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A Joint Modeling Approach for Longitudinal Outcomes and Non-ignorable Dropout 

under Population Heterogeneity in Mental Health Studies 

 

Abstract 

The paper proposes a joint mixture model to model non-ignorable drop-out in longitudinal 

cohort studies of mental health outcomes. The model combines a (non)-linear growth curve 

model for the time-dependent outcomes and a discrete-time survival model for the drop-out 

with random effects shared by the two sub-models. The mixture part of the model takes into 

account population heterogeneity by accounting for latent subgroups of the shared effects that 

may lead to different patterns for the growth and the drop-out tendency. A simulation study 

shows that the joint mixture model provides greater precision in estimating the average slope 

and covariance matrix of random effects. We illustrate its benefits with data from a longitudinal 

cohort study that characterizes depression symptoms over time yet is hindered by non-trivial 

participant drop-out.  

Keywords: Latent growth curve, MNAR drop-out, survival analysis, finite mixture model, 

mental health.   
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1. Introduction 

In many prospective cohort studies of mental health, it is often the case that some subject 

groups who have participated in the initial phase of the study fail to engage in a given sampling 

occasion, and subsequently never return on the next occasions. For example, when following 

a high-risk group for suicidal ideation (e.g. sexual minority youth followed across time), it is 

common that a particular subject group is less likely to stay engaged in the study. It can be 

hypothesized that the subjects with mental health problems are found to be more likely to drop 

out over time because of the severity of their mental illness condition or due to potentially 

changing risk characteristics making it difficult for them to return to the ongoing study. 

Increasing drop-out rates over time naturally generates missing data that may have an impact 

on statistical inference when analyzing dynamic changes in the outcome of interest (e.g. 

functioning or symptoms). Under missing completely at random (MCAR) and missing at 

random (MAR) missing data mechanisms (Little & Rubin, 2002; Rubin, 1976) where the 

process that causes the drop-out does not depend on either the observed or missing data 

(MCAR), or depends only on the observed data (MAR), approaches such as multiple 

imputation (MI), inverse probability weighting (IPW), or full information maximum likelihood 

(FIML) estimation using all available data  can be used. But, if the drop-out mechanism 

depends largely on the unobserved or missing outcomes (e.g., on the values that are not 

collected due to the fact that the subject dropped out) even after controlling for all the observed 

variables, then the data are missing not at random (MNAR) and the drop out mechanism is 

considered to be “non-ignorable”. When drop-out is non-ignorable, the drop-out mechanism 

needs to be explicitly modeled together with the longitudinal outcomes and covariates.  

Let the random variable 𝑌𝑖𝑡  denote the response for subject  𝑖   at occasion  

𝑡  (𝑖 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇).  We also define a variable of missingness indicators, 𝐷𝑖𝑡  such 
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that 𝐷𝑖𝑡 = 0 when 𝑌𝑖𝑡 is observed and 𝐷𝑖𝑡 = 1 if a respondent drops out at time 𝑡. The vector 

𝑌 𝑖 is divided into observed 𝑌𝑜𝑏𝑠,𝑖 and missing 𝑌𝑚𝑖𝑠,𝑖 components respectively. 

Under non-ignorable missingness, one needs to specify the joint density, 𝑓(𝑦𝑖, 𝑑𝑖).  

Three modeling approaches have been proposed to address non-ignorable drop-out. First, the 

pattern-mixture model (Wu & Carroll, 1988; Little, 1993; Hedeker & Gibbons, 1997;  Demirtas 

& Schafer, 2003) divides the subjects into groups based on their drop-out patterns giving  

𝑓(𝑦𝑖, 𝑑𝑖) = 𝑓(𝑑𝑖)𝑓(𝑦𝑖|𝑑𝑖) . Second, the selection modeling approach (Diggle & Kenward, 

1994) requires a model for the missing indicators giving  𝑓(𝑦𝑖, 𝑑𝑖) = 𝑓(𝑦𝑖)𝑓(𝑑𝑖|𝑦𝑖). Diggle 

and Kenward (1994) combined a multivariate linear model for the observed longitudinal 

responses with a logistic regression model for the non-ignorable drop-out process. Thirdly, the 

shared-parameter modeling approach (Roy, 2003) introduces a set of random effects (say 𝑏𝑖) 

that explain the interdependencies between the observed responses and the missing data 

indicator variables. In this case, 𝑓(𝑦𝑖, 𝑑𝑖) = ∫ 𝑓(𝑦𝑖|𝑏𝑖)𝑓(𝑑𝑖|𝑏𝑖) 
𝑅

𝑑𝑏𝑖.  

The shared-parameter approach has received a lot of attention as it fits within the 

framework of latent growth curve modeling (LGC; Fitzmaurice, Laird, & Ware, 2004). More 

specifically, the same set of random effects (𝑏𝑖) are used to capture individual differences in 

change over time (or “growth”), and to model the MNAR drop-out, i.e., 𝑓(𝑑𝑖|𝑏𝑖). It is the 

shared random effects (that capture between-person differences in within-person change) 

between the two parts of the model that allow the joint model to handle MNAR. In our working 

example from a mental health study, this model is intuitive as we might expect the 

characteristics that drive change in depression symptoms over time to also affect drop-out. In 

this paper, we further extend the shared-parameter model to allow for latent subpopulations 

(i.e., mixtures or latent classes) to have their own developmental trajectory over time that may 

also be associated with the drop-out pattern. Mixtures have also received a lot of attention in 

the literature in order to address the problems caused by non-normality of the latent distribution 
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(Neuhaus, Hauck, & Kalbfleisch, 1992; Rizopoulos, Verbeke, & Molenberghs, 2008; Verbeke 

& Lesaffre 1996, 1997; Verbeke & Molenberghs, 2013; Baghfalaki, Ganjali, & Verbeke, 

2017). For LGC analysis, Enders (2011) discussed the fact that even minor violations of 

population homogeneity can introduce substantial bias in key model parameters, and therefore 

a sensitivity analysis of the distributional assumptions (i.e., growth mixture) for the random 

intercept and slope is needed. Mixtures have also been considered within the context of non-

ignorable missing data. Specifically, Muthen, Asparouhov, Hunter, and Leuchter (2011) 

extended the pattern-mixture and selection models by incorporating latent classes to identify 

different types of growth trajectories and demonstrated how this model framework could be 

used to check for MNAR vs MAR assumptions.    

 The present study examines the way in which the shared-parameter model with latent 

mixtures is able to estimate key model parameters in the presence of non-ignorable drop-out 

compared to a model that ignores population heterogeneity or ignores drop-out altogether. 

Specifically, we examine the shared parameter mixture model that integrates a discrete-time 

survival analysis model in the LGC model and demonstrate its applicability to handle MNAR 

drop-out. The rest of the paper is organized as follows. In Section 2, we describe the modified 

framework of an LGC model shared with a survival model for drop-out indicators, followed 

by a latent mixture model for the random intercept and slope. Section 3 demonstrates the 

performance of the model on the key parameters through three simulation scenarios. Then, 

Section 4 presents its applicability to a real-life data example modeling depression symptoms 

over time. Section 5 ends with our findings and concluding remarks.  

2. The shared-parameter LGC and discrete time survival model for non-ignorable 

drop-out  

2.1 Modeling the observed outcomes for a homogeneous population  

The linear latent growth curve (LGC) model is written as:     
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𝑌𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜀𝑖,     𝑖 = 1, … , 𝑁                           (1) 

where 𝑌𝑖  is a (𝑇𝑖 × 1)  vector of responses for the ith subject and 𝑇𝑖  is the number of 

observations for subject i. 𝑋𝑖 is a (𝑇𝑖 × 𝐽) design matrix of the explanatory variables of the ith 

subject and J is the number of explanatory variables including a column of 1s. More 

specifically, 𝑋𝑖 contains the time scores and baseline explanatory variables (e.g. gender, 

socioeconomic status, age) written as 𝑋𝑖 =  ([𝟏], [𝑋𝑡𝑖𝑚𝑒,𝑖,𝑡], [𝑋𝑏𝑎𝑠𝑒,𝑖]), where [𝟏]  denotes a 

column vector of 1s and 𝜷 = (𝛽10, … , 𝛽1𝐽)
𝑇

 is the vector of fixed effect coefficients. 𝑍𝑖 =

([𝟏], [𝑋𝑡𝑖𝑚𝑒,𝑖,𝑡]) is a (𝑇𝑖 × 2) design matrix for a set of subject-specific random effects; and 

𝒃𝒊 = (𝑏0𝑖, 𝑏1𝑖)
𝑇 is a vector of random effects that represent a random intercept and random 

slope for each subject.     

Similarly, the linear LGC given in (1) can be extended to allow for non-linear terms. 

For example, the non-linear growth model with quadratic terms is written as:    

         

𝑦𝑖𝑡 = 𝛽10 + 𝛽11 𝑥𝑡𝑖𝑚𝑒,𝑖,𝑡 + 𝛽12 𝑥𝑡𝑖𝑚𝑒,𝑖,𝑡
2 + ∑ 𝛽1𝑗𝑥𝑏𝑎𝑠𝑒,𝑖,𝑗  𝐽

𝑗=3 + 𝑏0𝑖 + 𝑏1𝑖 𝑥𝑡𝑖𝑚𝑒,𝑖,𝑡  +

𝑏2𝑖 𝑥𝑡𝑖𝑚𝑒,𝑖,𝑡
2 +  𝜀𝑖𝑡.       (2)  

The LGC model typically assumes population homogeneity of the random effects. Typically 

the 𝒃𝑖 follows a multivariate normal distribution with mean 𝝁𝒃 = 0 and a variance-covariance 

matrix 𝑮𝒃  i.e., 𝒃𝑖~𝑁(𝟎, 𝑮𝒃) , 𝜺𝑖  is a (𝑇𝑖 × 1) vector of residuals for the ith subject, where 

𝜺𝑖~𝑀𝑉𝑁(𝟎, 𝑽𝑖) and 𝐶𝑜𝑣(𝒃𝑖,𝜀𝑖)=0.      

2.2 Modeling the Dropout 

We define the probability that a respondent drops out at time 𝑡, given that they have remained 

in the study up to and including time 𝑡 − 1, by the hazard function ℎ𝑡 = 𝑃(𝐾 = 𝑡|𝐾 ≥ 𝑡), 𝑡 =

2, … , 𝑇 where 𝐾  is a discrete random variable that indicates the time of the dropout. We have  

already defined the missing indicators, 𝐷𝑖𝑡  such that 𝐷𝑖𝑡 = 0 when 𝑌𝑖𝑡 is observed and 𝐷𝑖𝑡 =

1 if a respondent drops out at time 𝑡  (Moustaki & Steele, 2005; Muthén & Masyn, 2005). After 
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the time of dropout, 𝐷𝑖𝑡 itself is regarded as missing and can be set to an arbitrary value such 

as 999 or NA. We also consider the observations at the first occasion as complete data, so that 

𝐷𝑖1 = 0 and define 𝐷 = (𝐷𝑖2, … , 𝐷𝑖𝑇). For example, in a study with four waves (𝑇 = 4), 𝐷𝑖 =

{0,0,1, 𝑁𝐴} if the subject dropped out at time 𝑡 = 3. Similarly, 𝐷𝑖 = {0,0,0,0}  if the subject 

never dropped out of the study. A subject who did not drop out by the end of the study will be 

the equivalent of censoring in survival analysis in which the event did not occur by the end of 

the study period.  

With this notation, the hazard function can also be expressed as 

ℎ𝑖𝑡 = 𝑃(𝐾𝑖 = 𝑡|𝐾𝑖 ≥ 𝑡) = 𝑃(𝐷𝑖𝑡 = 1), 𝑡 = 2, … , 𝑇.    (3) 

Therefore, the probability of survival at each occasion 𝑡 (𝐷𝑖𝑡 = 0) is the same as (1 − ℎ𝑖𝑡). 

The model is then a sequence of these conditional probabilities, which makes the likelihood 

look identical to the situation where the observations at different times for the same person 

are independent.  

The hazard function given in (3) is modeled as a function of covariates and the random 

effects 𝒃𝑖 from (1) or (2) using any link function appropriate for binary data, including the logit 

and the probit functions. For example, if a quadratic model is fit (2) to the outcomes, the logit 

mixed-effect model for the dropout is written as:             

𝑙𝑜𝑔𝑖𝑡 ℎ𝑖𝑡(𝒙𝑖𝑡, 𝒃𝑖) =  𝑙𝑜𝑔𝑖𝑡{𝑃(𝐷𝑖𝑡 = 1| 𝒙𝑖𝑡, 𝒃𝑖)} = 
 

𝛽20 + 𝛽21𝑥𝑡𝑖𝑚𝑒,𝑖,𝑡 + 𝛽22𝑥𝑡𝑖𝑚𝑒,𝑖,𝑡
2 + ∑ 𝛽2𝑚𝑥𝑏𝑎𝑠𝑒,𝑖,𝑚

𝑀
𝑚=3 + 𝛾0𝑏0𝑖 + 𝛾1𝑏1𝑖 + 𝛾2𝑏2𝑖,                                      

(4) 

where 𝜷𝟐 = (𝛽20, … , 𝛽2𝑀)𝑇 is the vector of fixed effect coefficients, and 𝒃𝑖 = (𝑏0𝑖, 𝑏1𝑖, 𝑏2𝑖)
𝑇  

represents the random intercept and random slopes (linear and quadratic) for each subject as in 

(1) and (2). Notice that 𝒃𝑖 is the vector of “shared” random effects, and 𝜸 = (𝛾0,𝛾1, 𝛾2)𝑇 is the 

vector of regression coefficients that estimate the effects of 𝒃𝑖 on the drop-out probability. If 

𝜸 is zero, it implies that the probability of drop-out and the longitudinal responses are 
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independent, and that the drop-out mechanism is ignorable. To the extent that at least one of 

the elements in 𝛾 is non-zero, the drop-out mechanism creates non-ignorable missing data for 

𝑌 because it depends upon unobservable characteristics of 𝑌 summarized in the random effects 

vector 𝒃𝑖.  

2.3 Extending the shared parameter model with non-ignorable drop-out to include 

mixtures    

It is well studied that when there is population heterogeneity in the subject-specific intercept 

or slopes in the LGC model, the standard assumption that 𝒃𝑖 follows a (multivariate) normal 

distribution may lead to serious estimation biases in the fixed effect parameters and variances 

of the random effects (see Litiere, Alonso, & Molenberghs, 2008; Verbeke & Molenberghs, 

2000; Verbeke & Lesaffre, 1996). Therefore, bias will also occur when making the 

homogeneity assumption in the proposed shared parameter model (e.g. (2) and (4)). A more 

flexible way of modeling the distribution of the random components is via a mixture model. 

Specifically, assume that the population consists of 𝑀 subgroups of relative group sizes, 𝜔𝑚, 

∑ 𝜔𝑚
𝑀
𝑚=1  = 1 , and in each group the subject-specific random effects (e.g., 

𝑏0𝑖(𝑚),𝑏1𝑖(𝑚), 𝑏2𝑖(𝑚)) come from a multivariate normal distribution with different means, 𝝁𝒃(𝑚)
 

and a variance-covariance matrix, 𝚺𝒃(𝑚)
. More specifically, the distribution for the random 

effect vector, 𝒃𝑖  = (𝑏0𝑖(𝑚) , 𝑏1𝑖(𝑚), 𝑏2𝑖(𝑚)) is approximated by a finite mixture of normal 

distributions given by:          

𝒃𝑖~ ∑ 𝜔𝑚
𝑀
𝑚=1 𝑁 (𝝁𝒃(𝑚)

= [

𝜇𝑏0(𝑚)

𝜇𝑏1(𝑚)

𝜇𝑏2(𝑚)

] , 𝚺𝒃(.)
= [

𝜎𝑏0

2 𝜎𝑏0,𝑏1
𝜎𝑏0,𝑏2

𝜎𝑏0,𝑏1
𝜎𝑏1

2 𝜎𝑏1,𝑏2

𝜎𝑏0,𝑏2
𝜎𝑏1,𝑏2

𝜎𝑏2

2

]),           (5) 

where  𝐸(𝑏0𝑖) = ∑ 𝜔𝑚 𝜇𝑏0(𝑚)
𝑀
𝑚=1   for the random intercept; 𝐸(𝑏1𝑖) = ∑ 𝜔𝑚 𝜇𝑏1(𝑚)

𝑀
𝑚=1  and 

𝐸(𝑏2𝑖) = ∑ 𝜔𝑚 𝜇𝑏2(𝑚)
𝑀
𝑚=1  for the random slopes of the linear and the quadratic term 

respectively. The covariance matrices across the 𝑚 subgroups are assumed equal to reduce the 
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number of parameters and facilitate computation, hence the overall variance covariance matrix 

is given by:  

𝑮𝒃 = ∑ 𝝁𝒃(𝑚)𝝁𝒃(𝑚)
𝑇 𝜔𝑚(1 − 𝜔𝑚)𝑀

𝑚=1 + 𝚺𝒃.        (6) 

2.4 Estimation and Model Evaluation 

Under the assumptions that the longitudinal outcomes 𝑌𝑖𝑡 and drop-out indicators 𝐷𝑖𝑡  are 

conditionally independent given the random effects, the parameters associated with the 

observed responses and those with the drop out model are separated and the subjects are 

independent, the joint density is (shared-parameter): 

  𝑓(𝑦𝑖, 𝑑𝑖) = ∫ 𝑓(𝑦𝑖|𝑏𝑖)𝑓(𝑑𝑖|𝑏𝑖) 
𝑅

𝑑𝑏𝑖      (7).  

The estimation of the proposed model was carried out by robust maximum likelihood 

estimation via expectation-maximization (EM) algorithm which can be implemented using 

Mplus Version 8.3 (Muthén & Muthén, 1998–2017); the code is available from 

https://github.com/pqcda/pqcda. More specifically, estimation of the proposed joint mixture 

model was carried out by full information maximum likelihood estimation via the EM 

algorithm; and robust standard errors were obtained. The convergence criteria for the EM 

algorithms include loglikelihood change (.0001), relative loglikelihood change (.0000001), and 

derivative (.0001) and the solution is given only if all convergence criteria are satisfied. For 

the approximation of the multidimensional integrals in (7) we used 15 integration points carried 

out with adaptive quadrature (Schilling & Bock, 2005).  

Model selection criteria such as the Akaike Information Criterion (AIC), the Bayesian 

Information Criterion (BIC), and Sample size Adjusted BIC (SABIC) that replaces sample size 

𝑁 by (𝑁 + 2)/24, the BIC adjusted to prevent the BIC to underestimate the number of latent 

classes for small sample sizes (Nylund, Asparouhov, & Muthén, 2007), are used as relative fit 

indices where lower values indicate a better model. The model selection criteria will be used 

for selecting among different joint modeling approaches for MNAR. Because the standard LGC 
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model under MAR does not directly model the drop out indicators, it effectively uses a different 

set of data (longitudinal outcomes without drop out indicators); therefore, likelihood values are 

not directly comparable to those from the joint models which hypothesize a specific form for 

the drop out indicators. Instead, the significance of the 𝜸 elements in the drop out model will 

primarily be examined to determine the presence of MNAR.                                        

3. Simulated examples 

3.1 Design 

To study the performance of the proposed joint mixture model under the circumstance of non-

ignorable drop-out, a series of simulated examples is conducted under three different scenarios. 

In all the cases, one simulated data set is analyzed. The number of occasions is taken to be four 

(T = 4) with sample size N = 1,000 subjects. To generate longitudinal outcomes in Scenarios 1 

and 2, we use a linear growth curve model where the true values for the intercept and the slope 

parameters are taken to be 𝛽10 = 30 and 𝛽11 = 1, respectively. For Scenario 3, we use a 

quadratic growth curve model with parameters as in (2) with 𝛽10 = 30 and 𝛽11 = 1, and  𝛽12 = 

0.5. To mimic situations where subjects’ random effects (e.g., having higher outcome measures 

or experiencing faster change over time) influence the risk of dropping out, we use the logit 

mixed-effects model to generate the discrete-time drop out indicators (as in (4)) in which the 

probability of dropping out at each occasion increases as a function of the set of shared random 

effects, 𝑏0𝑖, 𝑏1𝑖 (and 𝑏2𝑖 for Scenario 3). In addition to the factor that examines (a) whether the 

dropout missingness of the survival process changes linearly or non-linearly across occasions, 

the three scenarios were also differentiated by two more factors: (b) underlying distributions 

assumed for the random effects; and (c) proportion of subjects falling in the latent classes 

(mixtures). Finally, the error term was randomly generated from a standard normal distribution 

in all scenarios.        
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Scenario 1. The population of subjects is heterogeneous at baseline only (𝑏0𝑖). A 

mixture of bivariate normal distributions for the random intercept and slope (i.e., 𝑏0𝑖 and 𝑏1𝑖) 

is used to characterize two latent subgroups with mean vectors 𝝁 = (−10.5,0)𝑇 and  

𝝁 = (3.5,0)𝑇 for latent classes 1 and 2 respectively. The true proportions of the latent classes 

are 𝜔1 = 0.25 and 𝜔1 = 0.75, respectively. The true variance-covariance matrix within each 

class is    𝚺𝒃 = [
10 −1.5

−1.5 5
]. The parameters associated with the drop out model are 𝛾0 =

0.2, and 𝛾1 = 0.5 (i.e., the probability of dropping out is greater for subjects with high levels 

of symptoms at baseline or as the symptoms get worse over time) and 𝛽20 = −1 and 𝛽21 = 1 

(i.e., the risk of dropping out increases over time in the population). Figure 1 shows the 

distribution of 𝑌 (e.g. depression score) generated under Scenario 1 across the four waves. The 

dotted lines indicate the symptom score distribution if the drop-out missingness had not 

occurred. In contrast, the solid lines indicate the score distribution after the drop-out occurred. 

That is, difference between the two types of densities shows the effect of non-ignorable drop-

out on the outcome variable. This Scenario 1 results in a drop-out rate of approximately 60% 

(across the four waves).  

Scenario 2. The population is heterogeneous both at baseline (𝑏0𝑖) and growth (𝑏1𝑖). A 

mixture of bivariate normal distributions for the random intercept and slope (i.e., 𝑏0𝑖 and 𝑏1𝑖) 

is used to characterize two latent subgroups with mean vectors 𝜇1 = (7.5, −0.5)𝑇 and 𝜇2 =

(−7.5, 0.5)𝑇 for latent class 1 and 2 respectively. The latent class proportions are 𝜔1 = 𝜔2 =

0.5. The values chosen imply a heterogeneous population in which half of the subjects have 

high levels of symptoms that get better than average over time; and the other half have low 

levels of the symptoms that get worse over time. The true variance-covariance matrix in each 

class is 𝚺𝒃 = [
10 −3
−3 5

] and the true overall variance-covariance matrix using (6) becomes  

𝑮𝒃 = [
38.13 −4.88
−4.88 5.12

]. The data generation for drop-out occasions remain the same as in 
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Scenario 1 (i.e., 𝛾0 = 0.2, and 𝛾1 = 0.5 for the shared random effects and 𝛽20 = −1 and 𝛽21 =

1 for the fixed effects).  Figure 2 shows bimodal densities of the depression scores with almost 

equal size groups in wave 1, turning into unequal size groups in wave 2, and a unimodal density 

in waves 3 and 4 due to the disappearance of one group with a greater average depression score. 

Besides, with the systematic drop-out, the score distribution in the presence of drop-out by 

wave 4 becomes much less variable than in the previous waves and compared to the true one. 

Scenario 2 results in approximately 54% missing data by wave 4.          

Scenario 3. In this Scenario, we simulate the longitudinal outcomes from a quadratic 

LGC model such that the missing outcomes are interrelated with the longitudinal outcomes by 

means of the random slopes for the linear and quadratic terms. We also allow for the missing 

outcomes (drop-out) themselves to change non-linearly over time. Therefore, the dropout 

indicators are generated from model (4) that also includes a quadratic effect over time. The 

random intercept and the random slopes (i.e., 𝑏0𝑖, 𝑏1𝑖, and 𝑏2𝑖) are generated from a mixture of 

bivariate normal distributions with two latent subgroups. The mean vectors are 𝜇1 =

(−10.5,0.33, −0.1)𝑇 and 𝜇2 = (3.5, −0.11, 0.03)𝑇 for latent class 1 and 2 respectively, and 

latent class membership proportions of 𝜔1 = 0.25  and 𝜔2 = 0.75 . The true variance-

covariance matrix in each class is 𝚺𝒃 = [
10 3 1
3 3 0.5
1 0.5 1

] and true overall variance-covariance 

𝑮𝒃 = [
32.97 2.28 1.22
2.28 3.02 0.49
1.22 0.49 1

]. For the drop-out model (4) , the fixed intercept and slope are 

𝛽20 = −1 , 𝛽21 = 2 , and 𝛽22 = 0.5 , indicating that the risk of drop-out increases more 

drastically as a function of time compared to Scenarios 1 and 2. Furthermore, 𝛾0 = 0.2, 𝛾1 =

1.5, and  𝛾2 = 1.5  which implies that subjects with high levels of baseline symptoms (0.2𝑏0𝑖) 

that grow faster over time (1.5𝑏1𝑖 + 1.5𝑏2𝑖) tend to have high risks of dropping out of the study. 

As seen in Figure 3, with the systematic drop-out, the average score decreases over time (solid 
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lines), but the variations remain the same, unlike Scenario 2. Scenario 3 results in 

approximately 43% with drop-out before wave 4.               

3.2 Results 

Tables 1-3 present the results from the three scenarios. Overall, in all three scenarios, 

the parameters of the fixed and random parts, as well as the class probabilities for the data-

generating model (the 2-class joint mixture model), were well recovered. Furthermore, the 

data-generating model was consistently selected as the best-fitting model.        

Table 1 presents the results of a single simulated data set from Scenario 1 where the 

random intercept (𝑏0𝑖 ) is heterogeneous but the random slope (𝑏1𝑖 ) is homogeneous. The 

parameter estimates of the shared random intercept ( 𝑏0 ) and slope ( 𝑏1 ) are statistically 

significant in both of the 1- and 2-class joint mixture models: 𝛾0 = 0.20, 𝑆𝐸(𝛾0) = 0.01; 𝛾1 =

0.47, 𝑆𝐸(𝛾1) = 0.06 and 𝛾0 = 0.25, 𝑆𝐸(𝛾0) = 0.03; 𝛾1 = 0.53, 𝑆𝐸(�̂�1) = 0.07 respectively. 

While the average intercept (𝛽10) was recovered by all models, the average slope (𝛽11) of the 

standard LGC model (under the MAR assumption) produces a noticeable large negative bias 

concluding �̂�11 = −0.35 and 𝑆𝐸(�̂�11)=0.16 while the true value is 𝛽11 = 1. Also, it is found 

that both the model that ignores the non-ignorable drop-out mechanism (i.e. standard LGC) 

and the model that wrongly assumes homogeneity for the random intercept (1-class model), 

tend to result in considerable overestimation bias in the variance of the random intercept,  �̂�𝑏0

2 =

45.57 and 𝑆𝐸(�̂�𝑏0

2 ) = 1.92 whereas  the true value is 𝜎𝑏0

2 = 32.97.    

Table 2 presents the results from Scenario 2 that assumes that both the random intercept 

(𝑏0𝑖) and random slope (𝑏1𝑖) follow a mixture of two bivariate normals with different mean 

vectors in the two subpopulations. The standard LGC model (under MAR assumption) again 

underestimates, �̂�11 = −0.23 and 𝑆𝐸(�̂�11) = 0.20 (where 𝛽11 = 1) with a considerable bias. 

In contrast, both of the joint models which take into account drop-out (1- and 2-class models) 

give a negligible estimation error. However, the variance estimates of the random intercept 
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(𝜎𝑏0

2 ) from the incorrect models, tend again to result in considerable overestimation estimation: 

�̂�𝑏0

2 = 66.06  and 𝑆𝐸(�̂�𝑏0

2 ) = 1.82  (standard LGC); and �̂�𝑏0

2 = 66.65  and 𝑆𝐸(�̂�𝑏0

2 ) = 1.72 

(joint model with 1-class) compared to the true value 38.13.  The estimated link parameters (𝛾0 

and 𝛾1) of the two fitted joint models correctly show that the probability of dropping out on a 

given occasion increases for those subjects whose levels of the disorder are high to begin with 

or grow more rapidly over time. As seen in latent subgroups for the joint mixture (2-class) 

model, the estimated means for the latent classes correctly identified two trajectories: high 

levels of the disorder at baseline (𝜇𝑏0(1)) that tends to improve slowly relative to the average 

participant over time (𝜇𝑏1(1)); or low levels of the disorder at baseline (𝜇𝑏0(2)) that grow more 

rapidly than the average participant’s over time (𝜇𝑏1(2)).    

Finally, Table 3 gives the results from Scenario 3 that assumes that the random intercept 

(𝑏0𝑖), linear slope (𝑏1𝑖), and quadratic slope (𝑏2𝑖) together follow a mixture of two bivariate 

normals with different mean vectors in the two subpopulations. In this scenario, we fit linear 

and quadratic joint models (1-class) and (2-class). Under the standard LGC model (under MAR 

assumption) we find considerable negative bias for the fixed slope, �̂�11 = −1.25  and 

𝑆𝐸(�̂�11) = 0.12 that fails to cover the true value (𝛽11= 1) within the 95% CI. The misfit of the 

model is also revealed by the significance of the coefficients (𝛾) of the shared random effects 

in the joint model. We find again that the estimated variance of the random intercept in the 

standard model and the joint model with 1-class largely overestimate the true value (true overall 

variance is 𝜎𝑏0

2 =32, i.e., 𝜎𝑏0

2 =10 per class). The joint mixture model with 2-classes correctly 

estimates means for two trajectories: lower levels of the disorder at baseline (𝜇𝑏0(1)) that leave 

room for it growing more rapidly than the average participant’s over time (𝜇𝑏1(1)); or high 

levels of the disorder at baseline (𝜇𝑏0(2)) that grow more slowly than the average participant’s 

over time (𝜇𝑏1(2)).         
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4. The shared-parameter LGC mixture model for depression symptoms 

Our real-data example comes from a four-year longitudinal study designed to examine the risk 

and predictive factors for suicide via a yearly survey among sexual minority youth (15-21 age 

range) collected between 2011 and 2015. The participants were recruited in three U.S. cities 

(located in the Northeast, Southwest, and on the West Coast) from community organizations 

and college groups for LGBTQ+ youth. Among these three sites, the recruitment procedures 

in the West Coast region were applied ineffectively during the process of outreach and 

therefore, data are unavailable after the first wave. The sample sizes were n = 989 (in wave 1), 

544 (in wave 2), 368 (in wave 3), and 305 (in wave 4), a 69.8% drop out by wave 4. Depression 

symptoms were measured with the Beck Depression Inventory–Youth (BDIY; Beck, Beck, 

Jolly, & Steer, 2005) which is a composite of 20 questions such as, “I think that bad things 

happen because of me” and “I think I do things badly”. Responses to those questions were 

scored as 0, 1, 2, and 3, indicating “never”, “sometimes”, “often”, and “always”, respectively 

and combined for a range of 0 to 100, with the typical cutoff suggested of greater than or equal 

to 55 which is considered to represent elevated depression. The survey also collected 

information on whether the respondents received free lunch at school (yes/no), a proxy measure 

for socioeconomic status. The average scores at wave 1 for those who dropped out after waves 

1, 2, and 3 are 17.80, 17.30, and 17.17, respectively. The average score at wave 1 for those 

who never dropped out is 14.13, which is noticeably lower, indicating weaker depressive 

symptoms. We fit a total of five models examined in the simulated Scenario 3, including 

covariates. Table 4 shows model fit indices, parameter estimates, and standard errors for a 

standard LGC model (under MAR assumption) and two joint models (under MNAR or non-

ignorable drop-outs assumption) with the linear and/or quadratic terms on the sub-models and 

with 1- and 2-classes. Among the MNAR models, the joint model with 2-class mixtures 

including only linear terms on the sub-models was selected as the best model (AIC: 18,360, 
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BIC: 18,466, and ABIC: 18,396). The joint mixture model with quadratic terms did not 

improve the model fit and therefore it is not presented here. We discuss below the results from 

the selected model.  

The joint mixture model (2-class) estimates 20% of the subjects (𝜔1) as being classified 

in the first subgroup and 80% (𝜔2) in the second subgroup. Figure 4 shows the depression 

scores identified by the two latent groups. The results suggest that in group 1 (solid red), 

subjects with a higher baseline depressive symptom tend to experience a more rapid decrease 

in the depressive symptom than an average subject across waves. Whereas, subjects in group 

2 (solid grey) already begin with a lower baseline depression at the beginning, and therefore, 

tend not to show much of an improvement.   

The results under “MNAR dropout” in Table 4 also show that the drop-out mechanism 

is non-ignorable. Specifically, for the joint mixture model (2-class), the estimated link 

parameter 𝛾1 for the shared random slope was found to be significant in predicting the log 

hazard odds for drop-out (𝛾1= -0.08, SE (𝛾1)=0.03), suggesting that subjects who experienced 

a faster improvement in their depression score were more likely to drop out during the study. 

However, the effect of 𝛾0 was not significant when 𝛾1 is present.   

Results of the model under the “latent growth process” section of Table 4 suggest that 

Northeast (“Site1”) has lower depressive symptoms as compared to the West Coast. SES was 

not found to be statistically significant in any of the three models. The estimated average slope 

( �̂�11 ) is statistically significant and negative, indicating improvement (i.e. lessening) of 

depressive symptoms over time (e.g., �̂�11=-0.95, SE (�̂�11)=0.27). Similar to Simulation 3, we 

notice that the standard LGC model (MAR assumed) that does not model for potential MNAR 

dropout missingness leads to a considerable downward bias in the fixed slope (�̂�11=-5.56, SE 

(�̂�11)=0.20).    

5. Discussion 
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The main contribution of the paper centers on extending the latent growth model to address the 

non-ignorable dropout missingness in multi-wave survey data where population heterogeneity 

is present. In particular, we are interested in identifying a particular type of population 

heterogeneity of the participants in order to answer the question: is there a non-ignorable 

dropout pattern for those who share a specific growth pattern in the longitudinal analysis? 

Therefore, we have presented here a modified shared-parameter (or joint) model in order to 

explain the interdependence inherent in a longitudinal response process and the risk of non-

ignorable drop-out in the context of multi-wave mental health cohort studies. To have a full 

representation of the joint distribution, the model is comprised of two sub-models, a LGC 

model and a discrete-time survival model that are linked by a common set of random effects. 

The LGC model in the study has been generalized to allow for both linear and quadratic random 

slopes. Similarly, the logistic survival model with non-linear terms has been used to handle an 

additional complexity, namely that the drop-out patterns themselves are non-linear over time. 

In that framework, mixtures were used to approximate the distribution of the random effects 

and to identify population heterogeneity in the analysis.     

Three simulated examples showed that the estimated values can be far from the truth 

when it comes to the key parameters (fixed slope in particular) when non-ignorable drop-out 

was not adequately modeled in the LGC analysis. Even with the shared-parameter model, 

however, we found that estimation error in the variance covariance matrix of the random effects 

persisted when normality was assumed in a heterogeneous population. To remedy this, the joint 

mixture model was able to remove the error due to the drop-out by weakening the normality 

assumption of the random effects that helped to identify latent subgroups based on the subject-

specific trait of the mental disorder. Finally, we have focused on its practical application in a 

real-life data analysis in relation to depressive symptoms.  
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Our approach is implemented using the software Mplus with a full information 

maximum likelihood estimation via the EM algorithm. With respect to determining the number 

of latent classes, we have found that AIC, BIC, and SABIC were able to choose the correct 

mixture model when there is a population heterogeneity and to test redundancy of non-linear 

terms of the modeling approach. We acknowledge that different model selection criteria may 

be worth exploring to be able to determine the optimal number of latent classes in the context 

of mixture modeling. For example, Gelman, Hwang, and Vehtari (2014) discussed that 

Watanabe-Akaike information criteria (WAIC; Watanabe, 2010) is viewed as a more stable 

information criterion for selecting optimal hierarchical and mixture structures, utilizing the 

entire posterior distribution, rather than point estimates, in estimating the penalty. Also, based 

on a posterior predictive distribution to ascertain how many latent classes are optimal for 

predicting drop-out occasions for individuals, Mean Square Predictive Error (MSPE) can be 

used to predict drop-out occasions to choose between competing models. It may easily be 

possible to implement the present model in such a program as Stan (Stan Development Team, 

2018), but doing so was beyond the scope of the present manuscript that meant to examine the 

model itself, not to provide all possible ways of performing estimation. As extended studies, it 

will be interesting to use the proposed model to nonlinear growth curves for multivariate 

longitudinal outcomes when the MNAR is present in the mental health study. Furthermore, the 

random effects/latent variables can be multidimensional in this context, for example, Hafez, 

Moustaki, and Kuha (2015) used a continuous time-dependent latent variable to explain the 

associations among multiple categorical outcome variables and a separate continuous latent 

variable to account for the interdependence among the drop-out indicators. Nevertheless, we 

believe that the current study provides researchers and practitioners with a reliable and flexible 

methodological tool for modeling longitudinal mental health and other data under non-

ignorable drop-out.  
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Figure 1. Scenario 1: Distribution of symptom scores across four waves. The dotted lines 

indicate the symptom score distribution if the drop-out missingness had not occurred. In 

contrast, the solid lines indicate the score distribution after the drop-out occurred.  

 

 

 
Figure 2. Scenario 2: Distribution of symptom scores across four waves. The dotted lines 

indicate the symptom score distribution if the drop-out missingness had not occurred. In 

contrast, the solid lines indicate the score distribution after the drop-out occurred.  
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Figure 3. Scenario 3: Distribution of symptom scores across four waves. The dotted lines 

indicate the symptom score distribution if the drop-out missingness had not occurred. In 

contrast, the solid lines indicate the score distribution after the drop-out occurred.  

 

 

 
Figure 4. Depression data example: Trajectories of depressive symptoms over time for 

subjects who dropped out after wave 2, wave 3, and never dropped (from far left) and latent 

class memberships estimated by joint models (2-class). Note. solid lines= results of the joint 

mixture model (2-class), where red and grey indicate two latent memberships.    
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Table 1. Scenario 1: True and estimated parameter values, data generated from a joint model 

(2-class) with a bivariate normal for the heterogeneous random intercept.   

Parameter True 

Standard LGC  

(MAR assumed)  
 

Joint model  

(1-class)  
 Joint model 

(2-class)  
  

Est.  S.E.  Est.  S.E.  
 

Est.  S.E.    

Latent growth 

process 
 

              

𝛽10 30 30.18   0.22   30.17  0.22    30.17 0.22    

𝜷𝟏𝟏 1 -0.35  0.16     1.21 0.25     1.21 0.26    

𝝈𝒃𝟎

𝟐  32.97  45.32 1.92     45.57 1.92     32.23 1.03    

𝜎𝑏1

2  5  4.80 0.51     5.65 0.67     5.36 0.61    

𝜎𝑏0,𝑏1
 -1.5 -2.97 0.82     0.38     0.96    -0.69 0.73    

MNAR dropout                     

γ0 0.2  .  .    0.20 0.01    0.25 0.03    

γ1 0.5  .  .    0.47 0.06     0.53 0.07    

Latent 

subgroups 

 
                  

𝜇𝑏0(1) -10.5 . .   . .   -10.72 0.22   

𝜇𝑏0(2) 3.5 . .   . .   3.25 0.26   

𝜇𝑏1(1) 0 . .   . .   -0.38 0.24   

𝜇𝑏1(2) 0 . .   . .   0.12 0.07   

𝜎𝑏0(.)
2  10 . .   . .    9.79 0.57    

𝜎𝑏1(.)
2  5 . .   . .    5.38 0.61    

𝜎𝑏0,𝑏1(.) -1.5 . .    .  .    -1.41 0.49   

𝜔1 0.25 . .         0.23 0.01  

           

LL  -4785.57   -5566.19   -5369.82   

AIC  9589.15     11158.38     10775.64     

BIC  9633.32     11222.18     10863.98     

SABIC  9604.74     11180.90     10806.81     

Note. LGC=Latent Growth Curve; AIC=Akaike information criterion; BIC=Bayesian information criterion; 

SABIC=Sample-Size Adjusted Bayesian information criterion.   
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Table 2. Scenario 2: True and estimated parameter values, data generated from a joint model 

(2-class) with a bivariate normal for the heterogeneous random intercept and slope.   

Parameter True 

Standard LGC  

(MAR assumed)  

 

Joint model  

(1-class)  
 Joint model 

(2-class)  
  

Est.  S.E.  Est.  S.E.  

 

Est.  S.E.    

Latent 

growth 

process 

 
              

𝛽10 30 29.79   0.26   29.77  0.26   29.77 0.26   

𝜷𝟏𝟏 1 -0.23  0.20     1.02 0.17    1.16 0.18   

𝝈𝒃𝟎

𝟐  38.13  66.06 1.82     66.65 1.72     38.06 0.96   

𝜎𝑏1

2  5.12  4.48 0.58     4.93 0.47      4.92 0.43   

𝜎𝑏0,𝑏1
 -4.88  -7.73 1.53     -7.93 1.10    -5.17 0.70   

MNAR 

dropout  
 

                  

𝛾0 0.2  .  .    0.21 0.02    0.21 0.03    

𝛾1 0.5  .  .    0.53 0.06     0.57 0.07    

Latent 

subgroups 

 
                  

𝜇𝑏0(1) 7.5 . .   . .   7.45 0.26   

𝜇𝑏0(2) -7.5 . .   . .   -7.72 0.27   

𝜇𝑏1(1) -0.5 . .   . .   -0.64 0.14   

𝜇𝑏1(2) 0.5 . .   . .   0.66 0.14   

𝜎𝑏0(.)
2  10 . .   . .    9.28 0.61   

𝜎𝑏1(.)
2  5 . .   . .    4.71 0.44   

𝜎𝑏0,𝑏1(.) -3  .  .    .  .    -2.71 0.47  

𝜔1 0.5 . .            0.51 0.02  

           

LL  -4947.41   -6323.40   -6044.49   

AIC  9912.82     12672.80     12124.97     

BIC  9956.99     12736.60     12213.31     

SABIC  9928.41     12695.31     12156.14     

Note. LGC=Latent Growth Curve; AIC=Akaike information criterion; BIC=Bayesian information criterion; 

SABIC=Sample-Size Adjusted Bayesian information criterion.  
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Table 3. Scenario 3: True and estimated parameter values, data generated from a joint mixture 

model (2-class) with a bivariate normal for the heterogeneous random intercept and slopes for 

linear and quadratic terms.   

  

True 

Standard LGC  

(MAR assumed) 
  

Joint model  
  

Joint model 

(1-class) (2-class) 

  linear    linear    
linear + 

quadratic 
  linear    

linear + 

quadratic 

Parameter Est.  S.E.    Est.  S.E.    Est.  S.E.    Est.  S.E.    Est.  S.E.  

Latent 

growth 

process 

 

                            

𝛽10 30 30.24   0.22   30.25  0.22    30.26  0.22    30.25 0.22    30.25 0.22 

𝜷𝟏𝟏 1 -1.25  0.12    1.83 0.37     0.98 0.29     1.88 0.19    0.80 0.28 

𝛽12 0.5 . .   . .   0.52 0.18   . .   0.71 0.18 

𝝈𝒃𝟎

𝟐
 32  53.44 2.59    46.42 2.38   43.65 2.06    31.64 10.96     31.58 1.00 

𝜎𝑏1

2  3.02  9.67 0.86    8.73 2.06   3.12 0.80    8.68 0.98     2.50 0.66 

𝜎𝑏2

2  1  . .     .  .    0.84  0.16   .  .    1.00  0.22 

𝜎𝑏0,𝑏1
 2.28  -11.55 1.62     4.03  2.11    2.62  1.24    4.56 0.70    2.43  0.74 

𝜎𝑏0,𝑏2
 1.22 . .   . .   1.09 0.55   . .   1.50 0.45 

𝜎𝑏1,𝑏2
 0.49  . .    . .     0.70 0.20    . .     0.79 0.19 

MNAR 

dropout  

 
                            

𝛾0 0.2  .  .    0.17 0.02     0.17 0.03    0.28 0.04    0.22 0.06 

𝛾1 1.5  .  .    0.87 0.09     1.26 0.20     0.96 0.09     1.22 0.39 

𝛾2 1.5 . .   . .   1.26 0.20   . .   1.74 0.33 

Latent 

subgroups 

 
                            

𝜇𝑏0(1) -10.5 . .   . .         -10.63 0.27   -10.64 0.28 

𝜇𝑏0(2) 3.5 . .   . .         3.34 0.20   3.34 0.06 

𝜇𝑏1(1) 0.33 . .   . .         0.10 0.21   0.13 0.20 

𝜇𝑏1(2) -0.11 . .   . .         -0.14 0.06   -0.04 0.06 

𝜇𝑏2(1) -0.1 . .   . .         . .   -0.16 0.19 

𝜇𝑏2(2) 0.03 . .   . .         . .   0.05 0.03 

𝜎𝑏0

2  10 . .    . .    . .     9.05 0.49    8.96 0.52 

𝜎𝑏1

2  3  . .     . .     . .    8.68 0.98   2.50  0.67 

𝜎𝑏2

2  1                   .  .    1.00 0.22 

𝜎𝑏0,𝑏1
 3  .  .    .  .    .  .   4.36 0.49    2.70  0.50 

𝜎𝑏0,𝑏2
 1 . .   . .   . .   . .   1.15 0.31 

𝜎𝑏1,𝑏2
 0.5  . .     . .     . .     . .     0.79 0.19 

𝜔1 0.25 . .               0.24 0.01   0.24 0.01 

                

LL  -5845.34   -6768.82   -6890.48   -6603.97   -6479.99  

AIC  11708.69     13563.64     13816.97     13243.95     13011.99   

BIC  11752.86     13627.44     13905.31     13332.29     13139.59   

SABIC  11724.27     13586.15     13848.14     13275.12     13057.02   

Note. LGC=Latent Growth Curve; AIC=Akaike information criterion; BIC=Bayesian information criterion; 

SABIC=Sample-Size Adjusted Bayesian information criterion.  
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Table 4. Results of standard latent growth curve model (under MAR) and joint (mixture) 

models (under MNAR), Depression data example.  

 
Standard LGC  

(MAR assumed) 
 

Joint model  

(1-class) 
 

Joint model  

(2-class) 
 

  linear    linear    

  

linear + quadratic   linear    

Parameter Est.  S.E.    Est.  S.E.  Est.  S.E.    Est.  S.E.    

Latent growth 

process 
                        

Site 1 -5.43 0.83   -5.33 0.83    -5.33  0.83   -4.08  0.76    

Site 2 -0.82 1.1   -0.6 1.11    -0.59  1.11    0.21  1.07   

SES 0.27 0.7   0.16 0.7   0.16  0.7     -0.28  0.65   

β10 19.09   0.76   19.11  0.76    19.13   0.76   18.68 0.74    

β11 -5.56  0.20     -0.59 0.22     -0.78  0.53    -0.95 0.27    

β12 . .   . .    0.07 0.17    . .   

σb0

2
  95.66 8.86    96.89  8.94    104.13   19.28    88.63 11.72   

σb1

2   5.95 2.09    6.35  2.12    15.27  20.11    7.08 2.64    

σb2

2        . .    0.35 0.78    .  .    

σb0,b1
  -8.04 4.11    -8.72 4.18   -18.44  20.83     -9.48 5.56    

σb0,b2
 . .   . .    2.64  5.09   . .   

σb1,b2
  . .     . .     -2.00 4.30     . .    

MNAR dropout                          

γ0  .  .    0.01 0.01      0.01   0.01   0.003 0.01    

γ1  .  .    -0.03 0.03     -0.92  0.03    -0.08 0.03    

γ2 . .   . .    -0.004 0.06    . .   

Latent 

subgroups 
                        

μb0(1) . .   . .         -17.02 1.13   

μb0(2) . .   . .         4.25 0.67   

μb1(1) . .   . .         5.37 1.68   

μb1(2) . .   . .         -1.34 0.24   

μb2(1) . .   . .         . .   

μb2(2) . .   . .         . .   

σb0

2  . .   . .   .      39.55 11.32   

σb1

2        . .          2.066 1.68    

σb2

2     . .        

σb0,b1
    . .     6.17 2.91  

σb0,b2
    . .        

σb1,b2
    . .        

ω1    . .     0.20 0.04  

             

LL    -9208.08   -9202.59   -9158.85   

AIC 16371     18454.16      18455.19     18359.71     

BIC 16429      18547.20     18577.61     18466.23     

SABIC 16391      18486.85      18498.21     18396.01     

Note. LGC=Latent Growth Curve; Site 1=Northeast; Site 2=Southwest; SES=Socioeconomic Status (Free Lunch); 

AIC=Akaike information criterion; BIC=Bayesian information criterion; SABIC=Sample-Size Adjusted 

Bayesian information criterion.  

 

 

 

 

 


