on model misspecification in Section 3.5.

3.1. Two Sequential Policies We first introduce some notations. Let W be the support of

the prior probability density function ρ, i.e., W = {θ : ρ(θ)> 0}, where Ē denotes the closure of a

set E. We further define the set Wi,j = {θ : θi ≥ θj}∩W for all i, j ∈ {1, ...,K}. It is worthwhile to

note that Wi,j and Wj,i are different sets and their union is the set W . Given a sequence of selected

pairs a1, ..., an and observed comparisons X1, ...,Xn, the log-likelihood function is defined as,

ln(θ) =
n∑
i=1

log faiθ (Xi),

and the corresponding maximum likelihood estimator θ̂(n) = (θ̂
(n)
2 , ..., θ̂

(n)
K ) is

θ̂(n) = arg sup
θ∈W

ln(θ). (8)

In what follows, we present our proposed sequential policies in terms of the proposed stopping time

T , selection rule A, and ranking decision R.

3.1.1. Stopping Times We then introduce two stopping times based on the generalized

likelihood ratio statistic,

T1 = inf
{
n> 1 :

∑
(i,j)∈A

exp{−| sup
θ∈Wi,j

ln(θ)− sup
θ∈Wj,i

ln(θ)|} ≤ e−h(c)
}
, (9)
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and

T2 = inf
{
n> 1 : min

(i,j)∈A
| sup
θ∈Wi,j

ln(θ)− sup
θ∈Wj,i

ln(θ)| ≥ h(c)
}
, (10)

where h(c) = | log c|(1 + | log c|−α) for some constant α∈ (0,1) and c is the relative cost introduced

in (4). We note that T2 is obtained by replacing the summation in T1 by maximization and taking

log and minus on both sides. Intuitively, the stopping rule T2 stops when the likelihood can tell

whether θi ≥ θj or vice versa for each pair (i, j).

3.1.2. Ranking Decision Upon stopping, the decision about the global rank is made accord-

ing to the rank of MLE at the stopping time T (T = T1 or T2). That is,

R= r(θ̂(T )), (11)

where the function r(θ) : RK−1 → PK gives the rank of (0, θ2, ..., θK). More precisely, r(θ) =

(r1, . . . , rK)∈ PK , satisfying θr1 ≥ θr2 ≥ . . .≥ θrK , where θ1 = 0.

3.1.3. Randomized Selection Rule We proceed to the randomized selection rule A, which

is obtained by solving an optimization program. For a given θ, we define function D(θ),

D(θ) = max
λ∈∆

min
θ̃∈W :r(θ̃)6=r(θ)

∑
(i,j)

λi,jDi,j(θ‖θ̃), (12)

where Di,j(θ‖θ̃) is the Kullback-Leibler (KL) divergence from f i,j
θ̃

(·) to f i,jθ (·), i.e.

Di,j(θ‖θ̃) :=
∑

x∈{0,1}

f i,jθ (x) log
f i,jθ (x)

f i,j
θ̃

(x)

and f i,jθ (x) denotes the probability mass function when the pair (i, j) is selected. We further define

λ∗(θ) = arg max
λ∈∆

min
θ̃∈W :r(θ̃) 6=r(θ)

∑
(i,j)

λi,jDi,j(θ‖θ̃), (13)

and

λ̂n = (λ̂i,jn ) =λ∗(θ̂(n−1)). (14)

That is, λ∗(θ) is the solution to the optimization problem (12), and λ̂n is the solution to the

optimization problem given the MLE based on the previous n− 1 samples. The objective function

in (12) is a weighted KL divergence for all pairs with the weights λi,j. The inner minimization

problem is taken over all the parameter vector θ̃ ∈W , for which the induced rank r(θ̃) is different

from that of θ. At each time n, given the MLE θ̂(n−1), we compute λ̂n, which is the maximizer

of λ ∈∆ in D(θ̂(n−1)). We elaborate on the intuition behind the optimization in (12). First, for

each θ,
∑

(i,j) λ
i,jDi,j(θ‖θ̃) gives the drift of the log-likelihood ratio statistics between fθ and fθ̃
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under the model fθ and a randomized sampling scheme specified by λ, which is also the mutual

information between fθ and fθ̃ when the pair is selected according to λ. Minimizing the inner part

with respect to θ̃ over the set {θ̃ ∈W : r(θ̃) 6= r(θ)} provides a measure on the distinguishability

of the rank of θ under the sampling scheme λ. Second, if the true model parameter is θ, we would

like to choose a sampling scheme λ such that it provides the highest distinguishability obtained

by the first step. Thus, we perform maximization in the outer part of (12). Finally, as the true

model parameter θ is unknown, we will replace θ by the MLE based on the current information.

In Section 3.4, we provide a mirror descent algorithm for solving (12).

Unfortunately, directly using λ̂n in the selection rule A as the choice probability does not guar-

antee the asymptotic optimality. This is because λ̂n does not guarantee sufficient exploration of

all item pairs, which may lead to the imbalance between the exploration and exploitation for the

sequential procedure. To fix this issue, we combine λ̂n with an ε-greedy approach which is widely

used in balancing exploration and exploitation in multi-armed bandit and decision-making prob-

lems (see, e.g., [61]). Specifically, an exploration probability p∈ (0,1) is chosen, which is typically

small and may be chosen depending on the value of the relative sampling cost c. At each time n,

with probability p, we select the next pair uniformly from A. With probability 1−p, the next pair

is selected according to the categorical distribution specified by λ̂n. In other words, for each pair

(i, j), the choice probability of the selection rule at time n is given by

λi,jn = p
2

K(K − 1)
+ (1− p)λ̂i,jn .

Remark 1. We clarify that the proposed ‘ε-greedy’ algorithm is one of asymptotically optimal

exploration methods, and there may be other exploration methods with similar theoretical prop-

erties. For example, the ε-greedy algorithm with the exploration probability decaying at a rate

n−β when the sample size is n may be asymptotically optimal for a range of β > 0. Theoretical

properties of these additional exploration methods is an interesting problem and worth further

investigation.

We call the above selection rule Ap, where the subscript emphasizes its dependence on the

exploration rate p. The two proposed sequential ranking policies are defined by π1 := (Ap, T1,R)

and π2 := (Ap, T2,R). The proposed sequential ranking policies are summarized in Algorithm 1,

where the prior information of Θ is only utilized through its support W in Steps 1 and 2. Algorithm

1 is an iterative algorithm, which runs in T1 (or T2) iterations, where T1 (or T2) is a data-dependent

stopping time. The major computational complexity for each iteration arises from solving two

optimization problems in Step 1 and 2. The Step 1 is a standard maximum likelihood estimation,
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Algorithm 1: Sequential Ranking Policy

Input: The probability mass (density) function faθ (x) for any pair a∈A, the probability

p∈ (0,1) in ε-greedy, and the support W of ρ(θ).

Initialization: Uniformly sample a pair a1 at random and observe the comparison outcome

X1.

Iterate For n= 2,3, . . . until the stopping time T in (9) (or (10)) is reached.

1. Compute the MLE based on the previous n− 1 comparisons:

θ̂(n−1) = arg sup
θ∈W

ln−1(θ).

2. Compute

λ̂n = arg max
λ∈∆

min
θ̃∈W :r(θ̃)6=r(θ̂(n−1))

∑
(i,j)∈A

λi,jDi,j(θ̂(n−1)‖θ̃). (15)

3. Flip a coin with head probability p.

• If the outcome is head, select the pair an uniformly at random over all pairs from A.

• Otherwise, select the pair an according to the categorical distribution specified by λ̂n.

4. Observe the comparison result Xn and update the likelihood function ln(θ).

Output: The rank R= r(θ̂(T )), i.e., the global rank induced by θ̂(T ).

which depends on the structure of the loss function l and the constraint W . The computation for

solving (13) will be discussed in Section 3.4. The proofs of the theoretical results are provided in

Section 6.

3.2. Asymptotic Optimality This section contains the main results of the paper, includ-

ing (1) a lower bound on the risk of a general sequential ranking procedure, and (2) theoretical

analysis of the proposed procedures, which leads to their asymptotic optimality. The asymptotic

optimality of the proposed method is established through the following theorems, which will be

introduced later in this section. Theorem 1 provides an asymptotic lower bound for the Bayes risk

of an arbitrary sequential ranking policy. Theorems 2 and 3 provide asymptotic upper bounds for

the proposed procedures in terms of their expected Kendall’s tau and expected stopping time,

respectively. These upper bounds together lead to an asymptotic upper bound for the Bayes risk

of the proposed procedures that matches the lower bound in Theorem 1. As the asymptotic lower

and upper bounds match, we conclude that the proposed method is asymptotically optimal in

Corollary 1. As a by-product, an exponential deviation bound for the MLE over a time window is

also obtained in Lemma 1. The assumptions for our results are described and discussed.
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Notations Throughout the rest of the paper, we write ac =O(bc) for two sequences ac and bc

if |ac|/|bc| is bounded, uniformly in θ, as c→ 0. Similarly, we write ac = Ω(bc) if ac > 0, bc > 0 and

bc =O(ac). We will also write ac = o(bc) if ac/bc→ 0 uniformly in θ. The norm ‖ · ‖ indicates the `2

vector norm. Throughout the paper, we use the uppercase Greek letter Θ to indicate the random

score parameter and the lowercase Greek letter θ to denote a deterministic vector.

Main results We first describe the assumptions. For technical needs, we make some regularity

conditions on the prior distribution ρ(θ). Recall that we have fixed θ1 = 0 and let θ = (θ2, ..., θK)∈

RK−1 be the unknown model parameters.

Assumption 1. The support W := {θ ∈RK−1 : ρ(θ)> 0} is a compact set in RK−1, where Ē

denotes the closure of a set E. In addition, for any permutation σ ∈ PK, ({θ ∈ RK−1 : r(θ) =

σ}∩W )◦ 6= ∅, where E◦ denotes the interior of a set E.

Assumption 2. There exists a constant δb > 0 such that for all s > 0 and θ ∈W , m(B(θ, s)∩

W ) ≥ min{δbsK−1,1}, where B(θ, s) denotes the open ball centered at θ with radius s and m(·)

denotes the Lebesgue measure.

Assumption 3. The function log faθ (x) is continuously differentiable in θ for all x uniformly.

That is,

sup
θ∈W,a∈A,x

‖∇θ log faθ (x)‖<∞.

In addition, infθ∈W,a∈A,x f
a
θ (x)> 0.

Assumption 4. infθ,θ̃∈W :r(θ̃)6=r(θ) max(i,j)D
i,j(θ‖θ̃)> 0.

Assumption 5. infθ∈W◦ ρ(θ)> 0 and supθ∈W ρ(θ)<∞.

We provide some remarks on the above regularity assumptions. Assumption 1 requires the prior

distribution for Θ to have a bounded support, which has a non-empty interior for each rank.

Assumption 2 avoids the support W being singular. Assumption 3 requires the smoothness of the

likelihood function. It also requires the comparison probability is bounded away from 0 and 1.

Assumption 4 requires that there is no tie in the support of the prior distribution. This is a standard

assumption in sequential analysis, which corresponds to the classic “indifference zone” assumption

in sequential hypothesis testing [33, 40, 50]. In particular, the “indifference zone” condition assumes

that the null and alternative hypotheses are separated in the sense that the Kullback-Leibler

divergence between the two hypotheses is positive, and if the true model parameter is in between

the two hypotheses, then it is considered to be indifferent for selecting the null and alternative

hypothesis. For example, for any δ > 0, κ > 0, the set

W = {θ : ‖θ‖ ≤ κ and ∀i 6= j such that |θi− θj| ≥ δ} (16)
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satisfies Assumptions 1, 2 and 4. Assumption 5 requires the prior distribution to have a positive

density function (bounded from zero) over the support. For instance, for the set W described in

(16), the uniform prior over W satisfies the Assumption 5. In addition, with such a uniform prior

over W , the BTL model defined in (2) satisfies Assumptions 3 and 4. It is worthwhile to note

that these technical assumptions are mainly for the theoretical development, while the proposed

adaptive ranking policies are applicable in practice regardless of the conditions on W .

Recall the definition of D(θ) in (12). We further define

tc(θ) =
| log c|
D(θ)

. (17)

Note that under the Assumption 4, tc(θ) is always finite. Intuitively, for small c,

| log c|/{minθ̃∈W :r(θ̃)6=r(θ)

∑
(i,j) λ

i,jDi,j(θ‖θ̃)} is approximately the smallest expected sample for

the simple against simple hypothesis testing problem H0 : Xn ∼ fanθ against H1 : Xn ∼
fan
θ̃

for some r(θ̃) 6= r(θ), where an is sampled from λ. Note that tc(θ) = | log c|/D(θ) =

infλ∈4[| log c|/{minθ̃∈W :r(θ̃)6=r(θ)

∑
(i,j) λ

i,jDi,j(θ‖θ̃)}]. Thus, tc(θ) is approximately the smallest

expected sample size for distinguishing the global rank of θ from other ranks with an adaptive

selection step. We formalize the above heuristic arguments in the following Theorem 1–Theorem 3.

We first present a lower bound on the minimal Bayes risk V ∗c (ρ) defined in (6).

Theorem 1. Under Assumptions 1-5, we have

lim inf
c→0

V ∗c (ρ)

cEtc(Θ)
≥ 1,

where Etc(Θ) =
∫
W
tc(θ)ρ(θ)dθ.

Recall the definition in (7) that a policy π is said to be asymptotically optimal if Vc(π,ρ) =

(1+o(1))V ∗c (ρ) as c→ 0. Thus, to show a policy π is indeed asymptotically optimal, we only need to

show that Vc(π,ρ) = (1 +o(1))cEtc(Θ) as c→ 0, according to Theorem 1. We proceed to show that

the proposed sequential ranking method is asymptotically optimal. In Section 3.1, we propose two

policies π1 = (Ap, T1,R), π2 = (Ap, T2,R). Their risks consist of two parts, the expected Kendall’s

tau and the expected sample size.

Assumption 6. For each θ,θ′ ∈W and θ 6= θ′, there exists a ∈ A that can distinguish θ and

θ′. That is,
∑

a∈AD
a(θ‖θ′) > 0 for θ,θ′ ∈W . In addition, there is a constant δ > 0 such that∑

a∈AD
a(θ‖θ′)≥ δ‖θ−θ′‖2.

Assumption 6 requires the identifiability of the model, which is critical for the consistency of the

MLE. For the BTL model described in (2), Assumption 6 is satisfied after fixing θ1 = 0. In what

follows, Theorems 2 and 3 provide asymptotic upper bounds for the expected Kendall’s tau and

expected stopping time of the proposed method, respectively.
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Theorem 2. Under Assumptions 1- 6, we consider a policy πl = (A,Tl,R) (l= 1,2), where we

choose p∝ | log c|− 1
2+δ0 for some δ0 satisfying 0< δ0 <

1
2

in Algorithm 1 and R= {Ri,j}. Then,

ELK({Ri,j}) =O(c) for l= 1,2.

Theorem 3. Under Assumptions 1- 6, we consider a policy πl = (A,Tl,R) (l= 1,2), where we

choose p∝ | log c|− 1
2+δ0 for some δ0 satisfying 0< δ0 <

1
2

in Algorithm 1 and R= {Ri,j}. Then,

limsup
c→0

ETl
Etc(Θ)

≤ 1 for l= 1,2.

Combining this with the asymptotic lower bound on the minimal Bayes risk in Theorem 1, and

noticing that lim
c→0

Etc(Θ) =∞, we arrive at the asymptotic optimality of the proposed policies.

Corollary 1. Under Assumption 1-6, if we choose p ∝ | log c|− 1
2+δ0 for some δ0 satisfying

0< δ0 <
1
2
, then πl = (Ap, Tl,R), l= 1,2, are asymptotically optimal policies.

Consistency of MLE An auxiliary result obtained in deriving the upper bound for the

expected sample size is the following exponential bound for the MLE over a time window.

Lemma 1 Let m≥ n and let ελ,m,n be a sequence of real numbers such that minn≤t≤m,(i,j) λ
i,j
t ≥

ελ,m,n. In addition, let δm,n be a sequence of positive numbers such that nελ,m,nδ
2
m,n→∞ as n→∞.

Then,

Pθ

(
sup

n≤t≤m
‖θ̂(t)−θ‖ ≥ δm,n

)
≤ e−Ω(nε2λ,m,nδ

4
m,n)×O(mK),

where we denote Pθ(·) the conditional probability P(·|Θ = θ) and θ̂(t) is the MLE defined in (8).

Moreover, this upper bound is uniform for θ ∈W .

The proof is provided in the supplementary material. From the above lemma, we can derive

exponential upper bounds concerning the uniform consistency of θ̂(t). In particular, if we let δm,n be

a fixed positive constant and ε2
λ,m,n�m−1 logm as m→∞, then we can show supt≥n‖θ̂(t)−θ‖→ 0

in probability as n→∞ with additional steps.

3.3. Proof strategy We briefly explain the proof strategy for each of the main theorems.

Theorem 1 provides a lower bound on V (ρ,π) for an arbitrary policy π = (A,T,R) by discussing

two cases: ELK(R) ≥ c| log c|2 and ELK(R) < c| log c|2. For the first case, Theorem 1 is easily

justified. The main technicalities are in the second case, where the main step is to develop an upper

bound for the probability P
(
T ≤ (1−δ)Etc(Θ)

)
for any constant δ > 0. Heuristically, we argue that

whenever ELK(R) is small, it implies that the likelihood ratios between the conditional probability

measures of data given that Θ has different ranking patterns will be relatively large, which cannot
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be achieved with a relatively small sample size T . The rigorous proof for this heuristic statement is

done through a change-of-measure argument and a large deviation bound for the likelihood ratio.

The proof of Theorem 2 is based on the analysis of the expected Kendall’s tau under the stopping

times T1 and T2. The analysis under T2 is based on the equation

ELK(R) =
∑
i,j

∫
θ/∈Wj,i

Pθ

(
sup

θ̃∈Wj,i

lT2(θ̃)− sup
θ′∈Wi,j

lT2(θ′)>h(c)
)
ρ(θ)dθ,

followed by developing an upper bound for the probability Pθ

(
supθ̃∈Wj,i

lT2(θ̃)−supθ′∈Wi,j
lT2(θ′)>

h(c)
)

, where h(c) = | log c|(1 + | log c|−α) is slightly larger than | log c|. Intuitively, thanks to the

ε-greedy algorithm and the stopping time, a sufficient amount of information has been collected

upon stopping so that the error probability is well-controlled. The analysis under T1 is similar and

we omit the details here.

To prove Theorem 3, we first note that p ∝ | log c|− 1
2+δ0 for some positive δ0 in the ε-greedy

algorithm. Thus, we could apply Lemma 1 and show that the MLE θ̂(t) is consistent with an

exponential error bound. Roughly, this justifies that λ̂n defined in (14) is close to λ∗(θ) given

Θ = θ. Thus, the expected sample size E(Ti|Θ = θ) approximates the one given by the selection

rule λ∗(θ) that can be further approximated by h(c)/D(θ) = (1 + o(1))tc(θ), where we recall that

tc(θ) = | log c|/D(θ) is defined in (17). We can then justify Theorem 3 by taking the expectation

with respect to the prior distribution of Θ on both sides.

3.4. Optimization in Algorithm 1 In this section, we show that the key optimization

problem in (13) can be solved efficiently using the mirror descent algorithm (see, e.g., [8]).

Let us first consider the inner optimization problem

θ̃0(λ)∈ arg max
θ̃∈W :r(θ̃)6=r(θ)

−
∑
(i,j)

λi,jDi,j(θ‖θ̃), (19)

in step 1 of Algorithm 2. We clarify that in this optimization, θ is fixed, θ̃ is the decision variable

we would like to optimize with, and the resulting θ̃0(λ) depends on θ and λ. For almost all the

popular comparison models, the objective function −
∑

(i,j) λ
i,jDi,j(θ‖θ̃) is smooth in θ̃. Moreover,

the objective function is also concave in θ̃ for comparison models in an exponential family form

(e.g., the BTL model in (2)). When the support {θ̃ ∈W : r(θ̃) 6= r(θ)} can be written as the

union of a finite number of convex sets (see Eq. (20) below), (19) can be obtained by solving finite

maximization problems, each with a smooth concave objective function constrained in a convex

set. Therefore, from now on, we assume that the inner optimization problem can be solved.

We then discuss the outer optimization problem

min
λ∈4

h(λ), h(λ) = max
θ̃∈W :r(θ̃) 6=r(θ)

φ(λ, θ̃), φ(λ, θ̃) =−
∑
(i,j)

λi,jDi,j(θ‖θ̃).
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Algorithm 2: Mirror Descent Algorithm for Solving Eq. (13)

Input: The MLE estimator θ and total number of iterations m.

Initialization: A starting point λ0 ∈∆ and a constant c0 > 0.

Iterate For t= 1,2, . . . ,m:

1. Compute the maximizer:

θ̃0(λt−1)∈ arg max
θ̃∈W :r(θ̃) 6=r(θ)

−
∑
(i,j)

λi,j,t−1Di,j(θ‖θ̃)

2. Compute the sub-gradient g(λt−1) where g(λt−1)i,j =−Di,j(θ‖θ̃0(λt−1))

3. Update for λt:

λt = arg min
λ∈∆

{
ηt〈g(λt−1),λ〉+D(λ‖λt−1)

}
, (18)

where ηt = c0√
t

and D(λ‖λt−1) is the KL divergence between λ and λt−1, i.e.,

D(λ‖λt−1) =
∑

i,j λi,j log λi,j

λi,j,t−1

Output: The solution λ̂= 1
m

∑m

t=1 λ
t.

When φ(λ, θ̃) is a continuous and bounded function and the set W is compact, further noting that

φ(λ, θ̃) is convex in λ for every θ̃, h(λ) is a convex function in λ, by the Danskin’s Theorem (see

Proposition B.25 in [9]). Moreover, for a given λ, let θ̃0(λ)∈ arg maxθ̃∈W :r(θ̃) 6=r(θ) φ(λ, θ̃) be one of

the maximizers. Then, by Danskin’s theorem, g(λ) with g(λ)i,j =−Di,j(θ‖θ̃0(λ)) is a sub-gradient

of h(λ), as used in step 2 of Algorithm 2.

Finally, (18) in step 3 of the algorithm has a closed-form solution, obtained by by writing down

the KKT condition. That is,

λi,j,t =
1

C
λi,j,t−1 exp

(
−ηtg(λt−1)i,j

)
,

where λi,j,t is the (i, j)-th component of λt and the normalization constant C =∑
i,j λ

i,j,t−1 exp (−ηtg(λt−1)i,j).

From [8] or Theorem 4.2 from [14], we have the following convergence rate for Algorithm 2.

Proposition 1 ([8]). Assuming the inner optimization in (19) can be solved exactly, the mir-

ror descent algorithm in Algorithm 2 is guaranteed to converge to the optimal solution at the rate

of O
(√

1/t
)

. That is when t=O(1/ε2), we have h(λ̂)−minλ∈∆ h(λ)≤ ε.

We clarify that for W defined in the example (16), it is a union over exponentially many convex

sets. Thus, the proposed method requires exponential computational time for such a W . On the

other hand, it is possible to have a fully polynomial-computational-time algorithm if a mis-specified

W̃ is adopted (see (20) in the next section).
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3.5. Model misspeficiation In practice, the support W of the prior distribution ρ(·) maybe

unknown. In this case, we may choose

W̃ =∪(i,j)W̃i,j and W̃i,j = {θ : θi ≥ θj}∩ {θ : |θi| ≤M,2≤ i≤K} (20)

in the sequential ranking policy for some reasonable positive constant M . With this mis-specified

support of ρ(·), the resulting policy may not achieve the asymptotic lower bound of the Bayes risk

presented in Theorem 1, due to the incomplete information. On the other hand, the Bayes risk of

the resulting ranking procedure can still achieve the same order of the minimal Bayes risk as c→ 0.

That is, limsupc→0 Vc(ρ,π)/V ∗c (ρ) is finite but greater than 1. The following assumption is made to

guarantee that the function faθ (x) has similar regularity on W̃ as on W . This assumption is mild.

For example, it is satisfied for W , W̃ , and faθ (x) described in (16), (20), and (2), respectively.

Assumption 7. supθ∈W̃ ,a∈A,x ‖∇θ log faθ (x)‖ < ∞, infθ∈W̃ ,a∈A,x f
a
θ (x) > 0, and

infθ∈W,θ̃∈W̃ :r(θ̃) 6=r(θ) max(i,j)D
i,j(θ‖θ̃) > 0. In addition, there is a constant δ > 0 such that∑

a∈AD
a(θ‖θ′)≥ δ‖θ−θ′‖2 for all θ ∈W and θ′ ∈ W̃ .

Theorem 4. If we replace W by W̃ and replace Wi,j by W̃i,j(defined in (20)) in (9), (10),

(13) as well as in Algorithm 1, and adopt the resulting policy πl = (A,Tl,R) (l = 1,2) with p ∝

| log c|− 1
2+δ0 for some δ0 satisfying 0< δ0 <

1
2
, then under Assumptions 1, 2, 5, and 7,

limsup
c→0

Vc(ρ,π)

V ∗c (ρ)
≤ E{1/D̃(Θ)}

E{1/D(Θ)}
,

where D(θ) is defined in (12) and D̃(θ) is define as

D̃(θ) = max
λ∈∆

inf
θ̃∈W̃ :r(θ̃)6=r(θ)

∑
(i,j)

λi,jDi,j(θ‖θ̃).

To obtain Theorem 4, we perform similar analysis as those for Theorem 2 and Theorem 3.

Although W̃ violates the separation property required by Assumption 4, similar proof strategy still

applies under Assumption 7. Roughly, this is because the expected sample size E(Tl|Θ = θ) is now

approximated by | log c|/D̃(θ) and D̃(θ)> 0 for θ ∈W . Note that to have D̃(θ)> 0, we only need

the support W to have the separation property and W̃ can contain ties among the parameters.

4. Numerical Examples

4.1. Behavior of D(Θ). Our main results suggest that the oracle risk V ∗c (ρ) ≈

c| log c|E{1/D(Θ)} when cost c is close to zero under the assumptions required by Theorems 2 and

3. The quantity 1/D(θ) can be naturally viewed as a measure of difficulty for the rank aggregation
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Figure 1. A level plot for the value of log(1/D(θ)) as a function of θ2 (x-axis) and θ3 (y-axis), where K = 3 and

W = {θ : ‖θ‖ ≤ 3, θ1 = 0,and ∀i 6= j such that |θi− θj | ≥ 0.1}.

task when the true parameter vector is θ. In what follows, we numerically investigate the behavior

of 1/D(θ).

We first show the value of 1/D(θ) as a function of θ, when the number of items K = 3. The

support W of the prior distribution is chosen according to (16) that satisfies W = {θ : ‖θ‖ ≤ 3, θ1 =

0,and ∀i 6= j such that |θi− θj| ≥ 0.1}. Figure 1 provides a level plot for the value of log(1/D(θ))

as a function of θ2 and θ3. As we can see, the value of 1/D(θ) becomes larger when the values of

θ1, θ2, and θ3 are closer to each other and becomes smaller when they are more distinct.

We further show how the value of E(1/D(Θ)) depends on the number of items K. For each choice

of K, the support W is chosen as (16) with θ1 = 0, κ= 3, and δ= 0.1. Figure 2 shows that the value

of E(1/D(Θ)) is an increasing function of K, where E(1/D(Θ)) is approximated by 2000 Monte

Carlo simulations. As we can see from Figure 2, E(1/D(Θ)) increases with K, suggesting that

the rank aggregation task becomes more difficult on average, when the number of items becomes

larger.

4.2. Effectiveness of adaptive selection. We now show the power of the proposed adaptive

selection rule by comparing it with a random selection rule that randomly picks a pair of items in

each iteration. For each selection rule, we stop data collection once a fixed number of samples are

collected, where sample sizes 20, 40, and 60 are considered. In the adaptive selection method, we

set p= 0.2 for the ε-greedy strategy. The adaptive selection is implemented using Algorithm 2 with

the number of iterations m= 200, λi,j,0 = 2/(K(K−1)), and c0 = 1. Note that the random selection

method is essentially an off-line approach. The comparison is conducted under a model with K = 3,

W = {θ : ‖θ‖ ≤ 3, θ1 = 0, and ∀i 6= j such that |θi − θj| ≥ 0.1}, and the prior distribution ρ being

a uniform distribution on W . For each selection rule and each sample size, 1000 independent
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Figure 2. The value of E(1/D(Θ)) as a function of K, where K = 3,4, ...,10. For each choice of K, the support

W = {θ : ‖θ‖ ≤ 3, θ1 = 0,and ∀i 6= j such that |θi − θj | ≥ 0.1} and Θ follows a uniform distribution on W . Each

E(1/D(Θ)) is computed by 2000 Monte Carlo simulations.

Kendall’s tau 0-1 Loss
Sample size 20 40 60 20 40 60
Adaptive selection 0.217 0.115 0.075 0.195 0.113 0.074
Random selection 0.226 0.137 0.114 0.210 0.137 0.111

Table 1. Comparison between adaptive selection and random selection rules, under a fixed-length stopping criterion.

Each cell gives the averaged Kendall’s tau distance/0-1 loss for global ranking based on 1000 independent simulations.

simulations are conducted. Two performance metrics are considered, including the Kendall’s tau

distance (3) and the 0-1 loss for the recovery of global ranking that indicates whether or not the

global ranking of θ is completely recovered.

The results are given in Table 1 on the averaged Kendall’s tau distance and the averaged 0-1 loss

for global ranking. As we can see, for each sample size, both the average Kendall’s tau distance

and the average 0-1 loss for global ranking are smaller when applying the adaptive selection rule.

The advantage of adaptive selection over random selection becomes more substantial as the sample

size increases.

Under the current simulation setting, collecting one additional sample takes about 6 seconds1,

which is mainly due to solving optimization problem (15) in Algorithm 1. Note that the complexity

for solving (15) depends on the number of disconnected regions that the supportW has, which grows

exponentially with K. Therefore, for large values of K, it is suggested to simplify the computation

by using the misspecified support W̃ in (20) which can be written as the union of O(K2) half-planes.

1 The computation time is evaluated based on our implementation of the proposed method in R version 3.6.1 on a
standard desktop PC with Intel(R) Core(TM) i5-5300 @2.3GHZ.
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4.3. Effectiveness of adaptive stopping. We further assess the effectiveness of the two

stopping rules. The same model as above is used, i.e., K = 3, W = {θ : ‖θ‖ ≤ 3, θ1 = 0, and ∀i 6=

j such that |θi − θj| ≥ 0.1}, and the prior distribution ρ being a uniform distribution on W .

For the proposed adaptive stopping rules, we set h(c) = | log c|(1 + | log c|−0.5), where log c =

−0.25,−0.5,−0.75,−1,−1.25, and −1.5 are considered. The proposed adaptive selection rule is

used, with p= 0.2×| log c|− 1
4 . For each stopping rule and each value of c, 1000 independent simula-

tions are conducted, for which the averaged sample size, the Kendall’s tau distance, and the Bayes

risk (5) are recorded, as shown in Tables 2 and 3.

We then compare these adaptive stopping rules with the fixed-length stopping rule. More pre-

cisely, for each value of c and each adaptive stopping rule, we consider a policy with the same

adaptive selection rule and the sample size fixed to be the corresponding averaged sample size.

The averaged Kendall’s tau distance is also obtained based on 1000 independent simulations and

is reported in Tables 2 and 3.

Comparing each adaptive stopping rule with the corresponding fixed-length stopping rule, we see

that the adaptive stopping rule gives substantially smaller averaged Kendall’s tau distances for all

choices of c. It suggests that the adaptive stopping rules lead to more accurate ranking aggregation

results than the non-adaptive stopping rule.

Comparing the results in Tables 2 and 3, it seems that stopping rule T1 has slightly better per-

formance than T2 in terms of Kendall’s tau distance when the value of c is large. For example, the

averaged Kendall’s tau distance for T1 is 0.107 when the averaged sample size is 31, while that

for T2 is 0.112 when the averaged sample size is 35. Similarly, T1 achieves an averaged Kendall’s

tau distance 0.057 when the averaged sample size is 46, while T2 achieves the same value with an

averaged sample size 50. However, as c decays (e.g., when log(c) = −1.25,−1.5), the two proce-

dures have similar performance, in terms of the averaged sample size and Kendall’s tau distance.

Regarding Bayes risks, we see that for each value of c, the Bayes risks of T2 tends to be smaller

than those of T1. This is because, sampling cost is the dominant term in the Bayes risk. As T2

tends to stop slightly earlier than T1, its Bayes risks tend to be smaller. The difference in the

corresponding Bayes risks becomes smaller when c decays. When log(c) =−1.25,−1.5, the Bayes

risks of the two methods are quite close to each other. It is worth pointing out that the difference

in the finite sample performance when c is relatively large may depend on the choice of h(c), and

the two stopping times are asymptotically equivalent when c goes to zero.

5. Concluding Remarks In this paper, we consider the sequential design of rank aggregation

with adaptive pairwise comparison. This problem is not only of practical importance due to its wide

applications in fields such as psychology, politics, marketing, and sports, but also of theoretical
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Kendall’s tau Bayes risk
Sample size 31 46 60 76 91 110 log(c) -0.25 -0.5 -0.75 -1 -1.25 -1.5
T1 0.107 0.057 0.039 0.019 0.017 0.014 T1 23.9 27.8 28.5 28.3 26.2 24.5
Fixed length 0.207 0.133 0.100 0.069 0.059 0.052
Table 2. Comparison between the proposed stopping rule T1 and a fixed-length stopping rule, with the same adaptive

selection rule. For both methods, the averaged Kendall’s tau distances are given, each of which is computed based on

1000 independent simulations. For stopping rule T1, the Bayes risks are also given as a linear combination of Kendall’s

tau distance and sampling cost.

Kendall’s tau Bayes risk
Sample size 19 35 50 64 88 105 log(c) -0.25 -0.5 -0.75 -1 -1.25 -1.5
T2 0.190 0.112 0.057 0.029 0.020 0.014 T2 15.3 21.3 23.8 23.7 25.3 23.5
Fixed length 0.207 0.133 0.100 0.069 0.059 0.052
Table 3. Comparison between the proposed stopping rule T2 and a fixed-length stopping rule, with the same adaptive

selection rule. For both methods, the averaged Kendall’s tau distances are given, each of which is computed based on

1000 independent simulations. For stopping rule T2, the Bayes risks are also given as a linear combination of Kendall’s

tau distance and sampling cost.

significance in sequential analysis. Due to the more complex structure of the ranking problem than

hypothesis testing problems, no existing sequential analysis framework is suitable. We formulate

the problem under a Bayesian decision framework and develop asymptotically optimal policies.

Comparing to the existing Bayesian sequential hypothesis testing problems, the problem solved in

this paper is technically more challenging due to the more structured risk function. Novel technical

tools are developed to solve this problem, which are of separate theoretical interest in solving

complex sequential design problems.

The current work may be extended in several directions. First, an even larger class of comparison

models may be considered. The models considered in the current paper all assume the judges being

homogeneous, i.e., the comparison outcome does not depend on who the judge is. It is of interest

to consider the heterogeneity of the judges by incorporating judge-specific random effects into the

comparison models and develop corresponding sequential designs. Second, different risk structures

will be incorporated into the sequential ranking designs to account for practical needs in different

applications. For example, we will consider other metrics for assessing the ranking accuracy (e.g.

based on the accuracy of identifying the set of top K items) and non-uniform costs for different

judges.

The results for pairwise comparison problem can be extended to the case for multiple choices

by extending the BTL model in (2) to the multinomial logit model [56]. More specifically, given

an L-tuple at time n: an = (an,1, . . . , an,L), the annotator chooses Xn ∈ {1, . . . ,L} following the

distribution P(Xn = k) =
exp(θan,k )∑L

k′=1
exp(θan,k′ )

. However, additional challenges arise from solving the

corresponding optimization problem in (13) that incurs higher complexity due to exploring more
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combinations of choices. For example, if there are K items and L choices presented to the annotator

each time, we need to solve an optimization problem involving
(
K
L

)
combinations. It is worth further

investigation on how to reduce the computational burden while keeping a certain optimality.

6. Proof of Theorems In this section, we present the proofs of Theorem 1-3. The proof for

lemmas are delayed in the supplementary material. Throughout the proof, we will use the constants

δρ = infθ∈W ρ(θ)> 0 and supθ∈W,x,a∈A |∇faθ (x)| ≤ κ0. According to Assumptions 5 and 3, these two

constants are finite.

6.1. Proof for Theorem 1 Let ε= c| log c|2. For an arbitrary policy π= (A,T,R) and a prior

probability density function ρ, there are two possibilities: either ELK(R)≥ ε or ELK(R)< ε. For

the first case, we can see V (ρ,π)≥ ε≥ (1 + o(1))cEtc(Θ). For the second case, we have

V (π,ρ) =ELK(R) + cET ≥ cET.

Therefore, to prove the theorem it is sufficient to show that

lim inf
c→0

cET
cEtc(Θ)

≥ 1

or, equivalently, for each δ > 0 there exists a positive constant c0 > 0 such that for c < c0,

ET ≥ (1− δ)Etc(Θ).

Let tc,δ(θ) = (1− 2δ/3)tc(θ) for each δ > 0. Then we arrive at a lower bound

ET ≥E[TI(T > tc,δ(Θ))]

≥
∫
ρ(θ)tc,δ(θ)Pθ(T > tc,δ(θ))dθ

=Etc,δ(Θ)−
∫
ρ(θ)tc,δ(θ)Pθ(T ≤ tc,δ(θ))dθ

≥Etc,δ(Θ)− tmax,δP(T ≤ tc,δ(Θ)),

where we define tmax,δ = maxθ∈W tc,δ(θ) and recall that Pθ represents for the conditional probability

P(·|Θ = θ). According to Assumption 4 we have tmax,δ = O(| log c|) = O(Etc(Θ)). Therefore, it is

sufficient to show

P(T ≤ tc,δ(Θ)) = o(1).

We proceed to an upper bound for P(T ≤ tc,δ(Θ)). We abuse the notation a little and write Ur =

{θ : r(θ) = r}, the set of parameters that gives the rank r. Then, we have

P(T ≤ tc,δ(Θ)) =
∑
r∈PK

P(T ≤ tc,δ(Θ),Θ∈Ur)

=O(1)×max
r∈PK

P(T ≤ tc,δ(Θ),Θ∈Ur).
(21)
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We proceed to an upper bound for P(T ≤ tc,δ(Θ),Θ∈Ur) for each r ∈ PK . Define an event

Br =
{ P(Θ∈Ur|FT )

max(i,j):Wi,j∩Ur=∅ P(Θ∈Wi,j|FT )
>
c
δ
10

ε

}
, (22)

where Fn = σ(X1, ...,Xn, a1, ..., an) denotes the σ-algebra generated by X1, ...,Xn and a1, .., an. We

split the probability

P(T ≤ tc,δ(Θ),Θ∈Ur)

=P(T ≤ tc,δ(Θ),Θ∈Ur,Br) +P(T ≤ tc,δ(Θ),Θ∈Ur,Bc
r),

which can be bounded from above by

P(T ≤ tc,δ(Θ),Θ∈Ur)≤ P(T ≤ tc,δ(Θ),Θ∈Ur,Br) +P(Θ∈Ur,Bc
r). (23)

We establish upper bounds for the two terms on the right-hand side of the above inequality sepa-

rately. The next lemma, whose proof is presented in the supplementary material, provides an upper

bound for the second term.

Lemma 2 For all r ∈ PK, if ELK(R)≤ ε then

P(Θ∈Ur,Bc
r)≤ (1 +

c
δ
10

ε
)ε.

We proceed to the first term P(T ≤ tc,δ(Θ),Θ∈Ur,Br) on the right-hand side of (23). Then,

P(T ≤ tc,δ(Θ),Θ∈Ur,Br) =

∫
Ur

Pθ(T ≤ tc,δ(θ),Br)ρ(θ)dθ. (24)

Recall the definition of the event Br in (22), we have

Br ∩{T ≤ tc,δ(θ)} ⊂
{

max
1≤t≤tc,δ(θ)

P(Θ∈Ur|Ft)
maxWi,j∩Ur=∅ P(Θ∈Wi,j|Ft)

>
c
δ
10

ε

}
.

Consequently,

Pθ (T ≤ tc,δ(θ),Br)≤ Pθ

(
max

1≤t≤tc,δ(θ)

P(Θ∈Ur|Ft)
maxWi,j∩Ur=∅ P(Θ∈Wi,j|Ft)

>
c
δ
10

ε

)
. (25)

We proceed to an upper bound for the above display. For each θ, we define a random sequence

{θ∗t : 1≤ t≤ tc,δ(θ)} as follows.

θ∗t = arg min
θ̃∈W :r(θ̃)6=r(θ)

t∑
n=1

∑
i,j

λi,jn D
i,j(θ‖θ̃).

Intuitively, θ∗t is the score parameter that is most difficult to distinguish from θ at time t among

those that have different rank with θ, given that item selection rules λ1, ..., λn have been adopted.

We further choose the index process (i∗t , j
∗
t ) be such that θ∗t ∈Wi∗t ,j

∗
t

but θ /∈Wi∗t ,j
∗
t
. If there are
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multiple (i, j)’s satisfying this, then we choose (i∗t , j
∗
t ) arbitrarily from them. From the definition,

we know θ∗t and (i∗t , j
∗
t ) are adapted to σ(λ1, ..., λt), and thus are adapted to Ft−1. We use the next

lemma to transform the probability in (25) to a probability based on a martingale parameterized

by θ.

Lemma 3 For each θ′ ∈ Ur, define a martingale with respect to the filtration {Fn : n ≥ 1} and

probability measure Pθ as follows,

Mt(θ
′) = l~at (θ

′)− l~at (θ∗t )−
t∑

n=1

∑
(i,j)

λi,jn D
i,j(θ‖θ∗t ) +

t∑
n=1

∑
(i,j)

λi,jn D
i,j(θ‖θ′),

where l~at (θ) = log
∏t

i=1 f
ai
θ (Xi). Then there exists a positive constant c0 > 0 such that for 0< c< c0,

Pθ

(
max

1≤t≤tc,δ(θ)

P(Θ∈Ur|Ft)
maxWi,j∩Ur=∅ P(Θ∈Wi,j|Ft)

>
c
δ
10

ε

)
≤Pθ

(
max

1≤t≤tc,δ(θ),θ′∈Ur
Mt(θ

′)≥ δ

2
| log c|

)
. (26)

According to the above lemma, to find an upper bound for (25), it is sufficient to find an upper

bound for the right-hand side of (26), which is the probability that a stochastic process indexed by

θ′ and t goes above a certain level. In this paper, we will use the following two lemmas repeatedly

to handle this type of level crossing probabilities. The first one is the Azuma-Hoeffding inequality

proved by [3] and [28].

Lemma 4 (Azuma-Hoeffding inequality) Let Mn be a martingale with respect to the filtration

{Fn : n= 1,2, ..}. Let Xn =Mn−Mn−1. Assume that Xn is bounded and Xn ∈ [an, bn] where an and

bn are deterministic constants. Then, for each t > 0 we have

P( max
1≤m≤n

Mm ≥ t)≤ exp
(
− 2t2∑n

i=1(bi− ai)2

)
.

The next lemma is the key lemma that allows us to derive level crossing probability by aggre-

gating marginal tail bounds of a random field. Its proof is given in the supplementary material.

Lemma 5 Let {ζ(θ) : θ ∈W} be a random field over a compact set U ⊂RK that satisfies Assump-

tion 2. Let β(θ, b) be defined as follows

β(θ, b) = P(ζ(θ)≥ b),

where P is a probability measure and we assume that ζ(·) has continuous sample path almost surely

under P. Assume that ζ(·) has a Lipschitz continuous sample path in the sense that there exists a

constant κL such that for all θ, θ′ ∈W

|ζ(θ)− ζ(θ′)| ≤ κL‖θ−θ′‖ almost surely under P.
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Then, we have that for all positive γ

P
(

max
θ∈W

ζ(θ)≥ b
)
≤
∫
W

β(θ, b− γ)dθ× κK−1
L

γK−1δb
,

where δb is the constant defined in Assumption 2.

Set n := tc,δ(θ), t := δ
2
| log c| − 1, Mn := Mn(θ′), and an = −bn := 2 maxx,a∈A,θ∈W | log faθ,x(x)| in

Lemma 4, we have for each θ′

Pθ

(
max

1≤n≤tc,δ(θ)
Mn(θ′)≥ δ

2
| log c| − 1

)
≤ exp

(
−

2( δ
2
| log c| − 1)2

tc,δ(θ)a2
1

)
.

According to Assumption 1 and 3, we have a1 <∞, and consequently,

Pθ

(
max

1≤n≤tc,δ(θ)
Mn(θ′)≥ δ

2
| log c| − 1

)
≤ exp

(
−Ω(δ2| log c|)

)
. (27)

Note that for θ′, θ̃ ∈Ur,

max
1≤n≤tc,δ(θ)

Mn(θ′)− max
1≤n≤tc,δ(θ)

Mn(θ̃)

≤ max
1≤n≤tc,δ(θ)

|Mn(θ′)−Mn(θ̃)|

≤tc,δ(θ)κ0‖θ′− θ̃‖,

where κ0 = 4supa∈A,θ′∈W,x |∇ log faθ (x)|<∞ denotes the Lipschitz constant of M1(θ′). Therefore,

Mn(θ′) is a Lipschitz continuous random field in θ′. The above display and (27), together with

Lemma 5, give

Pθ

(
max

1≤n≤tc,δ(θ),θ′∈Ur
Mn(θ′)≥ δ

2
| log c|

)
≤ exp

(
−Ω(δ2| log c|)

)
m(Ur)

tc,δ(θ)K−1κK−1
0

δb

=exp
(
−Ω(δ2| log c|)

)
×O(| log c|K−1),

where we recall that m(·) denotes the Lebesgue measure. The above inequality and (24), (25),(26)

give

P(T ≤ tc,δ(Θ),Θ∈Ur,Br)≤ exp
(
−Ω(δ2| log c|)

)
×O(| log c|K−1).

Combine this with Lemma 2 and (23) we have

P(T ≤ tc,δ(Θ),Θ∈Ur)≤ (1 +
c
δ
10

ε
)ε+ exp

(
−Ω(δ2| log c|)

)
×O(| log c|K−1).

Combine the above display with (21), we have

P(T ≤ tc,δ(Θ))≤O(1)×
{

(1 +
c
δ
10

ε
)ε+ exp

(
−Ω(δ2| log c|)

)
×O(| log c|K−1)

}
.

Therefore, P(T ≤ tc,δ(Θ)) = o(1) as c→ 0. This completes the proof.
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6.2. Proof of Theorem 2 We start with the stopping time T2. With the decision rule D

defined in (11), the expected Kendall’s tau at the stopping time T2 is

ELK(R) =E
∑
(i,j)

I(Θi <Θj)Ri,j

=

∫
W

∑
(i,j):θ/∈Wj,i

Pθ( sup
θ̃∈Wj,i

lT2(θ̃)> sup
θ′∈Wi,j

lT2(θ′))ρ(θ)dθ

=

∫
W

∑
θ/∈Wj,i

Pθ

(
sup

θ̃∈Wj,i

lT2(θ̃)− sup
θ′∈Wi,j

lT2(θ′)>h(c)
)
ρ(θ)dθ,

(28)

where we write lt(θ) =
∑t

n=1 log fanθ (Xn) as the log-likelihood function. (28) is bounded from above

by

ELK(R)≤ sup
θ∈W

ρ(θ)×m(W )× K(K − 1)

2

× sup
θ∈W

max
(i,j):θ/∈Wj,i

Pθ

(
sup

θ̃∈Wj,i

lT2(θ̃)− lT2(θ)>h(c)
)
.

(29)

To obtain the above inequality, we used the fact that supθ′∈Wi,j
lT2(θ′)≥ lT2(θ) for (i, j) such that

θ /∈Wj,i and supθ∈W ρ(θ)<∞ according to Assumption 5. We split the probability

Pθ

(
sup

θ̃∈Wji

lT2(θ̃)− lT2(θ)>h(c)

)

≤Pθ

(
sup

θ̃∈Wji

lT2(θ̃)− lT2(θ)>h(c) and T2 ≤ τ

)
+Pθ(T2 ≥ τ).

(30)

We clarify that θ′, θ and θ̃ are deterministic vectors here. The second term on the right-hand side

of the above display is controlled by the next lemma.

Lemma 6 If τ = Ω(| log c|3) then,

Pθ(Ti ≥ τ)≤ c2 (i= 1,2).

We proceed to an upper bound of the first term on the right-hand side of (30). Define a stopping

time T2 ∧ τ = min(T2, τ), then we have

Pθ

(
sup

θ̃∈Wji

lT2(θ̃)− lT2(θ)>h(c) and T2 ≤ τ

)

≤Pθ

(
sup

θ̃∈Wji

lT2∧τ (θ̃)− lT2∧τ (θ)>h(c)

)
.

Now we consider the random field η(θ̃) = lT2∧τ (θ̃)− lT2∧τ (θ) for θ̃ ∈Wji. We proceed to an upper

bound for Pθ

(
supθ̃∈Wji

η(θ̃)>h(c)
)

through Lemma 5. We first note that η(θ̃) is a Lipschitz

continuous function,

|η(θ̃)− η(θ̃′)| ≤ |lT∧τ (θ̃)− lT∧τ (θ̃′)| ≤ τκ0‖θ̃− θ̃′‖. (31)
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We further obtain the marginal tail probability of η(θ̃) through the next lemma.

Lemma 7 For all θ̃ 6= θ, and all constant A> 0, we have

Pθ

(
lT∧τ (θ̃)− lT∧τ (θ)≥A

)
≤ e−A

We take A= h(c)− 1 in the above lemma and obtain

Pθ

(
η(θ̃)≥ h(c)− 1

)
≤ e−h(c)+1

Combining the above display with (31) and Lemma 5, we arrive at

Pθ

(
sup

θ̃∈Wji

η(θ̃)>h(c)

)
≤O(τK−1e−h(c)). (32)

We combine (32),(29) and Lemma 6 and arrive at

Pθ

(
sup

θ̃∈Wji

lT2(θ̃)− lT2(θ)>h(c)
)

≤O(c2) +O(e−| log c|−| log c|1−α+(K−1) log τ )

=O(c2) +O(ce−| log c|1−α+3(K−1) log | log c|)

=o(c).

This completes our analysis for T2. We proceed to the analysis of the policy π1 and the stopping

time T1. According to the definition of T1 in (10), we can see that upon stopping,

max
(i,j):1≤i<j≤K

exp
[

min
{

sup
θ̃∈Wi,j

lT1(θ̃)− sup
θ∈W

lT1(θ), sup
θ̃∈Wj,i

lT1(θ̃)− sup
θ∈W

lT1(θ)
}

≤
∑

(i,j):1≤i<j≤K

exp
[

min
{

sup
θ̃∈Wi,j

lT1(θ̃)− sup
θ∈W

lT1(θ), sup
θ̃∈Wj,i

lT1(θ̃)− sup
θ∈W

lT1(θ)
}]

≤e−h(c).

Taking logarithm and rearranging terms in the above display, we have

min
1≤i<j≤K

[
sup
θ∈W

ln(θ)−min
{

sup
θ̃∈Wi,j

ln(θ̃), sup
θ̃∈Wj,i

ln(θ̃)
}]
≥ h(c). (33)

With (33) we can follow similar derivations as those for (29) and arrive at

ELK(D̄T1)

≤ sup
θ′∈W

ρ(θ)m(W )

× K(K − 1)

2
sup
θ∈W

max
(i,j):θ/∈Wj,i

Pθ

(
sup

θ̃∈Wji

lT1(θ̃)− lT1(θ)>h(c)
)
.

The rest of the proof is similar as that for the stopping time T2. We omit the details.



X. Chen, Y. Chen and X. Li: Sequential Rank Aggregation
28 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

6.3. Proof of Theorem 3 Let δ be an arbitrary positive number, we can find an upper

bound for the expectation of a stopping time T as follows.

ET

=
∞∑
m=0

E
[
TI
(
m(1 + δ)tc(Θ)≤ T < (m+ 1)(1 + δ)tc(Θ)

)]
≤(1 + δ)Etc(Θ) +

∞∑
m=1

E
[
TI
(
m(1 + δ)tc(Θ)≤ T < (m+ 1)(1 + δ)tc(Θ)

)]
≤(1 + δ)Etc(Θ)

+ (1 + δ)max
θ∈W

tc(θ)
∞∑
m=1

(m+ 1)P (m(1 + δ)tc(Θ)≤ T < (m+ 1)(1 + δ)tc(Θ))

≤(1 + δ)Etc(Θ)

+ (1 + δ)max
θ∈W

tc(θ)
∞∑
m=1

(m+ 1)max
θ∈W

Pθ (m(1 + δ)tc(θ)≤ T < (m+ 1)(1 + δ)tc(θ))

(34)

We proceed to an upper bound for the probability in the above sum for T = Ti (i= 1,2). We start

with T = T2. We split the probability for m≥ 1,

Pθ (m(1 + δ)tc(θ)≤ T2 < (m+ 1)(1 + δ)tc(θ))

≤Pθ

(
m(1 + δ)tc(θ)≤ T2 < (m+ 1)(1 + δ)tc(θ),

max
m(1+δ)δ2tc(θ)≤t≤m(1+δ)tc(θ)

‖θ̂(t)−θ‖ ≤ | log c|−δ1
)

+Pθ

(
max

m(1+δ)δ2tc(θ)≤t≤m(1+δ)tc(θ)
‖θ̂(t)−θ‖ ≥ | log c|−δ1

)
,

(35)

where we choose δ1 = δ0
8

and δ2 = | log c|−δ0/2, and δ0 is defined in the selection rule where we recall

that p ∝ | log c|− 1
2+δ0 . The second term on the above display is bounded from above according

to Lemma 1, where we set n := m(1 + δ)δ2tc(θ), m := m(1 + δ)tc(θ), ελ = Ω(| log c|− 1
2+δ0) and

δm,n = | log c|−δ1 , and arrive at

Pθ

(
max

m(1+δ)δ2tc(θ)≤t≤m(1+δ)tc(θ)
‖θ̂(t)−θ‖ ≥ | log c|−δ1

)
≤e−Ω(m(1+δ)δ2tc(θ)| log c|−4δ1 | log c|−1+2δ0 )×O(mK−1| log c|K−1)

=e−Ω(m| log c|2δ0−4δ1δ2)O(mK−1| log c|K−1)

=e−Ω(m| log c|δ0 )O(mK−1| log c|K−1).

(36)

We proceed to the first term on the right-hand side of (35). For m ≥ 1, we can see that T2 >

m(1 + δ)tc(θ) implies that there exists (i, j) such that | supθ̃∈Wi,j
ln(θ̃)− supθ′∈Wj,i

ln(θ′)| ≤ h(c) for

n = (1 + δ)mtc(θ). Without loss of generality, we assume that θ ∈Wi,j, then T2 >m(1 + δ)tc(θ)
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further implies ln(θ)− supθ′∈Wj,i
ln(θ′)≤ h(c). Therefore, an upper bound for the first term on the

right-hand side of (35) is

Pθ

(
m(1 + δ)tc(θ)≤ T2 ≤ (m+ 1)(1 + δ)tc(θ), max

m(1+δ)δ2tc(θ)≤t≤m(1+δ)tc(θ)
‖θ̂(n)−θ‖ ≤ | log c|−δ1

)
≤Pθ

(
ln(θ)− sup

θ′∈Wj,i

ln(θ′)≤ h(c), max
m(1+δ)δ2tc(θ)≤t≤m(1+δ)tc(θ)

‖θ̂(n)−θ‖ ≤ | log c|−δ1
)
,

(37)

We present an upper bound for the above display in the next lemma.

Lemma 8 If the strategy λ∗(θ̂(t)) is adopted with probability 1− o(1) uniformly for mtc(θ)(1 +

δ)δ2 ≤ t≤m(1 + δ)tc(θ). Then

Pθ

(
ln(θ)− sup

θ′∈Wj,i

ln(θ′)≤ h(c), max
m(1+δ)δ2tc(θ)≤t≤m(1+δ)tc(θ)

‖θ̂(n)−θ‖ ≤ | log c|−δ1
)

≤e−Ω(m| log c|)×O(| log c|K−1mK−1),

where n= (1 + δ)mtc(θ).

We combine the above lemma with (36) and (35), we arrive at

Pθ

(
m(1 + δ)tc(θ)≤ T2 < (m+ 1)(1 + δ)tc(θ)

)
≤
(
e−Ω(m| log c|) + e−Ω(m| log c|δ0 )

)
×O(mK−1| log c|K−1).

This, together with (34) gives

ET2

≤(1 + δ)Etc(Θ)

+O(| log c|)×
∞∑
m=1

(m+ 1){(e−Ω(m| log c|) + e−Ω(m| log c|δ0 ))×O(mK−1| log c|K−1)}]

≤(1 + δ)Etc(Θ) + o(| log c|).
This completes our analysis for T2. We proceed to the analysis of T1. We can see that the event

T1 >n implies that∑
(i,j)

exp
[

min
{

sup
θ̃∈Wi,j

ln(θ̃)− sup
θ∈W

ln(θ), sup
θ̃∈Wj,i

ln(θ̃)− sup
θ∈W

ln(θ)
}]

> e−h(c),

which further implies that

K(K − 1)max
(i,j)

exp
[

min
{

sup
θ̃∈Wi,j

ln(θ̃)− sup
θ∈W

ln(θ), sup
θ̃∈Wj,i

ln(θ̃)− sup
θ∈W

ln(θ)
}]

> e−h(c).

Simplifying the above display, we can see it is equivalent to that there exists (i, j) such that

| sup
θ̃∈Wi,j

ln(θ̃)− sup
θ∈Wj,i

ln(θ)| ≤ h(c) + logK(K − 1).

The analysis is similar for the stopping time T1 to that of T2 by replacing h(c) by h(c)+logK(K−1)

in the derivation following (37). We omit the details.
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6.4. Proof of Theorem 4 First, to distinguish between the sequential method with and

without model misspecification, we will use the notation ‘ ¯ ’ over a method (e.g., the sequential

ranking rule π̄l = (Ā, T̄l, R̄), and the MLE θ̄(t)) to indicate that it is based on the algorithm with

the misspecified support W̃ of the prior distribution ρ(·). The proof of Theorem 4 follows similar

arguments as those of Corollary 1. That is, we will show the following modified version of Theorem 2

and Theorem 3, whose proof is provided in the supplement.

Proposition 2. Following the sequential ranking rules π̄l = (Ā, T̄l, R̄) (for l= 1,2), we have

ELK({R̄i,j}) =O(c)

Proposition 3.

limsup
c→0

ET̄l
Et̃c(Θ)

≤ 1

where we define t̃c(θ) = | log(c)|
D̃(θ)

and D̃(θ) = maxλ∈∆ minθ̃∈W̃ :r(θ̃) 6=r(θ)

∑
(i,j) λ

i,jDi,j(θ‖θ̃).

Combining Theorem 2 and 3 with the above Proposition 2 and 3, we arrive at

limsup
c→0

Vc(ρ,π)

V ∗c (ρ)
≤ lim

c→0

O(c) + cEt̃c(Θ)

O(c) + cEtc(Θ)
= lim

c→0

O(c) + c| log c|E{1/D̃(Θ)}
O(c) + c| log c|E{1/D(Θ)}

=
E{1/D̃(Θ)}
E{1/D(Θ)}

.
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