
PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND
MANY LEAVES

PETER ALLEN, JULIA BÖTTCHER, DENNIS CLEMENS, AND ANUSCH TARAZ

Abstract. We prove that one can perfectly pack degenerate graphs into complete or dense
n-vertex quasirandom graphs, provided that all the degenerate graphs have maximum degree
o
(

n
logn

)
, and in addition Ω(n) of them have at most

(
1 − Ω(1)

)
n vertices and Ω(n) leaves.

This proves Ringel’s conjecture and the Gyárfás Tree Packing Conjecture for all but an
exponentially small fraction of trees (or sequences of trees, respectively).

1. Introduction

Let G = {G1, G2, . . . , Gs} be a collection of graphs, and H be a graph. We say that G
packs into H if we can find pairwise edge disjoint copies in H of the graphs G1, . . . , Gs. If in
addition we have

∑
i∈[s] e(Gi) = e(H), we call the packing perfect : in this case, each edge of

H is used in a copy of exactly one Gi.
The study of perfect packings in graphs has a long history, beginning with Plücker [24], who

in 1835 showed that for certain values of n there is a perfect packing of copies of K3 into Kn.
Steiner [28] in 1853 asked, more generally, when one can perfectly pack the n-vertex k-uniform
complete hypergraph with cliques on r vertices. He phrased the question as a problem in set
theory, and gave some obvious divisibility-based necessary conditions on n; today such perfect
packings are called combinatorial designs. In 1846 Kirkman [18] asked for a strengthening of
Plücker’s ideas: when can one have a perfect packing of spanning K3-factors (that is, n3 vertex
disjoint copies of K3) into Kn? Again, he showed that for specific values of n such a thing is
possible. Generalising this in the direction of Steiner one obtains the concept of a resolvable
design; again, it is easy to find divisibility-based necessary conditions on n.

Despite their simple statement, these problems turned out to be difficult. Kirkman gave
explicit constructions showing that one can perfectly pack Kn with copies of K3 if and only
if n is congruent to 1 or 3 modulo 6. But it took more than a century until, in 1975 Wil-
son [29] proved the (much harder) statement that the necessary divisibility conditions are also
sufficient for cliques of any fixed size in large enough (2-uniform) graphs. Ray-Chaudhuri and
Wilson [25] in 1971 solved Kirkman’s problem. There was then another pause, till 2014—up to
which time, despite significant work, not a single example of a non-trivial hypergraph perfect
packing for uniformity at least 6 was discovered—when Keevash [14], in a major breakthrough,
proved that the necessary divisibility conditions are also sufficient for any fixed clique size and
hypergraph uniformity, provided n is large enough. The problem was re-solved, by a rather
different method, by Glock, Kühn, Lo and Osthus [9], who also solved the problem of per-
fect packings with general fixed hypergraphs in place of cliques. In [15], Keevash made the

Date: May 4, 2021.
PA was partially supported by the EPSRC, grant number EP/P032125/1.
JB was partially supported by the EPSRC, grant number EP/R00532X/1.
PA and JB were partially supported by a STICERD grant.

1

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 2

beautiful observation that a resolvable design is equivalent to a perfect packing in an auxiliary
well-structured hypergraph, and established the existence of such a packing. Hence, he proved
that resolvable designs exist whenever the obvious necessary conditions are satisfied and n is
large enough.

When one moves away from packings with fixed-size objects (or statements which can be
reduced to such packings), the first positive result is due to Walecki in the 1800s (see [20]),
who proved that Kn can be perfectly packed with Hamilton cycles whenever n is odd. In the
1960s and 70s, interest in this area was renewed, in particular due to conjectures of Ringel [26]
and Gyárfás [10] on packings of trees. These conjectures state, respectively, that K2n−1 can
be packed with 2n− 1 copies of any given n-vertex tree, and that if T2, . . . , Tn is any sequence
of trees such that v(Ti) = i, then {T2, . . . , Tn} packs into Kn. In both cases, the packing is
necessarily perfect, which makes these conjectures difficult. It is not too hard to prove either
conjecture for stars or paths, and a considerable amount of effort was put into solving special
cases of both cases (for the former, see the survey of Gallian [8]). However until rather recently,
there were no proofs of either conjecture for any reasonably large family of trees. Then Joos,
Kim, Kühn and Osthus [13] proved (among other things) that both conjectures hold when the
trees have constant maximum degree ∆ and n is large enough. The proof of this result is very
hard, using a variety of powerful techniques from modern extremal graph theory.

Broadly, the recent solutions to perfect packing conjectures (both, in the case of combina-
torial designs and in the case of tree packing) depend on two advances: randomised packing
methods, and the absorbing method. The idea is that, rather than deterministically specifying
how to pack, one gives a randomised packing algorithm and argues that it is likely to succeed.
Here ‘succeed’ means packing almost all (not all) of the graphs, and there will be some edges
remaining. This leftover is dealt with by the absorption method: one should begin by cleverly
choosing an ‘absorbing packing’ of the first few graphs which has the property that whatever
the remaining edges from the randomised algorithm turn out to be, one can modify the absorb-
ing packing in order to incorporate the leftover to a perfect packing. In the work of Keevash,
roughly this template is followed (though there are some mild conditions on the leftover), and
an intricate algebraic structure is used to obtain the absorbing packing. In the work of Joos
et al., the iterative absorption method (originating in [19]) is used: here one packs in a way
that uses all the edges adjacent to most vertices and almost no edges among the remaining
few vertices, and then iterates this process, until all the difficulty has been pushed into a set
of vertices so tiny that a relatively simple absorber suffices.

The idea of randomised packing dates back to Rödl’s celebrated nibble method [27] in which
he solved the Erdős-Hanani problem, of showing that if n is large enough then one can pack
most of the edges of the complete k-uniform n-vertex hypergraph with cliques of size r, solving
Steiner’s problem approximately. Note that for this problem there is no divisibility restriction
on n. The nibble method was brought to tree packing by Böttcher, Hladký, Piguet and
Taraz [2], who showed that one can pack most of the edges of Kn with bounded degree
trees, provided the trees are not too close to spanning. This was the trigger for a sequence
of generalisations: Messuti, Rödl and Schacht [21] showed that one can replace trees with
graphs from any non-trivial minor-closed family; Ferber, Lee and Mousset [5] showed that one
can additionally allow spanning graphs; Kim, Kühn, Osthus and Tyomkyn [17] discarded the
structural assumption entirely, packing most of the edges of Kn with arbitrary bounded degree
graphs. All these results work in more generality than just for packings in Kn. In particular,
we should note that the results of [17] work in the Szemerédi regularity setting, which was
necessary for the proof strategy of [13].

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 3

All the results mentioned so far deal with bounded degree graphs; the first result to handle
growing degrees is due to Ferber and Samotij [6], who showed that one can pack most of the
edges of Kn with trees of maximum degree O

(
n

logn

)
(for almost-spanning trees) or O

(
n

logn

)1/6
(for spanning trees). In [1] it was proved that one can pack most of the edges of Kn with
arbitrary D-degenerate graphs with maximum degree O

(
n

logn

)
. Finally, recently Montgomery,

Pokrovskiy and Sudakov [23] were able to deal with trees of unbounded degree, at least in
the setting of Ringel’s conjecture: they proved an approximate version of Ringel’s conjecture,
proving that K2n−1 can be packed with 2n− 1 copies of any tree T with n− o(n) vertices.1

One might be tempted to think that, while a randomised strategy is very good for packing
most of the edges, one cannot hope for a perfect packing: After all, at some point one has to
pack the last few graphs, or at least somehow use the last few edges; at this point the packing
is very constrained and any mistake will cause the packing to fail (and there cannot be many
choices left, so that one cannot hope for strong concentration bounds), but a randomised
algorithm will probably make a mistake (at least, unless it does a good deal of ‘looking ahead’
which will be hard to analyse). But this is not the case, as we show in this paper. A rather
natural, simple randomised algorithm can succeed in giving a perfect packing. Using this
algorithm, we prove the following.

1.1. Main result. Given a graph G, an ordering of the vertices is a D-degeneracy order if
each vertex has at most D neighbours preceding it in the order. We say G is D-degenerate if
it has a D-degeneracy order. Trees, for example, are 1-degenerate.

Definition 1 ((µ, n)-sequence). We say that a sequence (Gi)i∈[m] of graphs is a D-degenerate
(µ, n)-graph sequence with maximum degree ∆ if

(G 1) Gi is D-degenerate and ∆(Gi) ≤ ∆ for each i ∈ [m],
(G 2) v(Gi) = n for each 1 ≤ i ≤ m− bµnc, and
(G 3) v(Gi) = n− bµnc and Gi has at least bµnc leaves for each i with m− bµnc < i ≤ m.

We also call the Gi with m− bµnc < i ≤ m the special graphs of the sequence.

An n-vertex graph H is (α, k)-quasirandom with density p if e(H) = p
(
n
2

)
and for every

` ∈ [k] and every set {v1, . . . , v`} of vertices of H we have∣∣NH(v1, . . . , v`)
∣∣ = (1± α)p`n .

Our main result states that a D-degenerate (µ, n)-sequence (Gi)i∈[t] of guest graphs with
maximum degree of order at most n

logn can be perfectly packed into a sufficiently quasirandom
graph Ĥ.

Theorem 2 (main result). For every D and µ, p̂0 > 0 there are n0 and ξ, c > 0 such that
for every p̂ ≥ p̂0, every n ≥ n0, and every m, the following holds for every n-vertex graph Ĥ
which is (ξ, 4D + 7)-quasirandom with density p̂. Every D-degenerate (µ, n)-graph sequence
(Gi)i∈[m] with maximum degree cn

logn such that
∑

i∈m e(Gi) ≤ e(Ĥ) packs into Ĥ.

It is easy to see (and proved for completeness in Proposition 8) that if T is a uniform random
labelled n-vertex tree, then for each c > 0, with probability 1 − e−Ω(n) the tree T will have

1Very recently, after we completed this paper, Montgomery, Pokrovskiy and Sudakov [22] announced a
proof of Ringel’s conjecture for large trees. This result also follows from even more recent work of Keevash
and Staden [16].

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 4

at least n/100 leaves and maximum degree at most cn
logn . In particular, we have the following

corollary to Theorem 2, proving almost all cases of Ringel’s conjecture and the Gyárfás Tree
Packing Conjecture.

Corollary 3. Let T be a uniform random n-vertex tree. With probability 1− e−Ω(n), there is
a packing of 2n− 1 copies of T into K2n−1.

Let T2, . . . , Tn be chosen independently and uniformly at random such that Ti is an i-vertex
tree for each 2 ≤ i ≤ n. With probability at least 1− e−Ω(n), there is a packing of {T2, . . . , Tn}
into Kn. �

We should briefly compare these results to the earlier result of Joos, Kim, Kühn and Os-
thus [13]. On the one hand, we cannot handle trees with few leaves, so our result does not
contain theirs. Furthermore, as far as Corollary 3 goes, packing bounded degree trees ‘almost’
covers a typical uniform random tree, whose maximum degree is likely to be Θ

(logn
log logn

)
, and

perhaps the approach of [13] could be pushed to allow for a few vertices of logarithmic degree.
On the other hand, the method of [13] heavily relies on the structure of trees, and in particu-
lar that one can embed them effectively in a Szemerédi partition; handling general degenerate
graphs with high maximum degree would be rather challenging with their approach.

Finally, we discuss which conditions in Theorem 2 are needed. It is easy to see that a typical
graph H on n vertices with density 1

2 will be quasirandom. However such a graph will typically
not contain any 1

10 log n-set S of vertices such that each other vertex has a neighbour in S. In
particular, if G is an n-vertex graph which is the vertex disjoint union of 1

10 log n stars, each
with the same number of leaves (up to an error 1), then G has maximum degree less than 20n

logn

but does not embed into H. Thus the maximum degree bound in our theorem is optimal up
to a constant factor.

One can allow D to grow with n. Examination of our proof shows it can grow roughly as
log log log n, but this is presumably not optimal. On the other hand, D cannot be as big as
10 log n, since a typical random graph is unlikely to contain any given graph with 9n log n
edges.

We cannot allow all graphs to be spanning in Theorem 2, as an example in [2, Section 9.1]
shows. However we expect one can do better than needing linearly many graphs to be linearly
far from spanning.

We do not believe that it is necessary to have many graphs with many leaves. We should
note that one cannot simply omit this condition, because for example no collection of cycles
can perfectly pack K2n, due to a parity obstruction: cycles use an even number of edges at
each vertex, but K2n has odd degree vertices. However for the case D = 1 (i.e. forests) we
believe one can omit the condition entirely (as the leaves should allow for parity correction).
Work on this problem is work in progress with Hladký and Piguet.

1.2. Proof outline. This paper builds on [1], so we begin by outlining the randomised algo-
rithm PackingProcess described there (and repeated here later). In PackingProcess, we embed
graphs one-by-one into Ĥ. To embed a given graph, we take the vertices in the degeneracy
order, and one by one embed them: at each step, we choose uniformly at random from the set
of all vertices to embed to which do not immediately break our packing (either by re-using a
vertex already used in the current embedding or by re-using an edge already used for a previ-
ous graph). We do this until almost the entire graph is embedded; then we choose arbitrarily a
way of completing the embedding to a spanning embedding; we argue that such a completion
exists with high probability. (This is a slight simplification, but the simplification does not

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 5

affect the point.) Note that here we certainly do not ‘look ahead’ in any way at what we will
embed in the future, and the algorithm is essentially purely random. This gives the following
packing result from [1].

Theorem 4. For every γ > 0 and each D ∈ N there exist c, ξ > 0 and n0 such that the
following holds for each integer n ≥ n0. Suppose that

(
Gt
)
t∈[t∗]

is a family of D-degenerate
graphs, each of which has at most n vertices and maximum degree at most cn

logn . Suppose that
H is a (ξ, 4D+ 7)-quasirandom n-vertex graph. Suppose further that the total number of edges
of
(
Gt
)
t∈[t∗]

is at most e(H)− γn2. Then
(
Gt
)
t∈[t∗]

packs into H.

To prove our main theorem, we will begin by removing some of the leaves from each special
graph in a given (µ, n)-graph sequence. We will then use PackingProcess to pack all the non-
special graphs and all the special graphs minus the removed leaves into Ĥ. It remains to
embed these removed leaves into the graph H consisting of the unused edges of Ĥ. We say a
removed leaf is dangling at a vertex v ∈ V (H) if its parent is embedded to v. We will show
that at each vertex of H, it is likely that there are about twice as many edges as dangling
leaves. In order to decide where to embed the dangling leaves, we first orient the edges of H
randomly, then ‘correct’ this orientation (by reversing a few carefully chosen directed paths of
length 2) such that the out-degree of each vertex is equal to the number of dangling leaves.
This is the only step in our algorithm where we ‘look ahead’ and prepare for the future.

We then complete the packing by going through H vertex-by-vertex, and for each vertex
choosing a uniform random assignment of the dangling leaves to the out-neighbours which
preserves having a packing. We should note that this last step has some similarity to the
approach of [13], where the authors also complete their perfect packing by assigning dangling
leaves to out-neighbours, but in a small set of vertices. However in their setting, they only
need to assign one dangling leaf per tree, and no other vertices of that tree are embedded to
the small vertex set. As they already did all the hard work to reach this point, it is not hard for
them to make such an assignment. In our setting, we need to embed linearly many dangling
leaves per tree, which dangle on many different vertices, and the previously embedded images
of these trees can cover most of the vertices to which we want to embed dangling leaves. It is
already non-trivial that we can even assign the dangling leaves at the first vertex of H, and
this assignment affects what we can do at later vertices.

In order to understand how it can be that this random process succeeds in obtaining a
perfect packing, one should note that when we embed the dangling leaves at the first vertex
of H, we have no choice over the set of edges we use (these are fixed as the out-neighbours)
but the set of assignments, from which we choose uniformly, is rather large. This property is
preserved right through to the last vertex of H—even in the last step, we have not one but
many possible assignments to choose from, so that even in the last steps we have quite a lot
of randomness.

A remark concerning convention in our proofs is in place. We will rather often want to
talk about the guest graph to which a given vertex belongs. For this to make sense, we will
throughout consider the guest graphs Gs to be pairwise vertex disjoint, even though in our
proof each of them is defined on the vertex set [n]. This allows us to write statements referring
for example to the guest graph Gs containing the given vertex x, but also when Gs is clear
from the context to talk about a vertex x such that i < x < j for given numbers i and j.

1.3. Organisation. In Section 2 we fix notation and collect some concentration inequalities
and facts about degenerate graphs. In Section 3 we state our main technical theorem, show

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 6

that it implies Theorem 2, and formalise our random packing process. In Section 4 we fix
the constants we will use throughout our proofs. In Section 5 we provide our main lemmas
which analyse what happens in the different phases of our packing process: the almost perfect
packing lemma, the orientation lemma, and the matching lemma. In Section 6 we show that
these lemmas imply our main technical theorem. Section 7 proves the orientation lemma,
Section B the matching lemma, and Section 8 the almost perfect packing lemma. The latter
takes up the (technical) bulk of the paper. Concluding remarks are given in Section 9.

2. Preliminaries

2.1. Notation. For a graph G we write V (G) for the vertices of G, and E(G) for its edges,
v(G) for the number of vertices in G, and e(G) for the number of edges. For disjoint vertex
sets X,Y ⊆ V (G) we write G[X] for the subgraph of G induced by X, and G[X,Y] for the
bipartite subgraph of G on vertex set X ∪ Y and with all edges of G with one end in X and
the other in Y . For a set S of vertices of G, we write NG(S) for the common neighbourhood
{u ∈ V (G) : su ∈ E(G) for each s ∈ S}. We write degG(S) :=

∣∣NG(S)
∣∣ for the common degree

of S in G. When S = {v1, . . . , v`} we will omit the set braces and simply write NG(v1, . . . , v`)
and degG(v1, . . . , v`). We will not use joint neighbourhoods of sets of vertices in this paper.

Given a graph G and a set of vertices X, if X ⊆ V (G) we write G−X for the graph obtained
by removing the vertices X from V (G), i.e. G

[
V (G) \ X

]
. If X is disjoint from V (G), we

write G+X for the graph obtained by adding X as a set of isolated vertices, i.e. the graph on
vertex set V (G)∪X whose edge set is E(G). Given graphs G1 and G2 with V (G2) ⊆ V (G1),
we write G1 −G2 for the graph obtained by removing the edges of G2 from G1, i.e. the graph
on vertex set V (G1) whose edge set is E(G1) \ E(G2).

Given an ordering V (G) = {v1, . . . , vn} of the vertices of a graph G, we write N−G (vi) for
the left-neighbourhood of vi, i.e. the set

N−G (vi) := NG(vi) ∩ {vk : k ∈ [i− 1]} .

We write deg−G(vi) :=
∣∣N−G (vi)

∣∣ for the left-degree of vi. Thus the order is a D-degeneracy
order if for each i ∈ [n] we have deg−G(vi) ≤ D.

An orientation of a graph H = (V,E) is an oriented graph on V which contains, for each
undirected edge uv ∈ E, exactly one directed edge, either ~uv or ~vu. The outdegree deg+

~H
(v)

of a vertex v in an oriented graph ~H is the number of vertices u in ~H such that ~vu is an edge
of ~H; the set of these vertices u is the outneighbourhood N+

~H
(v) of v.

Let Ω be a finite probability space. A filtration F0, F1,. . . , Fn is a sequence of partitions
of Ω such that Fi refines Fi−1 for all i ∈ [n]. In our application, the partition Fi is given by
all possible histories of the run of one of our algorithms up to time i. (For more explanation
see [1].) We say that a function f : Ω → R is Fi-measurable if f is constant on each part of
Fi. Further, for any random variable Y : Ω→ R the conditional expectation E(Y |Fi) : Ω→ R
and the conditional variance Var(Y |Fi) : Ω→ R of Y with respect to Fi are defined by

E(Y |F)(x) = E(Y |X),

Var(Y |F)(x) = Var(Y |X),
where X ∈ F is such that x ∈ X .

Suppose that we have an algorithm which proceeds in m rounds using a new source of
randomness Ωi in each round i. Then the probability space underlying the run of the algorithm
is
∏m
i=1 Ωi. By history up to time t we mean a set of the form {ω1}×· · ·×{ωt}×Ωt+1×· · ·Ωm,

where ωi ∈ Ωi. We shall use the symbol Ht to denote any particular history of such a form.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 7

By a history ensemble up to time t we mean any union of histories up to time t; we shall use
the symbol L to denote any one such. Observe that there are natural filtrations associated to
such a probability space: given times t1 < t2 < . . . we let Fti denote the partition of Ω into
the histories up to time ti.

2.2. Probabilistic tools.

Theorem 5 (Chernoff bounds, [11, Theorem 2.10]). Suppose X is a random variable which
is the sum of a collection of independent Bernoulli random variables. Then we have for δ ∈
(0, 3/2)

P
[
X > (1 + δ)EX

]
< e−δ

2EX/3 and P
[
X < (1− δ)EX

]
< e−δ

2EX/3 .

We use the following consequence of Freedman’s inequality [7], derived in [1], for analysing
our random embedding algorithms.

Lemma 6 (Freedman’s inequality on a good event). Let Ω be a finite probability space, and
(F0,F1, . . . ,Fn) be a filtration. Suppose that we have R > 0, and for each 1 ≤ i ≤ n we have
an Fi-measurable non-negative random variable Yi, nonnegative real numbers µ̃, ν̃ and σ̃, and
an event E. Suppose that either E does not occur or we have

∑n
i=1 E

[
Yi
∣∣Fi−1

]
= µ̃ ± ν̃, and∑n

i=1 Var
[
Yi
∣∣Fi−1

]
≤ σ̃2, and 0 ≤ Yi ≤ R for each 1 ≤ i ≤ n. Then for each %̃ > 0 we have

P

[
E and

n∑
i=1

Yi 6= µ̃± (ν̃ + %̃)

]
≤ 2 exp

(
− %̃2

2σ̃2 + 2R%̃

)
.

Furthermore, if we assume only that either E does not occur or we have
∑n

i=1 E
[
Yi
∣∣Fi−1

]
≤

µ̃+ ν̃, and
∑n

i=1 Var
[
Yi
∣∣Fi−1

]
≤ σ̃2, and 0 ≤ Yi ≤ R for each 1 ≤ i ≤ n, then for each %̃ > 0

we have

P

[
E and

n∑
i=1

Yi > µ̃+ ν̃ + %̃

]
≤ exp

(
− %̃2

2σ̃2 + 2R%̃

)
.

We should stress that here quantities such as E
[
Yi
∣∣Fi−1

]
are random variables on Ω; when

we say that a random variable satisfies a given statement involving ranges or inequalities, we
mean this statement is true pointwise for each ω ∈ Ω. Thus ‘either E does not occur or we
have

∑n
i=1 E

[
Yi
∣∣Fi−1

]
= µ̃ ± ν̃’ means that for each ω ∈ Ω, either ω 6∈ E or the sum of real

numbers
∑n

i=1 E
[
Yi
∣∣Fi−1

]
(ω) is in the range µ̃± ν̃.

A special case is the following corollary.

Corollary 7. Let Ω be a finite probability space, and (F0,F1, . . . ,Fn) be a filtration. Suppose
that we have R > 0, and for each 1 ≤ i ≤ n we have an Fi-measurable non-negative random
variable Yi, nonnegative real numbers µ̃, ν̃ and an event E.

(a) Suppose that either E does not occur or we have
∑n

i=1 E
[
Yi
∣∣Fi−1

]
≤ µ̃, and 0 ≤ Yi ≤ R

for each 1 ≤ i ≤ n. Then

P

[
E and

n∑
i=1

Yi > 2µ̃

]
≤ exp

(
− µ̃

4R

)
.

(b) Suppose that either E does not occur or we have
∑n

i=1 E
[
Yi
∣∣Fi−1

]
= µ̃ ± ν̃, and 0 ≤

Yi ≤ R for each 1 ≤ i ≤ n. Then for each %̃ > 0 we have

P

[
E and

n∑
i=1

Yi 6= µ̃± (ν̃ + %̃)

]
≤ 2 exp

(
− %̃2

2R(µ̃+ ν̃ + %̃)

)
.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 8

In particular, if ν̃ = %̃ = µ̃η̃ > 0 and η̃ ≤ 1
2 , then

P

[
E and

n∑
i=1

Yi 6= µ̃(1± 2η̃)

]
≤ 2 exp

(
− µ̃η̃2

4R

)
.

Proof. Both parts follow from Lemma 6 with σ̃2 = R(µ̃ + ν̃); for the first part we also set
ν̃ = 0 and %̃ = µ̃. Observe that

Var
[
Yi
∣∣Fi−1

]
≤ E

[
Y 2
i

∣∣Fi−1

]
≤ R · E

[
Yi
∣∣Fi−1

]
,

so that
n∑
i=1

Var
[
Yi
∣∣Fi−1

]
≤ R

n∑
i=1

E
[
Yi
∣∣Fi−1

]
≤ R(µ̃+ ν̃)

when E holds, justifying the choice of σ̃2. �

We conclude this subsection by giving maximum degree and leaf statistics for random la-
belled trees, whose proof we leave to Appendix A.

Proposition 8. Let Tn be a tree chosen uniformly at random from the set of n-vertex labelled
trees. Then

(i) With probability at most exp
(
− n

500

)
the number of leaves in Tn is less than n

100 .

(ii) Given c > 0, if n is sufficiently large then with probability at most e−cn/2 there is a
vertex in Tn with degree greater than cn

logn .

We should point out that much more precise statistics are known; we give these rough and
simple bounds for completeness.

2.3. Degenerate graphs. It is easy to show that degenerate graphs contain large indepen-
dent sets all of whose vertices have the same degree, and moving such a set to the end of
the degeneracy order, we obtain the following lemma. The (standard) proof is provided in
Appendix A.

Lemma 9. Let G be a D-degenerate n-vertex graph. Then there exists an integer 0 ≤ d ≤ 2D
and a 2D-degeneracy order of V (G) such that the last d(2D + 1)−3ne vertices in this order
form an independent set and all have degree d.

Further, we shall use the following auxiliary lemma, which given an arbitrary family of
graphs we want to pack produces a family with at most 3

2n members and the same bound on
maximum degree and degeneracy by combining graphs with many isolated vertices or leaves.
Obtaining such a family with at most 3

2n members needs some argument; while obtaining a
family with at most 2n members instead is straightforward. In [1] we only used the latter, and
the reason why we use the smaller family here is that it allows us to stay consistent with the
constants used in [1]. More precisely, the constant α2n that will be defined in (4) is not small
enough for our analysis here, while α7n/4 is small enough.

Lemma 10 (compression lemma). Let (Gi)i∈[m] be a family of D-degenerate graphs with
maximum degree at most ∆, with

∑m
i=1 e(Gi) ≤

(
n
2

)
and v(Gi) ≤ n for all i ∈ [m]. Then there

is a family of graphs (Ǧi)i∈[m̌] with m̌ ≤ 3
2n, such that for each i ∈ [m̌] we have v(Ǧi) ≤ n,

∆(Ǧi) ≤ max{2,∆}, and Ǧi is max{2, D}-degenerate, and such that (Ǧi) is a packing of (Gi).

The proof of this lemma is given in Appendix A.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 9

3. Main technical theorem and the packing algorithm

In this section we detail our packing algorithm, introduce the definitions necessary for this
algorithm, and outline the proof of why this algorithm succeeds. We deduce Theorem 2 from
the following technical result.

Theorem 11. For every D and µ, p̂0 > 0 with µ ≤ 1
4 there are n0 and ξ, c > 0 such that

for every p̂ ≥ p̂0 and every n ≥ n0 the following holds. Suppose that Ĥ is a (ξ, 2D + 3)-
quasirandom graph with n vertices and density p̂. Suppose that s∗ ≤ 7

4n and that the graph
sequence (Gs)s∈[s∗] is a D-degenerate (µ, n)-graph sequence with maximum degree at most
∆ = cn

logn , such that for each s ∈ [s∗] there is a D-degeneracy order of Gs such that the last
d(D + 1)−3ne vertices form an independent set in Gs, and all have the same degree ds in Gs.
Suppose further that

∑
s∈[s∗] e(Gs) = e(Ĥ). Then (Gs)s∈[s∗] packs into Ĥ.

Before sketching the proof of Theorem 11, we show that it implies Theorem 2.

Proof of Theorem 2. Given D, µ, p̂0, let n′0, ξ, c be as given by Theorem 11 for input D′ =
2 max{2, D}, µ′ = min{µ, 1

4}, and p̂0. Choose n0 = max{n′0, 10c−2}. Next, let p̂ and n as well
as the graphs Ĥ and (Gi)i∈[m] be given.

Now we first add new graphs Gi with i > m consisting of single edges to our graph sequence
until

∑
e(Gi) = e(Ĥ). Assume that the resulting sequence has m′ graphs and reorder the

sequence so that the bµnc special graphs come last. In a second step we apply the compression
lemma, Lemma 10, to the non-special graphs (Gi)i∈[m′−bµ′nc] to obtain a family (Ǧi)i∈[m̌] with
m̌ ≤ 3

2n that is a packing of (Gi)i∈[m′−bµ′nc]. In a third step, we add the remaining special
graphs to this compressed family, that is, for 1 ≤ i ≤ bµ′nc we let Ǧm̌+i = Gm′−bµ′nc+i.
We obtain a family (Ǧs)s∈[s∗] of max{2, D}-degenerate graphs with maximum degree at most
cn/ log n, where s∗ ≤ 3

2n + bµ′nc ≤ 7
4n. In a fourth step, we apply Lemma 9 to obtain a

D′-degeneracy order of each Ǧs such that the last d(D+1)−3ne ≥ d(D′+1)−3ne vertices form
an independent set in Ǧs, and all have the same degree ds in Ǧs. Hence the family (Ǧs)s∈[s∗]

satisfies all conditions required by Theorem 11 with the above chosen constants. Since Ĥ
is (ξ, 4D + 7)-quasirandom, it is also (ξ, 2D′ + 3)-quasirandom as required for Theorem 11.
Applying this theorem, we obtain a perfect packing of (Ǧ)s∈[s∗] into Ĥ, which gives a packing
of (Gi)i∈[m] since (Ǧ)s∈[s∗] is a packing of (Gi)i∈[m] (plus possibly some additional edges). �

We now sketch the proof of Theorem 11. We start by creating an almost perfect packing,
which omits linearly many leaves in the linearly many special graphs Gs, by packing only the
following subgraph sequence omitting ` = bνnc leaves.

Definition 12 (corresponding subgraph sequence). For a D-degenerate (µ, n)-graph sequence
(Gs)s∈[s∗] with maximum degree ∆, we say that (G′s)s∈[s∗] is a corresponding subgraph sequence
omitting ` leaves if

(G 1’) for each s ≤ s∗ − bµnc we have G′s = Gs, and
(G 2’) for each s > s∗−bµnc we have G′s = Gs−Vs+ Is for an independent set Vs of leaves

in Gs with |Vs| = `, and a set Is of new and independent vertices with |Is| = `.

We remark that the addition of the independent set Is in (G 2’) is purely for technical
reasons: it guarantees that the special G′s have n− bµnc vertices, which makes the statement
of some of our later lemmas easier (in particular Lemma 18). The restriction that the set Vs is

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 10

independent simply says that if there is a component of Gs which contains exactly one edge,
both endpoints are leaves but only one may be in Vs.

The subgraph sequence (G′s) is packed with the help of the following PackingProcess, which
uses an algorithm RandomEmbedding that we shall describe thereafter. This PackingProcess
was introduced and analysed in [1], and it requires n-vertex graphs with a degeneracy ordering
whose last vertices form an independent set as input. To that end, for each s ∈ [s∗] with
s > s∗ − bµnc, we do the following. We let I ′s be a set of n− v(G′s) new isolated vertices and
we obtain G′′s by adding I ′s to G′s. Each non-special graph G′s, with s ≤ s∗ − bµnc, already
has n vertices and so we simply set G′′s = G′s. For the special graphs G′s, with s > s∗ − bµnc,
we fix a D-degeneracy order of G′′s such that the bµnc > δn isolated vertices in I ′s come last.
We then relabel vertices, so that again V (G′′s) = [n] and the fixed D-degeneracy order is the
natural order on [n].

Briefly, the idea of the following algorithm is that we split the host graph Ĥ randomly into
a large part H0 and a small part H∗0 , and then we pack the graphs G′′s one by one. We use the
large part to pack all but the last δn vertices of each G′′s , and the small part to complete the
embedding of each G′′s . Note that for the special graphs, the ‘completion’ will consist of simply
embedding δn isolated vertices, which is trivial. For the non-special graphs this completion
will use some edges of H∗0 and it is not automatic that such a completion need exist, but [1]
proves it is very likely. It turns out we do not need any special properties of the completion
(because δ is so tiny that the few edges affected will not destroy quasirandomness properties)
and so we simply choose one arbitrarily. Note that having removed linearly many leaves from
linearly many graphs, the total number of edges of the G′′s is smaller by Θ(n2) than the number
of edges of H, so (as stated in Theorem 4) the analysis given in [1] proves that the packing of
the G′′s succeeds. We however need to know a good deal more than simply that the packing
succeeds; this is a substantial part of the work of this paper.

Algorithm 1: PackingProcess
Input : graphs G′′1, . . . , G′′s∗ , with G′′s on vertex set [n] such that the last δn vertices

of G′′s form an independent set; a graph Ĥ on n vertices
Output: a packing (φ∗s)s∈[s∗] of (G′′s)s∈[s∗] into Ĥ and a left-over graph H
choose H∗0 by picking edges of Ĥ independently with probability γ

(
n
2

)
/e(Ĥ);

let H0 = Ĥ −H∗0 ;
for s = 1 to s∗ do

run RandomEmbedding(G′′s ,Hs−1) to get an embedding φ′′s of G′′s [[n−δn]] into Hs−1;
let Hs be the graph obtained from Hs−1 by removing the edges of φ′′s

(
G′′s [[n−δn]]

)
;

choose an arbitrary extension φ∗s of φ′′s embedding all of G′′s and embedding the
edges of G′′s −G′′s [[n−δn]] into H∗s−1 if one exists, otherwise halt with failure;
let H∗s be the graph obtained from H∗s−1 by removing the edges of
φ∗s
(
G′′s −G′′s [[n−δn]]

)
;

end
return (φ∗s)s∈[s∗] and H = Hs∗ +H∗s∗ ;

For describing RandomEmbedding we need the following definitions. We shall use the symbol
↪→ to denote embeddings produced by RandomEmbedding . We write G ↪→ H to indicate that

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 11

the graph G is to be embedded into H. Also, if t ∈ V (G), v ∈ V (H) and A ⊆ V (H) then
t ↪→ v means that t is embedded on v, and t ↪→ A means that t is embedded on a vertex of A.

Definition 13 (partial embedding, candidate set). Let G be a graph with vertex set [v(G)],
and H be a graph with v(H) ≥ v(G). Further, assume ψj : [j]→ V (H) is a partial embedding
of G into H for j ∈ [v(G)], that is, ψj is a graph embedding of G

[
[j]
]
into H. Finally, let

t ∈ [v(G)] be such that N−G (t) ⊆ [j]. Then the candidate set of t (with respect to ψj) is the
common neighbourhood in H of the already embedded neighbours of t, that is,

CjG↪→H(t) = NH

(
ψj
(
N−G (t)

))
.

RandomEmbedding (see Algorithm 2) randomly embeds most of a guest graph G into a
host graph H. The algorithm is simple: we iteratively embed the first (1− δ)n vertices of G
randomly to one of the vertices of their candidate set which was not used for embedding
another vertex already.

Algorithm 2: RandomEmbedding
Input : graphs G and H, with V (G) = [v(G)] and v(H) = n
Output: an embedding ψt∗ of G

[
[n− δn]

]
into H

ψ0 := ∅;
t∗ := (1− δ)n;
for t = 1 to t∗ do

if Ct−1
G↪→H(t) \ im(ψt−1) = ∅ then halt with failure;

choose v ∈ Ct−1
G↪→H(t) \ im(ψt−1) uniformly at random;

ψt := ψt−1 ∪ {t ↪→ v};
end
return ψt∗ ;

If successful, PackingProcess returns the packing (φ∗s)s∈[s∗] of (G′′s)s∈[s∗] and a leftover graph
H. For each s ∈ [s∗], we obtain an embedding φ′s of G′s into Ĥ from the embedding φ∗s of
G′′s into Ĥ by ignoring the vertices of G′′s which are not in G′s. Recall that all these vertices
are isolated vertices. It follows that the (φ′s)s∈[s∗] give a packing of (G′s)s∈[s∗] into Ĥ which
leaves unused exactly the edges of H. In [1] it was shown that PackingProcess is indeed a.a.s.
successful. We shall use the techniques developed there to show in Lemma 18 that moreover
PackingProcess returns a packing of (G′s)s∈[s∗] and a leftover graph with suitable properties
for the following steps.

It remains to pack all the leaves we omitted from (Gs)s∈[s∗]. For this we shall proceed vertex
by vertex of the remaining host graph H, and when considering r ∈ V (H) we shall randomly
embed all leaves dangling at r, that is, the leaves of all guest graphs such that the neighbour
of the leaf is already embedded to r. For describing this process in more detail, we will need
the following definitions.

Definition 14 (weights). Let (Gs)s∈[s∗] be a (µ, n)-graph sequence, and (G′s)s∈[s∗] be a corre-
sponding subgraph sequence, H be an n-vertex graph, and φ′s : V (G′s)→ V (H) be an injection
for each s ∈ [s∗]. For s∗ − bµnc < s ≤ s∗ we define for each x ∈ V (Gs) the weight

ws(x) =
∣∣{y ∈ NGs(x) : y is a leaf of Gs in Gs −G′s}

∣∣ ,

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 12

and for each v ∈ V (H) the weight

ws(v) = ws
(
φ′
−1
s (v)

)
.

Further, for each v ∈ V (H) we define

w(v) =
∑

s∗−bµnc<s≤s∗
ws(v) .

Note that since each set Vs of omitted leaves is an independent set in Gs, the weight of an
omitted leaf is 0. Thus the entire weight of Gs (which is `, the number of omitted leaves)
is on the vertices in G′s embedded by φ′s. We next choose an orientation ~H of H such that
N+
~H

(r) = w(r) for each r ∈ V (H). We shall show in Lemma 19 that we can choose an
orientation with this property which is moreover random-like (in the sense that it suitably
inherits the properties guaranteed by Lemma 18). The idea now is to embed the remaining
leaves dangling at r by using only edges directed away from r. We define the following auxiliary
graphs, which encode the ways in which we can embed the dangling leaves. Recall that the
Gs are considered to be pairwise vertex disjoint, so that if x ∈ V (Gs) then s is unique.

Definition 15 (leaf matching graphs). Given r ∈ V (~H), we define the leaves at r to be the
set

Lr :=
{
x : ∃s such that x ∈ V (Gs) \ V (G′s) and xφ′−1

s (r) ∈ E(Gs)
}

Let the leaf matching graph Fr be the bipartite graph with parts Lr and N+
~H

(r), and edges xu
with x ∈ Lr and u ∈ N+

~H
(r) whenever u 6∈ imφ′s for the s such that x ∈ V (G′s).

Observe that a perfect matching in Fr defines an assignment of the leaves at (all preimages
of) r to N+

~H
(r) which extends the packing of (G′s)s∈[s∗]. We will see that each Fr is a graph

whose parts have size roughly 1
2pn and whose density is roughly µ. If we simply chose a

perfect matching in each Fr to embed all the leaves
⋃
r Lr, then we would almost have a

perfect packing—each edge of Kn would be used exactly once—but it could be the case that
multiple leaves of some Gs (not in the same Lr) are embedded to a single u ∈ V (H). To avoid
this, we find perfect matchings in each Fr one at a time and update the leaf matching graphs
by removing edges which are no longer useable. In order that not too many edges are removed
from any one vertex in any Fr, we choose perfect matchings uniformly at random. Making
this precise, assume V (~H) = {1, . . . , n}, and set F (0)

r := Fr for each r ∈ V (~H). We use the
following algorithm.

We shall show that, throughout, the graphs F (r)
k satisfy a certain degree-codegree condition.

We shall show in Lemma 20 that under this degree-codegree condition we can find a perfect
matching in F

(r−1)
r . Further, the same lemma asserts that a perfect matching σr chosen

uniformly at random in F (r−1)
r uses edges almost uniformly, which is important for maintaining

the degree-codegree condition.
We will then, for each s ∈ [s∗] and each x ∈ V (Gs) set

(1) φs(x) =

{
φ′s(x) if x ∈ dom(φ′s)

σr(x) if x ∈ Lr .

This is a perfect packing of (Gs)s∈[s∗] into Ĥ since (φ′s)s∈[s∗] is a packing of the subgraph
sequence (G′s)s∈[s∗] into Ĥ and we chose matchings in the leaf matching graphs F (r−1)

r to
embed the remaining leaves and updated the subsequent leaf matching graphs accordingly.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 13

Algorithm 3: MatchLeaves
Input : a (µ, n)-graph sequence (Gs)s∈[s∗], a corresponding subgraph sequence

(G′s)s∈[s∗] omitting bνnc leaves, and associated leaf matching graphs
F

(0)
1 , . . . , F

(0)
n

Output: matchings (σr)r∈[n] of the omitted leaves to feasible image vertices as given
by the leaf matching graphs

for r = 1 to n do
if F (r−1)

r has no perfect matching, halt with failure;
let σr be a uniform random perfect matching in F (r−1)

r ;
for k = r + 1 to n do

let Bk :=
{
xu ∈ E(F

(r−1)
k) : ∃s s.t. x ∈ V (Gs) \ V (G′s) and σ−1

r (u) ∈ V (Gs)
}
;

let F (r)
k := F

(r−1)
k −Bk;

end
end
return (σr)r∈[n];

Summing up, our packing algorithm proceeds as described in Algorithm 4.

Algorithm 4: PerfectPacking
Input : graphs G1, . . . , Gs∗ that form a (µ, n)-graph sequence such that the last

(D + 1)−3n vertices of Gs form an independent set; a graph Ĥ on n vertices
Output: A packing (φs)s∈[s∗] of (Gs)s∈[s∗] into Ĥ
let (G′s)s∈[s∗] be a subgraph sequence corresponding to (Gs)s∈[s∗] omitting bνnc leaves;
for s = s∗ − bµnc+ 1 to s∗ do

let I ′s be a set of n− v(G′s) (new) isolated vertices;
G′′s := G′s + I ′s, where we place I ′s at the end of the degeneracy order;

end
foreach s ∈ [s∗] do assume that V (G′′s) = [n], with the natural degeneracy order;
run PackingProcess to obtain embeddings (φ∗s)s∈[s∗] of (G′′s)s∈[s∗] into Ĥ with
leftover H;
obtain embeddings (φ′s)s∈[s∗] of (G′s)s∈[s∗] into Ĥ from (φ∗s)s∈[s∗] by ignoring the I ′s;
construct a random-like orientation ~H of H with N+

~H
(r) = w(r) for all r ∈ V (~H);

foreach r ∈ V (~H) do let F (0)
r be the leaf matching graph Fr;

run MatchLeaves to obtain embeddings (σr)r∈[n] of the leaves at r;
for s = 1 to s∗ and for each x ∈ V (Gs) do set φs(x) as in (1);
return (φs)s∈[s∗];

3.1. Graphs and maps used in the algorithm. As described above, a number of different
(auxiliary) graphs and maps are used in our packing procedure. For the convenience of the
reader we collect these in the following table.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 14

Gs are the given n-vertex guest graphs, forming a D-degenerate (µ, n)-graph sequence,
whose last b(D + 1)−3nc vertices form an independent set.

G′s is in the subgraph sequence corresponding to (Gs)s∈[s∗] omitting bνnc leaves; the special
G′s have n− bµnc vertices, the others n.

G′′s is obtained from G′s by adding isolated vertices to the end of the degeneracy order until
we have n vertices.

Ĥ is the given n-vertex (ξ, 2D + 3)-quasirandom host graph.

Hs−1 is the part of Ĥ used by RandomEmbedding to embed G′′s
[
[n− δn]

]
.

H∗s−1 is the part of Ĥ used in PackingProcess to complete the embedding of G′′s .
H is the leftover host graph after running PackingProcess.
~H is a random-like orientation of H with as many outgoing edges for each vertex r as there

are leaves dangling at r.

F
(r)
k is what remains of the leaf matching graph Fk after round r of MatchLeaves.
φ′′s embeds G′′s

[
[n− δn]

]
into Hs−1 and is constructed by RandomEmbedding .

φ∗s is an extension of φ′′s , embedding G′′s into Hs−1 ∪H∗s−1 constructed in PackingProcess.

φ′s is an embedding of G′s into Ĥ obtained from φ∗s by ignoring the added isolated vertices.

φs is an embedding of Gs into Ĥ obtained from φ′s and the σr in PerfectPacking .
ψt is the partial embedding obtained in round t of RandomEmbedding .

σr is the matching in the leaf matching graph F (r−1)
r found by MatchLeaves.

4. Constants

In this section we set values for the various constants we need throughout our proofs (in-
cluding those used in the algorithms above), which are the following.
αx is the error in the quasirandomness of Hx.
α is a quasirandomness error used in auxiliary lemmas; we always assume α0 ≤ α ≤ α2n.
βt is the error in the diet-condition (see Definition 30) for round t of RandomEmbedding .
c is the constant in the maximum degree bound of the Gs.
C appears in the error term for the probability of embedding a fixed vertex of G′′s on a fixed

vertex of Hs−1.
C ′ appears in the error term for the fraction of vertices of certain sets that get covered by

embedding one graph G′′s
D is the degeneracy bound of the guest graphs Gs.
n0 is the lower bound on the number n of vertices.
p̂ is the density of the host graph Ĥ.
p̂0 is the lower bound on p̂.
p is the density of the leftover host graph H after running PackingProcess to embed the

subgraph sequence.
ps is the density of the graph Hs.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 15

δ is the proportion of vertices in G′′s formed by the independent set at the end of the
degeneracy order as required by PackingProcess.

ε gives the length εn of intervals in V (Gs) used in the cover condition (see Definition 30);
it also appears in the error term of the cover condition.

η is the error in the quasirandomness of H∗0 .
γ is the proportion of host graph edges used by PackingProcess to complete almost spanning

embeddings to spanning embeddings.
γ′ determines the error bound in our analysis here of PackingProcess.
µ specifies the fraction of special Gs, how far they are from spanning and how many leaves

they have.
ν specifies the fraction of leaves omitted in the subgraph sequence.
ξ is the error in the quasirandomness of Ĥ.

The constants D, p̂ and µ are provided as input to our main technical theorem; the other
constants are chosen to satisfy

0� 1

n0
, c� ε ≤ ξ � α0 ≤ α2n ≤

1

C ′
� 1

C
� δ � η � γ � γ′ � ν � µ, p̂0,

1

D
.

Here a � b means that we choose a sufficiently small in terms of b, so that our calculations
work. In other words, there is a monotone increasing function f : R>0 → R>0 with f(b) ≤ b
such that we choose a = f(b).

For the constants ν, γ′, γ, and n0 we do not provide explicit dependencies (mainly because
Lemma 50, which we take from elsewhere, does not provide explicit dependencies), but merely
state that we can choose them suitably with the above relations.

The various host graph densities satisfy the following relations. We have p̂ ≥ p̂0. Given n ≥
n0, the density p is determined by

(2) p = bµncbνnc
(
n

2

)−1

.

Moreover, in our later proofs we will assume that e(H∗0) = (1 ± 1
10)γ

(
n
2

)
, which can be seen

to hold with probability larger than 1− e−n by an application of Theorem 5. Then, since the
density of Ĥ is p̂, the density of H0 is p0 ≥ p̂ − 1.1γ, and therefore, because PackingProcess
embeds

∑
s∈[s∗] e(Gs)− bµncbνnc ≤ p̂

(
n
2

)
− bµncbνnc edges we have

(3) ps ≥ p̂− 1.1γ −
p̂
(
n
2

)
− bµncbνnc(

n
2

) ≥ νµ− 1.1γ ≥ γ for all s ∈ [s∗] .

The remaining constants are only used in the proof of the most technically involved of our
main lemmas, Lemma 18. These are defined precisely in the same way as in [1] apart from C ′,
which is added here.2 This is important, because much of our proof of Lemma 18 builds on
tools developed in [1], and the relation of the constants involved is somewhat more intricate.

2The density of the host graph Ĥ is denoted by p in [1]; we denote it by p̂ here.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 16

Setting 16. Let D,n ∈ N and p̂, γ > 0 be given. We define

η =
γD

200D
, δ =

γ10Dη

106D4
, C = 40D exp

(
1000Dδ−2γ−2D−10

)
, C ′ = 104Cδ−1 ,

αx =
δ

108CD
exp

(108CD3δ−1(x− 2n)

n

)
for each x ∈ R,

ε = α0δ
2γ10D/1000CD , c = D−4ε4/100 and ξ = α0/100 .

(4)

Moreover, given α > 0 we use the following constants βt(α), which are chosen such that
β0(α) = α and such that βv(G)(α)/β0(α) is bounded by a constant which does not depend on
α (though it does depend on D, γ and δ). We define

(5) βt(α) = 2α exp
(

1000Dδ−2γ−2D−10t
n

)
.

Remark 17. When using the constants αx, βt, we will mainly take x and t integer in the range
[0, 2n], but it is convenient to allow them to be any real number.

Note that we call αx and βt ‘constant’ even though n appears in their definition. It is easy
to check though that αx is strictly increasing in x and βt is strictly increasing in t and that
neither α0, β0 nor α2n, β2n depends on n. Further, for each t ≥ 0, we have

1
n

∫ t

i=0
1000Dδ−2γ−2D−10βi di

≤2α

∫ t

i=−∞

1000Dδ−2γ−2D−10

n
exp

(
1000Dδ−2γ−2D−10i

n

)
di = βt .

(6)

5. Main lemmas

In this section we collect the main lemmas we need for the proof of our main technical
theorem. Our first lemma states that the randomised algorithm PackingProcess generates an
almost perfect packing of the corresponding subgraph sequence of our guest graphs such that
this packing and the leftover H of the host graph satisfy certain properties. We prove this
lemma in Section 8. The fact that PackingProcess produces a packing of this type such that
the leftover H is quasirandom is the main result of [1]. Here, we need to establish additional
properties for completing this to a perfect packing.

Lemma 18 (almost perfect packing lemma). Assume 0 � c � ξ � δ � γ � γ′ �
ν � µ, p̂, 1

D . Let Ĥ be a (ξ, 2D + 3)-quasirandom graph with n vertices and density p̂. Let
s∗ ≤ 7

4n, let (Gs)s∈[s∗] be a D-degenerate (µ, n)-graph sequence with maximum degree cn
logn

and
∑

s∈[s∗] e(Gs) = e(Ĥ), and let (G′s)s∈[s∗] be a corresponding subgraph sequence omitting
bνnc leaves. Then PackingProcess (applied with constants γ and δ to the graphs (G′′s)s∈[s∗] ob-
tained in PerfectPacking from (G′s)s∈[s∗] by adding isolated vertices) a.a.s. provides a packing
(φ′s)s∈[s∗] of (G′s)s∈[s∗] into Ĥ with leftover H such that for p = bµncbνnc

(
n
2

)−1 we have

(P 1) H is (γ′3, 2D + 3)-quasirandom and has density p,
for all v ∈ V (H) and s∗ − bµnc < s, s′ ≤ s∗ we have

(P 2) w(v) = (1± γ′3)pn2 ,

(P 3)
∣∣NH(v) \ imφ′s

∣∣ = (1± γ′3)µpn,

(P 4)
∣∣NH(v) \ (imφ′s ∪ imφ′s′)

∣∣ = (1± γ′3)µ2pn if s 6= s′,

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 17

for all u, v ∈ V (H) with u 6= v we have,
(P 5)

∑
sws(v)1u6∈imφ′s = (1± γ′3)µpn2 ,

and for all u ∈ V (H) and s∗ − bµnc < s ≤ s∗ we have

(P 6) If u 6∈ imφ′s then
∑

v : vu∈E(H)ws(v) < 10p2n
µ .

Our second lemma states that there is an orientation of H suitable for completing the
perfect packing by embedding the leaves with the help of the algorithm MatchLeaves. A
random orientation of a graph H = (V,E) is an orientation of H in which the orientation of
each edge {u, v} ∈ E is chosen independently and uniformly at random. We prove this lemma
in Section 7.

Lemma 19 (orientation lemma). Let H be a (γ′3, 2)-quasirandom graph of density p with
vertex weights w : V (H) → N0 such that w(v) = (1 ± γ′3)pn2 for all v ∈ V (H) and such that∑

v∈V w(v) = e(H). If ~H0 is a random orientation of H, then a.a.s. there is an orientation ~H
of H such that for all v ∈ V (H)

(O 1) deg+
~H

(v) = w(v), and

(O 2)
∣∣{uv ∈ E(H) : uv is oriented differently in ~H and ~H0}

∣∣ ≤ γ′2n.
Our last lemma states that if in a graph F satisfying a certain degree-codegree condition,

we remove a few edges and then choose a perfect matching uniformly at random, then each
edge is roughly equally likely to appear in the matching. In the proof of our main theorem, we
shall show that the leaf matching graphs Fv satisfy these conditions, and hence MatchLeaves
can find a perfect matching in Fv, using edges almost uniformly.

Lemma 20 (matching lemma). Assume 0 � 1
m � p � µ � 1. Let F = F [U,W] be a

bipartite graph with |U | = |W | = (1± p)m such that
(M 1) degF (x) = (1± p)µm for all x ∈ U ∪W , and

(M 2) degF (u, u′) = (1± p)µ2m for all but at most m2

logm pairs {u, u′} ∈
(
U
2

)
,

and let F ′ = F ′[U,W] be a spanning subgraph of F [U,W] such that
(M 3) degF (x)− degF ′(x) < 100pm

µ2
for all x ∈ U ∪W .

Then F ′ has a perfect matching and for a perfect matching σ chosen uniformly at random
among all perfect matchings in F ′ and for all uw ∈ E(F ′) we have

P[σ(u) = w] ≤ 2

µm
.

This lemma is a straightforward consequence of a lemma (Lemma 50) on random matchings
in super-regular pairs by Felix Joos (see [17]) and the degree-codegree characterisation of super-
regular pairs (Lemma 49) provided by Duke, Lefmann, and Rödl in [4]. For completeness, we
provide the deduction in Appendix B.

6. Proof of the main technical theorem

To prove Theorem 11 we shall run the algorithm PerfectPacking (Algorithm 4), which
uses PackingProcess to pack the G′s. The resulting graph H of unused edges is likely to
satisfy the conclusions of the almost perfect packing lemma (Lemma 18). PerfectPacking
then chooses a random orientation ~H0 of H and modifies this orientation slightly to obtain

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 18

~H, which satisfies the conclusions of the orientation lemma (Lemma 19) and also oriented
versions of properties (P 3) and (P 4) of Lemma 18. Finally, PerfectPacking runs MatchLeaves
to complete the packing. To show that MatchLeaves succeeds, we will verify that with high
probability for each r the graphs Fr and F

(r−1)
r satisfy the conditions of the matching lemma

(Lemma 20). For this we use Corollary 7 and the union bound.

Proof of Theorem 11. We use constants with relations as given in Section 4, that is

0� c� ξ � δ � γ � γ′ � ν � µ, p̂0,
1

D
,

and p̂ ≥ p̂0. Suppose that Ĥ is an (ξ, 2D+3)-quasirandom graph with n vertices and density p̂.
Suppose that s∗ ≤ 7

4n and that the graph sequence (Gs)s∈[s∗] is a D-degenerate (µ, n)-graph
sequence, with maximum degree ∆ ≤ cn

logn , such that the last d(D + 1)−3ne vertices in the
degeneracy order form an independent set in Gs, and all have the same degree ds in Gs.
Suppose further that

∑
s∈[s∗] e(Gs) = e(Ĥ). We use PerfectPacking (Algorithm 4) for packing

(Gs)s∈[s∗] into Ĥ and argue in the following that it succeeds a.a.s.
As bνnc < µn, PerfectPacking can choose a corresponding subgraph sequence (G′s)s∈[s∗]

omitting bνnc leaves. Next it creates for each s ∈ [s∗] a graph G′′s . For the non-special graphs
(s ≤ s∗ − bµnc) it sets G′′s := G′s. For the special graphs (s > s∗ − bµnc) it obtains G′′s
by adding the set I ′s of n − v(G′s) isolated vertices, which we place at the end of the D-
degeneracy order. Note that for each G′′s the last δn vertices of G′′s in the degeneracy order
are an independent set all of whose vertices have degree ds. Indeed, if s ≤ s∗−bµnc then this
holds by assumption on Gs and because δ < (D + 1)−3, and if s > s∗ − bµnc then this holds
because n− v(G′s) = n− bµnc and δ < µ (and in this case ds = 0).

PerfectPacking next runs PackingProcess with input (G′′s)s∈[s∗] and Ĥ. By the almost per-
fect packing lemma (Lemma 18), PackingProcess a.a.s. returns a packing (φ∗s)s∈[s∗] of (G′′s)s∈[s∗]

into Ĥ, and a graph H consisting of all the edges not used in the packing, which satisfies the
conclusions (P 1)–(P 6) of Lemma 18. As described in PerfectPacking , we let for each s ∈ [s∗]

the map φ′s be the embedding of G′s into Ĥ induced by φ∗s. By construction of the (G′′s)s∈[s∗],
the (φ′s)s∈[s∗] form a packing of the (G′s)s∈[s∗] into Ĥ, with H being the graph formed by the
unused edges. The total number of unused edges is by construction bµncbνnc = p

(
n
2

)
, so H

has density p.
PerfectPacking next chooses a random-like orientation of H. More precisely, we want to

use an orientation ~H of H such that w(v) = deg+
~H

(v) for each v ∈ V (H), which in addition
inherits oriented versions of (P 3) and (P 4). The next claim states that such an orientation
exists.

Claim 21. For all sufficiently large n there exists an orientation ~H of H such that w(v) =
deg+

~H
(v) for each v ∈ V (H), and in addition for each s∗ − bµnc < s, s′ ≤ s∗ we have

(P’ 3)
∣∣N+

~H
(v) \ imφ′s

∣∣ = (1± γ′)µpn2 , and

(P’ 4)
∣∣N+

~H
(v) \ (imφ′s ∪ imφ′s′)

∣∣ = (1± γ′)µ
2pn
2 if s 6= s′.

Proof. Recall that
∑

s e(Gs) = e(Ĥ), and hence
∑

s e(Gs)−e(G′s) = e(H). By definition, each
edge of e(Gs)−e(G′s) contributes weight one to ws(x), where x ∈ G′s, and hence weight one to
w(v) where v is the vertex of H to which x is embedded. We conclude

∑
v∈V (H)w(v) = e(H).

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 19

By (P 1), in particular H is (γ′3, 2)-quasirandom and of density p, and by (P 2) we have
w(v) = (1 ± γ′3)pn2 for all v ∈ V (H). This verifies that H satisfies the conditions of the
orientation lemma (Lemma 19).

Let ~H0 be a random orientation of H. Given v ∈ V (H) and s∗ − bµnc < s ≤ s∗, by (P 3)
and Theorem 5, with probability at least 1− exp

(
− γ′6µpn

12

)
we have∣∣N+

~H0
(v) \ imφ′s

∣∣ = (1± 3γ′
3
)µpn2 .

Similarly, given v ∈ V (H) and s∗ − bµnc < s < s′ ≤ s∗, by (P 4) and Theorem 5, with
probability at least 1− exp

(
− γ′6µ2pn

12

)
we have∣∣N+

~H0
(v) \ (imφ′s ∪ imφ′s′)

∣∣ = (1± 3γ′
3
)µ

2pn
2 .

Taking the union bound, and by Lemma 19, with probability at least 1−2n3 exp
(
− γ′6µ2pn

12

)
−

o(1) each of the above good events holds for each v ∈ V (H) and each s∗−bµnc < s, s′ ≤ s∗, and
in addition there is an orientation ~H of H satisfying conclusions (O 1) and (O 2) of Lemma 19.

For sufficiently large n we have 1 − 2n3 exp
(
− γ′6µ2pn

12

)
− o(1) > 0, so we fix ~H0 and ~H

satisfying all these properties. By (O 1) the orientation ~H satisfies deg+
~H

(v) = w(v) for each
v ∈ V (H), as desired. Given v ∈ V (H) and s∗ − bµnc < s ≤ s∗, by (O 2) we have∣∣N+

~H
(v) \ imφ′s

∣∣ =
∣∣N+

~H0
(v) \ imφ′s

∣∣± γ′2n = (1± 3γ′
3
)µpn2 ± γ

′2n = (1± γ′)µpn2 ,

where the final inequality is by choice of γ′. This verifies (P’ 3). Similarly, given v ∈ V (H)
and s∗ − bµnc < s < s′ ≤ s∗, we have∣∣N+

~H
(v) \ (imφ′s ∪ imφ′s′)

∣∣ =
∣∣N+

~H0
(v) \ (imφ′s ∪ imφ′s′)

∣∣± γ′2n = (1± 3γ′
3
)µ

2pn
2 ± γ′2n

= (1± γ′)µ
2pn
2 ,

giving (P’ 4). �

This orientation is now used to embed the remaining dangling leaves. PerfectPacking runs
MatchLeaves (Algorithm 3) for this purpose. Recall that, for a vertex v ∈ V (~H), the leaf
matching graph Fv (see Definition 15) is a bipartite graph with parts consisting of the leaves
Lv which we need to embed at v (which will be in many different Gs) and the out-neighbours
N+
~H

(v) of v in ~H to which we will embed these leaves, with an edge from a leaf in some Gs
to an out-neighbour u of v if u 6∈ imφ′s. Recall that for convenience we assume V (~H) = [n].
MatchLeaves starts with F (0)

v := Fv for each v ∈ [n], and then for each r ∈ [n] in succession
takes a random perfect matching σr in F (r−1)

r and for each k > r removes some edges from
F

(r−1)
k to form F

(r)
k . As explained in Section 3, it is enough to show that with positive

probability MatchLeaves does not halt with failure. To analyse the running of MatchLeaves,
we aim to show that for each r the graphs F (0)

r and F (r−1)
r satisfy the conditions of Lemma 20

with m := pn
2 , with F = F

(0)
r and F ′ = F

(r−1)
r , and with U = Lr and W = N+

~H
(r). We

shall then use Lemma 20 to conclude that the matching σr we choose in F (r−1)
r does not use

any given edge with exceptionally high probability, which in turn will allow us to show that
MatchLeaves is successful.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 20

Property (M 1): Given x ∈ V (F
(0)
r), we separate two cases. If x ∈ Lr is in the graph Gs,

then by (P’ 3) we have deg
F

(0)
r

(x) =
∣∣N+

~H
(r) \ imφ′s

∣∣ = (1 ± γ′)µpn2 . If x ∈ N+
~H

(r), then

by (P 5) we have deg
F

(0)
r

(x) =
∑

sws(r)1x 6∈imφ′s = (1 ± γ′3)µpn2 . In either case, since p > γ′

this verifies (M 1) for F = F
(0)
r , F ′ = F

(r−1)
r and every r ∈ [n].

Property (M 2): Given u, u′ ∈ Lr, if u ∈ V (Gs) and u′ ∈ V (Gs′), where s 6= s′, then by (P’ 4)

we have deg
F

(0)
r

(u, u′) =
∣∣N+

~H
(r) \ (imφ′s ∪ imφ′s′)

∣∣ = (1± γ′)µ
2pn
2 . Again since γ′ < p this is

as required by (M 2), and we only need to show that the number of u, u′ ∈ Lr which are both
in Gs for some s ∈ [s∗] is at most p2n2

4 log(pn/2) . But any given Gs has at most ws(r) ≤ ∆ = cn
logn

vertices in Lr, so that for a given u there are at most cn
logn choices of u′ with u, u′ ∈ V (Gs)

for some s ∈ [s∗]. Since |Lr| ≤ n we conclude that there are at most cn2

logn <
p2n2

4 log(pn/2) pairs
u, u′ ∈ Lr such that u, u′ ∈ V (Gs) for some s ∈ [s∗]. This completes the verification of (M 2)
for F = F

(0)
r , F ′ = F

(r−1)
r and every r ∈ [n].

Property (M 3): This property does not hold deterministically, but we shall show that it
holds for all r with high probability. For this purpose we define the following events. For each
r ∈ [n] let Er be the event that for each y ∈ V (F

(0)
r) we have

(7) deg
F

(0)
r

(y)− deg
F

(r−1)
r

(y) ≤ 50p2nµ−2 ,

that is, Er is the event that (M 3) holds for F = F
(0)
r and F ′ = F

(r−1)
r . What we want to do

is show that it is likely each Er holds, since we then obtain the following claim.

Claim 22. For r ∈ [n], for u ∈ N+
~H

(r) and for s∗−bµnc < s ≤ s∗ the following holds. Either

Er does not occur, or F (r−1)
r has a perfect matching, and a random perfect matching σr in

F
(r−1)
r satisfies

P
[
σ−1
r (u) ∈ V (Gs)|Hr−1

]
≤ 4ws(r)

µpn ,

where Hr−1 denotes the collection of perfect matchings σ1, . . . , σr−1.

Proof. If Er occurs, then all properties (M 1)–(M 3) from Lemma 20 are satisfied with F = F
(0)
r

and F ′ = F
(r−1)
r . Thus a perfect matching in F

(r−1)
r exists, and furthermore a random

matching σr in F ′ satisfies for any given edge xu ∈ E
(
F

(r−1)
r

)
P
[
xu ∈ σr

∣∣Hr−1

]
≤ 4

µpn .

By the union bound over the ws(r) choices of x ∈ Lr which are in Gs, the claim follows. �

To prove the main theorem, we only need to know that each perfect matching exists; however
to analyse the probability of Er we need the statement about random perfect matchings in
addition. At this point, the following claim completes the proof of our main theorem.

Claim 23. With probability at least 1−n−1, the event Er holds for each r ∈ [n] simultaneously.

Before giving the proof of this claim, we spell out the details of how it implies the main
theorem. If Er holds then by Claim 22 the perfect matching σr exists for each r, and so
Algorithm 3 does not halt with failure in round r.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 21

Hence, assuming Claim 23, we get that Algorithm 3 does not halt with failure at all with
probability at least 1 − n−1 and provides matchings σ1, . . . , σr. PerfectPacking uses these
matchings to define for each s ∈ [s∗] the map φs : V (Gs)→ V (Ĥ) by setting

φs(x) =

{
φ′s(x) if x ∈ V (Gs) ∩ dom(φs)

σr(x) if x ∈ Lr .

Recall that for each s, the map φ′s is an embedding of G′s into Ĥ. All the edges of Gs which
are not in G′s have one end in the removed leaves Vs and the other end in V (G′s). Consider
those leaves of Gs which are adjacent to x ∈ V (G′s). By definition, these are in Lφs(x) and by
construction of F (φs(x)−1)

φs(x) , they are embedded to distinct vertices of Ĥ which are adjacent in
H to φs(x) and which are neither in imφs, nor are of the form σi(y) for some i < φs(x) and
y ∈ Vs. It follows that φs is indeed an embedding of Gs into Ĥ for each s ∈ [s∗].

We now check that these embeddings together form a packing. The maps (φ′s)s∈[s∗] pack
the graphs (G′s)s∈[s∗] into Ĥ, leaving exactly the edges of H unused. By construction ~H is
an orientation of H, so for ~vu ∈ E(~H), the edge uv ∈ E(H) is used in the embedding of Gs,
where σ−1

v (u) ∈ V (Gs). It follows that each edge of Ĥ is used in the maps (φs)s∈[s∗] at least
once, and since

∑
s∈[s∗] e(Gs) = e(Ĥ) each edge must be used exactly once. This justifies

that the maps (φs)s∈[s∗] perfectly pack the graphs (Gs)s∈[s∗] into Ĥ, as desired. This proves
Theorem 11, assuming Claim 23.

So it remains to verify Claim 23. We shall first argue that the claimed probability bound
follows from a probability bound, given in (8) below, which is of the right form to use Corol-
lary 7. Indeed, let Ar be the event that Ei holds for each 1 ≤ i < r but Er does not hold.
Observe that if for each r the event Ar does not hold, then Er holds for each r ∈ [n]. In
particular, by the union bound over r ∈ [n], if we establish that for each fixed r ∈ [n] we
have P[Ar] ≤ n−2, then we conclude P[

⋂
r Er] ≥ 1− n−1, which is the statement of Claim 23.

Further, by another union bound over the at most v(F
(0)
r) = 2w(r) ≤ 2n different y ∈ V (F

(0)
r)

and since Ar ⊆
⋂

1≤i≤r−1 Ei it is enough to show that for any fixed y ∈ V (F
(0)
r) we have

(8) P
[⋂

1≤i≤r−1

Ei and deg
F

(0)
r

(y)− deg
F

(r−1)
r

(y) > 50p2nµ−2
]
≤ 1

2n
−3 ,

where we used the definition of Ei (see (7)). The remainder of this proof is devoted to estab-
lishing this bound. We will use Corollary 7 for this purpose, with the good event

⋂
1≤i≤r−1 Ei.

To that end, define for each 1 ≤ i ≤ r − 1 the random variable

Yi := deg
F

(i−1)
r

(y)− deg
F

(i)
r

(y)

and observe that

deg
F

(0)
r

(y)− deg
F

(r−1)
r

(y) =

r−1∑
i=1

Yi .

To apply Corollary 7 we need to find the range of each Yi and the expectation of each Yi,
conditioned on the history Hi−1 which consists of the collection of matchings σ1, . . . , σi−1.
This is encapsulated in Claim 24.

Claim 24. For each 1 ≤ i ≤ r − 1, we have 0 ≤ Yi ≤ ∆. Furthermore, either some Ei with
1 ≤ i ≤ r − 1 does not occur, or we have

∑r−1
i=1 E[Yi|Hi−1] ≤ 25p2nµ−2.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 22

Proof. We first show 0 ≤ Yi ≤ ∆. There are two cases to consider. First, if y ∈ Lr, then y is
in Gs for some s ∈ [s∗]. An edge yu of F (i−1)

r is removed to form F
(i)
r only if u is assigned a

leaf of Gs in σi. Since there are at most ws(i) ≤ ∆ such leaves, we have Yi ≤ ∆ in this case.
Second, if y ∈ N+

~H
(r), and y is assigned a leaf of Gs in σi, then we remove all edges of F (i−1)

r

from y to leaves of Gs to form F
(i)
r . Since σi is a matching, this happens for at most one

s ∈ [s∗]. There are at most ws(r) ≤ ∆ such leaves of Gs, so also in this case we have Yi ≤ ∆.
We now give an upper bound on the sum of conditional expectations. Again, there are two

cases to consider. First, if y ∈ Lr, then let s be such that y ∈ V (Gs). Suppose that Hi−1 is a
history up to and including σi−1 such that Ei holds. Recall that Yi is defined to be the change
in degree of y in round i; that is, it is the number of u ∈ N

F
(i−1)
r

(y) which are not in N
F

(i)
r

(y).
By linearity of expectation, E

[
Yi
∣∣Hi−1

]
is the sum over u ∈ N

F
(i−1)
r

of the probability that
u 6∈ N

F
(i)
r

(y) conditional on Hi−1. Now a given u contributes to this sum exactly when a leaf

of Gs dangling at i is matched to u by σi; this can only occur if ~iu ∈ E(~H). So we can restrict
to summing over u ∈ N

F
(i−1)
r

such that ~iu ∈ E(~H), and for such a u the probability of its
contributing to the sum is P

[
σ−1
i (u) ∈ V (Gs)

∣∣Hi−1

]
. Putting this together, we obtain

E
[
Yi
∣∣Hi−1

]
=

∑
u∈N

F
(i−1)
r

(y)

~iu∈E(~H)

P
[
σ−1
i (u) ∈ V (Gs)

∣∣Hi−1

]

≤
∑

u∈N
F
(i−1)
r

(y)

~iu∈E(~H)

ws(i)
4
µpn ≤

∑
u∈NH(r,i)

ws(i)
4
µpn ,

where the first inequality is by Claim 22 and the second holds since ~iu ∈ E(~H) implies
iu ∈ E(H) and since u ∈ N

F
(i−1)
r

(y) implies ru ∈ E(H). Summing over i, either some Ei with
i ∈ [r − 1] does not hold, or we have

r−1∑
i=1

E
[
Yi
∣∣Hi−1

]
≤

r−1∑
i=1

∑
u∈NH(r,i)

ws(i)
4
µpn ≤

n∑
i=1

∣∣NH(r, i)
∣∣ · ws(i) 4

µpn ≤ 2p2n · 4
µpn

n∑
i=1

ws(i) ,

where the final inequality is by (P 1). Recall that we defined p = bµncbνnc
(
n
2

)−1, so in
particular νn ≤ pn

µ . Since
∑n

i=1ws(i) = bνnc ≤ pn
µ counts the number of leaves removed from

Gs to form G′s, we obtain that either some Ei with i ∈ [r − 1] does not hold, or

r−1∑
i=1

E
[
Yi
∣∣Hi−1

]
≤ 8p2n

µ2
,

as desired.
Finally, we consider the case y ∈ N+

~H
(r). If a leaf of Gs is assigned to y by σi, it follows that

y is adjacent to ws(r) leaves of Gs in F
(i−1)
r and the edges to these leaves are exactly the edges

at y removed from F
(i−1)
r to form F

(i)
r . Suppose that Hi−1 is a history up to and including

σi−1 such that Ei holds. Since a leaf of Gs can only be assigned to y by σi if ~iy ∈ E(~H), and

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 23

by linearity of expectation, we have

E
[
Yi
∣∣Hi−1

]
=

∑
s∗−bµnc<s≤s∗

1y∈N+
~H

(i)P
[
σ−1
i (y) ∈ V (Gs)

∣∣Hi−1

]
· ws(r)

≤
∑

s∗−bµnc<s≤s∗
1y∈N+

~H
(i)ws(r)ws(i)

4
µpn ,

where the second line follows by Claim 22. Summing over i, either some Ei with i ∈ [r − 1]
does not hold, or we have

r−1∑
i=1

E
[
Yi
∣∣Hi−1

]
≤

r−1∑
i=1

∑
s∗−bµnc<s≤s∗

1y∈N+
~H

(i)ws(r)ws(i)
4
µpn

≤
∑

s∗−bµnc<s≤s∗

n∑
i=1

1y∈N+
~H

(i)ws(r)ws(i)
4
µpn

=
∑

s∗−bµnc<s≤s∗

n∑
v: ~vy∈E(~H)

ws(r)ws(v) 4
µpn

≤
∑

s∗−bµnc<s≤s∗

4ws(r)
µpn

∑
v:vy∈E(H)

ws(v)

≤
∑

s∗−bµnc<s≤s∗

4ws(r)
µpn ·

10p2n
µ = 40p

µ2

∑
s∗−bµnc<s≤s∗

ws(r) ,

where the last inequality is by (P 6). By definition of w(r), by (P 2) and by choice of γ′ we
have

∑
s∗−bµnc<s≤s∗ ws(r) = w(r) ≤ 5

8pn, so we conclude that either some Ei with i ∈ [r − 1]

does not hold, or we have
r−1∑
i=1

E
[
Yi
∣∣Hi−1

]
≤ 40p

µ2
· 5

8
pn = 25p2n

µ2
,

as desired. �

Using Claim 24, we are now in a position to apply Corollary 7, with R = ∆ = cn
logn , with

µ̃ = 25p2nµ−2, and with the event E =
⋂r−1
i=1 Ei, which gives

P
[⋂

1≤i≤r−1

Ei and
r−1∑
i=1

Yi > 50p2nµ−2
]
≤ exp

(
− µ̃

4R

)
= exp(−6.25c−1p2µ−2 log n) < 1

2n
−3 ,

where the final inequality is by choice of c. This establishes (8). �

7. Proof of the orientation lemma

In this section we prove Lemma 19.

Proof of Lemma 19. By the given quasirandomness of H we know that degH(v) = (1±γ′3)pn
and |NH(v) ∩NH(w)| = (1± γ′3)p2n for every v 6= w ∈ V (H). Applying a standard Chernoff
argument, i.e. using Theorem 5, we obtain that a.a.s. for every v 6= w ∈ V (H) we have

deg+
~H0

(v) = (1± 2γ′3)
pn

2
and |N+

~H0
(v) ∩N−~H0

(w)| = (1± 2γ′3)
p2n

4
.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 24

From now on fix an arbitrary orientation ~H0 satisfying these two properties. Starting with ~H0

we aim to switch the orientations of some edges until we find an oriented graph ~H as desired.
In order to do so, we will successively switch the orientations of pairs of edges, thus producing
a sequence of oriented graphs (~Hi)0≤i≤t that eventually end up with ~Ht = ~H. For any such
oriented graph ~Hi and every vertex v ∈ V (H) we define the potential φi(v) := deg+

~Hi
(v)−w(v)

and
φ(~Hi) :=

∑
v∈V (H)

|φi(v)| .

Initially we have |φ0(v)| ≤ 3γ′3pn for every v ∈ V (H). Note that for each i we have∑
v∈V (H)

φi(v) = e(H)−
∑

v∈V (H)

w(v) = 0

where the second equality is by assumption of Lemma 19. In particular if there is a vertex
with positive potential there is also a vertex with negative potential.

The algorithm OrientationSwitch describes how orientations are switched. In every iteration
of this algorithm, the central idea is to change the potential of two vertices x, y ∈ V (H) with
φi(x) > 0 and φi(y) < 0 in the following way: We choose a vertex m ∈ N+

~Hi
(x) ∩ N−~Hi

(y)

uniformly at random. We then switch (the orientation of) the directed edge xm, that is we
replace xm with mx, and we also switch the edge my. Switching these two edges creates a
new orientation ~Hi+1 of H. The vertex m will be called the middle vertex of the switching,
while x and y are called the end vertices. In case that∣∣{uv ∈ E(H) : uv is oriented differently in ~Hi and ~H0}

∣∣
gets too large in some round i and for some vertex v, we let the algorithm halt with failure.
However, we will see in the following that this happens with probability tending to 0.

Algorithm 5: OrientationSwitch

let t := φ(~H0)/2;
for i = 0 to t− 1 do

if ∃ v with
∣∣{uv ∈ E(H) : uv is oriented differently in ~Hi and ~H0}

∣∣ > 100γ′3n

then halt with failure;
choose vertices x, y ∈ V (H) with φi(x) > 0 and φi(y) < 0;
choose a vertex m ∈ N+

~Hi
(x) ∩N−~Hi

(y) uniformly at random;

create the new oriented graph ~Hi+1 by switching the orientations of xm and my;
end
return Ht ;

We start with some easy observations.

Observation 25. As long as the algorithm does not halt with failure we have

φ(~Hi+1) = φ(~Hi)− 2 .

Observation 26. For every vertex v ∈ V (H) with φ0(v) > 0 (or φ0(v) < 0) it holds that
φi−1(v) ≥ φi(v) ≥ 0 (or φi−1(v) ≤ φi(v) ≤ 0) for all i ∈ [t].

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 25

Indeed, both observations hold since the switching of the orientations of xm and my ensures
that φi+1(x) = φi(x)− 1 and φi+1(y) = φi(y) + 1, while the potentials of all the other vertices
do not change.

Claim 27. A.a.s. throughout the algorithm every vertex v ∈ V (H) is chosen at most 40γ′3n
times as the middle vertex of a switching.

Proof. Every vertex v ∈ V (H) can become a middle vertex only if v ∈ N+
~Hi

(x) ∩ N−~Hi
(y)

for some 0 ≤ i ≤ t − 1 and x, y ∈ V (H) with φi(x) > 0 and φi(y) < 0. Now, v has at
most (1 + γ′3)pn < 2pn neighbours x ∈ V (H) and every such vertex with positive potential
participates in a switching as an end vertex in at most |φ0(x)| ≤ 3γ′3pn rounds. Thus, there
are at most 6γ′3p2n2 rounds which may consider v as a suitable middle vertex. In each such
round, the middle vertex is chosen uniformly at random from a set N+

~Hi
(x)∩N−~Hi

(y). As long
as the algorithm does not halt with failure we have

|N+
~Hi

(v) ∩N−~Hi
(w)| = |N+

~H0
(v) ∩N−~H0

(w)| ± 2 · 100γ′3n = (1± γ′2)
p2n

4
.

Thus, when v is suitable for being a middle vertex, the probability that v is chosen is bounded
from above by 5

p2n
. Now, applying a Chernoff-type argument the claim follows. �

With the above statements in hand, we can show that a.a.s. OrientationSwitch does not
halt with failure and that the resulting oriented graph ~H = ~Ht satisfies the properties (O 1)
and (O 2). Indeed, let v ∈ V (H) be any vertex. In some round, we change the orientation
of exactly one edge incident with v if and only if v is an end vertex of the switching in this
round. As such a switching decreases |φi(v)| by 1 and since |φi(v)| never increases according
to Observation 26, this happens at most |φ0(v)| ≤ 3γ′pn times. Moreover, we change the
orientation of exactly two edges incident with v if and only if v is a middle vertex of a
switching. By the above claim a.a.s. this happens at most 40γ′3n times. Thus, as long as the
algorithm runs, we a.a.s. switch the orientations of at most

3γ′pn+ 2 · 40γ′3n < 100γ′3n < γ′2n

edges incident with v. It follows that the algorithm runs without failures, and also that
property (O 2) holds. By Observation 25 and since t = φ(~H0)/2 we obtain that φ(~Ht) = 0,
meaning that (O 1) holds for ~H = ~Ht. �

8. Proof of the almost perfect packing lemma

In this section we prove Lemma 18. This is the technical part of this paper, which requires
some stamina.

We start this section by explaining the setup which we use throughout. Then, in Section 8.1
we define some auxiliary properties that our random packing process preserves. In Section 8.2
we analyse the behaviour of the algorithm RandomEmbedding , and in Section 8.3 the behaviour
of PackingProcess. In Section 8.4, finally, we use the obtained results to show Lemma 18.

In the results in this section we shall use the following setup.

Setting 28. We use the constants defined in Setting 16.
Let (G′′s)s∈[s∗] (for some s∗ ≤ 7

4n) be graphs on [n], such that for each s and x ∈ V (G′′s) we
have deg−G′′s

(x) ≤ D, such that ∆(G′′s) ≤ cn/ log n, and such that the final δn vertices of G′′s all
have degree ds and form an independent set.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 26

Let Ĥ be a (ξ, 2D + 3)-quasirandom graph with n vertices and density p̂. Recall that Pack-
ingProcess chooses H∗0 as a subgraph of Ĥ by picking edges of Ĥ independently with probabil-
ity γ

(
n
2

)
/e(Ĥ). We will assume that e(H∗0) ≤ 1.1γ

(
n
2

)
.

We note at this point that we assume e(H∗0) ≤ 1.1γ
(
n
2

)
in order to make use of (3). This

inequality holds with probability at least 1 − e−n and hence this assumption does not affect
the proof of Lemma 18, since we will see that, if this inequality holds, each of the properties
(P 1) – (P 6) occurs with probability at least 1− n−4.

8.1. Coquasirandomness, diet, codiet, and cover. The following properties coined in [1]
are preserved throughout the run of our random packing process. Firstly, for our analysis of
PackingProcess, we need the concept of coquasirandomness. This controls the intersections of
vertex neighbourhoods in two edge disjoint graphs on the same vertex set.

Definition 29 (coquasirandom). For α > 0 and L ∈ N, we say that a pair of graphs (F, F ∗),
both on the same vertex set V of order n and with densities p and p∗, respectively, is (α,L)-
coquasirandom if for every set S ⊆ V of at most L vertices and every subset R ⊆ S we
have

|NF (R) ∩NF ∗(S \R)| = (1± α)p|R|(p∗)|S\R|n .

For the analysis of one run of RandomEmbedding we further need the following concepts.

Definition 30 (diet condition, codiet condition, cover condition). Let H be a graph with n
vertices and p

(
n
2

)
edges, and let X ⊆ V (H) be any vertex set. We say that the pair (H,X)

satisfies the (β, L)-diet condition if for every set S ⊆ V (H) of at most L vertices we have

|NH(S) \X| = (1± β)p|S|(n− |X|) .
Given further H∗ on the same vertex set as H, which has no edges in common with H and
which has p∗

(
n
2

)
edges, we say that the triple (H,H∗, X) satisfies the (β, L)-codiet condition

if for every set S ⊆ V (H) of at most L vertices, and for every R ⊆ S, we have∣∣(NH(R) ∩NH∗(S \R)
)
\X

∣∣ = (1± β)p|R|(p∗)|S\R|(n− |X|) .
Further, let G be a graph with vertex set [n]. Given ε > 0, i ∈ [n− εn], and d ∈ N, we define

Xi,d := {x ∈ V (G) : i ≤ x < i+ εn, |N−G (x)| = d} .

We say that a partial embedding ψ of G into H, which embeds N−G (x) for each i ≤ x < i+ εn,
satisfies the (ε, β, i)-cover condition if for each v ∈ V (H), and for each d ∈ N, we have∣∣{x ∈ Xi,d : v ∈ NH

(
ψ(N−G (x))

)}∣∣ = (1± β)pd|Xi,d| ± ε2n .

Following [1], we use Definition 30 to define key events DietE(·; ·), CoverE(·; ·), CoDietE(·)
on the probability space ΩG↪→H underlying the run of RandomEmbedding which attempts to
embed G into H. (For a formal definition of this probability space, see [1, Section 4.1].)

Suppose that D, δ and ε are as in Setting 16. Suppose that λ > 0. Suppose that we have
graphs G and H as in Algorithm 2. Suppose that we run RandomEmbedding to partially
embed G into H. Let (ψi)i∈[t∗] be the partial embeddings of G

[
[i]
]
into H, where t∗ = n− δn

if RandomEmbedding succeeded, and otherwise t∗ + 1 is the step in which RandomEmbedding
halted with failure.
• For each t ∈ [n−δn], let DietE(λ; t) ⊆ ΩG↪→H correspond to executions of RandomEmbedding
for which t∗ ≥ t and the pair (H, imψt) satisfies the (λ, 2D + 3)-diet condition.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 27

• For each t ∈ [n− δn], let CoverE(λ; t) ⊆ ΩG↪→H correspond to executions of RandomEmbed-
ding for which t∗ ≥ t + εn and the embedding ψt∗ of G into H satisfies the (ε, λ, t)-cover
condition.
• Suppose further that we have a graph H∗0 with V (H) = V (H∗0). For each t ∈ [n − δn], let
CoDietE(t) ⊆ ΩG↪→H correspond to executions of RandomEmbedding for which t∗ ≥ t and
the triple (H,H∗0 , imψt) satisfies the (2η, 2D + 3)-codiet condition.

8.2. Properties of RandomEmbedding . In this section we collect properties that are pre-
served during a run of RandomEmbedding . The constants we use are as in Setting 16. However,
since we are only concerned with a single run of RandomEmbedding here, we only consider a
single guest graph G, and a single host graph H with the following properties.

Setting 31. Let G be a graph on vertex set [n] such that deg−G(x) ≤ D for each x ∈ V (G)

and ∆(G) ≤ cn/ log n. Let H be an (α, 2D + 3)-quasirandom graph with n vertices and p
(
n
2

)
edges, with p ≥ γ, and suppose that H∗0 is a graph on V (H) such that (H,H∗0) is (η, 2D + 3)-
coquasirandom.

The following lemma comes from [1, Lemma 24] and the deduction of [1, Lemma 18] which
comes immediately after. Specifically, (a) is the deduction of [1, Lemma 18] and (d) is
explicitly in [1, Lemma 24], while (b) and (c) differ only from the statements of [1, Lemma 24]
in that the error bound we give here is in terms of βt whereas in [1, Lemma 24] a (larger) error
bound Cα is given. In the proof of [1, Lemma 24], the stronger error bounds we claim here
are explicitly obtained. The cover conditions asserted are otherwise identical, despite being
written slightly differently.

Lemma 32. Given D ∈ N and γ > 0, let δ, α0, α2n, C, ε be as in Setting 16. Then the following
holds for any α0 ≤ α ≤ α2n and all sufficiently large n. Let G, H and H∗0 be as in Setting 31.
Let βt = βt(α) be as in Setting 16. If we run RandomEmbedding to embed G[[n−δn]] into H,
then with probability at least 1− 2n−9

(a) RandomEmbedding succeeds in constructing partial embeddings (ψi)i∈[n−δn],
(b) (H, imψt) satisfies the (βt, 2D + 3)-diet condition (i.e. DietE(βt; t) occurs) for each

t ∈ [n− δn],
(c) ψt has the (ε, 20Dβt−εn+2, t−εn+2)-cover condition (i.e. CoverE(20Dβt−εn+2, t−εn+

2) occurs) for each t ∈ [εn− 1, n− δn].
(d) (H,H∗0 , imψt) satisfies the (2η, 2D + 3)-codiet condition (i.e. CoDietE(t) occurs) for

each t ∈ [n− δn]. �

The next lemma is proven as part of [1, Lemma 26] (it can be found in [1, Claim 26.1]).

Lemma 33. Given D ∈ N and γ > 0, let δ, α0, α2n, C, ε be as in Setting 16. Then the following
holds for any α0 ≤ α ≤ α2n and all sufficiently large n. Let G and H be as in Setting 31 and
let 1 ≤ j ≤ t + 1 − εn for t ≤ (1 − δ)n. Let βj = βj(α) be as in Setting 16. Assume we run
RandomEmbedding to embed G[[n−δn]] into H, that it produces a partial embedding ψj such that
(H, imψj) has the (βj , 2D+3)-diet condition, and let T ⊆ V (H)\ imψj with |T | ≥ 1

2γ
2D+3δn.

Then with probability at least 1− 2n−2D−19, one of the following occurs.
(a) ψt does not have the (ε, 20Dβj , j)-cover condition (i.e. CoverE(20Dβj , j) does not oc-

cur) , or

(b)
∣∣{x : j ≤ x < j + εn, ψt−1(x) ∈ T}

∣∣ = (1± 40Dβj)
|T |εn
n−j .

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 28

In [1, Lemma 28] we estimated the probability that, when running RandomEmbedding , a
given vertex x ∈ V (H) is not used in the embedding of the first t1 vertices of G.

Lemma 34 (Lemma 28 in [1]). Given D ∈ N and γ > 0, let δ, α0, α2n, C, ε be as in Setting 16.
Then the following holds for any α0 ≤ α ≤ α2n and all sufficiently large n. Let G and H be as
in Setting 31. Let 0 ≤ t0 < t1 ≤ n− δn. Let L be a history ensemble of RandomEmbedding
up to time t0, and suppose that P[L] ≥ n−4. Then the following hold for any distinct vertices
u, v ∈ V (H).

(a) If v 6∈ imψt0 then we have

P
[
v 6∈ imψt1 |L

]
= (1± 100Cαδ−1)n−1−t1

n−t0 .

(b) If u, v 6∈ imψt0 then we have

P
[
u, v 6∈ imψt1 |L

]
= (1± 100Cαδ−1)(n−1−t1

n−t0)2 . �

In addition we estimated the probability that a given edge of G is embedded to a given
edge of H. The following lemma is [1, Lemma 29], together with equation (6.10) of that paper
which is established in the proof.

Lemma 35 (Lemma 29 in [1]). Given D ∈ N, and γ > 0, let constants δ, ε, C, α0, α2n be as
in Setting 16. Then the following holds for any α0 ≤ α ≤ α2n and all sufficiently large n.
Let G and H be as in Setting 31. Let uv be an edge of H, and let xy be an edge of G. When
RandomEmbedding is run to embed G[[n−δn]] into H, we have

P
[
x ↪→ u, y ↪→ v

]
=
(
1± 500Cαδ−1

)4D+2 · p−1n−2 ,

and furthermore the probability that some edge of G is embedded to uv is(
1± 500Cαδ−1

)4D+2
p−1n−2 · 2e(G) . �

We can use these two lemmas for estimating the probability that a given vertex of G is
embedded on a given vertex of H.

Lemma 36 (embedding a vertex on a given vertex). Given D ∈ N, γ > 0, let δ, ε, C, α0,
α2n be as in Setting 16 and let p ≥ γ. Let α0 < α ≤ α2n and let n be sufficiently large. Let G
and H be as in Setting 31. Let x ∈ V (G) with x ≤ (1 − δ)n and u ∈ V (H). When we run
RandomEmbedding to embed G[[n−δn]] into H, then

P
[
x ↪→ u

]
= (1± 104CαDδ−1)

1

n
.

Proof. While we could prove this lemma directly following the methods of [1], it is convenient
to deduce it from the results of [1]. We separate two cases.

If x is an isolated vertex in G, then we embed x to u if and only if the first x− 1 vertices of
G are not embedded to u, and then among the n−x+1 vertices of H to which we could embed
x, we choose u. Using Lemma 34(a) to estimate the probability of the first event occurring,
with t0 = 0 and t1 = x− 1 (and so L is trivial) we have

P
[
x ↪→ u

]
= P

[
u 6∈ ψx−1

]
P
[
x ↪→ u

∣∣u 6∈ ψx−1

]
= (1± 100Cαδ−1)

n− 1− x+ 1

n
· 1

n− x+ 1

= (1± 200Cαδ−1)
1

n
.

If, on the other hand, there is y such that xy ∈ E(H), then we embed x to u if and only
if we embed x to u and y to some neighbour v of u in H. Since these events are disjoint

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 29

as v ranges over the neighbours of u, the probability that one of them occurs is exactly the
sum of their individual probabilities, and the latter are estimated by Lemma 35. Since by the
(α, 2D + 3)-quasirandomness of H, the vertex u has (1± α)pn neighbours, we obtain

P
[
x ↪→ u

]
=

∑
v∈NH(u)

P
[
x ↪→ u, y ↪→ v

]
= (1± α)pn · (1± 500Cαδ−1)4D+2 1

pn2

= (1± 104CαDδ−1)
1

n
.

In either case, we conclude the desired bound. �

We further need the following lemma, estimating the probability that a given vertex of G is
embedded to a given vertex of H and another given vertex of H is not used in the embedding
of the first n − bµnc vertices of G. We will be interested in this when G is a special graph;
so the remaining vertices of G (which RandomEmbedding also embeds) are isolated vertices.
The proof of this lemma is rather similar to the proof of [1, Lemma 29].

Lemma 37 (embedding a vertex on a given vertex and not using another vertex). Given
D ∈ N, γ > 0, let δ, ε, C, α0, α2n be as in Setting 16 and let p ≥ γ. Let α0 < α ≤ α2n

and let n be sufficiently large. Let G and H be as in Setting 31. Let x ∈ V (G[[n−µn]]) and
u, v ∈ V (H) with u 6= v. When we run RandomEmbedding to construct an embedding ψn−bµnc
of the first n− bµnc vertices of G into H, then

P
[
x ↪→ v and u 6∈ imψn−bµnc

]
= (1± 103CαDδ−1)

µ

n
.

Proof. Let y1, . . . , yd with d ≤ D be the neighbours of x in N−G (x) in degeneracy order, and
(for convenience) define y0 = 0. We define a collection of events. Let L ′

0 be the almost sure
event. For each 1 ≤ i ≤ d, let Li be the intersection of L ′

i−1 and the event that neither u
nor v is in the image of ψyi−1, and let L ′

i be the intersection of Li and the event that yi is
embedded to a vertex of NH(v) \ {u}. Let Ld+1 be the intersection of L ′

d and the event that
neither u nor v is in the image of ψx−1. Let L ′

d+1 be the intersection of Ld+1 and the event
x ↪→ v. And finally let Ld+2 be the intersection of L ′

d+1 and the event that u 6∈ imψn−bµnc.
Note that all of these events are history ensembles up to some given time.

Now what we want to do is estimate P[Ld+2], and the reason for giving this collection of
events is that we can estimate each of the successive conditional probabilities. We can estimate
P[Li|L ′

i−1] for each 1 ≤ i ≤ d + 2 using Lemma 34 (using part (b) for 1 ≤ i ≤ d + 1 and
part (a) for the final part). And we can estimate P[L ′

i |Li] using the diet condition for each
1 ≤ i ≤ d + 1; the probability that the diet condition fails is tiny. To justify both of these
steps we need to know P[Li],P[L ′

i] > n−4; this is (by induction) valid since the final Ld+2 is
the smallest event and we will argue its probability satisfies this bound. Assuming this bound
for a moment, by Lemma 34, for each 1 ≤ i ≤ d we have

P[Li|L ′
i−1] = (1± 100Cαδ−1)

(n−yi
n−yi−1

)2
, P[Ld+1|L ′

d] = (1± 100Cαδ−1)
(
n−x
n−yd

)2
and P[Ld+2|L ′

d+1] = (1± 100Cαδ−1) bµnc−1
n−x .

For each 1 ≤ i ≤ d, we have

P[L ′
i |Li] =

(1± Cα)pdeg−G(yi)+1(n− yi + 1)± 1

(1± Cα)pdeg−G(yi)(n− yi + 1)
± 4n−5 = (1± 4Cα)p .

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 30

The fraction in the first term assumes the (Cα, 2D + 3)-diet condition, for the vertices
ψyi−1

(
N−G (yi)

)
∪ {v} in the numerator and ψyi−1

(
N−G (yi)

)
in the denominator, to estimate

respectively the number of neighbours of v in the candidate set of yi which are not in imψyi−1

and the number of vertices in the candidate set of yi which are not covered by imψyi−1. The
±1 term in the numerator covers the possibility u ∈ NH(v). The 4n−5 error term covers the
possibility of failure of the diet condition: By Lemma 32 the probability that the diet condition
fails is at most 2n−9, hence since P[Li] > n−4 the probability that the diet condition fails
conditioned on Li is at most 2n−5. By similar logic, we have

P[L ′
d+1|Ld+1] =

1

(1± Cα)pd(n− x+ 1)
± 4n−5 = (1± 4Cα) 1

pd(n−x+1)
.

Multiplying together all these conditional probabilities, many terms cancel and we obtain

P[Ld+2] = (1± 100Cαδ−1)d+2(1± 4Cα)d+1 (n− x)(bµnc − 1)

n2(n− x+ 1)

= (1± 100Cαδ−1)2D+4 · µ
n
,

which since α ≤ α2n and by choice of α2n implies the desired bound. �

8.3. Properties of PackingProcess. The following lemma summarises some facts we obtain
in the course of proving [1, Theorem 11].

Lemma 38 (PackingProcess lemma). Given D, p̂, γ, let (αs)s∈[s∗], η and the graphs (G′′s)s∈[s∗],
Ĥ be as in Setting 28. When PackingProcess is run with input (G′′s)s∈[s∗] and Ĥ, with proba-
bility at least 1− 2n−5, the following holds.

(a) PackingProcess succeeds in packing (G′′s)s∈[s∗] into Ĥ.
(b) For each s ∈ [s∗] the pair (Hs, H

∗
0) is (αs, 2D + 3)-coquasirandom.

(c) The leftover graph H is (η, 2D + 3)-quasirandom.
(d) H∗0 has maximum degree at most 2γn.

Proof. (a) is obtained by summing the failure probabilities of all exceptional events in [1,
Proof of Theorem 11].

(b) holding is implied by the exceptional event (ii) of that proof not occurring.
(c) is implied by exceptional event (v) of [1, Proof of Theorem 11] not occurring. Again,

event (v) not occurring states that (Hs∗ , H
∗
s∗) is (η, 2D + 3)-quasirandom. We would like to

know that this implies H = Hs∗ ∪H∗s∗ is (η, 2D+3)-quasirandom. Since Hs∗ and H∗s∗ are edge
disjoint, given any vertex set S of size at most 2D+ 3, the neighbours NH(S) are partitioned
into parts indexed by the subsets R of S, where a vertex v is in the part indexed by R if
it is adjacent in Hs∗ to the vertices R and in H∗s∗ to the vertices S \ R. Now (η, 2D + 3)-
coquasirandomness gives bounds on these part sizes with a (1±η) relative error, and summing
the bounds we obtain the desired (η, 2D+ 3)-quasirandomness of H. Indeed, by the argument
above we obtain

NH(S) =
∑
R⊆S

(1± η)(ps∗)
|R|(p∗s∗)

|S\R|n

= (1± η)n

|S|∑
r=0

(
s

r

)
(ps∗)

r(p∗s∗)
|S|−r = (1± η)(ps∗ + p∗s∗)

|S|n

for every S of size at most 2D + 3.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 31

(d) is implied by exceptional event (i) not occurring: this event in particular implies that
H∗0 is (1

4α0, 2D+ 3)-quasirandom, which together with the fact e(H∗0) = (1±α0)γ
(
n
2

)
from [1,

Lemma 16] implies the claimed maximum degree. �

We further need the following two lemmas. The first states that, while running Packing-
Process, chosen subsets T of neighbourhoods of vertices shrink roughly as expected. We will
use this with T being a vertex neighbourhood with the embedded image of one or two of the
G′′i removed. Recall that ps denotes the density of Hs.

Lemma 39. Assume Setting 28 and let s∗−bµnc < s < s′ ≤ s∗. Consider the following exper-
iment. Run PackingProcess with input (G′′s′′)s′′∈[s∗] and Ĥ up to and including the embedding
of G′′s . Then fix T ⊆ NHs(v) with |T | ≥ 1

2pµ
2n, and continue PackingProcess to perform the

embedding of G′′s+1, . . . , G
′′
s′.

The probability that PackingProcess fails before embedding G′′s′ , or Hi fails to be (αi, 2D+3)-
quasirandom for some 1 ≤ i ≤ s′, or we have∣∣T ∩NHs′ (v)

∣∣ = (1± γ−1αs′)
ps′

ps
|T | ,

is at least 1− n−C .

Proof. For s ≤ i ≤ s′, we define the event Ei that PackingProcess does not fail before em-
bedding G′′i , and Hj is (αj , 2D + 3)-quasirandom for each 1 ≤ j ≤ i, and |T ∩ NHj (v)| =

(1± γ−1αj)
pj
ps
|T | for each s ≤ j ≤ i. If the event in the lemma statement fails to occur, then

there must exist some s ≤ i < s′ such that Ei occurs and

|T ∩NHi+1(v)| 6= (1± γ−1αi+1)
pi+1

ps
|T | .

It suffices to show that each of these bad events occurs with probability at most n−C−1, since
then the union bound over the at most µn choices of i gives the lemma statement. This is
an estimate we can obtain using Corollary 7. We now fix s ≤ i < s′ and prove the desired
estimate.

Suppose s ≤ j ≤ i, and let Yj := |NHj (v)∩ T \NHj+1(v)| be the number of edges from v to
T used for the embedding Gj+1. Then we have

∣∣T ∩NHi+1(v)
∣∣ = |T | −

∑i
j=s Yj , and what we

want to do is argue that the sum of random variables is concentrated. To that end, suppose
H is a history of PackingProcess up to time j such that Hj is (αj , 2D+ 3)-quasirandom and
|T ∩NHj (v)| = (1± γ−1αj)

pj
ps
|T |. Then we have

E
[
Yj
∣∣H]

=
2e(G′′j+1) · (1± 500Cαjδ

−1)4D+2

pjn2
· (1± γ−1αj)

pj
ps
|T |

where we use linearity of expectation: the first factor is by Lemma 35 the probability that a
given edge from v to T in Hj is used in the embedding of G′′j , and the second factor is the
number of such edges. Note that the pj terms cancel, so we obtain

E
[
Yj
∣∣H]

=
2e(G′′j+1) · (1± 500Cαjδ

−1)4D+2

psn2
· (1± γ−1αj)|T |

=
2e(G′′j+1)|T |
psn(n− 1)

± 105δ−1CD2|T |
psn

αj ,

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 32

where for the error term we use the upper bound e(G′′j+1) ≤ Dn and our choice δ−1 > γ−1.
Let

µ̃ :=
i∑

j=s

2e(G′′j+1)|T |
psn(n− 1)

and ν̃ :=
i∑

j=s

105δ−1CD2|T |
psn

αj

and observe that µ̃ ≤ |T | ≤ n and ν̃ ≤ 105δ−1CD2|T |
ps

αi <
|T |
103

since ps ≥ γ and by the definition
of αj .

We trivially have 0 ≤ Yj ≤ ∆(G′′j+1) ≤ cn/ log n. So what Corollary 7(b), with %̃ = εn,
gives us is that

P

Ei and i∑
j=s

Yi 6= µ̃± (ν̃ + εn)

 < 2 exp
(
− ε2n2

4cn2/ logn

)
< n−C−1 ,

where we use the upper bound µ̃ + ν̃ + %̃ ≤ 2n for the first inequality and the choice of c as
well as ε < 1

C for the second. This is the probability bound we wanted. We now simply need
to show that if

i∑
j=s

Yi = µ̃± (ν̃ + εn)

then we have
|T ∩NHi+1(v)| = (1± γ−1αi+1)

pi+1

ps
|T | .

Since

|T | − µ̃ = |T |
(

1−
∑i

j=s e(G
′′
j+1)

ps(n2)

)
= |T |

(
1− (ps−pi+1)(n2)

ps(n2)

)
=
pi+1

ps
|T | ,

what remains is to argue ν̃ + εn < γ−1αi+1
pi+1

ps
|T |. Since αj = δ

108CD
exp

(
108CD3δ−1(j−2n)

n

)
is increasing in j, we have

i∑
j=s

αj ≤
∫ i+1

s
αj dj ≤

∫ i+1

−∞
αj dj

=
[δ

108CD
· n

108CD3δ−1
· exp

(108CD3δ−1(j − 2n)

n

)]i+1

j=−∞
=

δn

108CD3
αi+1 .

(9)

It follows that

ν̃ + εn ≤ 105δ−1CD2|T |
psn

· δn

108CD3
αi+1 + εn ≤ αi+1

1000D ·
1
ps
|T |+ εn .

Finally, since pi+1, p ≥ γ, by choice of ε, since δ ≤ µ and because |T | ≥ 1
2pµ

2n, we conclude
ν̃ + εn ≤ γ−1αi+1

pi+1

ps
|T | as desired. �

The second lemma states that for a set S of host graph vertices fixed before the embedding
of G′′s , it is likely that the embedding of G′′s (which has n−bµnc vertices) uses about (1−µ)|S|
vertices of S. To prove it, we repeatedly apply Lemma 33, which tells us that it is likely that
each successive εn vertices of G′′s embedded cover about the expected fraction of S.

Lemma 40. Assume Setting 28 and let s∗ − bµnc < s ≤ s∗. Run PackingProcess with input
(G′′s′′)s′′∈[s∗] and Ĥ up to just before the embedding of G′′s . Then fix any S ⊆ V (Hs−1) with

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 33

|S| ≥ 1
2pµ

2n, and let PackingProcess perform the embedding of G′′s . With probability at least
1− 3n−9 either Hs−1 is not (αs−1, 2D + 3)-quasirandom or

|S \ imφ′s| = (1± C ′αs)µ|S| .

Proof. Fix s such that s∗−bµnc < s ≤ s∗, and condition onHs−1. IfHs−1 is not (αs−1, 2D+3)-
quasirandom, then the bad event of this lemma cannot occur. So it suffices to show that ifHs−1

is (αs−1, 2D+ 3)-quasirandom, then the probability of the event |S \ imφ′s| 6= (1±C ′αs)µ|S|,
conditioned on Hs−1, is at most 3n−9. This is what we will now do, so we suppose that Hs−1 is
(αs−1, 2D+3)-quasirandom. Consider the run of RandomEmbedding which embeds G′′s [[n−δn]].

Recall that the embedding φ′s of G′s is given by letting RandomEmbedding perform the
embedding of G′′s [[n−δn]], constructing the partial embeddings ψt for 0 ≤ t ≤ (1 − δ)n. More
precisely, φ′s is given by ignoring the embedding of all vertices not in G′s, that is, by ψn−bµnc.

Define S0 = S, and for i = 1, . . . , τ with τ = d (1−µ)
ε e set Si = Si−1 \ imψiεn. Since

Sτ ⊆ S \ imφ′s ⊆ Sτ−1, it is enough to show both |Sτ−1| and |Sτ | are likely to be in the
claimed range. Since the two quantities differ by at most εn, we will focus on estimating
|Sτ |. In this proof we will always use α = αs, and hence will often omit the parameter α in
βt = βt(α). By Lemma 33 (applied with t = j+εn+1), with probability at least 1−n−2D−18,
either for some j ≤ n− µn− εn

(a) RandomEmbedding failed to construct ψj , or
(b) the partial embedding ψj+εn+1 ofG′′s [[j+εn+1]] intoHs−1 does not have the (ε, 20Dβj , j)-

cover condition,
or we have that for every j ≤ n− µn− εn

(c) |{x : j ≤ x < j + εn : ψj+εn(x) ∈ S \ imψj}| = (1± 40Dβj)
|S\imψj |εn

n−j .

By Lemma 32, with probability at least 1− 2n−9, the first two options do not hold, so with
probability at least 1− 3n−9 we have that (c) holds for every j ≤ n− µn− εn. Applying (c)
with j = (i− 1)εn we conclude

|Si| = |Si−1| − (1± 40Dβ(i−1)εn)
|Si−1|εn

n− (i− 1)εn

for all i ≥ 1.
Assuming this is the case, we get

|Si| = |Si−1|
(

1−
(1± 40Dβ(i−1)εn)ε

1− (i− 1)ε

)
,

and hence

|Sτ | = |S|
τ∏
i=1

(
1−

(1± 40Dβ(i−1)εn)ε

1− (i− 1)ε

)
.

In order to evaluate this product, observe that

1− (1± 40Dβiεn)ε

1− iε
=

1− (i+ 1)ε

1− iε
± 40Dβiεnε

1− iε
=

1− iε− ε
1− iε

(
1± 40Dβiεnε

1− (i+ 1)ε

)
,

and therefore

|Sτ | = |S|
τ−1∏
i=0

1− iε− ε
1− iε

·
(

1± 40Dβiεnε

1− (i+ 1)ε

)
= |S|(1− τε)

τ−1∏
i=0

(
1± 40Dβiεnε

1− (i+ 1)ε

)
.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 34

By the definition of τ we have (1−µ)
ε ≤ τ ≤ (1−µ)

ε + 1 and hence (1 − τε) = µ(1 ± ε
µ).

Moreover, we obtain that
τ−1∑
i=0

40Dβiεnε

1− (i+ 1)ε
≤ 40Dε

1− τε

τ−1∑
i=0

βiεn ≤
80Dε

µ

τ−1∑
i=0

βiεn

≤ 80D

µn

∫ τ

0
εnβiεn di ≤ 80D

µn

∫ τεn

0
βx dx

(6)
≤ 80D

µ · 1000Dδ−2γ−2D−10
βτεn ≤ β(1−µ+ε)n ≤

1

2
C ′α =

1

2
C ′αs

since β(1−µ+ε)n = β(1−µ+ε)n(α) = 2α exp(1000Dδ−2γ−2D−10(1− µ+ ε)) < 2α and

C ′ = 104 · 40D

δ
exp(1000Dδ−2γ−2D−10) .

So, since
∏
i(1± xi) = 1± 2

∑
i xi as long as

∑
i xi <

1
100 and since 1

2C
′αs <

1
100 , we get

|Sτ | = |S|(1− τε)
(

1± 2
τ−1∑
i=0

40Dβiεnε

1− (i+ 1)ε

)
= |S|(1− τε)

(
1± 80Dε

1− τε

τ−1∑
i=0

βiεn

)
= |S|

(
1− τε± 80Dε

τ−1∑
i=0

βiεn

)
= |S|µ

(
1± ε

µ
± 80Dε

µ

τ−1∑
i=0

βiεn

)
= |S|µ

(
1± 1

2
αs ±

1

2
C ′αs

)
,

where for the last equation we use that ε ≤ α0δ
2γ ≤ 1

2αsµ. It follows that

|S \ imφ′s| = |Sτ | ± εn = |S|µ
(
1± 1

2αs ±
1
2C
′αs
)
± εn =

(
1± C ′αs

)
µ|S| ,

as desired. �

8.4. Proof of Lemma 18. We now have all tools at hand to prove the almost perfect packing
lemma.

Proof of Lemma 18. For 0 ≤ s < s∗ let Es be the event that Hs is (αs, 2D + 3)-quasirandom.
By Lemma 38(b) we have

(10) P
[⋂

s

Es
]
≥ 1− 2n−5 .

Let Hs be an embedding of G′′1, . . . , G′′s by PackingProcess such that Es holds.
Recall that we may assume that e(H∗0) ≤ 1.1γ

(
n
2

)
holds, which is fine as the probability of

this inequality not being satisfied is at most e−n. So, from now on we always condition on this
assumption, and we shall show in the following that then each of the properties (P 1)–(P 6)
holds with probability at least 1− n−4, which gives the lemma.

(P 1): H is (γ′3, 2D + 3)-quasirandom and has density p.

By Lemma 38(c), the leftover graph H is (η, 2D+ 3)-quasirandom with probability at least
1− 2n−5. By (4) and since γ � γ′ we have η ≤ γ′3, which gives (P 1).

(P 2): w(v) = (1± γ′3)pn2 .

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 35

Fix v ∈ V (H) and let Ys = ws(x)1x↪→v. We have Ys ≤ ∆ and

w(v) =
∑
s

ws(v) =
∑

s,x∈V (Gs)

Ys .

We want to apply Corollary 7. By Lemma 36 we have∑
s∈[s∗]

E[Ys|Hs−1] =
∑
s∈[s∗]

x∈V (Gs)

ws(x)P[x ↪→ v|Hs−1] =
∑
s∈[s∗]

x∈V (Gs)

ws(x)(1± 104CαsDδ
−1)

1

n
.

It follows that∑
s∈[s∗]

E[Ys|Hs−1] = p

(
n

2

)
(1± 104Cαs∗Dδ

−1)
1

n
=
pn

2
(1± 2 · 104Cαs∗Dδ

−1) .

By the second part of Corollary 7(b) applied with E =
⋂
s Es, µ̃ = pn

2 , η̃ = 2 · 104Cαs∗Dδ
−1

we obtain

P
[
E and

∑
s

Ys 6=
pn

2
· (1± 4 · 104Cαs∗Dδ

−1)
]
≤ 2 exp

(
− µ̃ · 4 · 108C2α2

s∗D
2δ−2

4∆

)
≤ 2 exp(−1010 log n) ,

(11)

where the last inequality uses ∆ ≤ cn/ log n, c ≤ 10−10γ10Dα4
0, α0 ≤ αs∗ , p ≥ µν and

γ � ν ≤ µ.
We have s∗ ≤ 7

4n and hence by the definition of αx and of C in (4) we get

4 · 104Cαs∗Dδ
−1 ≤ 4 · 104Cα 7

4
nDδ

−1

= 4 · 104C · δ

108CD
exp

(
− 108CD3δ−1 · 1

4

)
·Dδ−1

≤ exp
(
− 107CD3δ−1

)
≤ exp

(
− 107 · 40D exp(1000Dδ−2γ−2D−10)

)
≤ exp

(
− exp(γ−2D−10)

)
≤ γ3 ≤ γ′3 .

(12)

Combining this with (11) and (10) and a union bound over v, we conclude that (P 2) fails
with probability at most 2n−5 + n · n−10 ≤ n−4.

(P 3):
∣∣NH(v) \ imφ′s

∣∣ = (1± γ′3)µpn and

(P 4):
∣∣NH(v) \ (imφ′s ∪ imφ′s′)

∣∣ = (1± γ′3)µ2pn if s 6= s′.

We prove these together. Fix v ∈ V (H) and s, s′ with s∗ − bµnc < s < s′ ≤ s∗ + 1. The
artificial case s′ = s∗ + 1 will be used to prove (P 3).

We first run PackingProcess up to time s− 1 and consider the embedding of G′′s . We want
to apply Lemma 40 to estimate what happens in this first stage. We set S = NHs−1(v), so if
Es−1 holds then |S| = (1± αs−1)ps−1n ≥ 1

2pn ≥
1
2pµ

2n. Hence we can apply Lemma 40 with
S and conclude that with probability at least 1− 3n−9 either Es−1 does not hold or

(13) |NHs−1(v) \ imφ′s| = (1± C ′αs)µ|S| = (1± 3C ′αs)ps−1µn .

Further, we have NHs(v) \ imφ′s = NHs−1(v) \ imφ′s.
Now let PackingProcess perform the embeddings of G′′s+1, . . . , G

′′
s′−1. We want to apply

Lemma 39 to estimate what happens in this second stage. Set T = NHs(v)\ imφ′s and observe
that T ∩ NHs′−1

(v) = NHs′−1
(v) \ imφ′s. If (13) holds, then |T | ≥ 1

2pµ
2n because by (4) we

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 36

have C ′αs ≤ 10−4. So by Lemma 39 applied with T we get that with probability at least
1− n−C either

⋂
i Ei fails or we have

|NHs′−1
(v) \ imφ′s| = (1± γ−1αs′−1)

ps′−1

ps
|T | (13)= (1± γ−1αs′−1)

ps′−1

ps
(1± 3C ′αs)ps−1µn

= (1± 5C ′αs′−1)µps′−1n

(14)

where the last equality follows from ps−1

ps
= 1+o(1) and since γ−1 < C ′. For the case s′ = s∗+1

this immediately implies (P 3). Indeed, in this case (14) gets

|NHs∗ (v) \ imφ′s| = (1± 5C ′αs∗)µps∗n .

As long as ∆(H∗s∗) ≤ ∆(H∗0) ≤ 2γn, which holds with probability at least 1− 2n−5 according
to Lemma 38(d), we have that |NH(v)| − |NHs∗ (v)| ≤ 2γn and ps∗ = p ± 2γ =

(
1± 2γ

p

)
p

from which we conclude that

|NH(v) \ imφ′s| = (1± 5C ′αs∗)

(
1± 2γ

p

)
µpn± 2γn = (1± γ′3)µpn

since C ′αs∗ < 1
100γ

′3, since γ � γ′ � ν � µ and p ≥ µν. Hence, in total, taking a union bound
over v and s and using (10), the probability that (P 3) fails is at most 4n−5+n2(3n−9+n−C) ≤
n−4.

For proving (P 4), assume that s′ ≤ s∗ and consider next the embedding of G′′s′ by Pack-
ingProcess. We again want to apply Lemma 40, this time with S = NHs′−1

(v) \ imφ′s. If (14)
holds, then |S| = (1± 5C ′αs−1)µps−1n ≥ 1

2pµ
2n. Hence we can apply Lemma 40 with S and

with s′ in place of s to conclude that with probability at least 1 − 3n−9 either (14) fails, or
Es′−1 fails or

|NHs′ (v) \ (imφ′s ∪ imφ′s′)| = |NHs′−1
(v) \ (imφ′s ∪ imφ′s′)|

= (1± C ′αs′)µ|S| = (1± 7C ′αs′)ps′−1µ
2n .

(15)

In a last stage, consider the embedding of G′′s′+1, . . . , G
′′
s∗ by PackingProcess. We apply

Lemma 39 with T = NHs′ (v) \ (imφ′s ∪ imφ′s′) ⊆ NHs′ (v) and with s′ replaced by s∗, which is
possible if (15) holds since then |T | ≥ 1

2pµ
2n. In this case, because T ∩NHs∗ (v) = NHs∗ (v) \

(imφ′s ∪ imφ′s′), we conclude that with probability at least 1− n−C we have

|NHs∗(v) \ (imφ′s ∪ imφ′s′)| = (1± γ−1αs∗)
ps∗

ps′
|T |

(15)
= (1± γ−1αs∗)

ps∗

ps′
(1± 7C ′αs′)ps′−1µ

2n = (1± 9C ′αs∗)µ
2ps∗n

from which we obtain

|NH(v) \ (imφ′s ∪ imφ′s′)| = (1± γ′3)µ2pn

analogously to the discussion of (P 3) and as long as ∆(H0) ≤ 2γn. We conclude, using a
union bound over v, s and s′ and again (10) and Lemma 38(d), that (P 4) fails with probability
at most 4n−5 + n3(2 · 3n−9 + 2 · n−C) ≤ n−4.

(P 5):
∑

sws(v)1u6∈imφ′s = (1± γ′3)µpn2 .

Fix u and v 6= u and define
Ys = ws(v)1u6∈imφ′s ,

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 37

and observe that Ys ≤ ws(v) ≤ ∆. Again, we want to apply Corollary 7. We have

E[Ys|Hs−1] =
∑

x∈V (Gs)

ws(x) · P[x ↪→ v, u 6∈ imφ′s|Hs−1] .

By Lemma 37 we obtain

E[Ys|Hs−1] =
∑

x∈V (Gs)

ws(x) · (1± 103Cαs−1Dδ
−1)

µ

n
= bνnc · (1± 103Cαs−1Dδ

−1)
µ

n
.

This implies∑
s

E[Ys|Hs−1] = bµncbνnc · (1± 103Cαs∗Dδ
−1)

µ

n
=
µpn

2
· (1± 2 · 103Cαs∗Dδ

−1) .

We apply the second part of Corollary 7(b) with

E =
⋂
s

Es , R = ∆ , µ̃ =
µpn

2
, η̃ = 2 · 103Cαs∗Dδ

−1

and use η̃ ≤ 1
2 , which holds by definition of αs∗ , to conclude that

P
[
E and

∑
s

Ys 6=
µpn

2
· (1± 4 · 103Cαs∗Dδ

−1)
]
≤ 2 exp

(
− µ̃ · 4 · 106C2α2

s∗D
2δ−2

4∆

)
≤ 2 exp(−1010 log n) ,

where the last inequality uses ∆ ≤ cn/ log n, c ≤ 10−10γ10Dα4
0, α0 ≤ αs∗ , p ≥ µν and

γ � ν � µ. Combining this with (12) and (10) and using a union bound over all u, v, we
conclude that (P 5) fails with probability at most 2n−5 + n2 · n−10 ≤ n−4.

(P 6): If u 6∈ imφ′s then we have
∑

v : vu∈E(H)ws(v) < 10p2n
µ .

The verification of this statement is the most complicated part of this proof. We fix u ∈
V (H) and s with s∗−bµnc < s ≤ s∗. We shall show that either an unlikely event occurs, or the
desired property holds when G′s is embedded, and then continues to hold while the remaining
guest graphs are embedded. The embeddings of these guest graphs G′s′ is performed in the
graphs Hs′ and we shall show that

∑
v : vu∈E(Hs′)

ws(v) stays concentrated. But since (P 6)
concerns the whole graph H, we additionally need to control the contribution of edges vu
in H∗s′ , for which we can only provide an upper bound. More precisely, we shall establish the
following claim. We will then, at the end of this proof, argue that this implies (P 6),

Claim 41. Suppose u 6∈ imφ′s. Then with probability at least 1 − 4n−19 either (Hi, H
∗
0)

is not (αi, 2D + 3)-coquasirandom for some i ∈ [s∗], or
(
Hi−1, φ

′
i

(
[t]
))

does not satisfy the
(Cαi−1, 2D + 3)-diet condition for some i ∈ [s∗] and t ∈ [n− δn], or

(
Hi−1, H

∗
0 , φ

′
i

(
[t]
))

does
not satisfy the (2η, 2D + 3)-codiet condition for some i ∈ [s∗] and t ∈ [n − δn], or for each
s ≤ s′ ≤ s∗ we have

(16)
∑

v:vu∈E(Hs′)

ws(v) =
(
1± 10Cp−1αs′

)ps′pn
2µ ,

and

(17)
∑

v:vu∈E(H∗0)

ws(v) ≤ γpn
µ .

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 38

We will prove this claim in two steps. First (in Claim 42), we establish that it is very likely
that (16) holds for s′ = s and that (17) holds. Then, based on Claims 43 to 46, we show that
it is unlikely that any given s′ > s is the smallest s′ for which (16) fails. Taking the union
bound over s′ will complete the proof of the claim.

Recall again that the embedding φ′s of G′s is given by letting RandomEmbedding perform
the embedding of G′′s [[n−δn]], thus constructing partial embeddings ψt for 0 ≤ t ≤ (1 − δ)n,
and then ignoring the vertices that do not belong to G′s, i.e. the last µn− δn ones.

Claim 42. Suppose u 6∈ imφ′s. Then with probability at least 1− n−20 the pair (Hs−1, H
∗
0) is

not (αs−1, 2D+3)-coquasirandom, or
(
Hs−1, φ

′
s

(
[t]
))

does not satisfy the (Cαs−1, 2D+3)-diet
condition for some t ∈ [n−bµnc], or

(
Hs−1, H

∗
0 , φ

′
s

(
[t]
))

does not satisfy the (2η, 2D+3)-codiet
condition for some t ∈ [n− bµnc], or we have∑

v:vu∈E(Hs)

ws(v) =
(
1± 10Cp−1αs

)pspn
2µ and

∑
v:vu∈E(H∗0)

ws(v) ≤ γpn
µ .

Proof. We begin by proving the concentration of
∑

v:vu∈E(Hs)ws(v). For every t ∈ [n], let xt
be the t-th vertex of G′′s , let E ′t be the event that Hs−1 is (αs−1, 2D + 3)-quasirandom and(
Hs−1, φ

′
s

(
[t]
))

satisfies the (Cαs−1, 2D + 3)-diet condition, and let H ′
t be a history up to

and including the embedding of xt which satisfies E ′t. When RandomEmbedding is run, for
t ∈ [n− bµnc] we obtain

P[xt ↪→ NHs−1(u)|Ht−1] =
(1± Cαs−1)p

1+deg−G(xt)
s−1 (n− t+ 1)

(1± Cαs−1)p
deg−G(xt)
s−1 (n− t+ 1)

= (1± 3Cαs−1)ps−1

where the first equality holds, since under assumption of the diet condition for (Hs−1, φ
′
s([t−

1])) the candidate set for xt is of size (1±Cαs−1)p
deg−G(xt)
s−1 (n− t+ 1), and since u /∈ imφ′s and

thus there exist (1± Cαs−1)p
1+deg−G(xt)
s−1 (n− t+ 1) candidates among NHs−1(u). Now, set

Xt := ws(xt) · 1xt↪→NHs−1
(u)

so that ∑
v:vu∈E(Hs)

ws(v) =
∑

v:vu∈E(Hs−1)

ws(v) =
∑
t∈[n]

Xt ,

where the first equation holds because of u /∈ imφ′s. In order to apply Corollary 7(b) observe
that 0 ≤ Xt ≤ ∆. Moreover,∑

t∈[n]

E[Xt|H ′
t−1] =

∑
t∈[n−bµnc]

E[Xt|H ′
t−1] =

∑
t∈[n−bµnc]

ws(xt)P[xt ↪→ NHs−1(u)|H ′
t−1]

= (1± 3Cαs−1)ps−1

∑
t∈[n−bµnc]

ws(xt) = (1± 4Cαs−1)
pspn

2µ

since ps = (1 − o(1))ps−1, and
∑

t∈[n−bµnc]ws(xt) = bνnc, and by definition of p. So, Corol-
lary 7(b) with µ̃ = pspn

2µ , ν̃ = 4Cαs−1
pspn
2µ and %̃ = Cαs−1

pspn
2µ yields

P

E ′t and ∑
t∈[n]

Xt 6= (1± 5Cαs−1)
pspn

2µ

 ≤ 2 exp

(
−

C2α2
s−1pspn

4∆µ(1 + 5Cαs−1)

)
≤ n−21

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 39

where the last inequality holds, since ∆ ≤ cn
logn and by choice of c. This gives the first part of

the claim, as 5Cαs−1 ≤ 10Cp−1αs.
The second part of the claim, concerning H∗0 , is very similar, and we only sketch the

proof. We define E ′′t to be the event that (Hs−1, H
∗
0) is (αs−1, 2D + 3)-coquasirandom and(

Hs−1, H
∗
0 , φ

′
s

(
[t]
))

satisfies the (2η, 2D + 3)-codiet condition, and let H ′′
t be a history up to

and including the embedding of xt which satisfies E ′′t′′ . By a similar calculation as before, with
p∗ ≤ 1.1γ being the density of H∗0 , we see that when RandomEmbedding is run, we have

P[xt ↪→ NH∗0
(u)|Ht−1] =

(
1± 6η

)
p∗ ≤ 3

2γ,

as the codiet condition for (Hs−1, H
∗
0) makes sure that the candidate set for xt is of size

(1±2η)p
deg−G(xt)
s−1 (n− t+1), while among these candidates (1±2η)p

deg−G(xt)
s−1 p∗(n− t+1) vertices

belong to NH∗0
(u).

Having that, we can again define X ′t := ws(xt) · 1xt↪→NH∗0
(u), and as before we obtain∑

t∈[n]

E[X ′t|H ′′
t−1] =

∑
t∈[n−µn]

E[X ′t|H ′′
t−1] ≤ 5

3 ·
γpn

2µ
.

Applying Corollary 7(a), we get

P

E ′′t and
∑
t∈[n]

X ′t >
γpn

µ

 ≤ n−21 .

This is the second part of the claim; the total failure probability is at most 2n−21 < n−20. �

We now need to show that it is unlikely that a given s′ > s is the first s′ for which (16)
fails. To that end, fix s′ with s∗ − bµnc ≤ s < s′ ≤ s∗. For s < i ≤ s∗ we define

Yi :=
∑

v∈NHi−1
(u)\NHi

(u)

ws(v) .

We have ∑
v : vu∈E(Hs′)

ws(v) =
∑

v : vu∈E(Hs)

ws(v)−
s′∑

i=s+1

Yi ,

and so the missing piece to establishing Claim 41 is to show that the sum of the Yi is likely to
stay close to its expectation. We start by determining this expectation.

Claim 43. Suppose that Hi−1 is (αi−1, 2D+ 3)-quasirandom, and suppose that (16) holds for
s′ = i− 1. Then when RandomEmbedding is run to embed G′′i [[n−δn]] into Hi−1, we have

E[Yi|Hi−1] =
(
1± 104CDαi−1δ

−1
)
· pe(G

′′
i)

µn .

Proof. By definition of Yi we obtain

Yi =
∑

v∈NHi−1
(u)

ws(v) · 1uv is used when embedding G′′i

and therefore

E[Yi|Hi−1] =
∑

v∈NHi−1
(u)

ws(v) · P[uv is used when embedding G′′i |Hi−1] .

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 40

Under assumption that Hi−1 is (αi−1, 2D + 3)-quasirandom, Lemma 35 yields

E[Yi|Hi−1] =
∑

v∈NHi−1
(u)

ws(v) · (1± 500Cαi−1δ
−1)4D+2 2e(G′′i)

pi−1n2
.

Applying (16) for s′ = i− 1 finally leads to

E[Yi|Hi−1] = (1± 10Cp−1αi−1)
pi−1pn

2µ
· (1± 500Cαi−1δ

−1)4D+2 2e(G′′i)

pi−1n2

= (1± 104Cαi−1Dδ
−1)

pe(G′′i)

µn

where the last equality holds since p ≥ νµ and δ � ν � µ. �

What we would like to do now is apply Corollary 7 (or Lemma 6) to show that the sum of
the Yi is likely to be close to the sum of the observed expectations we just calculated. But
unfortunately this approach fails, because the range of the Yi is too large; it is possible that
there are as few as O(log n) vertices which contain all the weight of ws in NHs(v), and we
might use all the edges to these vertices in embedding a single G′′i . This is the reason for
defining the random variables

Zi := max{Yi −K ′∆, 0} with K ′ = 1010CD3δ−1 .

Trivially the ‘capped’ random variable

Y ′i := Yi − Zi
does not have an excessively large range (it cannot exceed K ′∆), and we shall see (in the proof
of Claim 41) that we can apply Corollary 7 to argue that the sum of the Y ′i is concentrated.
In order to show that this implies that also the sum of the Yi is concentrated, we need to
argue that the ‘error’ caused by the Zi is not too large, which we establish in Claim 46.
As preparation for this, we will analyze the behaviour of the variables Zi more in detail (in
Claim 44) and bound their expectation (in Claim 45; we will need this bound when we show
that the sum of the Y ′i is concentrated).

Let us now try to understand the behaviour of Zi. Consider the embedding of G′′i [[n−δn]] into
Hi−1 by RandomEmbedding . Observe that Zi is determined by the vertex xt that is embedded
to u and by the embedding of neighbours of xt. Until we embed xt to u at time t, we have
used no edges of Hi−1 leaving u. On embedding a vertex to u, we have∑

y∈N−
G′′
i

(xt)

ws
(
φ′i(y)) ≤ D∆ ,

because xt has at most D neighbours preceding it in the degeneracy order. Consider now
the successive embedding of the forward neighbours y1, . . . , y` of xt by RandomEmbedding . In
order for Zi > 0 to occur, we have to embed the next j forwards neighbours of xt (for some j)
to vertices such that

∑j
k=1ws

(
φ′i(yk)

)
≥ (K ′ −D − 1)∆. We say that the embedding of G′′i

goes near the cap at the first time when we embed a yj such that this inequality holds. We
write CapE(i, y) for the event that the embedding of G′′i goes near the cap at the time when we
embed y (note that these events are pairwise disjoint as y ranges over V (G′′i)), and we write
CapE(i) for their union, i.e. the event that the embedding of G′′i goes near the cap at some
time. If CapE(i, yj) occurs, we have the inequality Zi ≤

∑`
k=j+1ws

(
φ′i(yk)

)
; it is important

to note that the right hand side depends only on embeddings after the event of going near the

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 41

cap is decided. Our next aim is to show that, conditioned on the embedding up to the time
when xt is embedded to u, it is unlikely that the embedding goes near the cap.

Claim 44. Suppose that Hi−1 is (αi−1, 2D + 3)-quasirandom. Suppose furthermore that ψt
is a partial embedding of G′′i to Hi−1 generated by RandomEmbedding which embeds xt to u
(and embeds no vertices after xt). Suppose that ψt is such that the probability, conditioned
on Hi−1 and ψt, of (Hi−1, imφ′i) failing to have the (Cαi−1, 2D+ 3)-diet condition is at most
n−5. Then we have

P
[
CapE(i)

∣∣Hi−1, ψt
]
≤ 3e−K

′/8 .

Proof. With the notation from above, set

Xk = ws(φ
′
i(yk))

for every forward neighbour yk of xt, and observe that 0 ≤ Xk ≤ ∆. Let H ′
k−1 be a history

up to and including the embedding ψr of the vertex xr which comes immediately before yk in
the ordering of G′′i . Let Ẽr be the event that (Hi−1, imψr) satisfies the (Cαi−1, 2D + 3)-diet
condition.

Then, if Ẽr holds, we have

E
[
Xk|H ′

k−1

]
≤ bνnc

1
2p
Dµn

≤ 2p−Dµ−1ν

since the sum over all weights from G′′i is bνnc, while the diet-condition ensures that the
candidate set for yk is of size at least

(1− Cαi−1)pDbµnc ≥ 1

2
pDµn .

In particular, ∑̀
k=1

E[Xk|H ′
k−1] ≤ 2p−Dµ−1ν∆ .

Applying the first part of Corollary 7(b) with E =
⋃
r Ẽr, µ̃ = ν̃ = p−Dµ−1ν∆, %̃ = (K ′−D−

1− 2p−Dµ−1ν)∆ and R = ∆ we then obtain that

P

[
E and

∑̀
k=1

Xk ≥ (K ′ −D − 1)∆

]
≤ 2 exp

(
−(K ′ −D − 1− 2p−Dµ−1ν)2

2(K ′ −D − 1)

)

≤ 2 exp

(
−
(

1
2K
′)2

2K ′

)
= 2 exp

(
−K

′

8

)
.

Since by assumption the probability of E not occurring is at most n−5, the claim follows. �

Now we can use this, and Lemma 36, to estimate the expectation of Zi conditioned on Hi−1

which is quasirandom.

Claim 45. Suppose that Hi−1 is (αi−1, 2D + 3)-quasirandom. Then we have

E
[
Zi
∣∣Hi−1

]
≤ 13

e(G′′i)
n e−K

′/8 · 2νµ−1p−Ds∗ .

Proof. We have

(18) E[Zi|Hi−1] =
∑

x∈V (G′′i)

P[x ↪→ u|Hi−1] · E[Zi|x ↪→ u,Hi−1] .

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 42

Assuming that Hi−1 is (αi−1, 2D + 3)-quasirandom, we know by Lemma 36 that

(19) P[x ↪→ u|Hi−1] = (1 + 104Cαs−1Dδ
−1)

1

n
=
(
1± 1

2

) 1

n
.

For estimating E[Zi|x ↪→ u,Hi−1], we let E be the event that (Hi−1, imφ′i) satisfies the
(Cαi−1, 2D + 3)-diet condition. Then by linearity of expectation we have

E[Zi|x ↪→ u,Hi−1] = E[Zi1E |x ↪→ u,Hi−1] + E[Zi1Ē |x ↪→ u,Hi−1]

≤ E[Zi1E |x ↪→ u,Hi−1] + n · 2n−9

2/n = E[Zi1E |x ↪→ u,Hi−1] + 4n−7 ,
(20)

where the estimate for the second term is from Lemma 32 bounding the probability of Ē
and (19) lower bounding the probability of x ↪→ u, and since trivially Zi ≤ Yi ≤ n. To
estimate the first term, we observe that since outside CapE(i) we have Zi = 0, it follows that

(21) E[Zi1E |x ↪→ u,Hi−1]

=
∑

z∈V (G′′i)

P[CapE(i, z)|x ↪→ u,Hi−1] · E[Zi1E |x ↪→ u,Hi−1,CapE(i, z)] .

Note that the only terms of the sum in which the probability is positive are those with z a
forwards neighbour of x, so fix such a z. Recall that if CapE(i, z) occurs then we have

Zi ≤
∑

y∈NG′′
i

(x)

y comes after z

ws(φ
′
i(y)) , and so Zi1E ≤

∑
y∈NG′′

i
(x)

y comes after z

ws(φ
′
i(y))1E .

For bounding E[Zi1E |x ↪→ u,Hi−1,CapE(i, z)], for any forwards neighbour y of x which comes
after z in the degeneracy order, let H′<y denote any history up to and including the embedding
of the vertex which comes immediately before y that is consistent with x ↪→ u and is contained
in CapE(i, z). Then we have

(22) E[Zi1E |x ↪→ u,Hi−1,CapE(i, z)]

≤
∑

y∈NG′′
i

(x)

y comes after z

∑
H′<y

E
[
ws
(
φ′i(y)

)
1E

∣∣∣H′<y, Hi−1

]
· P[H′<y|x ↪→ u,Hi−1,CapE(i, z)] .

Let y be a forwards neighbour of x which comes after z. Then y is not isolated, so it is in the
first n − µn vertices of G′′i . We want to calculate E

[
ws
(
φ′i(y)

)
1E

∣∣∣H′<y, Hi−1

]
. There are two

cases to consider. First, if E occurs, then since y is in the first n− µn vertices of G′′i , it has a
candidate set of size at least

(1− Cαi−1)pDi−1bµnc ≥
1

2
pDs∗µn .

Hence we embed y uniformly to a set of size at least 1
2p
D
s∗µn, so (because the total weight of

all vertices in G′′s is bνnc) the expectation of ws
(
φ′i(y)

)
conditioned on H′<y and Hi−1 is at

most νn
pD
s∗µn/2

. Second, if y is chosen from a candidate set of size less than 1
2p
D
s∗µn, then the

event E does not occur, and so the conditional expectation we want to calculate is zero. In
either case, we obtain

E
[
ws
(
φ′i(y)

)
1E

∣∣∣H′<y, Hi−1

]
≤ 2νµ−1p−Ds∗ .

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 43

Plugging this into (22) gives

E[Zi1E |x ↪→ u,Hi−1,CapE(i, z)] ≤ dG′′i (x) · 2νµ−1p−Ds∗ ,

since the sum over H′<y of P[H′<y|x ↪→ u,Hi−1,CapE(i, z)] is trivially 1, and dG′′i (x) is at least
as big as the number of forward neighbours of x which come after y. Now putting this into (21)
we obtain

E[Zi1E |x ↪→ u,Hi−1] ≤
∑

z∈V (G′′i)

P[CapE(i, z)|x ↪→ u,Hi−1] · dG′′i (x) · 2νµ−1p−Ds∗

= P[CapE(i)|x ↪→ u,Hi−1] · dG′′i (x) · 2νµ−1p−Ds∗ .

We finally use Claim 44 to estimate P[CapE(i)|x ↪→ u,Hi−1]. By (19), we have P[x ↪→
u|Hi−1] ≥ 1

2n . By Lemma 32, the probability that (Hi−1, φ
′
i) fails to have the (Cαi−1, 2D+3)-

diet condition, conditioned on Hi−1, is at most 2n−9. Consequently, summing up P[ψx|x ↪→
u,Hi−1] over partial embeddings ψx which embed the vertices up to and including x of G′′i ,
and embed x to u, but which fail the condition of Claim 44 (i.e. the probability that (Hi−1, φ

′
i)

fails to have the (Cαi−1, 2D + 3)-diet condition, conditioned on Hi−1 and ψx, exceeds n−5),
we obtain at most 4n−3. For any ψx which does satisfy the condition of Claim 44, we have
P[CapE(i)|Hi−1, ψx] ≤ 3e−K

′/8. Putting these together, we have

P[CapE(i)|x ↪→ u,Hi−1] =
∑
ψx

P[ψx|x ↪→ u,Hi−1] · P[CapE(i)|ψx, x ↪→ u,Hi−1]

≤ 4n−3 · 1 + 1 · 3e−K′/8 = 3e−K
′/8 + 4n−3 .

At last, we obtain

E[Zi1E |x ↪→ u,Hi−1] ≤ (3e−
K′
8 + 4n−3) · dG′′i (x) · 2νµ−1p−Ds∗ .

Thus, using (20), we have

E[Zi|x ↪→ u,Hi−1] ≤ (3e−
K′
8 + 4n−3) · dG′′i (x) · 2νµ−1p−Ds∗ + 4n−7

≤ 3e−
K′
8 · dG′′i (x) · 2νµ−1p−Ds∗ + n−2 ,

and so by (18) and (19) we get

E[Zi|Hi−1] ≤
∑

x∈V (G′′i)

2

n
·
(

3e−
K′
8 · dG′′i (x) · 2νµ−1p−Ds∗ + n−2

)

=
2
∑

x∈V (G′′i) dG′′i (x)

n
· 3e−

K′
8 · 2νµ−1p−Ds∗ + 2n−2 < 13

e(G′′i)
n · e−

K′
8 · 2νµ−1p−Ds∗ .

�

This expectation is tiny, because the term e−K
′/8 is very small. Thus we see that the

expectations of Y ′i and Yi (conditioning on any Hi−1 which is quasirandom) are very close.
The final thing we have to do before we complete the proof of Claim 41 is to show that the
sum of the Zi is likely to be very small.

Claim 46. With probability at least 1−2n−20, the following event occurs when PackingProcess
is run. Either Hi is not (αi, 2D + 3)-quasirandom for some i ∈ [s∗], or (Hi−1, φ

′
i([n − µn]))

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 44

does not satisfy the (Cαi−1, 2D + 3)-diet condition for some i ∈ [s∗], or we have

s′∑
i=s+1

Zi ≤ αspn
1000µ .

Proof. Let E denote the event that Hi is (αi, 2D + 3)-quasirandom for each i ∈ [s∗], and
(Hi−1, φ

′
i([n− µn])) satisfies the (Cαi−1, 2D + 3)-diet condition for each i ∈ [s∗]. So we want

to show that it is likely that either E fails or
∑s′

i=s+1 Zi <
αspn
1000µ .

In order to prove this claim, we need to reinterpret
∑s′

i=s+1 Zi. The random variables Zi
can be very large, so that Corollary 7 does not help us.

What we do is to use our earlier observation that we can understand Zi as follows. We watch
RandomEmbedding as it embeds G′′i [[n−δn]], until it embeds some xt to u, and then embeds
the forwards neighbours of xt until it goes near the cap (if one or the other event does not
occur, then Zi = 0). Then Zi is at most the sum of ws

(
φ′i(y)

)
taken over forwards neighbours

y of xt which are embedded after reaching the cap. We refer to these vertices y as after-cap
vertices. We then use the inequality

s′∑
i=s+1

Zi ≤
s′∑

i=s+1

∑
v=φ′i(y)

for y after-cap in G′′i

ws(v) ,

where the right hand side sum runs over all after-cap vertices in all graphs G′′s+1, . . . , G
′′
s′ . For

a given after-cap vertex y ∈ V (G′′i) we know y is an after-cap vertex before we embed it. Now
when we embed y, provided the (Cαi−1, 2D + 3)-diet condition holds for (Hi−1, φ([n− µn])),
we embed it uniformly into a set S of size at least 1

2p
D
i−1µn (because y, since it is not isolated,

must be one of the first n − µn vertices of G′′i). The sum of ws(z) over the vertices z of S is
at most bνnc. So the expected value of ws

(
φ′i(y)

)
, conditioned on the history up to the time

y − 1 immediately before embedding y and on the (Cαi−1, 2D + 3)-diet condition holding for
(Hi−1, φ

′
i([y − 1])), is at most 2bνncp−Di−1µ

−1n−1 ≤ 2pp−Ds∗ µ
−2, where the inequality uses the

equation bνncbµnc = p
(
n
2

)
.

Let
L := 40Dne−K

′/8 ,

and define a random variable Xj for 1 ≤ j ≤ L by Xj = ws
(
φ′i(y)

)
, where the jth after-

cap vertex in a run of PackingProcess is y ∈ V (G′′i) (y and hence i depend on the run of
PackingProcess). If there is no such after-cap vertex, we let Xj := 0. Observe that we have
0 ≤ Xj ≤ ∆ for each j, and what we just calculated is that, letting Hj denote the history of
PackingProcess up to immediately before embedding the jth after-cap vertex y ∈ V (G′′i), if
the (Cαi−1, 2D + 3)-diet condition holds for (Hi−1, φ

′
i([y − 1])), then E[Xj |Hj] ≤ 2pp−Ds∗ µ

−2.
So we can apply Corollary 7(a), with µ̃ = 2pp−Ds∗ µ

−2L, to obtain

P
[
E and

L∑
j=1

Xj > 4pp−Ds∗ µ
−2L

]
< exp

(
− 2pp−Ds∗ µ

−2L

4∆

)
≤ n−20 ,

where the final inequality follows from ∆ = cn
logn and by choice of c and K ′.

Let T denote the total number of after-cap vertices encountered during the entire run of
PackingProcess. Since by choice of K ′ and (4) we have 4pp−Ds∗ µ

−2L < αspn
1000µ , what we have

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 45

just argued is that

P
[
E and T ≤ L and

s′∑
i=s+1

Zi >
αspn
1000µ

]
≤ n−20 .

What we now want to do is estimate the probability of the event that E occurs and that T > L.
To that end, for each s + 1 ≤ i ≤ s′, we define X ′i to be the number of after-cap vertices

embedded from G′′i in a given run of PackingProcess. By definition we have T =
∑s′

i=s+1X
′
i.

Now, if Hi−1 is (αi−1, 2D + 3)-quasirandom, we can estimate E[X ′i|Hi−1] as follows. First,
observe X ′i can only be positive if some xt ∈ V (G′′i) is embedded to u, and then G′′i goes near
the cap, and then the remaining neighbours of xt will be the after-cap vertices counted by X ′i.
So we have

X ′i ≤
∑

xt∈V (G′′i)

1xt↪→u1CapE(i) · dG′′i (xt) .

It follows that

E
[
X ′i
∣∣Hi−1

]
≤

∑
xt∈V (G′′i)

dG′′i (xt)P
[
xt ↪→ u | Hi−1

]
· P
[
CapE(i)

∣∣Hi−1, ψt
]
,

where ψt is a partial embedding of the first t vertices of G′′i into Hi−1 generated by Ran-
domEmbedding which embeds xt to u. By respectively Lemma 36 and Claim 44, we have

E
[
X ′i
∣∣Hi−1

]
≤

∑
xt∈V (G′′i)

dG′′i (xt) ·
(

2
n · 3e

−K′/8 + 2n−4
)
≤ 20De−K

′/8 ,

where the first inequality uses the observation that, by Lemma 32, there is at most 2n−4 prob-
ability of generating ψt such that the (Cαi−1, 2D+ 3)-diet condition holding for (Hi−1, φ([n−
µn])) has more than n−5 chance of failing (when embedding the remaining vertices). The
second inequality uses the fact that G′′i has at most Dn edges and so the sum of its degrees is
at most 2Dn.

Since 0 ≤ X ′i ≤ ∆ for each i, we can apply Corollary 7(a), with µ̃ = 20Dne−K
′/8, to obtain

P
[
E and

s′∑
i=s+1

X ′i > 40Dne−K
′/8
]
< exp

(
− 20Dne−K′/8

4∆

)
≤ n−20 ,

where the second inequality comes from ∆ = cn
logn and choice of c and K ′. Since

∑s′

i=s+1X
′
i =

T , this proves as desired that it is unlikely that E occurs and T > L.
Putting these two pieces together, we conclude that with probability at most 2n−20, the

event E occurs and we have
∑s′

i=s+1 Zi >
αspn
1000µ . This completes the proof of the claim. �

The reader might at this point wonder why we cannot simply estimate the sum of the Yi by
modifying the above method. The point is that it is not easy to obtain an accurate estimate
of the quantity E[Xj |Hj] in the above proof (the upper bound we obtain above is off from the
truth by a rather large factor, compensated for by the unlikeliness of going near the cap), and
we would need such an accurate estimate for Claim 41.

Finally, we are in a position to prove Claim 41.

Proof of Claim 41. Firstly, by Claim 42 we have that either (Hi, H
∗
0) is not (αi, 2D+3)-coqua-

sirandom for some i ∈ [s∗], or
(
Hi−1, φ

′
i

(
[t]
))

does not satisfy the (Cαi−1, 2D+3)-diet condition
for some i ∈ [s∗] and t ∈ [n−δn], or

(
Hi−1, H

∗
0 , φ

′
i

(
[t]
))

does not satisfy the (2η, 2D+3)-codiet
condition for some i ∈ [s∗] and t ∈ [n − δn], or that (17) holds and (16) holds for the case

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 46

s′ = s with probability at least 1 − n−20. Now, let s < s′ ≤ s∗. We aim to show that with
probability at most 3n−20 we have that (16) continues to hold for s′. Taking a union bound
over the choices of s′ then completes the proof of Claim 41.

More precisely, let E denote the event that u 6∈ imφ′s, and (Hi, H
∗
0) is (αi, 2D + 3)-

coquasirandom for each i ∈ [s∗], and
(
Hi−1, φ

′
i

(
[t]
))

satisfies the (Cαi−1, 2D+3)-diet condition
for each i ∈ [s∗] and t ∈ [n− δn], and

(
Hi−1, H

∗
0 , φ

′
i

(
[t]
))

satisfies the (2η, 2D+ 3)-codiet con-
dition for each i ∈ [s∗] and t ∈ [n − δn], and (16) holds for each s ≤ i < s′. Our goal is to
show that E occurs and (16) fails for s′ with probability at most 3n−20.

By Claim 42, with probability at least 1 − n−20, either we witness a failure of E before
beginning to embed G′′s+1, or we have

∑
v : vu∈E(Hs)ws(v) =

(
1 ± 10Cp−1αs

)pspn
2µ . Suppose

that this likely event occurs, and that we do not witness a failure of E before beginning to
embed G′′s+1.

Since we have

∑
v : vu∈E(Hs′)

ws(v) =
∑

v : vu∈E(Hs)

ws(v)−
s′∑

i=s+1

Yi ,

and we want to conclude that it is unlikely that E occurs and
∑

v : vu∈E(Hs′)
ws(v) 6=

(
1 ±

10Cp−1αs′
)ps′pn

2µ , it is enough to estimate the probability, conditioned on Hs, that E occurs
and

(23)
s′∑

i=s+1

Yi 6=
(
1± 10Cp−1αs

)pspn
2µ −

(
1± 10Cp−1αs′

)ps′pn
2µ =

(ps−ps′)pn
2µ ± 20Cαs′

psn
2µ .

We have Yi = Y ′i + Zi for each i, and so
∑s′

i=s+1 Yi =
∑s′

i=s+1 Y
′
i +

∑s′

i=s+1 Zi. For showing
that (23) is unlikely to occur, we will use Corollary 7 to argue that

∑
Y ′i is concentrated

and Claim 46 to bound the contribution of
∑
Zi. Accordingly, we shall first calculate the

expectation of
∑
Y ′i .

By Claim 43, provided Hi−1 does not witness that E fails, we have E[Yi|Hi−1] =
(
1 ±

104CDαi−1δ
−1
)
· pe(G

′′
i)

µn . By Claim 45, again provided Hi−1 does not witness that E fails, we

have E[Zi|Hi−1] ≤ 13
e(G′′i)
n e−K

′/8 · 2νµ−1p−Ds∗ . By linearity, we conclude

E[Y ′i |Hi−1] =
(
1± 104CDαi−1δ

−1
)
· pe(G

′′
i)

µn ± 13
e(G′′i)
n e−K

′/8 · 2νµ−1p−Ds∗

=
(
1± 105CDαi−1δ

−1
)
· pe(G

′′
i)

µn ,

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 47

where for the second inequality we use our choice of K ′. Summing this up, we see that either
E fails or we have

s′∑
i=s+1

E[Y ′i |Hi−1] =
s′∑

i=s+1

(
1± 105CDαi−1δ

−1
)
· pe(G

′′
i)

µn

=
s′∑

i=s+1

pe(G′′i)
µn ±

s′∑
i=s+1

105CDαi−1δ
−1 · pDnµn

= p
µn

(
ps − ps′

)(n
2

)
± 105CD2δ−1µ−1p

∫ s′

i=−∞
αidi

(9)
= pn

2µ

(
ps − ps′

)
± 1

µ ± 105CD2δ−1µ−1p · δn

108CD3
αs′

= pn
2µ

(
ps − ps′

)
± pαs′n

100µ
=

(ps−ps′)pn
2µ ± Cαs′ psn2µ ,

where the final inequality is by choice of C and since p ≤ ps + 2γ according to (3). Now
applying the first part of Corollary 7(b), with µ̃ =

(ps−ps′)pn
2µ and ν̃ = %̃ = Cαs′

psn
2µ , and using

the fact 0 ≤ Y ′i ≤ K ′∆, we obtain

P
[
E and

s′∑
i=s+1

Y ′i 6=
(ps−ps′)pn

2µ ± 2Cαs′
psn
2µ

]
< 2 exp

(
− %̃2

2K′∆(µ̃+ν̃+%̃)

)
≤ n−20 ,

where the final inequality uses ∆ = cn
logn and the choice of c and K ′.

Putting this estimate together with Claim 46, where we show that with probability at least
1 − n−20 either E does not occur, or we have

∑s′

i=s+1 Zi ≤
αspn
1000µ , we conclude the following.

With probability at least 1− 3n−20, either E does not occur, or we have

s′∑
i=s+1

Yi =
(ps−ps′)pn

2µ ± 2Cαs′
psn
2µ ±

αspn
1000µ =

(ps−ps′)pn
2µ ± 3Cαs′

psn
2µ .

If this holds (23) does not occur. With this we finally proved that with probability at most
3n−20 the event E occurs and (16) holds for each s ≤ i < s′ but fails for s′. �

Finally, we argue that Claim 41 implies (P 6) holds with high probability. It is straightfor-
ward to check that 10Cp−1αs∗ < 1, and ps∗ ≤ p. Since E(H) ⊆ E(Hs∗)∪E(H∗0), provided (16)
with s′ = s∗ and (17) hold, we have∑

v:vu∈E(H)

ws(v) ≤
∑

v:vu∈E(Hs∗)

ws(v) +
∑

v:vu∈E(H∗0)

ws(v)

≤ 2ps∗pn2µ + γpn
µ < 10p2n

µ ,

where the last inequality follows since ps∗ , γ < p. Thus by Claim 41, with probability at least
1 − 4n−19, either the stated coquasirandomness, diet or codiet conditions fail, or (P 6) holds
for fixed u and s. So it is enough to check that it is unlikely that either the stated coquasir-
andomness, diet or codiet conditions fail. By respectively Lemma 38(b), and Lemma 32(b)
and (d) (and the union bound over the at most 2n runs of RandomEmbedding), the probability
that either of these occur is at most 2n−5 + 4n−8. For the latter, note that βt(αi−1) ≤ Cαi−1

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 48

for each i, t. We finally conclude, using a union bound over u and s, that (P 6) holds with
probability at least 1− n2 · 4n−19 − 2n−5 − 4n−8 > 1− 3n−5. �

9. Concluding remarks

Once one knows that a given collection of graphs G can be packed into a host graph Ĥ, it
is natural to ask whether there is an efficient algorithm, randomised or not, which will exhibit
such a packing. For G as in Theorem 2 (with the various parameters taken as fixed while
n is large) the obvious answer is simply to run our packing algorithm. Recall that one can
find a degeneracy order of any given graph simply by iteratively removing vertices of smallest
degree. Lemma 47 guarantees that there is a large independent set of vertices all of which have
the same small degree, and the proof in [1] consists of showing that a simple polynomial-time
algorithm to find the set succeeds, and hence Lemma 9 is algorithmic. Similarly it is clear from
the proof that Lemma 10 is algorithmic. Since the reduction of Theorem 2 to Theorem 11
requires these last two lemmas, it suffices to argue that Theorem 11 is algorithmic.

Most of the steps in our packing algorithm simply consist of uniform random samples
from sets which are of linear size and trivial to compute. In addition the completion step
of PackingProcess requires finding a perfect matching in a linear-sized and easily computed
auxiliary bipartite graph; this is well known to be solvable in polynomial time using the
augmenting paths algorithm. Finally, the completion step of MatchLeaves requires sampling
uniformly from the set of perfect matchings of a dense bipartite graph (which is linear-sized
and easy to compute).

If one assumes that it is possible to sample in polynomial time from these various distribu-
tions, then our algorithm clearly is polynomial time. However, if the source of randomness is
an unbiased bit string (which is the natural and usual assumption) then one cannot sample
exactly uniformly from arbitrary distributions. It is standard in the literature to ignore this
problem (because to sample approximately uniformly is possible and this suffices), but for
completeness we give the details.

For the random sampling in PackingProcess, it is easy to sample approximately uniformly:
using k bits of randomness one can approximately sample any probability p Bernoulli random
variable up to an error 2−k by viewing the bits as an integer in [2k] and returning 1 if this integer
is at most 2kp. One can similarly select approximately uniformly from a set, by partitioning
[2k] into intervals of approximately equal size corresponding to the set elements. For all the
analysis here and in [1], it is easy to check that using n random bits per sample, the sampling
error is tiny compared to the probabilities we want to estimate and is absorbed by our error
terms (in fact, O(log n) bits would suffice).

However sampling a perfect matching approximately uniformly, even from a dense bipartite
graph, is not so obviously possible. We actually do not need a uniform random perfect match-
ing: what we need is any distribution on perfect matchings which satisfies the conclusion of
Lemma 20, i.e. that any given edge is in the matching with probability not too much greater
(by at most a factor 3

2 would suffice) than the average, which is trivially at least n−1. In
particular, this is the case if we sample from any distribution on perfect matchings whose
total variation distance from the uniform distribution is at most n−2. A result of Jerrum,
Sinclair and Vigoda [12, Lemma 2.1] states that for any 2n-vertex balanced bipartite graph G
which has a perfect matching, there is an algorithm which samples from perfect matchings on
G with a distribution whose total variation distance from the uniform distribution is at most
δ, whose running time is polynomial in n and log δ−1.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 49

In conclusion, one can actually simulate the randomised algorithm of [1] and this paper
in polynomial time. Following the (somewhat) general belief that RP 6= NP, this suggests
that the packing problem for the graphs we pack in this paper should not be NP-complete (in
contrast to the general packing problem, which is known to be NP-complete [3]). We suspect
the problem is in P, but we do not know how to derandomise our algorithm, or otherwise
provide a deterministic polynomial time algorithm for the packing.

10. Acknowledgements

Part of the work leading to this paper was done while PA and JB visited Hamburg. PA
and JB would like to thank TU Hamburg and the University of Hamburg for their hospitality,
the Suntory and Toyota International Centres for Economics and Related Disciplines and TU
Hamburg for financial support, and Heike Böttcher for help with childcare arrangements.

We thank the anonymous referee for extremely careful reading and very helpful comments.

References

[1] P. Allen, J. Böttcher, J. Hladký, and D. Piguet, Packing degenerate graphs, Adv. Math. 354 (2019),
106739.

[2] J. Böttcher, J. Hladký, D. Piguet, and A. Taraz, An approximate version of the tree packing conjecture,
Israel J. Math. 211 (2016), no. 1, 391–446.

[3] D. Dor and M. Tarsi, Graph decomposition is NP-complete: a complete proof of Holyer’s conjecture, SIAM
J. Comput. 26 (1997), no. 4, 1166–1187.

[4] R. A. Duke, H. Lefmann, and V. Rödl, A fast approximation algorithm for computing the frequencies of
subgraphs in a given graph, SIAM J. Comput. 24 (1995), no. 3, 598–620.

[5] A. Ferber, C. Lee, and F. Mousset, Packing spanning graphs from separable families, Israel J. Math. 219
(2017), no. 2, 959–982.

[6] A. Ferber and W. Samotij, Packing trees of unbounded degrees in random graphs, J. Lond. Math. Soc. (2)
99 (2019), no. 3, 653–677.

[7] D. A. Freedman, On tail probabilities for martingales, Ann. Probability 3 (1975), 100–118.
[8] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 5 (1998), Dynamic Survey 6.
[9] S. Glock, D. Kühn, A. Lo, and D. Osthus, The existence of designs via iterative absorption: hypergraph

f-designs for arbitrary f , Memoirs of the American Mathematical Society, accepted, arXiv:1611.06827.
[10] A. Gyárfás and J. Lehel, Packing trees of different order into Kn, Combinatorics (Proc. Fifth Hungarian

Colloq., Keszthely, 1976), Colloq. Math. Soc. János Bolyai, vol. 18, North-Holland, Amsterdam, 1978,
pp. 463–469.

[11] S. Janson, T. Łuczak, and A. Ruciński, Random graphs, Wiley-Interscience, 2000.
[12] M. Jerrum, A. Sinclair, and E. Vigoda, A polynomial-time approximation algorithm for the permanent of

a matrix with nonnegative entries, J. ACM 51 (2004), no. 4, 671–697.
[13] F. Joos, J. Kim, D. Kühn, and D. Osthus, Optimal packings of bounded degree trees, J. Eur. Math. Soc.

(JEMS) 21 (2019), no. 12, 3573–3647.
[14] P. Keevash, The existence of designs, arXiv:1401.3665.
[15] , The existence of designs II, arXiv:1802.05900.
[16] P. Keevash and K. Staden, Ringel’s tree packing conjecture in quasirandom graphs, arXiv:2004.09947.
[17] J. Kim, D. Kühn, D. Osthus, and M. Tyomkyn, A blow-up lemma for approximate decompositions, Trans.

Amer. Math. Soc. 371 (2019), no. 7, 4655–4742.
[18] T. P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. J. 2 (1847), 191–204.
[19] F. Knox, D. Kühn, and D. Osthus, Edge-disjoint Hamilton cycles in random graphs, Random Structures

Algorithms 46 (2015), no. 3, 397–445.
[20] E. Lucas, Récréations mathématiques, 2ième éd., nouveau tirage, Librairie Scientifique et Technique Albert

Blanchard, Paris, 1960.
[21] S. Messuti, V. Rödl, and M. Schacht, Packing minor-closed families of graphs into complete graphs, J.

Combin. Theory Ser. B 119 (2016), 245–265.
[22] R. Montgomery, A. Pokrovskiy, and S. B., A proof of Ringel’s conjecture, arXiv:2001.02665.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 50

[23] R. Montgomery, A. Pokrovskiy, and B. Sudakov, Embedding rainbow trees with applications to graph
labelling and decomposition, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 10, 3101–3132.

[24] J. Plücker, System der analytischen Geometrie, auf neue Betrachtungsweisen gegründet, und insbesondere
eine ausführliche Theorie der Curven dritter Ordnung enthaltend, Duncker und Humboldt, Berlin, 1835.

[25] D. K. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkman’s schoolgirl problem, Combinatorics (Proc.
Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968), Amer. Math. Soc., Providence,
R.I., 1971, pp. 187–203.

[26] G. Ringel, Problem 25, Theory of Graphs and its Applications (Proc. Int. Symp. Smolenice 1963), Czech.
Acad. Sci., Prague, 1963.

[27] V. Rödl, On a packing and covering problem, European J. Combin. 6 (1985), no. 1, 69–78.
[28] J. Steiner, Combinatorische Aufgaben, J. Reine Angew. Math. 45 (1853), 181–182.
[29] R. M. Wilson, An existence theory for pairwise balanced designs. III. Proof of the existence conjectures, J.

Combin. Theory Ser. A 18 (1975), 71–79.

Appendix A. Standard probability and graph theory

In this section we prove for completeness some easy and fairly standard results stated in
the main body of the paper.

Proof of Proposition 8. To prove both probability bounds, we use the well-known Prüfer code
bijection between labelled n-vertex trees and sequences of n− 2 vertex labels.

For (i), we note that a vertex is a leaf if and only if its label does not appear in the
corresponding Prüfer code, and hence the Prüfer code of a tree with less than n

100 leaves has
at least 49n

50 distinct labels. Consider generating the first n
2 terms of a Prüfer code. If there

are less than n
4 distinct labels, then the full code has less than 3n

4 distinct labels and hence
corresponds to a tree with at least n

100 leaves. Otherwise, there are at least n
4 distinct labels

among the first n
2 terms. We now count the number of times that these labels are used in the

subsequent n
2 − 2 terms. Each term is chosen uniformly at random from the set of all n vertex

labels, hence has probability at least 1
4 of repeating a label used in the first n

2 terms. Thus
the expected number of repeated labels is at least 1

4(n2 − 2) ≥ n
16 . By the Chernoff bound,

Theorem 5, with δ = 1
2 the probability that less than n

32 repeated labels occur is at most
exp

(
− n

500

)
.

For (ii), we note that a vertex has degree equal to one plus the number of its appearances in
the Prüfer code. Thus a vertex has degree exceeding cn

logn only if its label appears cn
logn times

in the Prüfer code. For a given vertex label and choice of cn
logn terms of the Prüfer code, the

probability that each of the chosen terms is equal to the given label is n−
cn

logn = e−cn. Taking
the union bound over the choices of vertex label and terms of the code, the probability that
some vertex label appears at least cn

logn times is at most

n ·
(
n− 2
cn

logn

)
· e−cn ≤ n ·

(n logn
cn

) cn
logn e−cn = exp

(
log n+ cn log(c−1 logn)

logn − cn
)
≤ e−cn/2 ,

where the final inequality is valid for all sufficiently large n. �

It is well known that a degenerate graph contains a large independent set of vertices with
the same small degree.

Lemma 47 (Lemma 8 of [1]). Let G be a D-degenerate n-vertex graph. Then there exists an
integer 0 ≤ d ≤ 2D and a set I ⊆ V (G) with |I| ≥ (2D+ 1)−3n which is independent, and all
of whose vertices have the same degree d in G.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 51

In [1] this result was used to show that one can modify a degeneracy order slightly to move
such an independent set to the end of the order while not increasing the degeneracy by much.
We repeat the straightforward argument here for completeness.

Proof of Lemma 9. By Lemma 47 there is an independent set I in G of d(2D+1)−3ne vertices,
each of which has degree d. Now pick a D-degeneracy order of G and then modify this order
by moving all vertices of I to the end (in an arbitrary order). Since all vertices in I have
degree d ≤ 2D the resulting order is a 2D-degeneracy order. �

Finally, we provide a proof of the compression lemma.

Proof of Lemma 10. Given the family (Gi), repeatedly perform the following operation, pack-
ing two members of the family into one graph. If the current family contains two graphs G,
G′ which have at most 2

3n vertices of degree at least 1 and at most 1
3n vertices of degree at

least 2 then pack G and G′ into a graph G′′ as follows and then remove G, G′ from the family
and add G′′ instead.

To define an embedding φ of G′ into the complement Ḡ of G, let A,B,C ⊆ V (G) be a
partition of V (G) into sets of size either bn3 c or dn3 e, such that |A| = |C|, and such that
degG(x) = 0 for all x ∈ A and degG(x) ≤ 1 for all x ∈ B, which is possible by our assumptions
on G. Analogously, let A′, B′, C ′ ⊆ V (G′) be a partition of V (G′) into sets of size either bn3 c
or dn3 e, such that |A′| = |C ′| and such that degG′(x) = 0 for all x ∈ A′ and degG′(x) ≤ 1
for all x ∈ B′. We construct φ by first finding a packing of G[B] and G′[B′] (which is easy
since these two graphs are matchings and |B| ≥ 3) and then extending this by arbitrarily
mapping A′ to C and C ′ to A. Note that by construction |A| = |A′| = |C| = |C ′|. Clearly,
this indeed gives a packing of G and G′ since vertices in A have degree 0 in G and vertices
in A′ have degree 0 in G′. Moreover, ∆(G′′) ≤ max{2,∆}, and G′′ is max{2, D}-degenerate
by construction.

We stop combining graphs in this way when at most one graph with at most 2
3n vertices of

degree at least 1 and at most 1
3n vertices of degree at least 2 remains; we call the resulting

family (Ǧi)i∈[m̌]. In this family, all graphs Ǧi but possibly one graph satisfy at least one of
the following conditions:

• Ǧi has more than 2
3n vertices of degree at least 1,

• Ǧi has more than 1
3n vertices of degree at least 2.

In either case e(Ǧi) ≥ 1
3n, and therefore we conclude from

∑m̌
i=1 e(Ǧi) =

∑m
i=1 e(Gi) ≤

(
n
2

)
that

m̌ ≤ 1 +

(
n
2

)
1
3n
≤ 3

2
n .

�

Appendix B. Proof of the matching lemma

In this section we provide the proof of Lemma 20. The proof of this lemma is the only place
in this paper where we use the concept of a regular pair.

Definition 48 (density, (ε, d)-regular, (ε, d)-super-regular). Let G be a graph and U,W ⊆
V (G) be disjoint vertex sets. The density of the bipartite graph G[U,W] is

dG(U,W) =
e(G[U,W])

|U ||W |
.

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 52

We say that G[U,W] is (ε, d)-regular if for all U ′ ⊆ U and W ′ ⊆ W with |U ′| ≥ ε|U | and
|W ′| ≥ ε|W | we have

dG(U ′,W ′) = d± ε .
The graph G[U,W] is (ε, d)-super-regular if it is (ε, d)-regular and for all u ∈ U and for all
w ∈W we have

degG[U,W](u) = (d± ε)|W |, and degG[U,W](w) = (d± ε)|U | .

It is well-known that regular pairs are forced by a degree-codegree condition; we use the
following formulation due to Duke, Lefmann, and Rödl in [4].

Lemma 49 (degree-codegree condition [4]). Assume 0 < ε < 2−200 and let G[U,W] be a
bipartite graph with parts U and W of size |U | = |W | = n and density d = dGU,W. If

(i) degG[U,W](u) > (d− ε)|W | for all u ∈ U , and

(ii) degG[U,W](u, u
′) < (d+ ε)2|W | for all but at most 2ε|U |2 pairs {u, u′} ∈

(
U
2

)
,

then G[U,W] is (ε
1
6 , d)-regular. �

If we choose a perfect matching uniformly at random in a super-regular pair then each edge
is roughly equally likely to appear in the matching, as was shown by Joos (see [17]).

Lemma 50 (perfect matchings in super-regular pairs [17, Theorem 4.3]). Assume 0� 1
m′ �

ε′ � d� 1. Let G[U,W] be an (ε′, d)-super-regular graph with |U | = |W | = m′. Then G[U,W]
contains a perfect matching. Moreover, for a perfect matching σ chosen uniformly at random
among all perfect matchings in G[U,W] and for all uw ∈ E(G) we have

P[σ(u) = w] = (1± (ε′)
1
20)

1

dm′
. �

The proof of the matching lemma simply combines these two lemmas.

Proof of Lemma 20. By (M 1) and (M 3), for all x ∈ U ∪W we have

(24) degF ′(x) =
(
µ± 200p

µ2

)
m.

By (M 2) and (M 3), for all but at most m2

logm pairs {u, u′} ∈
(
U
2

)
we have

(25) degF ′(u, u
′) =

(
µ2 ± 300p

µ2

)
m.

We want to apply Lemma 49 with d = µ and ε = 400p/µ3 to conclude that F ′[U,W] is
super-regular, and now check the conditions of this lemma. By (24), for u ∈ U we have

degF ′(u) =
(
d± 200p

µ2

)
m =

(
d± 200p

µ2

) |W |
1± p

=
(
d± 400p

µ2

)
|W | > (d− ε)|W | ,

and similarly for w ∈W we have degF ′(w) =
(
d± 400p

µ2

)
|U | > (d− ε)|U |. By (25), for all but

at most m2

logm pairs {u, u′} ∈
(
U
2

)
we have

degF ′(u, u
′) ≤

(
d2 + 300p

µ2

)
m ≤

(
d2 + 300p

µ2

) |W |
1− p

≤
(
d2 + 400p

µ2

)
|W | < (d2 + 2εd+ ε2)|W |

= (d+ ε)2|W | ,

PERFECTLY PACKING GRAPHS WITH BOUNDED DEGENERACY AND MANY LEAVES 53

where the last inequality uses d = µ and ε = 400p/µ3. We conclude that, if m2

logm ≤ 2ε|U |2

which holds for logm > 1/ε, then F ′ is
(
(400 p

µ3
)
1
6 , µ
)
-regular by Lemma 49. Since degF ′(x) =(

d± 400p
µ2

)
|U | for all x ∈ U ∪W , it follows that F ′ is

(
(400 p

µ3
)
1
6 , µ
)
-super-regular.

Hence we can apply Lemma 50 to F ′ with

m′ = |U | = (1± p)m, ε′ =
(

400
p

µ3

) 1
6
, and d = µ ,

and conclude that F ′ has a perfect matching and that for a perfect matching σ chosen uniformly
at random among all perfect matchings of F ′ and for all uw ∈ E(F ′) we have

P[σ(u) = w] =
(

1±
(

400
p

µ3

) 1
120
) 1

µ(1± p)m
≤ 2

µm
,

where the inequality holds if p is small and
(
400 p

µ3

) 1
120 ≤ 1

100 . �

(PA) London School of Economics, Department of Mathematics, Houghton Street, London
WC2A 2AE, UK

Email address: p.d.allen@lse.ac.uk

(JB) London School of Economics, Department of Mathematics, Houghton Street, London
WC2A 2AE, UK

Email address: j.boettcher@lse.ac.uk

(DC) Technische Universität Hamburg, Institut für Mathematik, Am Schwarzenberg-Campus
3, 21073 Hamburg, Germany

Email address: dennis.clemens@tuhh.de

(AT) Technische Universität Hamburg, Institut für Mathematik, Am Schwarzenberg-Campus
3, 21073 Hamburg, Germany

Email address: taraz@tuhh.de

	1. Introduction
	1.1. Main result
	1.2. Proof outline
	1.3. Organisation

	2. Preliminaries
	2.1. Notation
	2.2. Probabilistic tools
	2.3. Degenerate graphs

	3. Main technical theorem and the packing algorithm
	3.1. Graphs and maps used in the algorithm

	4. Constants
	5. Main lemmas
	6. Proof of the main technical theorem
	7. Proof of the orientation lemma
	8. Proof of the almost perfect packing lemma
	8.1. Coquasirandomness, diet, codiet, and cover
	8.2. Properties of RandomEmbedding
	8.3. Properties of PackingProcess
	8.4. Proof of Lemma 18

	9. Concluding remarks
	10. Acknowledgements
	References
	Appendix A. Standard probability and graph theory
	Appendix B. Proof of the matching lemma

