
On-the-fly simplification of genetic programming models
Noman Javed

London School of Economics and Political Science
n.javed3@lse.ac.uk

Fernand Gobet
London School of Economics and Political Science

f.gobet@lse.ac.uk

ABSTRACT
The last decade has seen amazing performance improvements in
deep learning. However, the black-box nature of this approach
makes it difficult to provide explanations of the generated models.
In some fields such as psychology and neuroscience, this limitation
in explainability and interpretability is an important issue. Ap-
proaches such as genetic programming are well positioned to take
the lead in these fields because of their inherent white box nature.
Genetic programming, inspired by Darwinian theory of evolution,
is a population-based search technique capable of exploring a high-
dimensional search space intelligently and discovering multiple
solutions. However, it is prone to generate very large solutions,
a phenomenon often called “bloat”. The bloated solutions are not
easily understandable. In this paper, we propose two techniques
for simplifying the generated models. Both techniques are tested
by generating models for a well-known psychology experiment.
The validity of these techniques is further tested by applying them
to a symbolic regression problem. Several population dynamics
are studied to make sure that these techniques are not compromis-
ing diversity – an important measure for finding better solutions.
The results indicate that the two techniques can be both applied
independently and simultaneously and that they are capable of
finding solutions at par with those generated by the standard GP
algorithm – but with significantly reduced program size. There was
no loss in diversity nor reduction in overall fitness. In fact, in some
experiments, the two techniques even improved fitness.

CCS CONCEPTS
• Computing methodologies→ Genetic programming;

KEYWORDS
Evolutionary Computing, Genetic Programming, Simplification

ACM Reference Format:
Noman Javed and Fernand Gobet. 2021. On-the-fly simplification of genetic
programmingmodels. In Proceedings of ACM SAC Conference (SAC’21).ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3412841.3441926

1 INTRODUCTION
Deep learning, having theoretical foundations in neural networks,
has dominated the arena of machine learning during the last decade.
The primary reason behind this dominance has been its impressive
performance. Factors such as the increase in computational power
and the availability of software resources have also contributed
to the adoption of deep learning in almost every field. Despite
impressive performance and widespread acceptability, there exist
communities in psychology, neuroscience, and many other domains

SAC’21, March 22-March 26, 2021, Gwangju, South Korea
2021. ACM ISBN 978-1-4503-8104-8/21/03. . . $15.00
https://doi.org/10.1145/3412841.3441926

that are reluctant to accept the solutions proposed by deep learn-
ing. The main cause of their concern is the black-box nature of
deep learning, which conceals the relationship between inputs and
outputs. These communities want to understand the process of
transformation of input to output. Understanding this relationship
is of utmost importance for interpreting and explaining the models.
That is why explainable artificial intelligence is gaining traction
and is subject of much research [2, 7, 9, 22].

We can classify research in explainable artificial intelligence into
two categories. One way is to attach explanations to the black-box
models [8]. Other approaches are inherently explainable because of
their white-box nature. One such technique is genetic programming
(GP). It is not only intrinsically transparent but can also be employed
to generate explanations of black-box models [8, 10]. Thus, it has
the potential to achieve good performance without compromising
explainability.

Despite the inherent advantage of its white-box nature, GP is
not as widely used as deep learning. One of the limiting factors is
the complexity of the solutions generated by GP, where complexity
refers to the size of the individual, and the size means the number of
nodes in a tree. The programs generated by GP tend to grow in size
without significantly improving performance. This phenomenon
is called “bloat”. This problem has been identified from the very
early days of GP [3] and the literature is replete with methods
for bloat identification and control [13, 21]. One of the well-know
bloat control techniques is simplification [12]. The logic behind
simplification is to reduce the size of the individual. It does so
by identifying the redundant parts that are not contributing to
the improvement in fitness. It then removes these redundant non-
contributing parts, resulting in a smaller sized individual with the
same or better fitness.

In this paper, we propose two simplification techniques and re-
port their results in two tasks, comparing them with the results of
standard GP. First, we apply them to the task of generating explana-
tory models for a well-known psychology experiment known as the
Posner cueing task, the aim of which is to understand attentional
mechanisms in human cognition. In this experiment, a cue first
appears (e.g. an arrow pointing left or right). Then, participants
have to respond as rapidly as possible to a target presented to the
left or right of a fixation point or the left or right ear. To further
verify the performance and applicability of these simplification
techniques, we also apply them to a symbolic regression problem.
GP has already been used extensively for performing symbolic re-
gression. We found that both these techniques generate solutions of
significantly reduced size in both the Posner cueing and symbolic
regression problems. It was further observed that this reduction in
size does not come at a price of fitness or execution time.

https://doi.org/10.1145/3412841.3441926
https://doi.org/10.1145/3412841.3441926

SAC’21, March 22-March 26, 2021, Gwangju, South Korea Javed et al.

2 SIMPLIFICATION
Since GP is primarily fitness driven, it tends to prefer fitter indi-
viduals by assigning them a high probability of selection to breed
the next generation of individuals. This approach has several side
effects.

• The size of individuals keeps on increasing over generations.
At the same time, the rate of improvement in fitness de-
creases gradually. So, a little improvement in fitness comes
at the cost of a significant increase in size.

• Multiple copies of an individual can exist in a generation
and across generations.

• Redundant genetic material. Many individuals share the
same copies of genetic materials in the form of common
subtrees.

Although a limited amount of redundancy is not harmful, an
increase in redundancy means a decrease in diversity, which in turn
means a meager exploration of the search space; this may result in
premature convergence.

To address these side effects, researchers propose several simplifi-
cation techniques in the literature. The core idea behind all of them
is to identify and get rid of the redundant and non-contributing
parts, also called introns. Simplification algorithms mainly differ in
the way they spot similarities. Some of them use syntactic similarity
to classify a part of an individual as redundant, whereas others use
semantic similarity to achieve the same aim.

The earliest and most frequently used form of bloat control is
to place a constraint on the size of the program. The target of this
constraint is usually the depth of the GP trees. The limitation of
this approach is that it cannot find solutions lying beyond these
limits. Moreover, the individuals within those limits can still contain
redundant and unwanted code. Another frequently used idea is to
make program size an integral part of the fitness function. In this
way, the individuals bigger in size get penalised, thus making it
less likely for them to take part in reproduction. These sorts of
approaches are categorised under parsimony pressure.

Unlike the above mentioned indirect ways of controlling bloat,
algebraic simplification [23, 24] is inspired by the principles of al-
gebra. It replaces a part of code with an algebraic equivalent that
is smaller in size. In this way, it guarantees that the fitness of the
individual will remain unaffected by the process of simplification.
The limitation of algebraic simplification is that domain experts
need to develop equivalence rules. This process may be simple
for mathematical problems but can pose significant challenges for
other types of problems. Probably because of this reason, it has
been mostly applied to symbolic regression and classification prob-
lems. Another limitation is that it never considers the fact that two
different-looking individuals can yield the same behaviour; thus,
they are semantically equivalent. The algebraic approach is unable
to simplify such cases.

Numerical simplification techniques work at the semantic level
rather than the algebraic level [11]. They work out by calculating
the contribution of a node in its parent’s fitness. If the contribution
is significant, the child node replaces its parent node. Similarly,
constants can replace some nodes. The first limitation of this ap-
proach is that the process is localised and limited to just one node.
Secondly, thresholds must be defined very carefully and can have a

significant impact. Another issue is the maintenance of minimum
and maximum values to take pruning decisions. These limitations
are addressed by defining a mechanism of accepting or rejecting
pruning proposals based on permutation tests [18]. In another vari-
ant [14], the authors evaluate subtrees against some predefined
regression points. Based on this evaluation, these subtrees are re-
placed by simpler subtrees. The main limitation of this approach is
the penalty incurred in the form of computational cost. The authors
of [4] have used a very similar technique of replacing a subtree with
a terminal. They further extended their approach and proposed to
replace a subtree with another subtree with approximately the same
semantics [5, 15]. In [6], the authors proposed five different simpli-
fication techniques inspired from epigenetics. Instead of completely
removing a gene, they silence it to retain the chance that mutation
may unsilence it at some point in time. They used PushGP as the
platform for implementing these simplification algorithms.

A relatively new approach of bloat control is using the execution
time of individuals rather than their size [6, 19]. Our proposed tech-
niques can be categorised under numerical simplification as they
are based on fitness rather than syntactic similarity. It is currently
based on program size but can be easily extended to time-driven
simplification. Another major difference is that both our simplifi-
cation algorithms work as part of an evolutionary run rather than
post-processing of the individuals.

3 PROPOSED SIMPLIFICATION TECHNIQUES
3.1 Generationwide Simplification (Gws)
Since GP generates individuals through crossover, they contain the
genetic material of both the parents. Some of this genetic material
is important and contributing to the better fitness of the individual,
while some of it can be of no use. Thus, there is a possibility of
reducing the size of an individual by keeping a copy of good genetic
material and removing the one that is not contributing. The idea is
to replace a less fit parent individual with a child of better fitness.
Since a child is a subtree of a parent individual, its size will be
smaller than the parent tree.

We apply this simplification mechanism to all individuals of
every 𝑘th generation. At every 𝑘th generation, instead of breeding
the new individuals, using crossover or mutation, all individuals are
subject to the simplification procedure. Every individual produces
several child subtrees, whose fitness is re-computed. A hash value
of every subtree is computed and is stored. In this way, multiple
instances of a subtree – whether they exist in an individual or
within different individuals – are stored only once. This process will
create a new population of individuals that may or may not exceed
the specified population size. If the number of newly generated
individuals is greater than the population size, some of them having
low fitness values will be discarded. But in the other case, the
remaining individuals are generated following the routine process
of crossover and mutation.

This idea has the following potential merits:
• Getting rid of the multiple copies of individuals
• Possibility of unlocking good genetic material locked within
an individual. This situation happens when a subtree has bet-
ter fitness than the parent. But because of the other genetic
material in the parent individual, it cannot express itself.

On-the-fly simplification of genetic programming models SAC’21, March 22-March 26, 2021, Gwangju, South Korea

• Getting rid of low-quality genetic material.
• No growth in terms of the size of the individuals. In the worst
case – when every individual is of higher fitness than all of
their children – they will remain untouched and become a
part of the population. However, in the average case, there
will be a reduction in the size of the individuals.

• No extra computational cost. We compute a hash value of ev-
ery individual and store its fitness against that. So, redundant
copies of individuals have no impact as they will undergo
fitness computation only once.

3.2 Pruning as an Operator
In contrast to the generationwide simplification, pruning operates
at the individual level rather than at the population level. The mo-
tivation behind this is to prune only those individuals who have
a high probability of being selected as parents. These are the indi-
viduals of relatively higher fitness than the rest of the population.
Thus, we applied pruning as an operator in every generation after
calculating the fitness and sorting the individuals by fitness. Prun-
ing selects the top few percent individuals of a population, based on
fitness, and prunes them. This percentage is called the pruning rate,
which can be varied. The individual selected for pruning undergoes
a lossless pruning process. The pruning operator generates a set
of subtrees of an individual and computes their fitness. The fittest
subtree replaces the parent tree. If the fitness of the parent tree is
best, it can retain its place without being impacted by the pruning
operator.

Pruning, as an operator, offers the following benefits:
• Reduction in size of relatively fit individuals
• It does not interferewith the normal working of other genetic
operators

• Very low computational overhead. This overhead depends
on the pruning rate. With high pruning rates, it can be costly.

You can notice the similarity of the simplification procedure
between both these techniques. They mainly differ in their appli-
cation, where the former works at the generational level and the
latter operates at the individual level. There are some other subtle
differences. For example, in pruning, after splitting, the replacement
of an individual comes from one of its children. Whereas in gen-
erationwide simplification, an individual and all its children may
disappear from the population because of low fitness values; hence
the one-to-one replacement of parent and child is not guaranteed.

4 EXPERIMENTS AND RESULTS
To test our proposed simplification algorithms, we use two prob-
lems of a completely different nature. The first is a well-known
psychology experiment to understand the attentional mechanisms
in human cognition, and the task is to find a model accounting for
the human data. The other one is a classical symbolic regression
problem.

4.1 Posner’s cueing experiment
The experiment we used was carried out by Arjona et al.[1] and is a
variation of Posner’s cueing task [16]. The general aim of this task
is to understand the role of attention on rapid perceptual decision
making. In Arjona et al.’s experiment, participants are seated in

front of a computer display and fixate a white cross at the centre
of the screen. The cross is then replaced by an arrow, pointing
either to the left or the right (visual cue). This is followed by the
presentation of a sound in either the left or right ear (auditory
stimulus). Participants are asked to press the button corresponding
to the side of the auditory stimulus, using the index finger of the
left or right hand. They have one second to do so. After a short
pause, this sequence of events is repeated in the following trial.

The detailed time course of events is as follows:
(1) The central white cross is fixated for 300 milliseconds (ms)
(2) The visual arrow is displayed for 300 ms
(3) The central white cross is shown for 370 ms
(4) The auditory stimulus is presented for 100 ms
(5) The white cross is shown while the participant provides a

response (within 1,000 ms)
While the auditory stimuli were randomly presented to the left or

right ear with equal probability, the cue validity was systematically
manipulated. In the 50% validity condition, the visual cue was valid
(i.e. correctly predicted the auditory stimulus) in 50% of the trials.
In the 68% validity condition, the cue was predictive in 68% of the
trials. Finally, in the 86% validity condition, the cue was predictive
in 86% of the trials. The trials were organised in 6 blocks of 100 trials,
with 2 blocks for each cue validity condition. Thirty participants
took part in Arjona et al.’s (2016) experiment.

Arjona et al. collected both behavioural data and electrophysio-
logical data. In our simulations, we used only the behavioural data
(response time and the number of errors). The main results were as
follows. There was a significant cueing effect, as the response times
were faster in the valid trials than in the invalid trials; the effect
increased together with the proportion of valid trials (86% > 68% >

50%). Accuracy was also affected by cue validity: as the percentage
of cue validity increased, the percentage of incorrect responses
increased in the invalid trials, compared to the valid trials.

The simulations implemented the key features of the human
experiment described above, thus producing 12 data points (3 cue
validities (50%, 68% and 86%) × 2 types of trials (valid and invalid)
× 2 dependent variables (response time and the number of errors)).
The main simplification in the simulations was that the stimuli were
presented symbolically and not as bitmaps and physical sounds. GP
constructed models by combining terminals and operators, which
all had a simulated time cost, the value of which was based on
the psychological literature. The operators implementing learning
employed Rescorla and Wagner’s rule [17]:

Δ𝑉 = 𝛼 (𝜆 −𝑉)
where Δ𝑉 is the change in the strength of association between

cue and stimulus, 𝛼 is the rate of change, 𝜆 the maximal value of
the strength of association, and V the current strength of associa-
tion. The terminals and operators used in the simulations were (a)
terminals for inputting the cue and the stimuli, and responding; (b)
operators for inputting and retrieving information in short-term
memory (STM), and for comparing two elements in STM; (d) opera-
tors for carrying sequences of actions; (e)“waiting” operators, which
did not do anything except increase a model’s clock; (f) operators
for directing attention; (g) operators for matching cue-stimulus
probability or learning it using Rescorla and Wagner rule; and (h)
IF and NIL. Table 1 presents the detail of the operators used.

SAC’21, March 22-March 26, 2021, Gwangju, South Korea Javed et al.

Operator Arity Description
access-stm-1 (2 or 3) 0 Put item in STM slot 1 (2 or 3) into current value
compare-1-2 (1-3 or 2-3) 0 Current value is true/false if STM item 1/2/3 = item 2/3/1
if 3 Selects between two operators based on current value
prog2 (3 or 4) 2 Sequentially do two (three or four) operators
put-stm 0 Push current value on to STM
wait-200 (1000 or 1500) 0 Waits for 200 ms (1,000 or 1,500 ms)
nil 0 Set current value to 0 (’false’)
respond-cue 0 Uses only the cue to predict the stimulus
respond-stimulus 0 Always responds with the stimulus
match-probability 0 Uses the predictive validity of the cue, which is assumed to be known
ResWagner-update 0 Learns by updating the predictive validity of the cue
ResWagner-cue-stimulus 0 Uses the cue and the strength of association to predict the stimulus
ResWagner-cue-priming-stimulus 0 Uses both the cue and the perception of the stimulus to select the stimulus

Table 1: Operators for modelling Posner’s Task

4.1.1 Experimental Setup. We used the GP library proposed by
Koza [12] to implement the two tasks and the simplification algo-
rithms. Steel bank Common Lisp (SBCL) [20] version 1.5.5 was used
to run the experiments. We ran the experiment 10 times, where
each run comprised 100 generations. The population size of each
generation was 1,000. Generationwide simplification was applied
after every 25th generation while the pruning rate was 2 percent.

4.1.2 Results. The top ten individuals of every run, in terms of
fitness, were compared using their average and maximum program
sizes (see figure 1). The maximum reduction in program size oc-
curred by applying both simplification schemes. However, for the
large-sized individuals, generationwide simplification was better
in limiting their growth. You can notice the small boxes of sim-
plification schemes as compared to the plain GP, indicating that
these schemes were successful in reducing the sizes of most of the
individuals.

���
����	

���

���
����	

��

���
���	�

��

���

���	�
�
����

��	��
�
����

��	��

����

��	��
�

����

��	��

��

���

���

���

���

�
��

��
�
��
��
�

�������
���
����

Figure 1: Posner Task - Top 10 / Run: Program Size

We compared these top 10 individuals of every run in terms of
fitness. Here in figure 2, we present the mean and minimum fitness.
A minimum is better because it reflects the error with respect to

the original. You can notice that, in terms of minimum fitness, plain
GP is best. However, other schemes are not very far from it. The
smaller areas of simplification schemes suggest that most of the
individuals are very near to each other in terms of fitness.

��
��
��

���

��

��
��
��

����
�
���

��
����

�
���
�
����

����
�
����

����
�����

����
�
�����

����

����	

�����

�����

�����

�����

����	

�����

��
��
��
�

����������������

Figure 2: Posner Task - Top 10 / Run: Fitness

Generation specific statistics demonstrate the performance of
simplification schemes as a part of the evolutionary journey. Figure
3 shows the comparison of the size of the fittest 20 individuals
of every generation. It is evident from the figure that both the
simplification schemes perform better than the plain GP. In some
cases, the difference is very significant. This reduction in program
size does not come at the cost of diversity, as is evident from the
bottom-most graph of the same figure. This graph shows the plot
of the standard deviation of the program size.

At what cost this reduction in size happened is a pertinent ques-
tion at this stage. Two relevant cost measures are a cost in terms
of fitness and a cost in terms of loss in diversity. To measure the
first cost, we compared the fitness of the fittest 20 individuals of
all generations (see figure 4). One can observe that the plain line is
slightly lower than the other lines most of the time, thus indicat-
ing better fitness when no simplification is applied. However, the

On-the-fly simplification of genetic programming models SAC’21, March 22-March 26, 2021, Gwangju, South Korea

�

��

���

���

��
��

��
�
��
�#
�

������
�� �����
�!���
�����
����
�����

�

���

���

���

��
��

��
�
��
�#
�

������
���"����
�!���
�����
����
�����

� �� �� �� 	� ���
�����������

�

��

��

��

��
��

������
����������
� ������
�!���
�����
����
�����

Figure 3: Posner Task - Best 20: Program Size

four lines are very near, hence pointing out the negligible cost of
simplification in terms of fitness.

����

����

��
��
��
�

������
��!�����
�"���
�� ��
����
�����

����

����

����

��
��
��
�

������
���#�� �
�"���
�� ��
����
�����

� �� �� �� 	� ���
�����������

�����

�����

�����

��
��

!

������
����������
�!������
�"���
�� ��
����
�����

Figure 4: Posner Task - Best 20: Fitness

So far, the story is about the fittest individuals. To measure
how much simplification is impacting the overall dynamics of the
evolutionary progress, we compare the program sizes, fitness, and
execution time taken by individuals. The scale of the comparison
is at the population level to get a population-level view. Figure
5 compares the program sizes in terms of average program size
and maximum program size. It is evident from the graphs that
simplification algorithms perform better than the plain GP. These
simplification algorithms are successful not only in reducing the
size of the better individuals but also have a positive impact on the
whole population.

To verify the cost paid in terms of fitness and loss in diversity,
we compared population-wide fitness. The comparison is shown
in figure 6. We observe no significant loss in terms of fitness. A
comparison of diversity, both in terms of fitness and program size,
was captured by calculating the standard deviation as presented in
figure 7. Again, no loss in diversity is evident from the graph.

��

��

��

��

���

���

�
��

��
�
��
��
�

	�������
�����������

�����

����

���

����

� �� �� �� �� ���
�����������

���

���

���

���

���

���
����
�����������

�����

����

���

����

Figure 5: Posner Task - Comparison of Program Sizes

���

���

���

��	

��������������

����
�����
����
�����

� �� �� �� 	� ���

����������

�����

�����

�����

�����

��
��
��
�

���������������

����
�����
����
�����

Figure 6: Posner Task - Comparison of Fitness

�����

�����

�����

���	�

�����

�����

������

� ���
�����
����
�����

� �� �� ��
� ���
�����������

��

��

��

����������!�

� ���
�����
����
�����

��
��
��
��
��
��
��
���
�

Figure 7: Posner Task - Comparison of Diversity

SAC’21, March 22-March 26, 2021, Gwangju, South Korea Javed et al.

�

���

���

���

��
��

��
�
��
�!
�

�������	������
�����
�����

���
�����

�

���

���

���

��
��

��
�
��
�!
�

�������
� ����
�����
�����

���
�����

� �� �� �� �� ���
�����������

�

��

���

��
��

�

�������������������������
�����
�����

���
�����

Figure 8: Symbolic Regression - Best 20: Program Size

We conclude from the results that these simplification schemes
help reduce the sizes of individuals without incurring a performance
penalty or loss of diversity.

4.2 Symbolic Regression
To verify the applicability of the proposed simplification algorithms,
we used a classical regression problem of fitting the curve to a
degree four polynomial.

𝑥4 + 𝑥3 + 𝑥2 + 𝑥

GP has already been used extensively for generating solutions for
this kind of problem.

4.2.1 Experimental Setup. The operators required to generate so-
lutions for this task are the classical mathematical operators of
addition, subtraction, multiplication, and trigonometric functions.
We also implemented a safe division operator to avoid division by
zero. The experiments were executed using version 1.5.5 of SBCL.
Each experiment was run 10 times where each run comprised 100
generations and the population size of each generation was 1,000.

4.2.2 Results. When tested on symbolic regression, most of the
time pruning as an operator produced individuals that were very
similar to each other across generations. It also failed to reduce
the size of the individuals, as presented in figure 8. One can notice
that pruning as an operator nullified the impact of generationwide
simplification. Hence, the plot lines of both almost followed the
trend of pruning. The standard deviation plot showed the loss in
diversity whenever pruning is applied. This loss in diversity is the
reason for search being stuck in local minima, thus producing indi-
viduals comprising of the same genetic makeup. Generationwide
simplification, on the other hand, not only reduced the size of the
individuals but also retained genetic diversity.

To make sure that there is no price of size reduction, a compari-
son of the fitness of the fittest 20 individuals of all generations is
presented in figure 9. All the approaches are equally performing as
is evident from the very close fitness lines.

To holistically study the behaviour, we compared the program
sizes of all individuals across generations. Figure 10 depicts the same

�

�

�

�
��
��

�

������	�
 �����
�!���
�����
����
�����

�

�

�

�
��
��

�

������	���"����
�!���
�����
����
�����

� �� �� �� �� ���
�����������

���

���

���

���

��
��

������	������������ ������
�!���
�����
����
�����

Figure 9: Symbolic Regression - Best 20: Fitness

�

���

���

���

���

���

���

�
��

��
�
��
��
�

	�������
�����������

�����

����

���

����

� �� �� �� �� ���
�����������

���

���

���

���

���

���

����
�����������

�����

����

���

����

Figure 10: Symbolic Regression - Comparison of Program
Sizes

trend as was observed in the case of the top 20 individuals. Hence,
the hypothesis of pruning based simplification leading towards
local optima is further validated. Generationwide simplification
line stayed below the plain line most of the time, thus indicating
the marginal reduction in program sizes.

To verify the cost paid in terms of fitness, we compare population-
wide fitness. The comparison is shown in figure 11. Again, it fol-
lowed the same trend that was presented in the top 20’s scenario.
Sometimes we obtained better fitness by applying simplification.

A comparison of diversity, both in terms of fitness and program
size, is presented by calculating the standard deviation in figure12.
In terms of fitness, there are no significant differences between all
the schemes. However, the rate of growth of standard deviation
when pruning is applied is not as fast as the generationwide simpli-
fication and plain GP. This indicates the loss of genetic diversity.

These results indicate that better solutions, with a relatively
smaller size, can be obtained by applying these simplification schemes.
However, pruning is prone to stick in local minima because it causes

On-the-fly simplification of genetic programming models SAC’21, March 22-March 26, 2021, Gwangju, South Korea

�

�����

�����

�����

�����

�����

	��������������

�����
�����

���
�����

� �� �� �� �� ���
�����������

�

�

�

�

�

�

��
��
��
�

��������������

�����
�����

���
�����

Figure 11: Symbolic Regression - Comparison of Fitness

���

���

���

���

��� �������������

�����

����
	���

����

� �� �� �� �� ���
�����������

��

��

��

��

������
�����������

�����

����
	���

����

��
��
��
��
�

��
��
���
�

Figure 12: Symbolic Regression - Comparison of Diversity

the loss of genetic diversity. On the other hand, generationwide
simplification is robust to any such genetic loss.

5 CONCLUSION AND FUTUREWORK
White-box approaches are needed to cope with the challenge of
interpretability and explainability in machine learning. GP is one
such approach and has the potential to take the lead, provided it
can simplify its generated models by reducing their size. This paper
proposed two simplification techniques to reduce the size of GP
generated models. Both of these techniques work as part of the
evolutionary process, thus offering a chance to control bloat as
well. An added benefit of these techniques is keeping redundancy
under check. The proposed approaches are tested by implementing
a well-known psychological experiment and the classical symbolic
regression problem. Both these approaches performed better than
the plain GP. No extra cost is incurred in the form of loss of fitness
and/or loss in diversity. Both the approaches generated models of
significantly smaller sizes as compared to the plain GP.

As claimed, these approaches can be extended using time as a
simplification parameter rather than size. Time could be execution

time or any other form of time, such as reaction time in the case
of the operators used in the Posner task. The potential benefit of
using time-based simplification is qualitatively comparing different
operators taking part in the model generation. Another idea is
to compare these simplification techniques with multi-objective
fitness measures where a part of the fitness function will take care
of size or time. Thus, penalising individuals with greater sizes and
high time measures by assigning them low fitness.

These approaches can be made computationally more viable
by storing fitness results and output vectors of the individuals. In
this way, whenever required these stored results can be accessed
without any need for recalculation. These stored results can also
be used as a semantic measure to measure the similarity of two
genetic different looking individuals. Hence, the current fitness
driven simplification approaches can be extended by output result-
driven measures.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous referees for their
valuable comments and helpful suggestions. This article is part of
the project "Genetically Evolving Models in Science (GEMS)" that
has received funding from the European Research Council (ERC)
under the grant agreement no. ERC-2018-ADG-835002.

REFERENCES
[1] Antonio Arjona, Miguel Escudero, and Carlos M. Gómez. 2016. Cue validity

probability influences neural processing of targets. Biological Psychology 119
(2016), 171 – 183. https://doi.org/10.1016/j.biopsycho.2016.07.001

[2] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Ben-
netot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel
Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020. Ex-
plainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI. Information Fusion 58 (June 2020), 82–115.
https://doi.org/10.1016/j.inffus.2019.12.012

[3] Tobias Blickle and Lothar Thiele. 1994. Genetic programming and redundancy.. In
Genetic Algorithms within the Framework of Evolutionary Computation (Workshop
at KI-94). Saarbrücken, 33–38.

[4] T. H. Chu and Q. U. Nguyen. 2017. Reducing code bloat in Genetic Programming
based on subtree substituting technique. In 2017 21st Asia Pacific Symposium on
Intelligent and Evolutionary Systems (IES). 25–30.

[5] Thi Huong Chu, Quang Uy Nguyen, and Van Loi Cao. 2018. Semantics Based
Substituting Technique for Reducing Code Bloat in Genetic Programming. In
Proceedings of the Ninth International Symposium on Information and Commu-
nication Technology - SoICT 2018. ACM Press, Danang City, Viet Nam, 77–83.
https://doi.org/10.1145/3287921.3287948

[6] Francisco Fernández de Vega, Gustavo Olague, Francisco Chávez de la O, Daniel
Lanza, Wolfgang Banzhaf, and Erik D. Goodman. 2020. It is Time for New Perspec-
tives on How to Fight Bloat in GP. CoRR abs/2005.00603 (2020). arXiv:2005.00603
https://arxiv.org/abs/2005.00603

[7] Jean-Marc Fellous, Guillermo Sapiro, Andrew Rossi, Helen Mayberg, and Michele
Ferrante. 2019. Explainable Artificial Intelligence for Neuroscience: Behavioral
Neurostimulation. Frontiers in Neuroscience 13 (Dec. 2019), 1346. https://doi.org/
10.3389/fnins.2019.01346

[8] Leonardo Augusto Ferreira, Frederico Gadelha Guimarães, and Rodrigo Silva.
2020. Applying Genetic Programming to Improve Interpretability in Machine
Learning Models. arXiv:2005.09512 [cs] (May 2020). http://arxiv.org/abs/2005.
09512 arXiv: 2005.09512.

[9] Randy Goebel, Ajay Chander, Katharina Holzinger, Freddy Lecue, Zeynep Akata,
Simone Stumpf, Peter Kieseberg, and Andreas Holzinger. 2018. Explainable
AI: The New 42? In Machine Learning and Knowledge Extraction. Vol. 11015.
Springer International Publishing, Cham, 295–303. https://doi.org/10.1007/
978-3-319-99740-7_21 Series Title: Lecture Notes in Computer Science.

[10] Daniel Howard and Mark A. Edwards. 2018. Explainable A.I.: The Promise of
Genetic Programming Multi-run Subtree Encapsulation. In 2018 International
Conference on Machine Learning and Data Engineering (iCMLDE). IEEE, Sydney,
Australia, 158–159. https://doi.org/10.1109/iCMLDE.2018.00037

[11] David Kinzett, Mengjie Zhang, and Mark Johnston. 2008. Using Numerical
Simplification to Control Bloat in Genetic Programming. In Simulated Evolution

https://doi.org/10.1016/j.biopsycho.2016.07.001
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1145/3287921.3287948
http://arxiv.org/abs/2005.00603
https://arxiv.org/abs/2005.00603
https://doi.org/10.3389/fnins.2019.01346
https://doi.org/10.3389/fnins.2019.01346
http://arxiv.org/abs/2005.09512
http://arxiv.org/abs/2005.09512
https://doi.org/10.1007/978-3-319-99740-7_21
https://doi.org/10.1007/978-3-319-99740-7_21
https://doi.org/10.1109/iCMLDE.2018.00037

SAC’21, March 22-March 26, 2021, Gwangju, South Korea Javed et al.

and Learning. Vol. 5361. Springer Berlin Heidelberg, Berlin, Heidelberg, 493–
502. https://doi.org/10.1007/978-3-540-89694-4_50 Series Title: Lecture Notes
in Computer Science.

[12] John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo (Eds.). 1996.
Genetic Programming 1996: Proceedings of the First Annual Conference, July 28-31,
1996, Stanford University. The MIT Press. https://doi.org/10.7551/mitpress/3242.
001.0001

[13] Sean Luke and Liviu Panait. 2006. A Comparison of Bloat Control Methods for
Genetic Programming. Evolutionary Computation 14, 3 (Sept. 2006), 309–344.
https://doi.org/10.1162/evco.2006.14.3.309

[14] Mori Naoki, Bob McKay, Nguyen Xuan, Essam Daryl, and Saori Takeuchi. 2009.
A New Method for Simplifying Algebraic Expressions in Genetic Programming
Called Equivalent Decision Simplification. In Distributed Computing, Artificial
Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. Vol. 5518.
Springer Berlin Heidelberg, Berlin, Heidelberg, 171–178. https://doi.org/10.1007/
978-3-642-02481-8_24 Series Title: Lecture Notes in Computer Science.

[15] Quang Uy Nguyen and Thi Huong Chu. 2020. Semantic approximation for reduc-
ing code bloat in Genetic Programming. Swarm and Evolutionary Computation
58 (Nov. 2020), 100729. https://doi.org/10.1016/j.swevo.2020.100729

[16] Michael I. Posner. 1980. Orienting of attention. Quarterly Journal of Experimen-
tal Psychology 32, 1 (1980), 3–25. https://doi.org/10.1080/00335558008248231
arXiv:https://doi.org/10.1080/00335558008248231 PMID: 7367577.

[17] Robert A. Rescorla and A. R. Wagner. 1972. A theory of Pavlovian conditioning:
Variations on the effectiveness of reinforcement and non-reinforcement. In
Classical conditioning II: Current research and theory. Appleton-Century-Crofts,
New York, 64–99.

[18] Peter Rockett. 2020. Pruning of genetic programming trees using permu-
tation tests. Evolutionary Intelligence (April 2020). https://doi.org/10.1007/
s12065-020-00379-8

[19] Aliyu Sani Sambo, R. Muhammad Atif Azad, Yevgeniya Kovalchuk, Vivek Pad-
manaabhan Indramohan, and Hanifa Shah. 2020. Time Control or Size Control?
Reducing Complexity and Improving Accuracy of Genetic Programming Models.
In Genetic Programming. Vol. 12101. Springer International Publishing, Cham,
195–210. https://doi.org/10.1007/978-3-030-44094-7_13 Series Title: Lecture
Notes in Computer Science.

[20] SBCL. 2019. Steel Bank Common Lisp. http://www.sbcl.org/
[21] Sara Silva, Stephen Dignum, and Leonardo Vanneschi. 2012. Operator equali-

sation for bloat free genetic programming and a survey of bloat control meth-
ods. Genetic Programming and Evolvable Machines 13, 2 (June 2012), 197–238.
https://doi.org/10.1007/s10710-011-9150-5

[22] Jonas Wanner, Lukas-Valentin Herm, and Christian Janiesch. 2020. How much is
the black box? The value of explainability in machine learning models.. In ECIS
2020 Research-in-Progress Papers. 15. https://aisel.aisnet.org/ecis2020_rip/85

[23] Phillip Wong and Mengjie Zhang. 2006. Algebraic simplification of GP programs
during evolution. In Proceedings of the 8th annual conference on Genetic and
evolutionary computation - GECCO ’06. ACM Press, Seattle, Washington, USA,
927. https://doi.org/10.1145/1143997.1144156

[24] Phillip Wong and Mengjie Zhang. 2007. Effects of program simplification on
simple building blocks in Genetic Programming. In 2007 IEEE Congress on Evolu-
tionary Computation. IEEE, Singapore, 1570–1577. https://doi.org/10.1109/CEC.
2007.4424660

https://doi.org/10.1007/978-3-540-89694-4_50
https://doi.org/10.7551/mitpress/3242.001.0001
https://doi.org/10.7551/mitpress/3242.001.0001
https://doi.org/10.1162/evco.2006.14.3.309
https://doi.org/10.1007/978-3-642-02481-8_24
https://doi.org/10.1007/978-3-642-02481-8_24
https://doi.org/10.1016/j.swevo.2020.100729
https://doi.org/10.1080/00335558008248231
http://arxiv.org/abs/https://doi.org/10.1080/00335558008248231
https://doi.org/10.1007/s12065-020-00379-8
https://doi.org/10.1007/s12065-020-00379-8
https://doi.org/10.1007/978-3-030-44094-7_13
http://www.sbcl.org/
https://doi.org/10.1007/s10710-011-9150-5
https://aisel.aisnet.org/ecis2020_rip/85
https://doi.org/10.1145/1143997.1144156
https://doi.org/10.1109/CEC.2007.4424660
https://doi.org/10.1109/CEC.2007.4424660

	Abstract
	1 Introduction
	2 Simplification
	3 Proposed Simplification Techniques
	3.1 Generationwide Simplification (Gws)
	3.2 Pruning as an Operator

	4 Experiments and Results
	4.1 Posner's cueing experiment
	4.2 Symbolic Regression

	5 Conclusion and Future Work
	Acknowledgments
	References

