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Abstract

This paper studies the Type I error, false positive rates, and power of four versions of
the Lagrange Multiplier test to detect measurement non-invariance in Item Response
Theory (IRT) models for binary data under model misspecification. The tests
considered are the Lagrange Multiplier test computed with the Hessian and
cross-product approach, the Generalized Lagrange Multiplier test and the Generalized
Jackknife Score test. The two model misspecifications are those of local dependence
among items and non-normal distribution of the latent variable. The power of the tests
is computed in two ways, empirically through Monte Carlo simulation methods and
asymptotically, using the asymptotic distribution of each test under the alternative
hypothesis. The performance of these tests is evaluated by means of a simulation study.
The results highlight that, under mild model misspecification, all tests have good
performance while, under strong model misspecification, the tests performance
deteriorates, especially for false positive rates under local dependence and power for
small sample size under misspecification of the latent variable distribution. In general,
the Lagrange Multiplier test computed with the Hessian approach and the Generalized
Lagrange Multiplier test have better performance in terms of false positive rates while
the Lagrange Multiplier test computed with the cross-product approach has the highest
power for small sample sizes. The asymptotic power turns out to be a good alternative
to the classic empirical power because it is less time consuming. The Lagrange tests
studied here have been also applied to a real data set.
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Use of the Lagrange Multiplier test for assessing measurement invariance under model
misspecification

Introduction

Item Response Theory (IRT) models are used in psychological and educational
research for measuring unobserved constructs, also known as factors or latent variables,
from correlated observed variables/items. The main assumptions and features of an IRT
model are i) local independence among items conditional on the latent variable(s), ii) it
is usually a parametric model for the probability of responding ‘correctly/positively’ to
an item given the latent variable(s) also known as response category probability and
item characteristic curve (ICC) and iii) normal distribution for the latent variable(s)
(Bartholomew, Knott, and Moustaki 2011). As with any statistical model, some of the
above assumptions may be violated. The Likelihood-Ratio, the Wald, and the Lagrange
Multiplier or score (LM) test statistics (Cox and Hinkley 1979) check model fit and
they are asymptotically equivalent. Differently from the Likelihood-Ratio and the Wald
test, the LM test only requires the computation of the restricted estimator (model
under the null hypothesis). The LM test can be very convenient in IRT models, where
multiple model violations (e.g. local dependence, non-normality of latent distribution,
etc.) can occur (Fox and Glas 2005). The LM test does not need the estimation of an
alternative model for each one of these violations. Moreover, there is model violation,
such as differential item functioning (DIF), that requires testing items sequentially
(Glas 1998). The LM test does not require new parameter estimates for every tested
item, making it computationally less intensive, especially in long tests. For these
reasons, the LM test is used in IRT to detect DIF (Glas 1998, Fox and Glas 2005), local
dependence (LD) (Glas 1999, Glas and Falcón 2003, Fox and Glas 2005, Kim, De Ayala,
Ferdous, and Nering 2011, Liu and Thissen 2012, Liu and Maydeu-Olivares 2013, Liu
and Thissen 2014, van der Linden and Glas 2010, Oberski, van Kollenburg, and
Vermunt 2013) and deviation from the parametric model (i.e. ICC) (Glas 1999, Glas
and Falcón 2003, Ranger and Kuhn 2012).

The LM test depends on the Fisher information matrix. Different approximations
of this matrix lead to different test performances. Accurate results for the LM test can
be obtained by considering the expected Hessian and cross-product matrix, as shown in
Liu and Maydeu-Olivares (2013), but they are unfeasible in long tests. For this reason,
the observed versions of these matrices are preferred for the computation of the LM
test. Some authors (Glas 1998, Oberski et al. 2013) use the observed Hessian matrix,
that we denote with LM(H), and others (Liu and Maydeu-Olivares 2013, Liu and
Thissen 2012, Liu and Thissen 2014) the observed cross-product matrix, that we denote
with LM(CP). Falk and Monroe (2018) compare both approaches. The LM(CP) test
shows more inflated Type I error rates than the LM(H) test, especially with long tests
and small sample size, but it is fast to compute (Liu and Thissen 2012, Liu and
Maydeu-Olivares 2013, Liu and Thissen 2014, Falk and Monroe 2018). In some works,
the LM test statistic is applied in the case of model misspecification under the null and
the alternative hypotheses, showing a good performance when the amount of model
misspecification is overall small (Glas and Falcón 2003, Falk and Monroe 2018,
Guastadisegni, Cagnone, Moustaki, and Vasdekis forthcoming). Different versions of the
LM test are also derived under model misspecification (White 1982, Boos 1992). White
(1982) proposes the Generalized Lagrange Multiplier (LM(S)) test, whose expression
involves the sandwich variance and covariance matrix. Similarly Boos (1992) derives a
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Generalized Score (GS) test for least squares, robust M-estimation, and quasi-likelihood
estimation methods that is equivalent to the LM(S) test when maximum likelihood
(ML)-based methods are used. The Generalized Jackknife Score (GS(J)) test is a
version of the GS test, derived under model misspecification, where the covariance
matrix of the score is computed using the Jackknife estimates (J. Rao, Scott, and
Skinner 1998). The GS(J) test has not been studied in the IRT context. As far as we
know, the LM(S) test is studied only by Falk and Monroe (2018) and Guastadisegni et
al. (forthcoming). Falk and Monroe (2018) compare the performance of the LM(S),
LM(CP), and LM(H) tests for a single omitted cross-loading and Guastadisegni et al.
(forthcoming) compute the empirical and asymptotic power of the LM(S) and LM(H)
tests to assess measurement invariance under misspecification of the latent variable
distribution, without studying the Type I error/false positive rates of these two tests.
Differently from these works, we assess measurement invariance considering a more
general framework, where the model misspecification is due to local dependence among
items and different non-normal latent variable distributions.

In the case of a one factor model, an item is measurement invariant if the
conditional distribution of the item given the latent variable is independent of group
membership identified by an external group variable (e.g. sex, age, country)
(Mellenbergh 1982,1983). An item is measurement non-invariant (also known as DIF),
if it measures different abilities for different group memberships. In this case, the
expected score of the item differs in the subgroups for the same level of the latent
variable. Measurement invariance can be studied either in a multiple-group analysis
setup (Jöreskog 1971) or with the Multiple Indicator Multiple Causes (MIMIC) model
(Jöreskog and Goldberger 1975). The model allows direct and indirect effects of a
binary group covariate on the probability of giving a ’correct/positive’ response to an
item and on the latent variable respectively.

The contribution of this paper is twofold. First, we assess item measurement
invariance under model misspecification, using four versions of the LM test. The four
versions differ in the form of the covariance matrix of the estimators. Mainly, the
Hessian estimator (LM(H)), the cross-product estimator (LM(CP)), the sandwich
estimator (LM(S)), and the Jackknife estimator (GS(J)) are discussed and studied here.
Second, we compute the power of the LM(H), LM(CP), and LM(S) tests in two ways,
empirically through Monte Carlo simulation methods and asymptotically using the
distribution of each test under the alternative hypothesis, which depends on a
non-centrality parameter often difficult to compute (Gudicha, Schmittmann, and
Vermunt 2017). The non-centrality parameter is approximated using the procedure
derived by Gudicha et al. (2017) for the Wald and Likelihood-Ratio tests and it is
applied in Guastadisegni et al. (forthcoming) to the LM(H) and LM(S) tests under
misspecification of the latent variable distribution. We extend this method to the case
of local dependence and to the LM(CP) test.

Through an extensive simulation study, we compare the performance of the
different versions of the LM tests in terms of Type I error rate, false positive rate, and
empirical and asymptotic power, varying the type and the misspecification level and
considering single and multiple parameter hypotheses tests for measurement invariance.
Moreover, we illustrate the use of these tests to a real data set.

The paper is organized as follows. First, we present the MIMIC model with
covariate effects. Second, we describe the four versions of the LM tests and the
procedure to estimate the asymptotic power for the LM(H), LM(CP), and LM(S) tests.
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Next, we present a Monte Carlo simulation study and the results from the real data
analysis. Finally, some concluding remarks are presented and discussed.

The MIMIC model for binary data

Let us denote by y1, ..., yp a set of observed binary variables/items, by z the latent
variable, and by x a binary variable such as sex, country, or any other group variable.
Given n individuals, the i-th subject belongs to either the focal or the reference group
when xi = 1 or xi = 0 respectively. To test for item(s)’ measurement invariance, we
consider the MIMIC model with the group variable x affecting both the item(s) y and
the latent variable z. Group differences can be present only on the item intercept
(uniform-DIF) or simultaneously on the item intercept and slope (non-uniform DIF)
(Glas 1998, Fox and Glas 2005). The response probability for the i-th individual to the
j-th item is modelled using a logistic model (measurement model) where the model for
the latent variable is a linear model (structural model) defined by:

P (yij = 1|zi, xi) = πij(zi, xi) = exp (α0j + α1jzi + γ1jxi + γ2jxizi)
1 + exp (α0j + α1jzi + γ1jxi + γ2jxizi)

zi = βxi + εi ε ∼ N(0, 1)
(1)

where i = 1, ..., n and j = 1, ..., p. Under non-uniform DIF, the intercept and factor
loading parameters are (α0j, α1j), and (α0j + γ1j, α1j + γ2j) for the reference and focal
groups respectively (Glas 1998). The parameter β allows the mean of the latent variable
z to be different in the two groups, although it is set to N(0, 1) in the reference group
for identification purposes. For a random sample of size n the log-likelihood is:

l(y,θ) =
n∑

i=1
ln f(yi,θ) =

n∑

i=1
ln

∫ p∏

j=1
πij(zi, xi)yij (1− πij(zi, xi))1−yijφ(zi | xi)dzi, (2)

where θ is the vector of the unknown parameters and the model assumes
conditional/local independence among the items. Equation (2) is maximized using
either an expectation–maximization (EM) algorithm (Bock and Aitkin 1981) or a direct
maximization, such as the Newton-Raphson algorithm (Skrondal and Rabe-Hesketh
2004).

Uniform and non-uniform DIF for an item yj is assessed by testing the statistical
significance of the parameters γ1j and (γ1j,γ2j) respectively. We consider situations
where the parameters γ1j or (γ1j, γ2j) are fixed to zero and to constants different from
zero under the null hypothesis. Moreover, the performance of the LM tests is assessed
under violations of local independence and normality distribution of the latent variable.

Lagrange Multiplier tests

The classical Lagrange Multiplier test

The LM test (C. R. Rao 1948) evaluates the statistical significance of imposed
restrictions on model parameters. We consider a sample y1, ...,yn from a model f(y,θ).
The true parameter vector is denoted by θ0. Let θ0 be divided into two sub-vectors
θ′0 = (θ′01,θ

′
02). θ01 includes the intercept parameters (α0j, j = 1 . . . , p) and factor

regression coefficients (α1j, j = 1 . . . , p). When uniform-DIF is assessed, θ02 includes the
parameters γ1j and when non-uniform DIF is assessed, θ02 includes γ1j and γ2j, where
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j = 1 . . . , p. The hypotheses H0 and H1 can be formalized as follows:

H0 : θ′02 = c vs H1 : θ′02 6= c, (3)

where c is a vector of constants.

The LM statistic is (C. R. Rao 1948):

LM = S(θ̃)′An(θ̃)−1S(θ̃), (4)

where θ̃′ = (θ̃′1, c) denotes the restricted maximum likelihood estimates of the
parameters θ, S(θ̃) = ∂ ln l(y,θ)

∂θ
is the vector of score functions evaluated at θ̃, and

An(θ̃) = −E
[
∂2l(y,θ)
∂θ∂θ′

]
is the Fisher information matrix evaluated at θ̃. Given that the

part of the score vector evaluated in θ̃01 is 0, the LM statistic given in (4) is reduced to:

LM = S2(θ̃)A22
n (θ̃)−1S2(θ̃), (5)

where S2(θ̃) is a subset of S(θ̃) that corresponds to the parameters θ02 evaluated at θ̃
and A22

n (θ̃) is a block of the partitioned Fisher information matrix computed as (Engle
1984)

A22
n = An22 − An21A

−1
n11An12, (6)

and evaluated at θ̃. The partition of An into An22, An21, An11, An12 is derived from the
partition of θ′0 into (θ′01,θ

′
02).

Two different versions of the LM test are studied here depending on which matrix
is used for estimating An(θ̃). The Hessian approach (LM(H)), uses the observed
Hessian matrix given by

Ân(θ) = −
n∑

i=1

∂2li(yi,θ)
∂θ∂θ′

(7)

whereas the cross-product approach (LM(CP)), uses the observed cross-product matrix

B̂n(θ) =
n∑

i=1

∂ ln li(yi,θ)
∂θ

∂ ln li(yi,θ)
∂θ

(8)

Under correct model specification, Ân(θ) = B̂n(θ) (White 1982) and the LM(H) and
LM(CP) tests are equivalent.

Under a correctly specified likelihood and under H0, the LM test statistic,
computed with the Hessian and cross-product approaches, is asymptotically distributed
as a χ2

r, with degrees of freedom (r) equal to the dimension of θ02.

To compute the local asymptotic power of the LM test, a standard approach is to
consider a set of local alternatives close to the null value for large n, H1 : θ02 = c+ ξ√

n
,

where ξ is an arbitrary vector with the same dimension of θ02 (Boos and Stefanski
2013). When the model defined under H1 is true, the LM test is asymptotically
distributed as a non-central chi-square that depends on two parameters, namely the
degrees of freedom (equal to the dimension of θ02), and a non-centrality parameter λ
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given by (Cox and Hinkley 1979):

λ = 1
n
ξ′A22

n (θ0)ξ (9)

The asymptotic power is computed as P (χ2
r(λ) > χ2

r(1− α)).
Approximation procedure for the asymptotic power. The asymptotic

distribution of the LM test as a non-central chi-square with non-centrality parameter in
equation (9) holds when the model defined under the set of local alternatives is true, i.e.
when the model under the null hypothesis is barely incorrect for large n (see Agresti
2002, Reiser 2008). In practice, it is often reasonable to adopt an alternative hypothesis
for fixed and finite n (Agresti 2002), as H1 : θ02 = c+ ξ , or to use hypotheses as in (3)
(Gudicha et al. 2017). Here, we consider the approximation procedure for the
asymptotic power derived by Gudicha et al. (2017) for the Likelihood-Ratio and the
Wald tests. This procedure is extended to the LM(H) test in Guastadisegni et al.
(forthcoming). The method can also be used for the LM(CP) test and can be
summarized in the following steps:

1. From the model defined under the alternative hypothesis, create a large data set
(e.g. N = 10000 observations).

2. Fit the model under H0 to the data generated under step 1.

3. Take the value of the LM(H)/LM(CP) statistic as the estimate of the
non-centrality parameter λ (Satorra 1989, Bollen 1989).

4. Compute the non-centrality parameter for a sample of size 1 equal to λ1 = λ
N
.

5. The non-centrality parameter for a sample of size n is λn = nλ1.

The asymptotic power of the LM(H)/LM(CP) test can be determined by comparing the
λn obtained in step 5 with the tabled values of the non-central chi-square with df
corresponding to the number of parameters constrained under H0 and significance level
α (Bollen 1989).

The Generalized Lagrange Multiplier test

Consider a sample y1, ...,yn from a model with true density g(y), that assumes
either local dependence among the items or a non-normal distribution of the latent
variable. The model with density f(y;θ), which assumes both local independence
among the items and a normal distribution of the latent variable, is erroneously
assumed to be the true model for the data and it is used for ML analysis. If the
assumptions A1-A6 (pp: 2-6, White 1982), that ensure the existence, consistency,
asymptotic normality, and identifiability of the Quasi-ML estimator, are fulfilled, the
parameter vector θ̂n, which maximizes the log-likelihood function based on model
f(y;θ), converges in probability to θ∗, the parameter vector that minimizes the
Kullback-Leibler information criterion. Moreover, the covariance matrix of θ̂n, based on
n observations, is the so-called sandwich estimator given by
Ĉn(θ̂n) = Â−1

n (θ̂n)B̂n(θ̂n)Â−1
n (θ̂n), where the matrix Ân and B̂n are the observed

Hessian matrix and the observed cross-product matrix defined in formulas (7) and (8)
respectively and evaluated at θ̂n.
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Under model misspecification, the null and the alternative hypotheses are now
specified in terms of θ∗. Let θ∗ be divided in two sub-vectors θ′∗ = (θ′∗1,θ′∗2). To test for
uniform and non-uniform DIF, the parameters θ′∗1,θ′∗2 are grouped as in The classical
Lagrange Multiplier test section. The hypotheses in (3) can be formalized as follows:

H0 : θ′∗2 = c vs H1 : θ′∗2 6= c, (10)

where c is a vector of constants.
The Generalized Lagrange Multiplier test is defined as (White 1982, Engle 1984):

LM(S) = S2(θ̃n)′Â22
n (θ̃n)−1Ĉn22(θ̃n)−1

Â22
n (θ̃n)−1S2(θ̃n), (11)

where Â22(θ̃n) is computed as in (6) replacing An with Ân, evaluated at θ̃n and
Ĉn22(θ̃n) is the part of the matrix Ĉn corresponding to θ′∗2, evaluated at θ̃n. Under H0,
LM(S) is distributed as a χ2

r, with degrees of freedom r equal to the dimension of θ∗2. If
the model is correctly specified, the statistic LM(S) is equal to the LM test, computed
both with the Hessian or the cross-product approach (White 1982).

As before, the local asymptotic power of the LM(S) test is obtained by considering
a set of local alternatives given by H1 : θ∗2 = c+ ξ√

n
, where ξ is an arbitrary vector of

dimension θ∗2. Under H1, LM(S) converges in distribution to a χ2
r(λ), with degrees of

freedom r equal to the dimension of θ∗2 and λ is the non-centrality parameter given by
(Bera et al. 2020):

λ = 1
n
ξ′A22′

n (Bn22−An21A
−1
n11Bn12−Bn21A

−1
n11An12 +An21A

−1
n11Bn11A

−1
n11An12)−1A22

n ξ (12)

where An11, An12, An21 are the blocks of the expected Fisher information matrix An and
Bn11, Bn12, Bn21, Bn22 of the expected cross-product matrix Bn, derived from the
partition of θ′∗ into (θ′∗1,θ′∗2). A22

n is computed as in (6). All matrices in formula (12)
are evaluated at θ∗. The asymptotic power estimation method described in the
Approximation procedure for the asymptotic power section is used here to estimate the
asymptotic power for the LM(S) test. In step 3, the LM(S) statistic is taken as the
estimate of the non-centrality parameter (the proof of this result can be found in Satorra
1989). Moreover, the model fitted under H0 at step 2 is assumed to be misspecified.
Under correct model specification the LM(S) and the LM(H)/LM(CP) tests have the
same non-centrality parameter and, consequently, the same asymptotic power.

The Jackknife Generalized Score test

When ML-based methods are used, the LM(S) test derived by White (1982) is
equivalent to the GS test derived by Boos (1992) under model misspecification and valid
under different types of estimation methods, such as least squares, quasi-ML, and robust
M-estimation. The Generalized Score test for the hypothesis testing given in (10) is:

GS = S2(θ̃)′V −1
S2 (θ̃)S2(θ̃), (13)

where S2(θ̃) and θ̃ are defined similarly as in The Generalized Lagrange Multiplier test
section, but S2 does not necessarily come from the derivative of a log-likelihood because
it depends on the estimation method chosen. Vs2(θ̃) is the covariance matrix of S2,
evaluated at θ̃.
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When likelihood-based methods are used, Vs2(θ̃) is equal to Â22
n (θ̃)Ĉn22(θ̃)Â22

n (θ̃)
and formulas (13) and (11) are equivalent. Under H0, the GS test is distributed as a χ2

r,
where r are the df equal to the dimension of θ∗2.

J. Rao et al. (1998) proposed a version of the Generalized Score test in a general
estimating equations framework (Godambe and Thompson 1986) for a stratified
multistage sampling design, based on a consistent Jackknife estimator of VS2(θ̃). We use
the test proposed by J. Rao et al. (1998), for independent and identically distributed
(i.i.d.) observations and maximum likelihood estimation methods and we refer to this
test as the Jackknife Generalized Score (GS(J)) test. The GS(J) test is given in formula
(13), where VS2(θ̃) is estimated with the delete-1 Jackknife method as:

V̂s2(θ̃n) = n

n− 1

n∑

i=1
(S̃2(i) − S̃2)(S̃2(i) − S̃2)′. (14)

S̃2(i) is the score function computed by removing the i-th observation and evaluated at
θ̃n(i), (i.e. the ML estimate obtained by maximizing the score function without the i-th
observation), and S̃2 is the score function of the original sample evaluated at θ̃n. Shao
(1992) proved the consistency of the Jackknife method for a parameter estimator θ for
i.i.d. responses, while J. Rao et al. (1998) gave a sketch of the proof of the consistency
of the Jackknife score variance estimator for basic survey weights.

Simulation study

We study the performance of the LM(H), LM(CP), LM(S), and GS(J) test
statistics under no misspecification and misspecification either due to local dependence
or in the latent variable distribution. Since the main focus of this work is the case of
model misspecification, the results under correct model specification are reported in the
Supplementary material. Under a correct model specification, data are generated from
the two-Parameter Logistic (2-PL) model (Birnbaum 1968) with a linear structural
model. When the model is correctly specified, we find results in line with the literature.
In particular, the LM(CP) test shows inflated Type I error rates whereas the LM(H)
and LM(S) tests have simulated Type I error rates quite close to the nominal level α
and similar power. Moreover, the power of the tests increases with the sample size and
the number of items. Similar results are found by Liu and Maydeu-Olivares (2013), Liu
and Thissen (2014), and Falk and Monroe (2018).

In the Violation of local independence and the Misspecification of the latent
variable distribution sections, uniform and non-uniform DIF are studied in the
simulation as well as single and multiple parameter hypotheses. The performance of the
GS(J) test is evaluated in a separate simulation study in The study on the GS(J) test
section.

We consider the following simulation conditions: number of items (p = 10, 20) ×
sample size (n = 200, 500, 1000)× test statistic (LM(H), LM(CP ), LM(S)). To
evaluate the asymptotic behaviour of the tests, in some of the cases, n = 5000 is
considered. In some cases, the asymptotic power is computed in addition to the
empirical power. Direct maximization through the Newton-Raphson method is used to
obtain the ML-estimates under the null hypothesis and numerical derivatives are used
to compute the Hessian and cross-product matrices.

The optimization is conducted in R with the function “optim”, and numerical
derivatives are obtained with the “NumDeriv” R package. In all the simulation
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scenarios, N = 500 replications are considered and the nominal level α is fixed to 0.05.
Only for the results under correct model specification, and reported in the
Supplementary Material, do we consider N = 200.

Under model misspecification, in hypothesis testing we should account for the true
data generating value θ0 and for the parameter value θ∗ as follows:

• when H0 : θ∗ = c, provided that θ0 = c and θ∗ = c, the Type I error rate is
obtained. The null hypothesis is true under model misspecification and the
parameter is correctly fixed to its data generating value.

• when H0 : θ∗ = c, provided that θ0 = c and θ∗ 6= c, the false positive rate is
obtained. The null hypothesis is not true under model misspecification, but the
parameter is correctly fixed to its data generating value. Some authors, such as
Green, Thompson, and Babyak (1998), consider the rejections of parameter fixed
to its data generating value as Type I error instead of false positive rate, even
under model misspecification. For this reason, we expect the tests to have false
positive rates close to the nominal level α if they have good performance.

• when H0 : θ∗ = c, provided that θ0 6= c and θ∗ 6= c, the power is obtained. The null
hypothesis is not true under model misspecification and the parameter is not fixed
to its data generating value.

• the case H0 : θ∗ 6= c, provided that θ0 6= c and θ∗ = c, is not examined in this
study.

To estimate the unknown parameters θ∗, we fit the unconstrained model under
hypothesis H1 to a sample of 5000 observations generated from the true model. Under
model misspecification we always study the false positive rates instead of the Type I
error rates (θ0 6= θ∗). Non-valid statistics, for example negative statistics, are excluded
from the analysis. The Type I error, false positive, and power rates are computed as
p̂ = ∑Nv

l=1
I(Tl≥c)
Nv

, where Nv is the number of valid statistics out of the number of
replications, I is an indicator function, Tl is the value of the test statistic evaluated in
the l-th replication and c is the theoretical asymptotic critical value corresponding to
the 95th percentile of the χ2

df distribution, with degrees of freedom equal to the number
of constrained parameter(s) under H0. The confidence interval (CI) of each rate p̂ is
computed as p̂± 1.96

√
0.05(1−0.05)

Nv
.

Violation of local independence

Conditional dependence among certain items is introduced in the data generating
model via a common individual specific random variables u in the logistic measurement
model. Data are generated from the following model:

logit(πij) = α0j + α1jzi, i = 1, ..., n j = 1, ..., d, 1 ≤ d ≤ p

logit(πiJ) = α0J + α1Jzi + ui, J = d+ 1, ..., p u ∼ N(0, σ2
u)

zi = βxi + εi ε ∼ N(0, 1)
(15)

Both for p = 10 and for p = 20, the intercept parameters are generated from a
multivariate log-normal distribution with mean 0 and standard deviation (SD) 0.1, the
slope parameters are generated from a multivariate log-normal distribution with mean 0
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and SD 0.5, the values of the covariate x are generated from a Bernoulli distribution
with success probability equal to 0.7, and the residuals ε are generated from a standard
normal distribution. The parameter β is fixed to 0.9. The random effects u induce the
local dependence among the items yd+1, ..., yp. The percentages of local dependent items
considered in the simulations are 20% and 50%. For example, when LD = 20% and
p = 10, two items are local dependent. Also, σ2

u influences the amount of
misspecification in the simulation study. The random effects are generated from a
normal distribution with mean 0 and three different values of σ2

u, 0.25, 1, and 2.25. In
the data generating model there is absence of uniform and non-uniform DIF.

To test for non-uniform DIF under model misspecification, we consider the
following unconstrained model:

logit(πij) = α0j + α1jzi, i = 1, ..., n j = 1, 2, ..., K 1 ≤ k ≤ p

logit(πij) = α0j + α1jzi + γ1jxi + γ2jxizi, j = k + 1, ..., p
zi = βxi + εi, ε ∼ N(0, 1),

(16)

where items (k + 1, ..., p) are tested for measurement invariance. In the case of uniform
DIF, equation (16) does not include the parameter γ2j on the items k + 1, ..., p.

In our simulations, the model fitted to the data is given in (16) with parameters
γ1j and γ2j fixed to constant values. The false positive rates are studied using
hypotheses A, B, and C and the empirical power using hypotheses D, E, and F. The
asymptotic power is studied for scenario D.

A H0 : γ1j∗ = 0 vs H1 : γ1j∗ 6= 0,
This implies that one item is tested for uniform DIF.

B H0 : γ ′1∗ = 0 vs H1 : γ ′1∗ 6= 0,
where γ ′1∗, is a 5× 1 vector (i.e. five items are tested for uniform DIF).

C H0 : (γ1j∗, γ2j∗) = 0 vs H1 : (γ1j∗, γ2j∗) 6= 0,
One item is tested for non-uniform DIF.

D H0 : γ1j∗ = 0.7 vs H1 : γ1j∗ 6= 0.7,
One item is tested for uniform DIF.

E H0 : γ ′1∗ = c vs H1 : γ ′1∗ 6= c, where c = (0.7, 0.7, 0.7, 0.7, 0.7),
Five items are tested for uniform DIF.

F H0 : (γ1j∗, γ2j∗) = c vs H1 : (γ1j∗, γ2j∗) 6= c, where c = (0.7, 1),
One item is tested for non-uniform DIF.

Table 1 presents the false positive rates for the LM(H), LM(CP), and LM(S) tests
under local dependence for scenarios A,B, and C.

In the majority of cases, we can see that when the variance of the random effect is
low (σ2

u = 0.25), the false positive rates of the LM(H) and LM(S) tests are quite close to
the nominal level α = 5%, while the LM(CP) test rejects more often than expected.
With the increase of model misspecification (σ2

u = 1 and LD = 50%, σ2
u = 2.25 and

LD = 20%, 50%) the false positive rates increase with the sample size and there are no
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significant differences in tests behaviour between 10 and 20 items. It is evident that the
false positive rates are dramatically affected by the variance of the random effect and
the number of items that are conditionally dependent. Moreover, the LM(CP) test has
the most inflated false positive rates under all conditions of the study, while no
improvement has been found when using the LM(S) test. Both LM(S) and LM(H) show
a very similar behaviour under all scenarios.

Table 2 presents the empirical and asymptotic power for the LM(H), LM(CP),
and LM(S) tests under local dependence for scenario D.

Overall, there are some numerical differences between the asymptotic and
empirical power that decrease with the increase in the number of items and the sample
size. It is worth noting that the behaviour of the empirical and asymptotic power is the
same. Indeed, according to both methods, LM(CP) has the highest power and LM(H)
and LM(S) have a very similar power under all conditions. The empirical and
asymptotic power increases with both the sample size and the number of items. Since
there are no substantial differences between the two procedures, only the empirical
power is computed for scenarios E and F . Table 3 presents the empirical power for the
LM(H), LM(CP), and LM(S) tests under local dependence for scenarios E and F .

Under the multiple parameters scenarios (E and F ) and small sample sizes
(n = 200), the LM(S) test has the lowest power. Moreover, under all scenarios and for
small sample size, LM(H) and LM(CP) have similar power whereas, in the majority of
cases for large sample sizes, all tests reach the same power. Thus, the power seems less
affected by the degree of local dependence compared to the the false positive rate and it
increases with both the sample size and the number of items. Moreover, in terms of
power, LM(CP) has the best performance because it has the highest power under most
simulation conditions and it produces valid results for all replications. It is worth noting
that, under scenarios E and F , in some cases the LM(H) test produces non-valid
results, ranging from 0.2% to 22.4% of the replications, where the highest percentages
correspond to small sample sizes, σ2

u = 2.25 and LD = 50%.

Misspecification of the latent variable distribution

The data are generated from the following model:

logit(πij) = α0j + α1jzi

zi = βxi + εi, i = 1, ..., n j = 1, 2, ..., p
(17)

Three different distributions are assumed for the latent variable. Namely, the error term
is generated from a mixture of normals as ε ∼ f(ε) = 0.3N(−1.5, 0.2) + 0.7N(1, 0.4) and
also from a skew-normal distribution with parameter κ = 1, 3. The probability density
function of a skew-normal with skewness parameter κ is the following (Azzalini 1985):

φ(ε;κ) = 2φ(ε)Φ(ε;κ)

where φ and Φ are the standard normal density and distribution function, respectively.
The parameter κ can take values from −∞ to +∞ and for κ = 0 reduces to a standard
normal distribution.

Intercepts (α0j), factor coefficients (α1j), regression coefficient (β), and group
variable x are generated as in the Violation of local independence section. Similarly
here, we consider the model in equation (16) as the unconstrained model. The
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simulation scenarios of the Violation of local independence section are considered here
to study the false positive rates and the empirical power of the tests. As before, the
asymptotic power is studied for scenario D.

Table 4 reports the false positive rates for the LM(H), LM(CP), and LM(S) tests
under misspecification of the latent variable distribution for scenarios A,B, and C.

The misspecification of the latent variable distribution in the case of a mixture of
normals does not affect the false positive rates of the LM(H) and LM(S) tests, whereas
the LM(CP) test has inflated false positive rates, especially under scenarios B and C.
When ε ∼ SN(1), only the LM(S) test never shows inflated false positive rates, even if
it rejects less than it should for small sample sizes and 10 items. The performance of
the tests deteriorates with the increase of skewness from κ = 1 to κ = 3. For some of
our simulation scenarios, the LM(H) and the LM(CP) tests have inflated false positive
rates and the LM(S) test rejects less than expected. When ε is distributed as a
skew-normal under all scenarios, the LM(H) test produces a considerable number of
non-valid results, ranging from 0.2% to 43.4% of the replications. The number of
non-valid LM(H) statistics increases with the skewness of the latent variable
distribution and for small sample sizes.

Table 5 presents the empirical and asymptotic power for LM(H), LM(CP), and
LM(S) tests under misspecification of the latent variable distribution for scenario D.

Overall, the numerical differences between the asymptotic and empirical power are
small. As in the case of local dependence, the empirical and asymptotic power give the
same information. For scenario D and large sample sizes, the power of all tests is not
affected by the latent variable having a mixture of normal distributions. When
ε ∼ SN(1), LM(CP) has the highest power while LM(H) and LM(S) have a very similar
power. When ε ∼ SN(3), the power is lower for all tests, especially for LM(S) and small
sample sizes, and LM(H) produces a considerable number of non-valid results for small
sample size (11.6% of the replications). Since there are no substantial differences
between the two procedures, only the empirical power is computed for scenarios E and
F .

Table 6 presents the power for LM(H), LM(CP), and LM(S) tests under
misspecification of the latent variable distribution for scenarios E and F .

Similarly to the false positive rates study, the power of all tests studied here is not
affected by the latent variable having a mixture of normal distributions and it is lower
for small sample sizes. Interestingly, when ε ∼ SN(1), the LM(CP) test has the highest
power whereas, when ε ∼ SN(3), the power is lower for all tests, particularly for LM(S)
in the case of small sample sizes. However, the power, even for κ = 3, increases with the
increase of sample size and number of items. When ε is distributed as a skew-normal,
the LM(H) test produces non-valid results in some of the simulation scenarios, ranging
from 0.2% to 30.2% of the replications and, as in the previous setting, the number of
non-valid LM(H) statistics increases with the skewness of the latent variable
distribution and decreases as the sample size increases.

The study on the GS(J) test

The GS(J) test is computationally expensive compared to the other tests. Indeed,
in each replication of a sample of size n, the Jackknife score covariance matrix given in
(14) requires n times the ML-estimates of the parameters. To reduce the time
complexity for this method, a faster model estimation is obtained by using the “ltm” R
package, which uses a combination of the E-M algorithm and direct maximization. As
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before, numerical derivatives for the Hessian and cross-product matrix are obtained
with the “NumDeriv” R package. We conduct a small-scale simulation to compare the
performance of the LM(H), LM(CP), and LM(S) tests with the GS(J) test under no
misspecification, misspecification due to local dependence, and misspecification of the
latent variable distribution. All models considered here will only have a measurement
model and no structural model. We consider the following simulation conditions:
number of items (p = 10) × sample size (n = 200, 500, 1000) × test statistic
(LM(H), LM(CP ), LM(S), GS(J)) and 500 replications for each scenario. To study
the Type I error/false positive rates, we consider three data generating models (DGM):
i) under a correct model specification, data are generated from the 2-PL model
(Birnbaum 1968), ii) under local dependence from the model given in equation (15),
and iii) under misspecification of the latent variable distribution from the model given
in equation (17). To study the power, we set the parameter γ1j equal to 0.5 and 2, on
the last item of the three data generating models (2-PL, (15), (17)). For all of them, the
covariate x does not affect the latent variable (β=0) and intercepts, factor loadings, and
the values of the group variable x are generated as in the Violation of local
independence section. When data are generated from (15), we consider σ2

u = 1 and
LD = 20%. For data generated from (17), we assume ε ∼ SN(3). We consider the
model in equation (16), without the structural model, as the unconstrained model.
Under scenario A, γ1j is fixed to 0 under the null hypothesis. Scenario A is used to
study the Type I error/false positive rate, because all items in the data generating
models are measurement invariant, and to study the power, because a uniform-DIF
parameter is introduced on the last item of all data generating models. Table 7 reports
the Type I error/false positive rates of the GS(J), LM(H), LM(CP), and LM(S) tests
under correct model specification, local dependence, and misspecification of the latent
variable distribution, for scenario A.

The GS(J) test and the LM(S) test perform similarly under all conditions. In
general, all tests have good performance and only the LM(CP) test shows inflated false
positive rates under some conditions.

Table 8 presents the empirical power for the GS(J), LM(H), LM(CP), and LM(S)
tests under correct model specification, local dependence, and incorrect distribution of
the latent variable, for scenario A.

Under all conditions for small sample size, the power of the GS(J) test is always
equal to or lower than the one of the LM(S) test. When the sample size increases, the
two tests reach the same power. Similarly to the Type I error/false positive rate study,
the performance of the GS(J) test is never superior to that of the other tests. For this
reason, and for its high computational cost, we do not use the GS(J) test in the real
data analysis.

An application to a real data set

In this section we assess measurement invariance under model misspecification
through the LM(H), LM(CP), and LM(S) tests on a real data set, taken from Miller,
Swanson, and Newcomb (1984). We select the same sample of observations and items
analysed by Duncan (1979). In 1953, in the Detroit Area, the following questions
regarding sex role expectations were asked to a sample of 257 women: “Here are some
things that might be done by a boy or a girl. As I read each of these to you, I would
like you to tell me if it should be done as a regular task by a boy, by a girl, or by both:
(1) Shoveling walks, (2) Washing the car, (3) Dusting furniture, (4) Making beds”.
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Responses of “boy” to items 1 and 2 and “girl” to items 3 and 4 are coded as “0” and
refer to traditional answers. Responses of “both” for all items are coded as “1” and
refer to “egalitarian” answers. For the same sample of women, in addition to the four
binary items, we consider a group variable, that we call “Work”, taken from the original
data set (Miller et al. 1984). The following question was asked to the sample of mothers
“What is your occupation? What kind of business is that in?” The possible responses
were the following: “Professional, technical, and kindred workers”, “Managers, officials
and proprietors, except farm”, “Clerical and kindred workers”, “Sales workers”,
“Operatives and kindred workers”, “Private household workers, service workers”,
“Laborers, except farm and mine”, and “Not in labor force”. We group these responses
into two classes:

• Class coded as “0”, which includes only answers “Not in labor force”. This class
includes the group of non-working women (n0 = 199).

• Class coded as “1”, which includes all the other responses. This class includes the
group of working women (n1 = 58).

The percentages of “egalitarian” answers among the group of non-working women are
31%, 31%, 29% and 42% to items 1-4, respectively. The percentages of “egalitarian”
answers among the group of working women are 43%, 29%, 50% and 55% to items 1-4,
respectively. Women in the working group give more “egalitarian” answers than women
in the non-working group, especially to items 3 and 4. The data set is analysed by
Mavridis and Moustaki (2009) and Irincheeva (2011). They show that the classical
unidimensional IRT model with the latent variable distributed as a standard normal has
a poor fit on this data set. Irincheeva (2011) estimates a semi-nonparametric (SNP)
unidimensional IRT model to the data, that allows for more flexibility in the shape of
the latent variable distribution, and gives a better fit of the proposed model to the data
compared with the classic unidimensional IRT model. Moreover, the results found by
Irincheeva (2011) suggest that the shape of the true latent variable is right skewed or
even more complex.

Starting from these results, in this study we consider a unidimensional IRT model
for binary data based on the assumption of standard normal latent variable distribution
under the null hypothesis, that we know to be misspecified. Measurement invariance on
the intercept of each item is tested through H0 : γ1j∗ = 0 vs H1 : γ1j∗ 6= 0, where γ1j∗ is
the effect of the group variable “Work” on the item intercept. Measurement invariance
on the item slope of each item is tested through H0 : γ2j∗ = 0 vs H1 : γ2j∗ 6= 0, where
γ2j∗ is the effect of the group variable “Work” on the item slope. Rejecting the null
hypothesis implies that the item intercept, or slope, is measurement non-invariant. Due
to the small sample size and low number of items, we avoid considering multiple
parameter hypothesis testing. The p-values of the tests are computed in two ways,
using the asymptotic distribution of the tests under the null hypothesis and bootstrap
hypothesis testing (Efron and Tibshirani 1994). As observed in the Simulation study
section, under high misspecification of the latent variable distribution, the LM tests do
not match their theoretical distributions under the null hypothesis. In particular, the
LM(H) and LM(S) tests have the worst performance in terms of power under small
sample sizes. The bootstrap hypothesis testing does not depend on the asymptotic
distribution of the test statistic under the null hypothesis and can be a good alternative
under model misspecification (Lu and Young 2012).
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The first step of the bootstrap hypothesis testing procedure is to generate B
bootstrap samples, or simulated data sets, indexed by h, that should satisfy the null
hypothesis (Efron and Tibshirani 1994). We consider a parametric bootstrap, where the
bootstrap samples are generated from a classical unidimensional IRT model with the
latent variable distributed as a standard normal and parameter estimates obtained
fitting the same model to the original sample of observations. Under the null
hypothesis, the group variable “Work” has no effect on the intercept and slope of each
item. For this reason, the values of the group variable in each bootstrap sample are
randomly drawn from a Bernoulli variable with success probability estimated on the
original sample of observations. The parametric bootstrap can be used even when the
model under the null hypothesis is misspecified (Lu and Young 2012). The bootstrap
hypothesis testing is composed using the following steps (Efron and Tibshirani 1994):

1. Calculate the statistic τ̂ (the LM(H), LM(CP) and LM(S) tests) in the original
sample of observations.

2. Calculate the statistic τ in each bootstrap sample, called τ ∗h .

3. Compute the bootstrap p-value as p̂∗(τ̂) = 1
B

∑B
h=1 I(τ ∗h >τ̂), where I is the

indicator function.

4. Reject the null hypothesis if p̂∗(τ̂)< α.

When τ is pivotal, that is its distribution does not depend on unknown parameters,
and the number of bootstrap samples B is such that α(B + 1) is an integer, the
bootstrap hypothesis testing procedure can yield exact test (Dwass 1957). We choose
B = 999, which is usually a good choice for the number of bootstrap samples to be used
in hypothesis testing (MacKinnon 2002).

Table 9 presents the p-values for the LM(H), LM(CP), and LM(S) tests based on
their theoretical distributions (TD) under the null hypothesis and on bootstrap
hypothesis testing (BH) for measurement invariance on the item intercept and slope.

For all tests, TD and BH do not reject the null hypothesis of intercept and slope
invariance for items 1, 2, and 4. This is consistent with the simulation results, in which
the false positive rates are less affected than the power of the tests by the
misspecification of the latent variable distribution. However, BH and TD disagree for
item 3. Interestingly, only the LM(CP) test produces similar results to the BH p-values
of the LM(S) test, rejecting the null hypothesis of measurement invariance on the
intercept and slope. This is consistent with the simulation results, where the LM(CP)
test has the highest power for small sample sizes under misspecification of the latent
variable distribution. The bootstrap hypothesis testing procedure for the LM(S) and
LM(CP) tests turns out to be a good instrument to make a clearer decision on the
acceptance or rejection of the null hypothesis, especially when these tests show
contradictory results. By contrast, the LM(H) test gives negative statistics in the real
data set and in a large number of bootstrap replications, as in some simulation
scenarios under high misspecification of the latent variable distribution and small
sample size. This makes it difficult to interpret results and worsens the performance of
the bootstrap hypothesis testing procedure. Indeed, for measurement invariance on the
intercept of item 3, the TD and BH p-values of the LM(H) test cannot be computed
because the statistic calculated in the real data set is negative. Moreover, in the
measurement invariance testing of the slope of item 3, the result of the BH p-value of
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LM(H) test is not stable because in 11.5% of the bootstrap replications we obtain
non-valid statistics that have been excluded from the BH p-value computation.

Discussion

In this work, we evaluated the performance of the LM(H), LM(CP), LM(S), and
GS(J) tests to assess measurement invariance under both correct model specification
and different types of model misspecification by means of a wide simulation study and
in a real data analysis. Moreover, we computed the empirical and asymptotic power of
the LM(H), LM(CP), and LM(S) tests, using for the latter the asymptotic distributions
of the statistics under the alternative hypothesis.

Under model misspecification, there are some differences between the three tests
due to the type and the strength of the model misspecification. Under low local
dependence, and when the latent variable is generated from a mixture of normals or
from a moderate skew-normal, all tests have good performance in terms of false positive
rates and power for large sample sizes. Only the LM(CP) test shows inflated false
positive rates in some cases. For this reason, under mild model misspecification, we
discourage the use of the LM(CP) test due to its inflated false positive rates. When the
misspecification is high, the tests performance deteriorates. Indeed under high local
dependence the false positive rates for all tests are seriously inflated while, when the
latent variable is highly skewed, with 10 items and for small sample sizes, the LM(H)
and LM(S) tests have very low power. Under high model misspecification, the LM(CP)
test has the highest power for small sample sizes. It is worth noting that the LM(S)
test, although derived under model misspecification, does not have better performance
than the LM(H) test, particularly in terms of power but it always produces valid
statistics. Under all types of misspecification considered, we do not find significant
differences in the tests’ behaviour between the case of measurement invariance on the
intercept and that on the intercept and slope, both in single and multiple parameter
hypothesis testing.

The simulation study highlights that there are small numerical differences between
the asymptotic power, computed through the approximation method for the
non-centrality parameter, and the empirical power. However, the results given by the
two procedures are coherent and the asymptotic power can be a valid alternative to
obtain the power of a test, since it allows us to reduced the time complexity compared
to the empirical power.

Concerning the GS(J) test, it is never superior to the other tests and, due to its
high computational cost, we do not recommend the use of this test to assess
measurement invariance under model misspecification.

Consistently with the simulation results, in the real data analysis the LM(CP)
test has the highest power to detect item measurement non-invariance under high
misspecification of the latent variable distribution. The bootstrap hypothesis testing
procedure turns out to be a good instrument under model misspecification. Indeed, it
helps to make a clearer decision on the acceptance or rejection of the null hypothesis
when the asymptotic tests provide contradictory results.

For further studies on the performance of the LM tests under model
misspecification, different types of estimation methods could be considered. Moreover,
we found that when data are generated assuming a skew-normal distribution for the
latent variable, parameter estimates are seriously biased with respect to the true
parameters’ values. Further research should be devoted to exploring misspecified models
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where the parameter estimates are consistent with respect to the true parameter values.
In these cases, the LM tests should have a better performance.
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Table 1
False positive rates of the LM(H), LM(CP), and LM(S) tests under scenarios A, B and
C, p = 10, n = 200, 500, 1000, 5000

σ2
u = 0.25 σ2

u = 1 σ2
u = 2.25

SC p LD n LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S)
A 10 20% 200 0.05 0.066 0.052 0.044 0.066 0.034 0.044 0.082 0.052

500 0.072 0.08 0.074 0.072 0.084 0.078 0.086 0.104 0.088
1000 0.064 0.076 0.07 0.05 0.054 0.052 0.09 0.112 0.104
5000 0.046 0.05 0.048 0.092 0.098 0.094 0.23 0.246 0.246

50% 200 0.042 0.078 0.044 0.044 0.08 0.052 0.092 0.168 0.112
500 0.072 0.082 0.074 0.116 0.148 0.134 0.256 0.298 0.282
1000 0.076 0.08 0.072 0.152 0.184 0.17 0.412 0.458 0.446

20 20% 200 0.04 0.094 0.05 0.056 0.09 0.056 0.06 0.118 0.068
500 0.044 0.06 0.048 0.058 0.078 0.07 0.092 0.108 0.096
1000 0.046 0.054 0.052 0.076 0.088 0.078 0.152 0.174 0.162

50% 200 0.052 0.11 0.06 0.074 0.13 0.088 0.15 0.242 0.178
500 0.052 0.076 0.058 0.132 0.168 0.148 0.334 0.388 0.358
1000 0.054 0.07 0.064 0.188 0.224 0.212 0.58 0.622 0.604

B 10 20% 200 0.1 0.122 0.052 0.092 0.106 0.036 0.074 0.112 0.044
500 0.062 0.07 0.042 0.066 0.082 0.054 0.076 0.088 0.058
1000 0.064 0.064 0.048 0.046 0.066 0.05 0.094 0.094 0.086

50% 200 0.062 0.124 0.036 0.11 0.190 0.078 0.394 0.386 0.148
500 0.05 0.092 0.044 0.236 0.298 0.226 0.796 0.71 0.61
1000 0.068 0.096 0.08 0.492 0.456 0.426 0.978 0.954 0.942

20 20% 200 0.03 0.162 0.032 0.06 0.194 0.05 0.082 0.208 0.068
500 0.048 0.074 0.048 0.06 0.09 0.056 0.144 0.114 0.08
1000 0.04 0.054 0.046 0.082 0.084 0.066 0.246 0.16 0.132

50% 200 0.036 0.178 0.04 0.11 0.26 0.098 0.288 0.442 0.214
500 0.058 0.096 0.066 0.206 0.244 0.18 0.648 0.608 0.518
1000 0.064 0.096 0.072 0.418 0.384 0.34 0.946 0.916 0.886

C 10 20% 200 0.06 0.104 0.04 0.058 0.094 0.046 0.066 0.112 0.046
500 0.068 0.092 0.068 0.056 0.08 0.054 0.06 0.118 0.08
1000 0.064 0.068 0.056 0.042 0.06 0.052 0.086 0.128 0.112

50% 200 0.062 0.102 0.036 0.056 0.122 0.05 0.094 0.214 0.086
500 0.062 0.086 0.062 0.084 0.14 0.098 0.2 0.278 0.22
1000 0.058 0.08 0.068 0.11 0.154 0.142 0.34 0.398 0.364

20 20% 200 0.056 0.156 0.052 0.056 0.138 0.06 0.062 0.172 0.066
500 0.072 0.092 0.07 0.05 0.098 0.074 0.06 0.11 0.07
1000 0.048 0.068 0.052 0.06 0.09 0.072 0.122 0.17 0.146

50% 200 0.064 0.16 0.058 0.052 0.17 0.068 0.124 0.286 0.146
500 0.064 0.086 0.062 0.112 0.172 0.112 0.256 0.36 0.284
1000 0.064 0.078 0.07 0.132 0.172 0.156 0.494 0.538 0.52

Note 1: Values in boldface indicate that the nominal level α is not included in their confidence interval
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Table 2
Empirical power (EP) and asymptotic power (AP) of the LM(H), LM(CP), and LM(S)
tests under scenario D, p = 10, 20, n = 200, 500, 1000, 5000

σ2
u = 0.25 σ2

u = 1 σ2
u = 2.25

SC p LD n LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S)
D 10 20% 200 EP 0.308 0.398 0.32 0.38 0.452 0.388 0.484 0.55 0.494

AP 0.459 0.506 0.485 0.473 0.514 0.493 0.543 0.584 0.562

500 EP 0.702 0.724 0.71 0.776 0.806 0.798 0.864 0.878 0.872
AP 0.836 0.877 0.859 0.849 0.884 0.867 0.905 0.930 0.917

1000 EP 0.936 0.942 0.938 0.97 0.974 0.974 0.994 0.994 0.994
AP 0.985 0.993 0.990 0.988 0.994 0.991 0.996 0.998 0.997

5000 EP 1 1 1 1 1 1 1 1 1
AP 1 1 1 1 1 1 1 1 1

50% 200 EP 0.324 0.44 0.356 0.49 0.57 0.516 0.637 0.706 0.624
AP 0.497 0.552 0.527 0.586 0.649 0.621 0.723 0.777 0.739

500 EP 0.752 0.774 0.758 0.888 0.898 0.89 0.956 0.96 0.956
AP 0.870 0.911 0.893 0.931 0.959 0.948 0.981 0.990 0.984

1000 EP 0.952 0.956 0.952 0.992 0.994 0.992 1 1 1
AP 0.992 0.997 0.995 0.998 0.999 0.999 1 1 1

20 20% 200 EP 0.382 0.528 0.392 0.484 0.606 0.484 0.574 0.66 0.582
AP 0.473 0.506 0.492 0.523 0.557 0.542 0.570 0.603 0.588

500 EP 0.824 0.858 0.83 0.886 0.910 0.889 0.94 0.946 0.936
AP 0.849 0.877 0.866 0.891 0.914 0.904 0.922 0.939 0.932

1000 EP 0.982 0.986 0.982 0.994 0.994 0.994 1 1 1
AP 0.988 0.993 0.991 0.995 0.997 0.996 0.997 0.998 0.998

50% 200 EP 0.416 0.558 0.42 0.59 0.68 0.592 0.74 0.832 0.742
AP 0.497 0.531 0.517 0.624 0.668 0.649 0.752 0.794 0.772

500 EP 0.844 0.866 0.846 0.962 0.97 0.964 0.992 0.994 0.992
AP 0.870 0.896 0.886 0.949 0.966 0.959 0.986 0.992 0.989

1000 EP 0.992 0.994 0.994 1 1 1 1 1 1
AP 0.992 0.995 0.994 0.999 1 0.999 1 1 1
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Table 3
Empirical power of the LM(H), LM(CP), and LM(S) tests under scenarios E and F ,
p = 10, 20, n = 200, 500, 1000, 5000

σ2
u = 0.25 σ2

u = 1 σ2
u = 2.25

SC p LD n LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S)
E 10 20% 200 0.449 0.58 0.37 0.502 0.606 0.412 0.538 0.624 0.432

500 0.9 0.926 0.902 0.934 0.948 0.928 0.966 0.974 0.958
1000 0.998 1 1 0.996 0.998 0.998 0.998 1 0.998

50% 200 0.518 0.606 0.364 0.730 0.716 0.372 0.858 0.779 0.3
500 0.948 0.954 0.926 0.994 0.984 0.968 0.998 0.998 0.978
1000 1 1 0.998 1 1 1 1 1 1

20 20% 200 0.742 0.876 0.722 0.802 0.856 0.692 0.834 0.866 0.722
500 0.994 0.996 0.994 1 0.998 0.994 1 1 0.994
1000 1 1 1 1 1 1 1 1 1

50% 200 0.814 0.906 0.966 0.9 0.934 0.818 0.966 0.962 0.894
500 1 1 0.998 1 1 1 1 1 1
1000 1 1 1 1 1 1 1 1 1

F 10 20% 200 0.660 0.632 0.416 0.674 0.662 0.486 0.743 0.758 0.598
500 0.957 0.946 0.898 0.978 0.976 0.944 0.992 0.99 0.98
1000 0.998 0.998 0.998 1 1 1 1 1 1

50% 200 0.637 0.61 0.388 0.641 0.636 0.398 0.662 0.617 0.381
500 0.945 0.932 0.902 0.951 0.94 0.91 0.940 0.926 0.894
1000 0.998 0.998 0.996 1 0.998 0.998 1 1 1

20 20% 200 0.807 0.848 0.666 0.860 0.888 0.756 0.896 0.91 0.802
500 0.992 0.996 0.982 0.996 0.996 0.996 1 1 0.998
1000 1 1 1 1 1 1 1 1 1

50% 200 0.803 0.844 0.664 0.852 0.872 0.696 0.823 0.862 0.682
500 0.992 0.996 0.984 0.996 0.996 0.992 0.991 0.996 0.99
1000 1 1 1 1 1 1 1 1 1

Table 4
False positive rates of the LM(H), LM(CP), and LM(S) tests under scenarios A, B and
C, p = 10, 20, n = 200, 500, 1000

ε ∼ 0.3N(−1.5, 0.2) + 0.7N(1, 0.4) ε ∼ SN(1) ε ∼ SN(3)
SC p n LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S)
A 10 200 0.048 0.066 0.042 0.046 0.076 0.024 0.089 0.132 0.008

500 0.046 0.052 0.04 0.05 0.066 0.042 0.076 0.07 0.022
1000 0.048 0.052 0.05 0.06 0.062 0.056 0.06 0.058 0.042

20 200 0.054 0.082 0.056 0.054 0.116 0.044 0.06 0.112 0.026
500 0.05 0.058 0.05 0.054 0.066 0.058 0.056 0.07 0.044
1000 0.042 0.04 0.038 0.052 0.07 0.066 0.054 0.06 0.054

B 10 200 0.06 0.10 0.046 0.134 0.156 0.016 0.198 0.242 0.002
500 0.058 0.066 0.048 0.112 0.09 0.032 0.195 0.082 0.004
1000 0.066 0.066 0.058 0.086 0.06 0.042 0.196 0.066 0.002

20 200 0.058 0.140 0.042 0.066 0.222 0.04 0.119 0.293 0.002
500 0.044 0.064 0.034 0.056 0.102 0.044 0.066 0.114 0.016
1000 0.064 0.076 0.054 0.042 0.064 0.05 0.072 0.09 0.042

C 10 200 0.07 0.118 0.048 0.065 0.164 0.026 0.133 0.216 0.012
500 0.066 0.072 0.036 0.05 0.078 0.042 0.075 0.092 0.032
1000 0.062 0.068 0.056 0.066 0.068 0.052 0.076 0.084 0.026

20 200 0.076 0.154 0.046 0.062 0.218 0.042 0.087 0.235 0.02
500 0.05 0.094 0.044 0.044 0.084 0.046 0.046 0.09 0.03
1000 0.068 0.084 0.056 0.044 0.064 0.042 0.07 0.098 0.048

Note 1: Values in boldface indicate that the nominal level α is not included in their confidence interval
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Table 5
Empirical power (EP) and asymptotic power (AP) of the LM(H), LM(CP), and LM(S)
tests under scenario D, p = 10, 20, n = 200, 500, 1000

ε ∼ 0.3N(−1.5, 0.2) + 0.7N(1, 0.4) ε ∼ SN(1) ε ∼ SN(3)
SC p n LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S)
D 10 200 EP 0.316 0.396 0.324 0.195 0.28 0.15 0.129 0.186 0.03

AP 0.425 0.459 0.443 0.307 0.326 0.301 0.226 0.208 0.170

500 EP 0.684 0.71 0.7 0.424 0.462 0.406 0.235 0.244 0.094
AP 0.772 0.799 0.835 0.632 0.664 0.623 0.480 0.440 0.354

1000 EP 0.95 0.958 0.952 0.748 0.762 0.75 0.406 0.402 0.328
AP 0.977 0.986 0.982 0.902 0.921 0.895 0.771 0.725 0.611

20 200 EP 0.38 0.488 0.382 0.292 0.414 0.282 0.197 0.299 0.092
AP 0.385 0.400 0.392 0.397 0.421 0.391 0.232 0.237 0.218

500 EP 0.76 0.804 0.768 0.596 0.64 0.586 0.406 0.464 0.354
AP 0.751 0.770 0.759 0.766 0.794 0.759 0.492 0.502 0.461

1000 EP 0.98 0.98 0.978 0.902 0.906 0.898 0.662 0.692 0.644
AP 0.961 0.968 0.965 0.967 0.976 0.964 0.783 0.794 0.749

Table 6
Empirical power of the LM(H), LM(CP), and LM(S) tests under scenarios E and F ,
p = 10, 20, n = 200, 500, 1000

ε ∼ 0.3N(−1.5, 0.2) + 0.7N(1, 0.4) ε ∼ SN(1) ε ∼ SN(3)
SC p n LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S)
E 10 200 0.516 0.614 0.402 0.218 0.446 0.124 0.100 0.313 0.02

500 0.926 0.93 0.91 0.627 0.756 0.632 0.347 0.408 0.09
1000 0.998 0.998 0.998 0.946 0.972 0.962 0.642 0.7 0.312

20 200 0.674 0.853 0.646 0.524 0.782 0.456 0.385 0.642 0.076
500 0.992 0.996 0.99 0.946 0.968 0.946 0.739 0.81 0.488
1000 1 1 1 1 1 1 0.974 0.98 0.954

F 10 200 0.588 0.547 0.318 0.356 0.484 0.188 0.223 0.462 0.158
500 0.916 0.89 0.838 0.834 0.844 0.722 0.585 0.772 0.532
1000 0.99 0.988 0.988 0.974 0.982 0.972 0.867 0.966 0.882

20 200 0.449 0.48 0.174 0.713 0.787 0.52 0.608 0.783 0.434
500 0.826 0.784 0.7 0.988 0.986 0.97 0.921 0.984 0.952
1000 0.978 0.97 0.952 1 1 1 0.958 1 1

Table 7
Type I error/ false positive rate of the GS(J), LM(H), LM(CP), and LM(S) tests under
scenario A, p = 10, n = 200, 500, 1000

Data generating model SC p n GS(J) LM(H) LM(CP) LM(S)
2-PL A 10 200 0.042 0.048 0.064 0.046

500 0.06 0.06 0.072 0.06
1000 0.062 0.062 0.062 0.062

(15) A 10 200 0.034 0.042 0.054 0.034
500 0.056 0.058 0.064 0.056
1000 0.056 0.058 0.064 0.058

(17) A 10 200 0.036 0.044 0.072 0.036
500 0.044 0.048 0.058 0.044
1000 0.048 0.052 0.056 0.048

Note 1: Values in boldface indicate that the nominal level α is not included in their confidence interval
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Table 8
Empirical power of the GS(J), LM(H), LM(CP), and LM(S) tests under scenario A,
p = 10, n = 200, 500, 1000

Data generating model SC p γ1j n GS(J) LM(H) LM(CP) LM(S)
2-PL A 10 0.5 200 0.23 0.292 0.296 0.238

500 0.488 0.53 0.52 0.494
1000 0.754 0.778 0.772 0.758

2 200 0.962 0.98 0.982 0.962
500 1 1 1 1
1000 1 1 1 1

(15) A 10 0.5 200 0.176 0.236 0.234 0.186
500 0.394 0.434 0.422 0.396
1000 0.67 0.686 0.676 0.67

2 200 0.956 0.978 0.978 0.962
500 1 1 1 1
1000 1 1 1 1

(17) A 10 0.5 200 0.11 0.200 0.196 0.13
500 0.344 0.414 0.392 0.344
1000 0.62 0.678 0.634 0.622

2 200 0.634 0.893 0.903 0.732
500 0.996 1 0.998 0.996
1000 1 1 1 1

Table 9
Theoretical distributions (TD) and bootstrap hypothesis testing (BH) p-values of the
LM(H), LM(CP), and LM(S) tests for measurement invariance on the item intercept
and slope

Parameter tested Item Method LM(H) LM(CP) LM(S)
γ1j∗ 1 TD 0.387 0.390 0.391

BH 0.397 0.404 0.398

2 TD 0.107 0.082 0.097
BH 0.114 0.102 0.105

3 TD - 0.014 0.059
BH - 0.023 0.020

4 TD 0.78 0.795 0.801
BH 0.800 0.811 0.811

γ2j∗ 1 TD 0.399 0.351 0.353
BH 0.393 0.346 0.337

2 TD 0.116 0.112 0.131
BH 0.124 0.118 0.114

3 TD 0.048 0.038 0.098
BH 0.101 0.049 0.031

4 TD 0.050 0.118 0.223
BH 0.083 0.163 0.172

Note 1: Values in boldface indicate p-values less than the nominal level α
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Use of the Lagrange Multiplier test for assessing

measurement invariance under model misspecification

1 Results of the simulation study under correct model specification

The same true parameter values, simulation conditions, unconstrained model and hypotheses intro-
duced in the Violation of local independence section are used under correct model specification to study
the type I error and power of the tests. Table S1 presents the type I error rates of the LM(H), LM(CP), and
LM(S) tests under correct model specification for scenarios A,B and C .

Table S1: Type I error rates of the LM(H), LM(CP), and LM(S) tests under scenarios A,B and C , p = 10,20,
n = 200,500,1000,5000

SC p n LM(H) LM(CP) LM(S)

A 10 200 0.04 0.055 0.055
500 0.04 0.06 0.05

1000 0.07 0.08 0.065
5000 0.075 0.07 0.07

20 200 0.04 0.125 0.055
500 0.055 0.07 0.055

1000 0.04 0.05 0.04

B 10 200 0.10 0.11 0.045
500 0.06 0.05 0.035

1000 0.075 0.08 0.06

20 200 0.05 0.185 0.055
500 0.06 0.09 0.06

1000 0.04 0.045 0.03

C 10 200 0.07 0.085 0.035
500 0.045 0.07 0.045

1000 0.08 0.115 0.085
5000 0.07 0.08 0.08

20 200 0.055 0.155 0.025
500 0.06 0.075 0.06

1000 0.045 0.06 0.05

Note 1: Values in boldface indicate that the nominal level α is not included in their confidence interval
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Table S2 presents the power of the LM(H), LM(CP), and LM(S) tests under correct model specification
for scenarios D,E and F .

Table S2: Power of the LM(H), LM(CP), and LM(S) tests under scenarios D,E and F , p = 10,20, n =
200,500,1000,5000

SC p n LM(H) LM(CP) LM(S)

D 10 200 0.315 0.355 0.32
500 0.675 0.705 0.675

1000 0.925 0.94 0.93
5000 1 1 1

20 200 0.37 0.495 0.39
500 0.755 0.795 0.76

1000 0.97 0.97 0.97

E 10 200 0.39 0.525 0.355
500 0.905 0.915 0.895

1000 0.995 0.995 0.995

20 200 0.755 0.885 0.76
500 1 1 1

1000 1 1 1

F 10 200 0.61 0.61 0.38
500 0.935 0.92 0.9

1000 0.995 0.99 0.99

20 200 0.796 0.835 0.595
500 0.985 0.985 0.98

1000 1 1 1

2 Parameter bias under model misspecification

In this section are reported some results on the mean bias for the ML estimates across replications under
model misspecification. In each scenario considered, the mean bias of each model parameter, generally
named θ, is computed as:

Bi asθ̂ =
∑N

l=1 |θ̂l −θ0|
N

,

where θ0 is the true parameter, θ̂l is the ML estimate of the parameter θ in the l-th replication and N is
the number of replications, equal to 500.

Table S3 presents the parameters bias under local dependence (σ2
u = 2.25 and LD = 50%) for scenario

C .
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Table S3: Parameters bias under local dependence (σ2
u = 2.25 and LD = 50%), under scenario C , p = 20,

n = 1000

θ Bi as
θ̂

α0 j ( j = 1, ...,20) 0.15 0.13 0.14 0.14 0.12 0.11 0.15 0.14 0.09 0.13
0.27 0.17 0.37 0.41 0.19 0.34 0.33 0.18 0.34 0.35

α1 j ( j = 1, ...,20) 0.57 0.17 0.46 0.45 0.24 0.13 0.46 0.32 0.10 0.42
0.48 0.50 0.48 0.49 0.48 0.47 0.48 0.49 0.48 0.48

β 0.14

Table S4 presents the parameters bias under misspecification of the latent variable distribution (ε ∼
SN (1), ε∼ SN (3)) for scenario A.

Table S4: Parameters bias under misspecification of the latent variable distribution (ε ∼ SN (1), ε ∼
SN (3)), under scenario A, p = 20, n = 1000

ε∼ θ Bi as
θ̂

SN(1) α0 j ( j = 1, ...,20) 1.19 0.61 1.06 1.05 0.74 0.49 1.04 0.87 0.35 1.04
0.60 0.94 0.38 0.26 0.85 0.45 0.50 0.88 0.44 0.40

α1 j ( j = 1, ...,20) 0.43 0.22 0.39 0.38 0.27 0.18 0.37 0.32 0.14 0.37
0.22 0.33 0.14 0.11 0.32 0.17 0.18 0.32 0.16 0.14

β 0.23

SN(3) α0 j ( j = 1, ...,20) 1.55 0.79 1.37 1.35 0.96 0.63 1.34 1.13 0.46 1.34
0.78 1.22 0.49 0.34 1.10 0.59 0.66 1.14 0.57 0.52

α1 j ( j = 1, ...,20) 0.98 0.48 0.89 0.86 0.60 0.38 0.85 0.71 0.28 0.84
0.48 0.75 0.29 0.20 0.70 0.36 0.40 0.72 0.35 0.32

β 0.75
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