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Abstract

Modern-day search platforms generally have two layers of information presentation. The outer

layer displays the collection of search results with attributes selected by platforms, and consumers

click on a product to reveal all its attributes in the inner layer. The information revealed in

the outer layer affects the search costs and the probability of finding a match. To address the

managerial question of optimal information layout, we create an information complexity measure

of the outer layer, and study the consumer search process for information at the expense of time

and cognitive costs. We first conduct online random experiments to show that consumers respond

to and actively reduce cognitive cost for which our information complexity measure provides a

representation. Then, using a unique and rich panel tracking consumer search behaviors at a

large online travel agency (OTA), we find cognitive cost is a major component of search cost,

while loading time cost has a much smaller share. By varying the information revealed in the

outer layer, we find price revelation shifts search behavior most dramatically compared to the

other product attributes. We propose information layouts that Pareto-improve both revenue and

consumer welfare for our OTA.
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1 Introduction

The Internet has opened an expansive ocean of information and product choices to consumers.

Search platforms are valuable compasses in this ocean helping consumers acquire information and

make choices effectively and efficiently. Modern-day search platforms can generally be considered

as having two layers of information presentation. The outer layer displays the collection of search

results, and consumers may click on a search-result entry to learn about all the product details

in the inner layer. To assist consumers during their search process, platforms usually summarize

the products by selecting a subset of product attributes to display in the outer layer. If too much

information is presented in the outer layer, the need to click beyond the outer layer is reduced; yet

the search-result pages may become too complex and require too much cognitive effort for consumers

to understand. If too little information is presented, the search-result pages may become trivial to

understand, but consumers need to incur high clicking cost to find what they need.

We use the historical layout change in Google’s search-result pages as a motivating example.

Figure 1 shows the layout of search-result pages for the keyword “minimalistic” in 2000 on the

left and in 2016 on the right.1 The left panel shows the early design, which only revealed the

title of the search-result items. The right panel shows the modern design, under which Google

reveals additional article information to consumers, including host names, URLs, and the tagline

of the articles. Consumers gain more certainty about the link content by reading the additional

information, and hence click fewer times.

Similar design decisions need to be made for shopping search platforms, such as Expedia, where

the platform needs to decide which hotel attributes to display on the search-result pages, and how the

search-result pages have to be revised for smaller screens, for example, mobile phones. Understanding

how much information to reveal in the outer layer to help consumers search more effectively is in the

interest of search platforms. This issue is a central platform design decision that balances simplicity

and usefulness (Wong (2017)).

Before we delve into further details, we lay out the key elements of the consumer search process

and the terms used. A more thorough introduction will be provided in Section 3. During their

search process on modern search platforms, consumers navigate the outer layer by visiting different
1Photo courtesy of http://sebastians-pamphlets.com/rediscover-googles-free-ranking-checker/.
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Figure 1: Changes in Google’s search interface. The left panel shows the design of the search-result
page in 2000, and the right panel shows the design in 2016.

“refinements” that are collections of search results. Each refinement is defined by some filter criteria

that narrow the search-result set, and by some sorting criteria that order the search results. If

the consumers specify no sorting criteria, a default platform-suggested ranking is applied to order

the search results. Once they observe the product availability and the partially revealed product

information on the visited refinements, the consumers decide which products to click on for more

information. While the consumers acquire product information in this process, they also incur

various search costs, including time and cognitive cost. In particular, consumers need to wait for

webpages to load, and to exert cognitive effort to understand and compare the revealed product

information.

In this paper, we answer the research question of how consumers acquire information at the

expense of time and cognitive costs. Answering this question helps us address the managerial

question of the optimal amount of information to reveal in the outer layer. To answer these questions,

we collect measures of time cost and innovate measures of cognitive costs. We then find model-free

evidence that supports the impact of these costs on the consumer search process. We conceptualize

the consumer search process described above by proposing a new structural model. Finally, given

the above knowledge, we try to improve the platform design that balances consumer welfare and

platform revenue.
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We further expound on our research and illustrate its connection to the most related literature

in terms of the research question, cost measures, data, and model.

In terms of the research question, the consumer search literature grew out of the economic theory

of information search (Stigler (1961)), in which consumers are no longer assumed to be all-knowing

agents as in the traditional demand theory. Instead, consumers form their consideration sets for final

purchase decisions by engaging in information search (Hauser and Wernerfelt (1990) and Roberts and

Lattin (1991)). Search cost estimation is the focus of the empirical search literature because it lies at

the heart of search models. Depending on the managerial questions being answered, past literature

has looked at the overall search cost per consumer search, such as in Honka (2014) for customer

retention study, and at positional search cost for optimal default platform-suggested ranking, such

as in Ghose et al. (2012, 2014) and Ursu (2018).

Both the refinement visiting and product clicking decisions are important for effective search.

Scant research has studied refinement choice, because of the high demands on data. The closest

papers to ours are Chen and Yao (2016) and De los Santos and Koulayev (2017), which highlight the

importance of studying the consumer refinement choice in that they reflect consumer preferences.

For example, De los Santos and Koulayev (2017) assert that “consumers who sort by price in search

are more price sensitive in choice.” Our insight is that, besides the relationship with consumer

preferences, different refinements also have different “information complexity” (to be defined next)

and hence require different cognitive effort to process. When consumers switch refinements, they

not only change the potential information they will find and hence reflect consumer preference, but

also alter the information complexity and hence reveal information on the cognitive search cost.

In terms of the cost measures, we propose to use webpage-loading time for the time cost, and

we innovate “orderedness entropy” as an information complexity measure, which, together with

consumer responsiveness to it, accounts for cognitive cost. The concept of entropy comes from in-

formation theory, first proposed by Shannon (1948). The earliest appearance of an application of

entropy in the marketing literature is Herniter (1976), who builds a probabilistic model of market

share based on an underlying consumer taste distribution, and estimates this distribution by max-

imizing the entropy of the probabilistic model. For a survey of how information theory is used in

marketing as a unified modeling approach, see Brockett et al. (1995). Our research also relates to

the recent stream of economics research on rational inattention in e.g., Caplin (2016) and Matějka
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and McKay (2015). The rational inattention literature has also applied the concept of entropy, but

mostly in its original sense to quantify the randomness of and the distances between distributions.2

The essence of our measure lies in the insight that filtering and sorting not only bring the

consumers’ favored products to display, but also reduce the consumers’ cognitive effort. As a result,

an effective information complexity measure needs to capture, at its bottom line, the impact of the

well-sortedness of a string of values on consumer perception. Once we have an orderedness measure,

we use entropy to quantify the well-sortedness. Computing entropy for a string of values directly

would miss the target, because permuting that string will generate the same entropy value.

In terms of the data, we have collected a rich data set that allows us to accomplish our task. As we

mentioned, the study of refinement choice puts a high bar on the data for the following reasons. Each

refinement is composed of many products, such as 25 items typical in the online hotel agency context,

and each product has many attributes, some of which are dynamic. For a particular refinement on

different days, the search platform may display different inventory and product attribute values, such

as price levels, due to their dynamic nature. Therefore, consumers may observe different information

on different days even for the same refinement. To carefully model the consumer search process,

we need to reconstruct the exact information consumers have observed. The search platform we

investigate managed to store a large amount of refinements over a long period of time. We managed

the big data challenge to retrieve the dynamic product attributes and rebuild the decision context

during the time window in which consumers arrive. Finally, we organized the data amenable for

efficient search model estimation. The panel data researchers have used in previous consumer search

literature mainly contains the information for the products consumers have clicked on, but not the

refinements consumers have visited, such as in Chen and Yao (2016), Kim et al. (2017) and Ursu
2

The rational inattention (RI) literature studies a general decision context where the decision makers try
to acquire information optimally. To characterize the cost of processing information, the RI framework
proxies a decision maker’s learning effort using the reduction of Shannon entropy from her prior belief
distribution to the posterior belief distribution. Although the entropy concept plays an important role
in our research as well, there are the following differences. Our empirical context involves a consumer
making a sequence of actions to resolve uncertainty of product availability and attributes dynamically.
The standard RI framework models a single static decision to reduce uncertainty and make a choice. In
addition, there is a natural notion of ordering (for table-formatted data) that search platforms utilize by
providing sorting and filtering functionality on the platforms. In particular, contemplating a refinement
page with different ordering of products due to sorting and filtering would require different levels of
cognitive effort. The original RI framework models a generic decision context without such notion of
ordering and cannot capture ordering-induced cognitive costs. Our model tailors to the specific dynamic
search context and captures the notion of ordering using the new orderedness entropy measure.
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(2018). The data that are closest to ours are used in Ghose et al. (2014) and De los Santos and

Koulayev (2017).

In terms of the model, our central principle is to characterize the evolution of consumers’ in-

formation and cost structure during their search process, accounting for model tractability. Our

model is rooted in the sequential search model proposed by Weitzman (1979) and follows the same

tradition as in Kim et al. (2010, 2017), Chen and Yao (2016), De los Santos and Koulayev (2017)

and Ursu (2018). The two papers that study refinement choices have the following defining charac-

teristics. Chen and Yao (2016) model each consumer search action as a combined refinement and

click choice. The authors assume consumers are unaware of the attribute values of all unclicked

products at any stage of the search process. As a result, after a consumer arrives at a particular

refinement and clicks on a product, if she decides to click on another product on the same refinement,

her information about and cost of the second product is assumed to be the same as if she had not

previously arrived on the refinement, even though the refinement reveals some information about the

second product. De los Santos and Koulayev (2017) model refinement choice using sequential search

model, and adopt a discrete choice model of product clicks in a reduced form fashion by assuming

consumers click on at most one product on any refinement. The use of a discrete choice model also

assumes that the attributes and utility shocks of all products are known to consumers after they

visit a refinement. We cannot adopt these models to address our research and managerial questions,

because our model needs to have the flexibility to account for the following scenario. When more

information is revealed on refinement pages, for example, our model should allow the consumers

to utilize the additional information to help their product clicking decisions. They may click less

because less uncertainty surrounds the products they have not sampled, even though the search cost

for clicking has not changed. On the other hand, the additional revealed information should come

at the expense of higher cognitive cost for refinements. As a result, our model needs to capture

both the refinement visiting and product clicking decisions, to distinguish between what consumers

know before and after these two types of search decisions, and to decompose search costs further

into time and cognitive components. Our model uses sequential search framework to allow both

refinement visiting and product clicking as search options, while adopting the same one-step-ahead

simplification as in De los Santos and Koulayev (2017) for model tractability.

In our empirical work, we find that consumers tend to visit more refinements than to click on
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individual products within a search session (a session is the set of search activities within a start

and end timestamp provided by the online travel agency (OTA), similar to the definition in the

previous literature), which means consumers actively use search-result pages as an important source

of information. The increase in the loading time of refinement and product-detail pages decreases the

number of refinement visits and product clicks. Furthermore, we use model-free analysis and online

random experiments to demonstrate that consumers respond to the type of information complexity

represented by orderedness entropy, and they are more likely to sort the information on a refinement

when sorting induces a higher reduction in cognitive cost. Based on our structural model estimates,

we find cognitive cost is a major component of all search costs. For a typical refinement visited,

consumers incur the cognitive cost equivalent of $21.56 on average. Time cost is estimated to be

$20.28 per hour on average, and its share in the search costs is much smaller compared to cognitive

cost. We find the position cost to be $0.07, which is equivalent to a cost of $1.69 if consumers scroll

to the end of a refinement page with 25 products on it. This position cost is similar to that of $0.05

estimated by Chen and Yao (2016) for an average consumer in their context.

Supported with the information complexity measure and the structural model, we study a new

managerial question of optimal information layout that is difficult to address otherwise. We vary the

information revealed in the outer layer to characterize the various changes in the consumer search

process. We find price is an important product attribute whose presence in the outer layer will

dramatically change consumer search behavior. We also study the relationship between consumer

welfare and platform revenue. On the Pareto frontier of this relationship, we find a general tradeoff

in which consumer welfare increases and revenue decreases as more information is revealed. For our

OTA under study, we find room for Pareto improvement in both revenue and consumer welfare by

changing the composition of the revealed product attributes. In the consumer welfare-maximizing

layout, price is revealed (among other changes in attribute revelation), and the platform may increase

consumer welfare by 95% without losing any revenue. In the revenue-maximizing layout, price is

not revealed (among other changes in attribute revelation), and the platform may increase revenue

by about 60% without hurting consumer welfare. We also look at win-win configurations in which

both consumer welfare and platform revenue may be improved nontrivially.

To summarize our contributions in this paper, we extend the search literature to study cognitive

and time costs that are crucial in the consumer online search process. We then make a first attempt

7



at answering an important managerial question of how much information should be revealed in the

outer layer, which could be relevant for all modern search platforms. We innovate an information

complexity measure for cognitive cost, and propose a new structural model to model consumers’

endogenous refinement visiting and product clicking decisions. We believe our modeling principle

is in full accordance with the essence of search model literature, which is to capture what the

decision makers do and do not know at each decision point, and to advance our understanding of

the associated finer-level costs involved in the search process.

The rest of the paper is organized as follows. Section 2 describes the empirical context of our

study. Section 3 illustrates the conceptualization of the consumer search process. Section 4 details

our various search cost measures, and in particular, cognitive cost. Section 5 summarizes the data.

Section 6 presents model-free evidence and online random experiment results aimed at exploring

whether consumers respond to the cost measures. In Section 7, we develop our structural model.

We discuss model identification and our estimation approach in Section 8. Section 9 presents and

discusses our estimation results. Section 10 presents two managerial studies of optimal information

layout and Pareto improving local sorting. Section 11 concludes.

2 Empirical Context

Our empirical context is a major online travel agency (OTA) in China, which is the counterpart

to Expedia in the United States. The site design can be seen in Figure 2. This search platform

provides search functionalities in terms of filters and sorting variables. The filters allow consumers

to reduce search-result sets by retaining results that fit the exact criteria specified, in terms of city,

check-in and check-out dates, price, hotel star and so on. The sorting variables, including default

ranking, consumer rating, price, and hotel star, allow consumers to rearrange the order of display,

and only one active sorting variable can be applied. Search results are displayed according to default

ranking if no sorting variable is specified; price and hotel star have both ascending and descending

sorting capability, whereas the other two variables only have one sorting direction. A search query

is defined in terms of both the filters and the sorting variable chosen by a consumer. When a

consumer submits a search query, the search platform retrieves the search-result set that satisfies

the filters, and generates a refinement page ordered by the sorting variable for the consumer to
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Figure 2: OTA in our empirical study.

interact with further. A given search query may return different content at different times, because

product availability and some product attribute values are dynamic, such as price and cancellation

policy.

Beneath the search functionalities, the site displays the search-result set of up to 25 hotels on a

single page, with more results to display in latter pages. These search-result pages are what we call

“outer layers,” where the platform selects a subset of product attributes to display, including price,

consumer rating, hotel star, breakfast, cancellation policy, and so on. If the consumer clicks on a

hotel, she lands at the “inner layer” of the product-detail page, where she can learn about all the

remaining attributes of the clicked hotel, including free newspaper, free guide service, free afternoon

tea, and so on. All the products on the OTA under study have the same inner layer structure; they

only differ in the value of the product attributes.
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3 Conceptualization of Consumer Search Process

As we mentioned in the introduction, our central modeling principle is to characterize the evolution

of consumers’ information and cost structure during their search process, accounting for model

tractability. As a result, our model needs to capture both the refinement visiting and product

clicking decisions, to distinguish between what consumers know before and after visiting refinements

and clicking products, and to decompose search costs further, particularly into time and cognitive

components.

We first recognize that refinement pages in the outer layer and product-detail pages in the inner

layer are different information sources. Consumers observe product availability and the partially

revealed attributes of all the products on a given refinement, whereas they learn about the hidden

product attributes of a single product on a product-detail page. The search costs associated with

these two information sources are also different. Instead of having separate mean search costs for

these two sources, we further recognize that information collection takes time and cognitive effort,

and variation of the factors that influence these costs may influence the search process. For example,

slow platform loading time or complex website design may induce consumers to search less and make

do with less-than-ideal products they have found. In our conceptualization, we will parse out the

time and cognitive components of the search costs.

Furthermore, in the platform design of the OTA we are studying, the inner layer of product-

detail pages have the same page layout, except that the attribute values are different for different

products. By contrast, the outer layer of refinement pages will, by consumer choice, have different

compositions of products in the variation of product attribute values and well-sortedness. For

example, a search-result page that has a filter of 5-star hotels will have no variation in the hotel

star attribute, enabling consumers to easily understand the star attribute. If the consumer further

sorts the result set on price, the search-result page will be well sorted on price attributes, enabling

consumers to easily compare products in the price dimension. This example calls for our information

complexity measure, which is meant to capture the cost of comprehending and comparing a list of

options with different product attribute values. When many products are available to choose from,

comparing a randomly juxtaposed list of products is more costly than comparing a well-sorted list.

Note that our information complexity measure will not capture the cognitive effort required to
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comprehend a single product, such as when consumers are reading product-detail pages, and we

leave that component in the residual search cost for product clicking.

Finally, we assume consumers rely on the expected search costs to guide their search decisions,

and they have rational expectations about time and cognitive costs. In terms of loading time,

because consumers can fairly easily get a sense of the platform response time after the first one or

few pages they visit, we assume each consumer forms her own session-specific expectations about the

loading time of refinement and product-detail pages. Because the computation required to construct

different refinements on the server is the same, the expected loading time for different refinements

within a session will be assumed the same. The same holds true for product-detail pages, and the

expected loading time for different product-detail pages will be assumed the same. Furthermore,

the consumers expect to incur the same loading time cost when they revisit a refinement due to

the platform design that prohibits caching of refinement content. In terms of cognitive cost, since a

given search query may return different refinement content over time due to the variation of product

availability and attribute values, we assume consumers’ rational expectations for each search query

reflect the average degree of information complexity of the returned refinement pages over time.

In summary, we have the following types of search costs. To decide whether to visit a particular

refinement, consumers will account for the session-specific expected loading time cost, the expected

cognitive cost to understand a given refinement, and the residual search cost for refinement visiting.

To decide whether to click on a particular product, consumers will account for the session-specific

expected loading time cost of the product-detail page, the product position cost of going down the

search-result page to click on the link (as studied in the previous literature), and the residual search

cost for product clicking.

Instead of describing the conceptualization of the consumer search process by writing down

mathematical models at the first encounter, we illustrate the conceptualization by walking through a

hypothetical search scenario. During this hypothetical search, we lay out the information consumers

acquire and the costs they incur at each step, using the diagrams in Figure 3. We will formalize

the conceptualization as a model in Section 7. We also introduce some terminology we will use

throughout the paper.
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3.1 Hypothetical Search Scenario

Figure 3 shows 10 steps, each of which is depicted in a row. Suppose three refinements, Ref1, Ref2 and

Ref3, are available, denoted by the rectangles at the top of each row of a step. From the consumers’

perspective, a refinement is defined by the associated search queries, which include search filters and

sorting variables (together with pagination for empirical work as we explain below). We use “search

a query,” “visit a refinement,” and “visit a search-result page” interchangeably. Each refinement

displays a certain number of search results for users to further click on, which, in our context, is 25

hotels. These hotels are denoted by the circles at the bottom and are linked to the refinement they

belong to, using an edge. We use “click on a link” and “sample a product” interchangeably.

First the consumer arrives at the default refinement Ref1 in step (1). She observes the available

products in Ref1 and the partially revealed product information xIi , but does not know the unrevealed

information xNi for product i = 1, . . . , 25. The search costs involved in step (1) include the expected

time cost of waiting for the search-result page to load, the expected cognitive cost of understanding

the page, and any related residual cost. In step (2), the consumer can choose to search either one of

the 25 partially revealed hotels on Ref1, or the unvisited refinements Ref2 and Ref3. These search

options are denoted in yellow in Figure 3. Because she has not visited Ref2 and Ref3, she does

not know the product availability of these refinements and cannot sample any product in those

refinements directly.

In step (3), suppose the consumer decides to sample hotel 1, which reveals the hidden information

xN1 . The costs for step (3) include the expected time cost of waiting for the product-detail page to

load, the position cost, and any related residual cost. The consumer ponders her search options again

in step (4), which include the unsampled products on Ref1 and the unvisited refinements Ref2 and

Ref3, all denoted in yellow in Figure 3. Suppose she decides to switch to Ref3 in step (5). At that

point, she observes the product availability of Ref3 and the partially revealed product information.

She incurs the same cost of visiting a refinement in step (5) as in step (1). Now all the information

contained in Ref3 is known to the consumer, and Ref3 is no longer a search option; instead, all its

related products become search options, because they still have uncertainty to be resolved. After

consideration in step (6), she samples hotel 25 of Ref3 in step (7) to learn the unrevealed product

attributes, and incurs the usual clicking associated costs as in step (3). When she considers her
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search options in step (8), even though she is at Ref3, she still has unsampled products in Ref1 as

her search options. She decides to switch back to Ref1 and samples hotel 2 in step (9). She learns

the unrevealed product attributes and incurs the usual clicking cost as in step (3). Moreover, she

incurs the time cost of loading Ref1, but she does not need to incur the other associated costs of

visiting a refinement, including the cognitive and residual cost, because she already understands the

refinement. Finally, she decides not to search anymore and to purchase hotel 25 of Ref3 among all

the sampled products.

In addition, in our empirical context, one hotel could satisfy more than one search queries and

thus appear in different refinement pages. In Section A of the online appendix, we present additional

diagrams to illustrate the consumer search process under that scenario.

Moreover, in our empirical work, we define refinements by search queries that include not only

search filters and sorting variables, but also pagination. The rationale for this level of granularity

is as follows. Typical search queries return many more results than the maximum number of 25

hotels that can be displayed on a search-result page. As a result, all the search results will be split

into different pages, where the product attribute distributions are different on different pages due

to sorting. For example, if a consumer is price sensitive, she may sort the search results by price

in ascending order. The product attribute distribution on different pagination will be different, and

this difference has behavioral implications whereby the consumer is more likely to look at earlier

than later pages. By defining refinements with consideration of pagination as well, we can control for

different product attribute distributions as pagination increases. Furthermore, our empirical model

can account for refinements that have fewer results than the maximum number of 25 hotels that can

be displayed on a search-result page. We just use 25 hotels in our illustration for clarity.

This search process is the basis of our search model and we will detail the model specification in

Section 7.

4 Cost Measures

In Section 3, we described the different search costs consumers incur during the search process. Four

basic types of search costs exist: time, cognitive, position, and residual costs. We can measure the

time cost of waiting for the search-result and product-detail pages to load, using their respective
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Figure 3: Illustration of the consumer search process in the context of three available refinements, each with
25 products to sample. The consumer arrives at the default refinement Ref1 in step (1), and then decides
the search option to proceed with among the 25 partially revealed products on Ref1 and the unvisited
refinements Ref2 and Ref3 in step (2). Subsequently, she samples product 1 in step (3), considers again in
step (4), switches to Ref3 in step (5), considers in step (6), samples product 25 of Ref3 in step (7), and
considers again in step (8). At this point, even though she is at Ref3, she still has unsampled products in
Ref1 as search options. She decides to switch back to Ref1 and samples product 2 in step (9). Finally, she
decides to stop sampling and to purchase product 25 of Ref3.
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loading time. We use the observed position of the products to measure their position costs. The

residual costs capture all the remaining costs not captured by the observed covariates. Because

no quantification of the cognitive costs exists, we create an information complexity measure of a

search-result page to help gauge the cognitive cost.

4.1 Information Complexity Measure

The information complexity measure is based on the entropy of orderedness of the product attributes

on the refinement. Recall that information complexity measure, which, together with consumer

responsiveness to it, accounts for cognitive cost, is meant to capture the cost of comprehending and

comparing different product attributes.

Information entropy, first introduced by Shannon (1948) and has fundamental importance in

communication theory, captures the amount of uncertainty of a random variable. The more random

and less structured a variable is, the higher entropy it has.3 Specifically, the entropy for a discrete

random variable Y with probability mass function P (y) on the support {y1, ..., yn} is defined as

H(Y ) = −
∑n

i=1 P (yi) log2 P (yi) with units in bits. To get a sense of this mathematical construct,

consider the scenario of flipping a biased coin with a 90% chance being head, another biased coin

with a 70% probability being tail, and finally a fair coin. It is quite obvious that the outcome

for the first coin flip is more certain than the second and the third, and the fair coin provides

the largest uncertainty among the three coins. If we apply the Shannon Entropy formula, the

entropies for the three coin flips are respectively 0.47, 0.88 and 1.0 bits, which aligns with our

intuition of uncertainty. In the empirical context, we compute the entropy for a sequence of attribute

values by using the empirical probability distribution, P̂ (y1), ..., P̂ (yn). For example, the sequence,

1, 1, 1, 1, 2, 2, 2, 2, 2, 2, has empirical probability mass P̂ (1) = 0.4 and P̂ (2) = 0.6, and thus its

entropy is 0.97 bits. For continuous random variables in the empirical context, we first discretize

them and then apply the same computation.

It is helpful to know that Shannon Entropy has the following desirable properties:

• First, Shannon Entropy is non-negative for any random variable. Thus, it is proper to use
3Entropy can also be interpreted as a measure of the amount of information. In particular, entropy can be

considered as the average minimum description length of a random variable. Intuitively, entropy measures how many
binary inquiries one needs to ask the person who knows the realization from a random variable to learn its value, and
the number of such binary inquiries is the description length. In this paper, we instead use another interpretation of
entropy as a measure of uncertainty, which fits the goal of quantifying cognitive efforts more closely.
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entropy to measure uncertainty and cognitive cost, since both are non-negative quantities by

nature.

• Second, Shannon Entropy is largest for random events distributed uniformly, and is zero for

deterministic events. This corresponds to our intuition that a uniform random variable has

the highest uncertainty and a constant random variable involves no uncertainty.

• Third, uniform distributions with larger support have higher Shannon Entropy. Intuitively,

the outcome of rolling a fair die is less certain than the outcome of flipping a fair coin, since

rolling a die has more potential outcomes. It is easy to compute that the entropy is 2.58 bits

for the former and 1 bit for the latter.

Another prominent feature of Shannon Entropy is that it is invariant to flipping the arguments. For

example, in the setting of coin flip, the entropy is the same no matter the head/tail has either 30/70

or 70/30 split of the probability. Thus, in our empirical context, the entropy is the same for the

following two value sequences of a product attribute:

4, 2, 5, 1, 3, 2, 3, 4, 1, 5 vs 1, 1, 2, 2, 3, 3, 4, 4, 5, 5.

This is because the empirical probability mass function is the same for the two sequences, namely

P̂ (1) = P̂ (2) = ... = P̂ (5) = 0.2. By definition, entropy ignores the order of the realizations of

a random variable. Therefore, entropy cannot directly quantify the level of complexity involved in

understanding a numeric value sequence of a product attribute: although the two sequences above

have the same entropy level, understanding the second sequence takes less effort than the first.

Computing summary statistics, such as the mean and median, and understanding the frequency

distribution are much easier to do for the second sequence than for the first.

Instead, we argue that orderedness is an important quantity that matters for the comprehension

and comparison of a product attribute: the more ordered the value sequence of a given product

attribute, the less cognitive costs necessary to understand the product attribute. Therefore, we first

define a new sequence, called an orderedness sequence, based on a given single product attribute.

Then, we define information complexity for a single product attribute by combining the concept of

entropy together with the orderedness sequence.
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Specifically, the orderedness sequence of the numeric sequence x is defined to be

ord(x) = (xi+1 − xi)m−1i=1 , (1)

where m is the length of x. It constructs the first differences of the consecutive values in the

original value sequence. This definition can first capture whether a numeric sequence is well sorted

or not, which is the qualitative aspect of orderedness. Consider again the two numeric sequences

above, where the second sequence is sorted but otherwise equivalent. The orderedness sequences are

computed as

−2, 3,−4, 2,−1, 1, 1,−3, 4 vs 0, 1, 0, 1, 0, 1, 0, 1, 0.

The first orderedness sequence has more uncertainty than the second, which corresponds to the lack

of sortedness of the first sequence.

The orderedness sequence can also capture how regular the successive changes are in the original

sequence values, that is, the quantitative aspect of orderedness. For instance, consider the following

numeric sequences:

1, 4, 5, 7, 11, 23, 27, 31, 32, 36 vs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Comprehending the second sequence is easier than comprehending the first, even though both are

sorted. The rationale for this phenomenon is that a sequence of ordered and evenly spaced values is

easier to understand than another ordered yet jumpy sequence. The derived orderedness sequences

for this example are

3, 1, 2, 4, 12, 4, 4, 1, 4 vs 1, 1, 1, 1, 1, 1, 1, 1, 1.

We again observe that the first orderedness sequence has more uncertainty than the second.

Given these observations and the definition of orderedness sequence, we complete the definition

for the information complexity measure of a value sequence, x, as the Shannon Entropy of the derived

orderedness sequence. In particular, the orderedness entropy measure is defined as H(ord(x)). This

definition fundamentally assumes that the more uncertainty exists in the orderedness sequence, the

harder it is to understand the original sequence. Applying this definition, the orderedness entropies
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for the first pair of sequences are

H(ord(4, 2, 5, 1, 3, 2, 3, 4, 1, 5)) = 2.75 vs H(ord(1, 1, 2, 2, 3, 3, 4, 4, 5, 5)) = 0.99,

and for the second pair of sequences are

H(ord(1, 4, 5, 7, 11, 23, 27, 31, 32, 36)) = 2.06 vs H(ord(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) = 0.

These patterns align with our intuitions for the information complexity. Furthermore, we define the

information complexity measure of a search-result page by summing over the information complexity

of its constituent revealed product attributes, all of which are in the unit of bits and hence summable.

A desirable property of orderedness entropy is that this measure is invariant to affine transfor-

mation. Consider two sequences below, where the second sequence is two times the first sequence

minus one:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 vs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19.

These two sequences are similarly complex, and thus it is desirable if they have the same amount

of orderedness entropy. Indeed, the orderedness sequences are respectively 1, 1, 1, 1, 1, 1, 1, 1, 1 and

2, 2, 2, 2, 2, 2, 2, 2, 2, and thus their orderedness entropies are both zero. It is appealing that ordered-

ness entropy is not affected by translation and scaling. Other uncertainty measures, such as standard

deviation, do not possess this property.

In terms of our empirical context, when consumers rearrange search results by applying the

sorting variable to, for example, hotel star, they drastically reduce the complexity of the search-result

page in that dimension. Similarly, applying filtering variables will reduce the complexity in those

dimensions. For example, filtering hotels such that only 4-star hotels remain in the search result will

reduce the information complexity of that dimension to 0. Furthermore, due to the correlation among

product attributes, sorting or filtering a subset of the product attributes will change the information

complexity of the remaining product attributes, and thus the overall information complexity of the

search-result page. We will show empirically in Section 6 that applying sorting and filtering variables,

in general, reduces information complexity. More importantly, we show that people actively apply

sorting variables as a response to information complexity using both reduced-form and experimental
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evidence.

Although we have discussed the desirable properties of orderedness entropy as a measure of

information complexity, we would like to remind the cautious readers to not consider this measure

as a universal truth grounded in information theory. We have created this measure to proxy the

cost of comprehending and comparing product attributes on refinement pages, but certainly there

are scenarios where the consumer’s behaviors are inconsistent with the specified cost functions, and

other proxies may perform better. We discuss the various limitations of the orderedness entropy

measure in Section B of the online appendix, while further enhancements await future research.

5 Data

In addition to the OTA description we provide in Section 2, we observe a detailed panel of consumer

interactions with the site, including the search queries used to refine the search results, the content

and loading time of the search-result and product-detail pages, the refinements visited, the clicks

made, and the rooms purchased. The data set we use covers 29,065 randomly selected consumers who

visited the site searching for hotels in six cities in China (Beijing, Shanghai, Guangzhou, Hangzhou,

Chengdu, and Lijiang) from Jan 27, 2014, to May 29, 2014.

5.1 Data Description

Some key summary statistics of the data are presented in Table 1. The median number of hotels

in the typical search-result set is 171, which need to be split into several pages to be displayed.

We have removed search queries that provide no results. The number of hotel bookings made by

consumers in the observed window is slightly more than 1 on average, and the maximum number

made by a single consumer is 42 times. A consumer may have several search sessions, any of which

may result in no hotel booking. Our data do not have consumers who have not made any purchase

in any search session.

In Table 2, we show the number of search-result pages visited and the number of product-detail

pages clicked for each consumer session in different cities. We can see that the distribution for

the number of search-result pages visited and the number of product-detail pages clicked are quite

similar across cities.
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Min. 1st Qu. Median Mean 3rd Qu. Max. SD

Search-Result Size 1 66 171 908 1550 4896 1271.5
Number of Hotel Bookings per Consumer 1 1 1 1.25 1 42 0.922

Table 1: Descriptive Statistics. Search-result size counts the number of matching hotels for a given
search query, which may need to be split into several pages to display. Number of hotel bookings
per consumer counts the total number of bookings a consumer makes over multiple search sessions
in our observation window.

# Search-Result Pages Visited Min. 1st Qu. Median Mean 3rd Qu. Max. SD

Beijing 1 1 1 2.15 2 52 2.16
Shanghai 1 1 1 2.21 2 62 2.31
Guangzhou 1 1 2 2.34 3 43 2.35
Hangzhou 1 1 2 2.38 3 61 2.21
Chengdu 1 1 2 2.44 3 42 2.3
Lijiang 1 1 2 2.43 3 30 2.09

# Product-Detail Pages Clicked Min. 1st Qu. Median Mean 3rd Qu. Max. SD

Beijing 0 0 0 0.75 1 55 1.64
Shanghai 0 0 0 0.77 1 78 1.79
Guangzhou 0 0 0 0.85 1 33 1.63
Hangzhou 0 0 0 1.06 1 186 2.37
Chengdu 0 0 0 1.08 1 55 2.05
Lijiang 0 0 1 1.5 2 60 2.76

Table 2: Distribution of the number of search-result pages and product-detail pages visited for each
consumer session in different cities.

A noticeable and consistent phenomenon across different cities is that consumers tend to visit

more search-result pages than to click on individual products. The implication is that consumers

actively use search-result pages as an important source of information, and they only click on a

product if they are sufficiently interested in it to learn its hidden product attributes. This finding

motivates us to treat refinement choice as an integral endogenous choice in the consumer search

process.

5.1.1 Loading Time

Table 3 shows the loading time distribution of product-detail pages and search-result pages in sec-

onds. We observe that the loading time of search-result pages is longer and has more variation than

that of product-detail pages, because more substantial data extraction, computation, and rendering

are performed at the platform side. For the same reason, the two sources of loading time are not
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Loading Time (sec) Min. 1st Qu. Median Mean 3rd Qu. Max. SD

Product-Detail Page 0.056 0.931 1.364 2.273 2.182 99.500 4.004
Search-Result Page 0.032 1.547 2.249 3.369 3.504 99.070 4.571

Table 3: Distribution of the loading time of product-detail pages and search-result pages.

highly correlated, with a correlation coefficient of 0.163. The variation in the loading time is also

large, with some outlying sessions with very long loading time. We have removed sessions with

loading time longer than 100 seconds, which usually correspond to failed connections due to either

consumer or platform side errors.

5.1.2 Orderedness Entropy

In our empirical context, we have both numeric and binary product attributes. We convert binary

product attributes to numeric values by setting one level to 1 and the other to 0. This conversion

is without loss of generality due to the invariance property of orderedness entropy to translation

and scaling. All the product attributes are discrete, except that price and consumer rating of the

hotels are continuous product attributes. We discretize price by rounding up in bins of 5 RMB and

consumer rating in bins of 0.1 points. The chosen bin sizes are the smallest amount that people

discern a difference of these variables in daily life.

For all the discrete revealed attributes, we sum up their orderedness entropies, because they

have the common natural unit, namely, bits. To be extra cautious in the discretization step, we

keep the orderedness entropies of the continuous attributes separate, allowing their coefficients of

the cognitive search cost to be different. We have more discussions on the pros and cons of summing

up the discrete-features orderedness entropies in Section 7.2. The unit of orderedness entropy does

not have an immediate economic equivalent unit. However, our structural model will transform bits

into equivalent units of time or monetary value on par with other variables that enter consumer

decisions.

The distributions of orderedness entropies of price, consumer rating, and discrete revealed at-

tributes are shown in Table 4. The minimum orderedness entropy being 0 comes from very small

result sets that have no variation in the corresponding attributes. The interquartile range of the

distributions is more reflective of the typical range of orderedness entropies.
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(bits) Min. 1st Qu. Median Mean 3rd Qu. Max. SD

Price 0.000 3.255 3.509 3.384 3.689 4.189 0.512
Consumer Rating 0.000 1.041 1.142 1.128 1.241 2.925 0.248

Discrete Revealed Attributes 0.000 4.338 4.913 4.857 5.462 11.330 1.020

Table 4: Distribution of orderedness entropies of price, consumer rating, and discrete revealed
attributes.

To better understand orderedness entropy, we compare the consequences of adding search filters

as well as applying sorting variables to any given search-result page. We show, based on the following

analysis, that information complexity decreases on average as search filters are added or sorting

variables other than the default ranking are applied. Furthermore, we show, in the next section, that

consumers proactively reduce information complexity during their search process. These findings

suggest that cognitive cost resulting from information complexity is an important component for

studying consumer’s refinement choice.

First, within each consumer search session, we identify all the pairs of search-result pages with

the addition of search filters, while keeping sorting variables fixed. We find that, after the addition,

the orderedness entropies of price, consumer rating, and discrete attributes combined decrease, on

average, by 0.289, 0.029, and 0.363 bits, respectively, with p-value < 0.001. These values correspond

to 8.5%, 2.6%, and 5.3% decrease, respectively, when compared to the mean levels.

Second, within each consumer search session, we identify all the pairs of search-result pages that

switch from sorting based on the default ranking to either sorting on price, consumer rating, or

hotel star, while keeping the search filters fixed. We compare the differences in the orderedness

entropy before and after the switching of sorting variables in Table 5. First, all the changes are

significant with p-value < 0.001. Second, the largest percentage decreases in orderedness entropies

are on the diagonal, which correspond to the variables being sorted. This finding shows that sorting

is effective in simplifying the search-result page in the dimension being sorted. Third, due to the

correlation structure in the product attributes, when some variables become sorted, some other

variables may become unsorted. For example, when sorting search-result pages based on price, the

consumer rating variable becomes more complex than sorting based on the default ranking. Fourth,

the overall orderedness entropies decrease when we apply any of the sorting variables on price,

consumer rating, or hotel star. This finding shows that sorting is also effective in simplifying the
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(bits) Add a Filter Sort on Price Sort on Consumer Rating Sort on Hotel Star

Price -0.289 (-8.5%) -0.461 (-13.6%) 0.033 (1.0%) -0.247 (-7.3%)
Consumer Rating -0.029 (-2.6%) 0.147 (13.0%) -0.331 (-29.3%) 0.143 (12.7%)

Discrete Revealed Attributes -0.363 (-5.3%) -0.713 (-10.4%) 0.032 (0.5%) -0.697 (-10.2%)

Table 5: Within each consumer search session, we first identify all the pairs of search-result pages
with the addition of search filters, while keeping sorting variables fixed. Then, we identify all the
pairs of search-result pages that switch from sorting based on the default ranking to either sorting
on price, consumer rating, or hotel star, while keeping the search filters fixed. This table shows the
differences in orderedness entropy before and after the adding of search filters or switching of sorting
variables, all significant with probability < 0.001. The percentage change is compared to the mean
levels of orderedness entropy of each attribute.

overall search-result page.

6 Model-Free Evidence

In this section, we first empirically show that people respond to longer loading time by reducing

their search and clicking. This finding establishes the basic empirical observation that clicking and

searching is beneficial to the consumer as a way of information acquisition, and loading time is one

of the relevant costs of search. Second, we confirm that orderedness entropy is a good measure of

information complexity and a good proxy for the cognitive cost of search in our context, by showing

consumers are more likely to sort when sorting induces a higher reduction in orderedness entropy. In

Section C of the online appendix, we design a website and implement two online random experiments

to further reinforce the reduced-form findings. We find supportive evidence that consumers consider

the type of information complexity that orderedness entropy represents, and their sorting decisions

incorporate the orderedness entropy reduction. The experimental findings can also be of independent

interests to the researchers who study consumer choice in other empirical contexts beyond consumer

search.

6.1 The Effects of Loading Time on Number of Searches and Clicks

We run a Poisson regression of the number of result pages searched and the number of product-

detail pages clicked on the loading time of the result and detail pages, respectively, controlling for

individual, city, and time (day, morning, and afternoon) fixed effects. Table 6 shows significant

consumer responses to search and click loading time. For search-result pages, a 1-second increase in
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Number of Searches Number of Clicks

Search Loading Time -0.094∗∗∗ (0.008)
Click Loading Time -0.047∗∗∗ (0.007)

Individual Fixed Effect Yes Yes
Dest. City Fixed Effect Yes Yes

Day Fixed Effect Yes Yes
Morning Fixed Effect Yes Yes
Afternoon Fixed Effect Yes Yes

Number of Observations 35,545 35,545

Table 6: Poisson regression of the number of search-result pages searched and the number of product-
detail pages clicked on the loading time of the search-result and product-detail pages, respectively,
controlling for individual, city, and time (day, morning, and afternoon) fixed effects. Standard errors
in parentheses. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

the search-result page loading time leads to a 9.4% decrease in the number of searches conducted.

At the mean number of 2.77 searches, that percentage amounts to a reduction of 0.26 searches.

For product-detail pages, a 1-second increase in the product-detail page loading time leads to 4.7%

decrease in the number of product-detail pages clicked, which amounts to a reduction of 0.05 clicks

at the mean number of 1.02 clicks.

6.2 The Effects of Orderedness Entropy on Consumer Choice of Sorting Variable

In the previous section, we showed that adding search filters and changing sorting variables change

the orderedness entropy. In this section, we further show that consumers respond to the cognitive

cost of search.

The purpose for consumers to use refinements is possibly two-fold: one is to change the set

of hotels on the refinement page to better fit consumers’ preferences, and the other is to reduce

cognitive costs by making the search results more orderly. To nail the channel of reducing cognitive

costs using reduced-form evidence, we look at decision occasions in which consumers use refinements

to only change information complexity but not the content of the search-result page. As a result,

we look at whether consumers respond to information complexity by looking at their choices of

sorting variables but not filtering variables, because filtering by definition changes the content of the

search-result page. We also need to be careful with the choice of sorting variables, because sorting

a search-result set larger than 25 will also change the content on a particular page. Therefore, we
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Intercept (Price) -3.997∗∗∗ (0.000)
Intercept (Consumer Rating) -3.567∗∗∗ (0.000)

Intercept (Hotel Star) -5.477∗∗∗ (0.000)
Reduction of Orderedness Entropy of Price 0.965∗∗ (0.029)

Reduction of Orderedness Entropy of Consumer Rating 0.493∗ (0.065)
Reduction of Orderedness Entropy of Hotel Star 0.696∗∗∗ (0.000)

Number of Observations 8,184

Table 7: Multinomial logit regression of the choice probability of sorting on default ranking, price,
consumer rating, or hotel star as a response to the change in the orderedness entropies. The positive
coefficients in front of the reduction of orderedness entropies show that a sorting variable is more
likely to be chosen if that leads to a larger reduction in the orderedness entropy of the product
attributes. Standard errors in parentheses. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

look at searches in which the result set can be fit on a single page. In this case, changing the sorting

variable will not change the content on the refinement but the orderedness of the search results.

In particular, we identify 8,184 consumer searches that use the default ranking and result in

fewer than 25 products. Consumers can choose to switch the sorting variable to price, consumer

rating, or hotel star, or they can choose not to switch. We observe switches to sorting on price

165 times (2.0%), sorting on consumer rating 253 times (3.1%), and sorting on hotel star 43 times

(0.5%).

Given the above empirical setup, we study how much more likely consumers are to switch the

sorting variable away from the default ranking given how much the switching reduces information

complexity. In particular, we use a multinomial logit regression to study the choice probability of

sorting on j ∈ SV = {Default Popularity, Price, Consumer Rating, Hotel Star} as a response to the

change in the orderedness entropies, computed by
(
EntropyDefault,v − Entropyj,v

)
for v ∈ KV =

{Price, Consumer Rating, Discrete Revealed Attributes}:

P (sort on j) =
exp

(
Interceptj +

∑
v∈KV βv

(
EntropyDefault,v − Entropyj,v

))∑
k∈SV exp

(
Interceptk +

∑
v∈KV βv

(
EntropyDefault,v − Entropyk,v

)) . (2)

Table 7 shows that the coefficients βv in front of the reduction of orderedness entropy(
EntropyDefault,v − Entropyj,v

)
are positive for all v ∈ KV . Thus when the entropy reduction along

one attribute dimension of the sorting option j increases, ceteris paribus, the consumer is more likely

to choose that sorting option. The choice-specific intercepts are all negative, absorbing the loading

time cost of switching away from the default ranking.
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7 Model

In this section, we formalize the conceptualization of the consumer search process specified in Section

3. We will first describe the components of the consumer product utility and search cost. Then we

will lay out the consumer information and cost structure during the search process. Finally, we will

specify the decision model for the search process.

7.1 Components of the Consumer Utility and Search Cost

The product attribute is composed of a revealed part displayed on the refinement xI ∈ Rn and an

unrevealed part xN ∈ Rm displayed after clicking on the product-detail page. Because the attribute

values for a given product may change over search sessions due to their dynamic nature, we use se

to denote a search session.

Consumer h’s utility for product j at search session se is given by

uhj,se = V I
hj,se + V N

hj,se + εhj,se

= βIhx
I
j,se + βNh x

N
j,se + εhj,se, (3)

where βIh and βNh are the consumer-specific preference coefficients for the revealed and unrevealed

product features, respectively, and εhj,se is the consumer’s session-specific utility shock. We use the

superscript I to denote the quantities relating to the revealed product attributes (i.e., V I
hj,se, β

I
h

and xIj,se), and the superscript N to denote those relating to the unrevealed ones (i.e., V N
hj,se, β

N
h

and xNj,se). The session-specific utility of the outside option j = 0 is assumed to be known by the

consumer from the beginning. εhj,se is unknown to the researcher.

Following our assumptions on consumers having rational expectations in Section 3, consumer h

has rational expectations about the current search session’s refinement loading time SearchLoadh,se

and the product-detail page loading time DetailLoadh,se, both computed as the sample average of

the loading time of the visited refinement pages and product-detail pages during her search session

se. For refinement query rf , the consumer also has rational expectations about the orderedness

entropy of price EntrPricerf , of consumer rating EntrRatingrf , and of discrete revealed attributes

EntrDiscreterf . Since one search query (composed of the filtering variables, sorting variables,
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and pagination) may return different refinement pages over time due to the dynamics of product

availability and attribute values, we assume each of these quantities is computed as the sample

average of the respective orderedness entropy of the realized refinement pages generated by query

rf over time. Moreover, the consumer also observes the product position Rj,se on the page.

7.2 Consumer Information and Cost Structure

Our model will capture the consumer information and cost structure as follows:

• Before visiting a refinement rf , a consumer h forms a belief on the utility distribution

of visiting refinement rf , which is denoted as Uh,rf ∼ Fh,rf , while she does not know the

product availability on this refinement yet. As a result, the unvisited refinement rf is a search

option for the consumer, but products on this refinement are not. Also, the consumer has

not observed any information within the refinement, such as the partially revealed product

information, to form a belief conditional on this information. At this point, we need to make a

modeling decision regarding the utility distribution of visiting a refinement for the consumer.

We follow the same distribution assumption adopted by De los Santos and Koulayev (2017),

which assumes that Fh,rf is a normal distribution and its first and second moments reflect the

variation of the maximum product utility on the refinement. In particular, since the product

attribute values and product availabilities on the platform change over time, the realized re-

finement content for a given refinement query also changes over time. This is the source of

the uncertainty of visiting a refinement. Following De los Santos and Koulayev (2017), the

uncertainty could be reasonably proxied by the distribution of the first order statistic, since,

when visiting a refinement, the consumer only cares about the product with the highest utility

on the refinement, not the rest. As a result, we collect all the realized refinement pages for a

given query rf (which is composed of the filtering variables, sorting variables, and pagination),

and we compute the sample mean and variance of the maximum product utilities on the refine-

ment pages, i.e., Ê
(

maxj∈rf

{
βIhx

I
j,se + βNh x

N
j,se

})
and ˆV ar

(
maxj∈rf

{
βIhx

I
j,se + βNh x

N
j,se

})
,

respectively. They are the mean and variance of Fh,rf , the belief of the utility distribution of

visiting refinement rf for consumer h. We will discuss this assumption in more details when

we present the decision model.
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In terms of the cost to search the unvisited refinement page, the consumer pays the expected

refinement loading time cost, the expected cognitive cost, and the refinement residual cost:

cR,h,se(rf) = γh,Search + γh1SearchLoadh,se + (4)

γh2,1EntrPricerf + γh2,2EntrRatingrf + γh2,3EntrDiscreterf +

γh2,4EntrPrice
2
rf + γh2,5EntrRating

2
rf + γh2,6EntrDiscrete

2
rf .

We have included the second-order terms of the orderedness entropy measures. In the literature

of neoclassical economics, a wide range of empirical evidence has been found to support the

hypothesis that the cost functions are generally convex with increasing marginal costs. In

practice, the consumers may choose to not digest so much information when the information

complexity is very high, which suggests that the refinement cost could be a concave (or less

convex) function in orderedness entropy. Thus, the second order terms are useful and flexible

enough to allow the incremental increase in cognitive cost to be decreasing (or less increasing)

in orderedness entropy.

In addition, we have separate coefficients for the orderedness entropies of the continuous at-

tributes (namely price and consumer rating), as their coefficients depend on the discretization

intervals. Another reason for having separate coefficients for price and rating is that consumers

may want to spend more efforts on understanding the product features that they care more

about. Needless to say, price is particularly important as is found in many empirical studies.

Consumer rating is also discovered to be very important in recent literature, as discussed in,

for example, Chen and Yao (2016) that “consumer ratings have on average the highest impact

on consumer utility.” Thus, we use separate coefficients for price and rating to allow for this

flexibility.4

Finally, the refinement residual cost, γh,Search (also known as the baseline cost), captures the
4In principle, we would like to have separate cognitive cost coefficients for each revealed discrete attributes to

account for their different importance. However, this is too demanding for estimation. In the model, an orderedness
entropy measure is associated with 4 unknown coefficients, namely the mean and standard deviation of the random
coefficients for the first and second order terms of the measure. As there are 12 revealed discrete attributes in the
empirical context, there are 48 (= 12 × 4) unknown coefficients to estimate if separate coefficients are allowed. The
orderedness entropies for the discrete attributes have the same units of bits and thus are summable. We decide to
pool them together to not lose too much statistical power in the estimation.
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remaining psycho-physiological costs related to refinement visiting, which are not captured by

the existing observed covariates.

• After visiting a given refinement, the consumer knows the product availability on the

refinement and the partially revealed product attributes on the refinement. As a result, the

visited refinement page is no longer a search option for the consumer, but the unsampled

products on this page are. Furthermore, the unsampled products on all previously visited

refinement pages are also search options for the consumer. More specifically, the consumer

observes the partially revealed product attributes xIj,se for product j in search session se,

and the consumer forms conditional belief on the utility distribution for product j, that is{
uhj,se|xIj,se

}
∼ Gh. Recall that utility uhj,se contains both the revealed component, βIhx

I
j,se,

and the unrevealed component, βNh x
N
j,se+εhj,se. We assume that

{
uhj,se|xIj,se

}
follows a normal

distribution, whose mean and variance depend on how the consumer predicts the unrevealed

product attribute values. In particular, we assume that the consumer forms predictions of

the unrevealed product attributes through a multivariate linear regression which regresses the

unrevealed attributes on the revealed ones:

xNj,se = φ+ ΓxIj,se + ηj,se.

The prediction rule is assumed linear for simplicity. The multivariate regression estimation pro-

vides the estimated intercept vector φ̂, the estimated coefficients matrix Γ̂, and the estimated

residuals η̂j,se. Therefore, it is natural to have the mean of the conditional utility distribution,

Gh

(
uhj,se|xIj,se

)
, as βIhx

I
j,se + βNh

(
φ̂+ Γ̂xIj,se

)
, and the variance as βNh ˆCov (η̂j,se)β

N ′
h + σ2ε ,

where ˆCov (η̂j,se) is the sample variance-covariance matrix of the regression residuals η̂j,se, and

σ2ε is the consumer’s belief on the variance of the idiosyncratic utility shock, εhj,se, which is

assumed to be the same as the true variance of εhj,se. To estimate the multivariate regression,

we collect all the products on all the refinements and search sessions.5

5The simplification assumption for the above prediction rule is that it is homogeneous across refinements. We
assume that a single prediction rule captures the main underlying mental reasoning for consumers, since otherwise it
would be too demanding to assume that the consumer forms a large number of prediction rules over the large number
of possible refinements. Another practical concern behind this simplification is that the unknown coefficients, φ and
Γ, are large-dimensional due to the high dimensionalities of the revealed and unrevealed product attributes. We would
lose lots of precisions if we separately estimate the prediction coefficients for each refinement.
Also, although the prediction rule for the unrevealed product attributes is assumed to be homogeneous across
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In terms of the cost to click the unsampled products,

– To click on an unsampled product on the current refinement page where the consumer is

at, the consumer pays the expected product-detail page loading time cost, the observed

position cost, and the product-detail page residual cost:

cP,h,se(rf, j) = γh,Detail + γh1DetailLoadh,se + γh3Rj,se. (5)

The position cost captures the lower tendency for the lower-ranked products to be clicked

due to the additional cost of scrolling down. The product-detail page residual cost,

γh,Detail (also known as the baseline cost), captures the remaining psycho-physiological

costs associated with product clicking, which are not captured by the existing observed

covariates.

– To click on an unsampled product on a previously visited refinement page rf ′, the con-

sumer pays the additional expected refinement page loading time cost to switch refine-

ment:

cP,h,se(rf, j) = γh,Detail + γh1 (SearchLoadh,se +DetailLoadh,se) + γh3Rj,se. (6)

In the clicking cost function cP,h,se(rf, j), the argument rf indicates the current refine-

ment, and the argument j is an index for product j, which contains all the relevant

information for product j, including the refinement rfj,se of product j and the position

Rj,se of product j in session se. When the refinement of product j is different from the

current refinement (rfj,se 6= rf), the consumer pays the additional cost for switching

refinement (SearchLoadh,se).

• For product j on a refinement page the consumer has visited and clicked, the consumer knows

all the product attributes xIj,se and x
N
j,se and their idiosyncratic utility shocks εhj,se; that is, the

consumer knows uhj,se. The sampled products are no longer search options, but are candidates

consumers, the prediction for the unrevealed product utility distribution depends on consumer-specific preference
coefficients and hence is heterogeneous. Note that the preference coefficients βN

h affect the option value of clicking
on a product through both the mean and variance of the conditional utility distribution, and hence will explain the
different clicking behaviors across consumers.
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for purchase decision. The costs associated with the purchase decisions are the observed prices

of the sampled products.

7.3 Multiple Sequential Search Model

We model the consumer search process using multiple search problems. Each search problem is

anchored to the current refinement the consumer is visiting. The consumer starts her search from

the default refinement on the search platform.

Within a given refinement, the consumer is assumed to engage in the traditional sequential search

in which both the unvisited refinements and unsampled products on the visited refinements are search

options. Furthermore, the model shares the same cost-benefit tradeoff as in Weitzman (1979), where

the consumer will evaluate each search option based on the expected gain of search and search cost.

This evaluation can be equivalently characterized by the reservation utility of each search option. In

particular, for each unsampled product j, the consumer computes its reservation utility zh,rf,j,se as

the utility level that makes her indifferent between sampling product j versus choosing the current

best offer precisely at the utility level zh,rf,j,se:

cP,h,se(rf, j) =

∫ ∞
zh,rf,j,se

(uhj,se − zh,rf,j,se) dGh
(
uhj,se|xIj,se

)
. (7)

For each unvisited refinement rf , the consumer computes its reservation utility zh,rf,se similarly as

cR,h,se(rf) =

∫ ∞
zh,rf,se

(Uh,rf − zh,rf,se) dFh,rf (Uh,rf ) . (8)

During the search process, the consumer will update her current best offer to be the maximum of

the realized utility of the sampled products as

u∗h,se = max
j∈S
{uhj,se},

where S is the set of sampled products for the consumer. The optimal strategy contains two steps,

a selection rule and a stopping rule:

• Selection rule: If sampling a product or visiting a refinement, the consumer picks the search

option with the highest reservation utility.
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• Stopping rule: The consumer stops the search process if the current best offer exceeds the

reservation utilities of all the unvisited refinements and unsampled products on the visited

refinements.

When the consumer decides to visit a different refinement from the one she is currently at, we assume

the consumer enters a new search problem whereby she needs to evaluate the search options again,

because she may observe a new set of products as search options with partially revealed product

information, and the search costs of sampling products on previously visited refinements may change.

Hence, in our model, switching refinements means switching search problems. When the consumer

switches refinements, she faces the new search problem in which she performs the following four

transition steps:

1. Carries over the current best offer;

2. Updates her search costs for the unsampled products on the current and last-visited refine-

ments, as described in Section 7.2;

3. Carries over all the search options she has discovered so far, if sampling a product from a

previously visited refinement ;

4. Merges all the search options she has discovered so far with a new set of partially revealed

products, if searching an unvisited refinement.

Finally, when the consumer stops the search process, she chooses either a sampled product or the

outside option, depending on which one has the highest realized utility.

7.3.1 Discussion

The multiple sequential search model is a simplification of a unified sequential search model that

contains all the search problems within. The difference is that, in the unified model, no simple search

strategy for this general dynamic programming problem exists, and the consumer needs to mentally

compute the payoff for all possible search paths. We can have a glimpse into this computation

challenge by looking at some necessary computation steps needed. To evaluate the period utility

of visiting a particular refinement along any search path, the consumer needs to account for the

high-dimensional joint distribution of all the partially revealed attribute values for an ordered list
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of products on that refinement. Estimating and integrating over this distribution is very difficult.

The consumer needs to repeat this computation for all refinements, along all paths. The curse of

dimensionality in the number of search paths and the size of the probability space of the product

attributes on refinement pages render this modeling approach infeasible. In the online appendix

Section D.1, we present the unified sequential search model with more details of its computation

difficulty.

The simplification we adopt for our model is the same one-step-ahead approach as in De los

Santos and Koulayev (2017), where the consumer does not mentally hypothesize what happens

beyond reaching the new refinement, because that computation depends on too much information

unobserved to her, and accounting for such uncertainty is too costly to perform. Instead, the

consumer uses a heuristic yet intuitive utility distribution to characterize the uncertain benefit

of searching a refinement. When she arrives at a new refinement, the consumer observes new

information and updates her search costs, based on which she re-evaluates the search options in

that refinement. As a result, we split the unified sequential search problem into multiple related

search problems, each anchored to the current refinement the consumer is situated at during her

search process. These multiple search problems are separated by the different amount of information

the consumer has acquired before and after switching a refinement. When the consumer switches

refinements, she switches search problems.

Within each problem, we retain the sequential search structure, because the curse of dimen-

sionality of the form mentioned above does not exist: when the consumer samples products on the

current refinement she is situated at, she has already observed product availability and the par-

tially revealed product attributes. Furthermore, Weitzman (1979) has characterized a simple search

strategy that only relies on the reservation utility of each product using the conditional belief of

the hidden product utility for that product, independent of other products. As a result, with the

assumption that the consumer uses an intuitive utility distribution for searching a refinement, she

treats unvisited refinements in the same way as unsampled products, and Weitzman (1979) gives us

a complete characterization of the consumer search process within each search problem and hence

overall. In the online appendix Section D.2, we present the multiple sequential search model and

discuss its deviations from the unified model in details.

In summary, we only simplify our model structure for the choices the consumer does not have
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much information about, while still maintaining the overall sequential search framework and model

expressiveness. We hope this selective simplification is consistent with our central modeling principle

to capture the consumer information and cost structure more realistically, while accounting for model

tractability. Our model extends that of De los Santos and Koulayev (2017). It grants us the flexibility

to have distinct search costs for refinement visiting and product clicking, and allows the change in the

platform design to affect refinement visiting through cognitive costs and product sampling through

partially revealed information. This flexibility is crucial to answering our managerial question.

8 Estimation

Based on the model specification in Section 7 and the characterization of the optimal search strategy,

we derive the model likelihood and describe the estimation strategy in this section. We defer the

discussion on model identification, Monte Carlo simulations, and model fit to Section E of the online

appendix.

8.1 Likelihood and Estimation Strategy

For a given consumer h and search session se, suppose she engages Bh,se ≥ 1 search problems

and performs Kh,se,b ≥ 1 searches within each bth search problem. For the bth problem and kth

search, the model has the following state variables (suppressing subscripts h, se, b, k): the set of

unsampled products on the current refinement S̄ (S for the sampled counter part), the set of un-

sampled products on previously visited refinements T̄ (T for the sampled counter part), the set

of unvisited refinements R̄, the current refinement rf , and the current best utility u∗. Note that

u∗h,se,b,k = max {maxj∈S∪T uhj,se, uh0,se}, where uh0,se is the outside option utility.

For the bth problem and kth search (suppressing subscripts h, se, b, k), the search options include

S̄, T̄ , and R̄. Let J = |S̄∪T̄∪R̄| denote the total number of search options, let R(n) denote the index

of the search options with the nth largest reservation utility, and recall that zR(n) is the reservation

utility for the search option that ranks n.

We incorporate the observed consumer search process into the indicator function 1h,se(βh, γh, εh,se; data)

that simultaneously satisfies all the following conditions, specified by Equations (9) - (14), for a given

utility shock realization vector of the sampled products εh,se = (εh,j,se)j . Then the likelihood for the
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observed consumer search process is

Lh,se(βh, γh; data) =

∫
1h,se(βh, γh, εh,se; data)dF (εh,se) .

We suppress subscripts h, se, b, k below, because each quantity pertains to the relevant index in

its own context. The conditions for the indicator function 1h,se(βh, γh, εh,se; data) are specified as

follows:

• For the bth search problem before the last one in the search session, that is, 1 ≤ b < B, the

consumer does not stop the search process. By definition of our search problem, the last search

in the bth search problem must be an option among T̄ ∪ R̄ in order for the consumer to switch

search problem, and all the other searches (if K > 1) must be among S̄. Therefore,

– Each kth search action out of K searches removes the search option from the unsearched

set and implies

zR(k) ≥
J

max
n=k+1

zR(n) (9)

zR(k) ≥ u∗. (10)

• If the consumer searches an unvisited refinement or clicks on a product from a previously visited

refinement, she switches refinements and starts a new search problem. She performs the four

transition steps as described in Section 7.3.

• For the last search problem, namely, b = B, the consumer searches in the first K steps among

S̄, stops at the (K + 1)-th step, and makes the purchase decision:

– Each kth search action out of K searches removes the search option from the unsearched

set and implies

zR(k) ≥
J

max
n=k+1

zR(n) (11)

zR(k) ≥ u∗. (12)

– Stopping at the (K + 1)-th step implies
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u∗ ≥ J
max

m=K+1
zR(m). (13)

– Purchasing the jth option (j = 0 for choosing the outside option) implies

uj = u∗. (14)

To estimate the consumers’ preference and search cost heterogeneity, we introduce a distribution

assumption for βh and γh following the current literature (see, e.g., Chen and Yao (2016) and De los

Santos and Koulayev (2017)). In particular, we assume that βh and γh follow βh ∼ N(β,Ωβ) and

γh ∼ N(γ,Ωγ),where Ωβ and Ωγ are diagonal matrices.

The likelihood of the model, integrated over consumers’ heterogeneity and aggregated over all

individuals and search sessions, is given by

L(β, γ,Ωβ,Ωγ ; data) =
∏
h

∫
βh

∫
γh

∏
se

[Lh,se(βh, γh; data)] dF (γh)dF (βh). (15)

We use simulated maximum likelihood to estimate the model. In particular, for each consumer, h,

we draw 50 pairs of (βh, γh) from their normal distributions, and for each pair of (βh, γh), we draw

100 sets of εh,j,se from the standard normal distribution for the clicked products. We compute the

individual likelihood using the simulated draws, and we smooth over the likelihood using a logit-

smoothed AR simulator (Hajivassiliou and Ruud (1994)). Finally, we repeat the process for each

individual.

9 Results

The estimated preference coefficients can be found in Table 8. We normalize the coefficient estimates

to RMB by dividing them by the magnitude of the price coefficient. We find that consumer rating is

very influential in the evaluation of products, consistent with the findings of Chen and Yao (2016).

A hotel with 5-point rating on average is USD 46.04 more expensive than a hotel with 1-point rating.

The estimates of the other preference coefficients also align closely with our intuition. Many of the

preference coefficients have considerable heterogeneities, including price, consumer rating, hotel star,

breakfast, cancellation allowed, Wi-Fi in room, parking, and outdoor swimming pool.
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The estimated search cost coefficients can be found in Table 9. To make the cognitive search

cost more interpretable, we convert the cognitive cost consumers encounter in a typical search-result

page into a monetary value as follows:

Search Cost Coeff (util/bits)× Entropy Search Cost (bits)/Price Coeff (util/RMB).

For an average search-result page, the orderedness entropy of price, consumer rating, and discrete

variables are 3.38 bits/page, 1.13 bits/page, and 4.88 bits/page, respectively. Thus, consumers on

average pay the cognitive cost of 45.96 RMB, 3.96 RMB, and 94.51 RMB, respectively, per refinement

visit, or 144.43 RMB (21.56 USD) in total. We find significant heterogeneity in consumers’ reactions

to discrete variable entropy. The estimated coefficients to the second order terms suggest that the

refinement search cost is convex in the orderedness entropies.

Furthermore, the share of loading time cost in the overall search cost is much smaller. An

average search-result page takes 3.37 sec to load, and consumers on average pay the time cost of

0.13 RMB (0.019 USD) per refinement visit. An average product-detail page takes 2.27 sec to load,

and consumers on average pay the time cost of 0.09 RMB (0.013 USD) per click. Thus, time cost is

estimated to be 135.85 RMB, or 20.28 USD, per hour on average.

Our estimated position effect is 0.45 RMB (0.07 USD), which is equivalent to the cost of 11.32

RMB (1.69 USD) if consumers scroll to the end of a refinement page with 25 products on it. This

estimated position effect is close to that discovered by Chen and Yao (2016), who find a multiplicative

position effect that inflates the overall search cost from 4.85 USD for the first position to 5.31 USD

for the 10th position, totaling approximately 0.05 USD for each position. Both the position effect

and clicking baseline cost have large heterogeneities across consumers.

10 Managerial Implications

In this section, we study our opening managerial question of how much information to reveal in the

outer layer. To approach this question, we vary the set of product attributes revealed in the outer

layer and leave the remaining product attributes to the inner layer. We only perturb whether a

product attribute is displayed in the outer or inner layer, without removing any product attribute

from the platform. Each such configuration corresponds to one information layout, which is applied
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Revealed Attribute Mean (std. err.) Heterogeneity (std. err.) RMB U USD $

Price -0.00053 (0.00002) 0.00013 (0.00001)
Consumer Rating 0.04122 (0.00656) 0.01594 (0.00750) 77.11 11.51

Hotel Star 0.01049 (0.00069) 0.00268 (0.00064) 19.63 2.93
Breakfast 0.02804 (0.00334) 0.03864 (0.00978) 52.47 7.83

Cancel Allowed 0.00822 (0.00076) 0.00456 (0.00114) 15.38 2.30
Wi-Fi in room 0.04779 (0.00418) 0.02372 (0.00576) 89.42 13.35
Kingsize bed 0.03077 (0.01035) 0.01548 (0.01119) 57.58 8.59

Wi-Fi in public areas 0.07113 (0.03477) 0.04611 (0.03137) 133.08 19.86
Parking 0.02933 (0.00165) 0.00782 (0.00200) 54.87 8.19

Meeting rooms 0.00898 (0.00287) 0.00381 (0.00637) 16.80 2.51
Gym 0.07076 (0.00528) 0.01014 (0.00598) 132.39 19.76

Restaurant 0.02277 (0.00460) 0.01557 (0.00856) 42.60 6.36
Airport pickup service 0.02575 (0.03018) 0.23038 (0.53489) 48.17 7.19
Outdoor swimming pool 0.15488 (0.00860) 0.03797 (0.01214) 289.78 43.25

Unrevealed Attribute Mean (std. err.) Heterogeneity (std. err.) RMB U USD $

Free toiletries (less than six items) 0.00013 (0.00035) 0.00012 (0.00079) 0.25 0.04
Free toiletries (more than six items) 0.04935 (0.00812) 0.02472 (0.01902) 92.33 13.78
Free domestic long-distance calls 0.05771 (0.00512) 0.01437 (0.00796) 107.97 16.12

Free bottled water 0.00158 (0.00377) 0.02488 (0.10956) 2.95 0.44
Free map 0.00230 (0.00687) 0.05312 (0.29399) 4.31 0.64

Free newspaper 0.00403 (0.01184) 0.16200 (0.80627) 7.53 1.12
Pets Allowed 0.01830 (0.01155) 0.11224 (0.13049) 34.24 5.11

Free Afternoon Tea 0.01123 (0.00326) 0.00595 (0.00460) 21.01 3.14
Free Guide Service 0.03398 (0.00445) 0.00832 (0.00570) 63.57 9.49

Table 8: Preference Estimates. The RMB U column is the estimates divided by the absolute value
of the price coefficient, and the USD $ column is further converted from RMB to USD by dividing
by the currency exchange rate of 6.7. Bold fonts indicate estimates significant at the 95% level.

Coefficients Mean (std. err.) Heterogeneity (std. err.) RMB U USD $

Refinement

Base 0.00147 (0.00035) 0.00037 (0.00116) 2.75 0.41
Price Entropy 0.00048 (0.00016) 0.00017 (0.00043) 0.89 0.13
Rating Entropy 0.00048 (0.00028) 0.00028 (0.00062) 0.90 0.13
Discrete Entropy 0.00026 (0.00005) 0.00013 (0.00006) 0.48 0.07
Price Entropy (Sq) 0.00199 (0.00018) 0.00039 (0.00013) 3.72 0.56
Rating Entropy (Sq) 0.00122 (0.00044) 0.00048 (0.00049) 2.28 0.34
Discrete Entropy (Sq) 0.00205 (0.00019) 0.00071 (0.00009) 3.84 0.57

Time Time (Sec) 0.00002 (0.00001) 0.00001 (0.00001) 0.04 0.01

Click
Base 0.04547 (0.00170) 0.02186 (0.00229) 85.08 12.70

Position 0.00024 (0.00001) 0.00013 (0.00002) 0.45 0.07

Table 9: Search Cost Estimates. The RMB U column is the estimates divided by the absolute value
of the price coefficient, and the USD $ column is further converted from RMB to USD by dividing
by the currency exchange rate of 6.7. Bold fonts indicate estimates significant at the 95% level.
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to all refinement pages. Then for each information layout, we simulate the various aspects of the

consumer search process using our estimated model, including the number of clicks, the number

of searches, purchase probability, purchase session utility, purchased product price, revenue, and

consumer welfare. We define revenue to be the purchased product price accounting for purchase

probability. We also define consumer welfare to be the purchase session utility, which is the utility

of the purchased product or the outside option conditional on purchase decision, net of the total

accumulated search cost. These behavioral aspects provide us another opportunity to further un-

derstand the properties of the model. Our final aim is to study the relationship between consumer

welfare and platform revenue, which are often in conflict, and which platforms hope to balance. We

will try to characterize the Pareto frontier of this relationship, which will guide us in answering

the managerial question. We also include an alternative counterfactual in Section G of the online

appendix, where we analyze the impact on consumer search behaviors by making the refinements

with default ranking more orderly. We find that, a special kind of sorting, called local sorting,

provides a Pareto improving strategy that platforms may consider adopting to increase consumer

welfare without losing on platform revenue.

10.1 Counterfactual Setup

Due to the large space of possible configurations (about 8.3 million), we randomly sample information

layouts. We first generate layouts that cover the extreme cases, from revealing all attributes to

revealing only one attribute. Then we randomly sample 12,000 information layouts. Once we have

the general configuration space covered through randomization, we improve the resolution near the

Pareto frontier between consumer welfare and platform revenue by adding and removing up to four

attributes from the outer layer of the layouts on the sampled Pareto frontier. This procedure allows

us to better construct the Pareto frontier.

Fixing a particular information layout and using the estimated model, we simulate 500 runs of the

consumer search process by generating random utility shocks. Due to the dynamic nature of product

attributes, a given refinement will have different product availability and attribute values at different

times of visits. As a result, each simulation run will be based on the randomly sampled refinement

realizations. We then average the behavioral aspects mentioned above over the 500 simulation runs

as the typical consumer response to the given information layout.
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10.2 Counterfactual Results

Figure F.1 in the online appendix shows the various behavioral responses of the consumer search

process as information layouts vary.

Here we collate the behavioral responses of revenue and consumer welfare, and focus on their

relationship as information complexity varies in Figure 4. Each point corresponds to one information

layout, and the color of the point corresponds to the average information complexity of the layout.

The red end corresponds to layouts with extremely low information provision, and the blue end

to layouts with extremely high provision. Two point clouds exist: the top cloud of round-shaped

points corresponds to the layouts when product price is not revealed, and the bottom cloud of

diamond-shaped points corresponds to when price is revealed. When product price is not revealed,

revenue decreases and consumer welfare increases as information complexity increases in Figure F.1

in the online appendix, and hence we see a downward-sloping trend in the top point cloud. Because

revenue changes less when product price is revealed, the same pattern holds with a smaller slope in

the bottom cloud. The grey line traces out the Pareto frontier of revenue versus consumer welfare.

We find a general tradeoff whereby, as information complexity increases in the outer layer, revenue

decreases and consumer welfare reaches the maximum at an intermediate level.

Finally, the current information layout of the search platform under study is marked by the circle

in the figure, which shows room for improvement in both revenue and consumer welfare. This room

for improvement motivates us to characterize the win-win situations that benefit both the consumers

and the search platform in Section F.2 of the online appendix.

11 Conclusion

In this paper, we study the research question of how consumers acquire information at the expense

of time and cognitive costs, in addition to the search costs we already understand from the search

literature. Answering this question also helps us address new managerial questions of the optimal

amount of information to reveal in the search-result pages of search platforms and Pareto improving

local sorting. To answer these questions, we collect a rich data set from a large OTA search plat-

form. To quantify cognitive cost, we innovate an information complexity measure called orderedness

entropy. We find through model-free analysis and online random experiments that (1) consumers

40



Figure 4: This figure shows the relationship between revenue and consumer welfare as information
complexity varies. Each point corresponds to one information layout, and the color of the point
corresponds to the average information complexity of the layout. The round-shaped points corre-
spond to the layouts when product price is not revealed on the outer layer, and the diamond-shaped
points correspond to the layouts when price is revealed. The grey line traces out the Pareto frontier
of revenue versus consumer welfare. The current information layout of the search platform under
study is marked by the circle in the figure.
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actively use search-result pages as an important source of information; (2) consumers are responsive

to refinement and click loading time; and (3) orderedness entropy is a good information complex-

ity measure for cognitive cost, and consumers actively apply sorting variables in order to reduce

orderedness entropy in their search process.

We then conceptualize the consumer search process by proposing a new structural model to

capture both the refinement visiting and product clicking decisions, to distinguish between what

consumers know before and after visiting refinements and clicking products, and to decompose

search costs further into time and cognitive components. We find through model estimation that

cognitive cost is a major component of the total search cost, while loading time cost has a much

smaller share.

Finally, we vary the information revealed in the outer layer to characterize the various changes

in the consumer search process, and study the relationship between consumer welfare and platform

revenue. We find price is an important product attribute whose presence in the outer layer will

dramatically change consumer search behavior. On the Pareto frontier of this relationship, we also

find a general tradeoff whereby consumer welfare increases and platform revenue decreases as more

information is revealed. For our OTA under study, we find room for Pareto improvement in both

revenue and consumer welfare by changing which product attributes are revealed. We also find that

local sorting of the default-ranking refinements is a Pareto improving strategy that platforms may

consider adopting to increase consumer welfare without losing on platform revenue.

Our research is a first attempt in understanding and modeling cognitive cost in consumer search

process. The information complexity measure we create has the potential to be adapted in other

information-rich decision contexts. We hope our paper will inspire future research along this direc-

tion.
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Online Appendix of “Consumer Online Search with Partially

Revealed Information”

A Alternative Hypothetical Search Scenario

In addition to the conceptualization of the consumer search process described in Section 3.1 of the

paper, we pay further attention to some details in our empirical work. The hotels displayed under

different refinements are generally different, but some hotels could appear in multiple refinements if

they satisfy the search query. For example, suppose hotel 1 appears in both Ref1 and Ref3 because

it satisfies the criteria imposed by both search queries. Figure A.1 shows such a scenario. Before

visiting Ref3, the consumer does not know the product availability. In step (5), she visits Ref3 and

observes its product availability. Then the product information for hotel 1 is carried over from Ref1,

and she does not need to sample hotel 1 again.

B Limitations of Current Information Complexity Measure

Although the orderedness entropy measure is desirable in many perspectives, there are certain sce-

narios where this measure is not ideal and new measures for cognitive costs are required. First, some

product attributes might be categorical, such as the color of products, which cannot be transformed

naturally into numeric values. For example, consider an attribute sequence of colors: Red, Blue,

Yellow, Green, Red, Blue, Yellow, Green. It is challenging to quantify the differences between two

consecutive colors. One possibility is to assign numeric values arbitrarily, say Red to 1, Blue to

2, Yellow to 3, and Green to 4. Then, this sequence becomes 1,2,3,4,1,2,3,4 and its orderedness

sequence becomes 1,1,1,-3,1,1,1, which has relatively low orderedness entropy (0.59) since the or-

deredness sequence is quite concentrated at 1. Another similarly complicated value sequence can

be obtained by cycling the sub-sequence Blue, Yellow, Green to obtain Red, Yellow, Green, Blue,

Red, Yellow, Green, Blue. Using the same numeric coding, we obtain 1,3,4,2,1,3,4,2. Its orderedness

sequence is 2,1,-2,-1,2,1,-2, which has much higher orderedness entropy (1.95), since the orderedness

sequence is more uniformly distributed. Therefore, it is not valid to directly apply the orderedness

entropy measure of the current form to categorical variables through arbitrary numeric coding.
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Figure A.1: Alternative scenario in which hotel 1 of Ref1 also appears as hotel 1 in Ref3. It could also
appear as a hotel at some other position in Ref3 depending on the ranking. All the steps are the same as in
Figure 3 in Section 3.1 of the paper, except after step (5). Before visiting Ref3, the consumer does not know
the product availability of Ref3. In step (5), the consumer visits Ref3 and observes its product availability.
The product information for hotel 1 is carried over from Ref1, and hotel 1 in Ref3 is not a search option for
the consumer for the rest of the search process, which differs from the previous scenario.
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Another possibility might be to transform the categorical sequence into one that indicates

whether two consecutive values are different. After such transformation, both sequences of col-

ors become 1, 1, 1, 1, 1, 1, 1 and thus have zero orderedness entropy. However, both sequences are

harder to comprehend than, for instance, Red, Blue, Red, Blue, Red, Blue, Red, Blue, which also

has zero orderedness entropy. As a result, a new metric is desired to capture the cognitive costs of

understanding categorical variables.

Second, the orderedness entropy measure captures the well-orderedness of a sequence. However,

sometimes an attribute sequence is hard to understand, not only because of its disorderedness, but

also because of the difficulty to grasp the intrinsic information in the attribute values. For in-

stance, consider the following two value sequences: 1038660.24, 1038910.27, 1039160.30, 1039410.33,

1039660.36, 1039910.39, 1040160.42 versus 1, 3, 5, 7, 9, 11, 13. Clearly, the first sequence is harder to

understand than the second, whereas from the perspective of orderedness entropy, both sequences are

equally complex since they have constant incremental values between consecutive numbers. Thus,

orderedness entropy by itself does not capture the levels of cognitive efforts necessary to understand

the intrinsic values of different product attributes.

Third, orderedness entropy as a measure for quantifying cognitive costs does not take into account

the possibility that consumers may not comprehend and compare all the products on refinements. In

practice, the consumers may endogenously form consideration sets as a reaction to information com-

plexity. When a refinement page has high information complexity, the consumers may only consider

a subset of product information on it. In order to seriously study the formation of consideration sets,

ideally we would like to have consumers’ eye-tracking data to accurately know which products they

have considered on each refinement page. Unfortunately, this detailed information is not available

in our data. Thus, if we extend the current framework to explicitly model how consumers form

their consideration sets, we need to integrate out all the possible consideration sets in our likelihood

computation.

There are different ways to form possible consideration sets on one refinement. The most com-

prehensive way is to consider the power set of all products on the refinement, whose size is 225 in

our context with 25 products. This renders the estimation infeasible. The most simplistic way is to

assume that the consumers only consider the top-k products listed on each refinement page, and thus

the number of possible consideration sets is 25 for each refinement. However, we need to account for
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all combinations of possible consideration sets over the visited refinements by the consumer, which is

still computationally intractable. Nevertheless, adjusting the cognitive cost measure to incorporate

the possible formation of consideration sets together with collecting detailed eye-tracking data from

consumers is an important research topic, which we leave for future research.

C Evidence From Online Random Experiments

In this section, we provide findings from online random experiments, which complement our reduced-

form evidence. In particular, in the reduced-form analysis, we effectively rule out the possibility

that consumers apply sorting to change the content of the search results, since we focus on those

refinements with small-result sets only. However, the reduced-form setting cannot guarantee that

the only purpose for consumers to apply sorting is to enhance well-orderedness. Instead, consumers

may also sort using a highly relevant product attribute that is very predictive for the overall product

utilities, and thus they could easily anchor the highest utility product after sorting on this product

attribute. However, without knowing consumers’ utility coefficients, we cannot examine or control

for this channel using the observational data and reduced-form analysis. Hence, we introduce an

experiment to strengthen the evidence.

C.1 Experimental Design

Experiment 1 on Response Time: To enhance our understanding on whether consumers respond

to the orderedness of product attributes, we investigate the simplest scenario where the products

have only one attribute. In particular, we first generate a list of 20 products, each with its only

attribute and hence its utility being an even number from 0 to 20, where 0 and 2 appear once and

the rest integers appear twice in the list. Therefore, the fully-sorted list of the product utility is

v = [0, 2, 4, 4, 6, 6, 8, 8, ..., 20, 20]. Then, we introduce two more lists. One is a 3-block-sorted list,

which is generated by cutting the fully-sorted list v into 3 blocks and randomly shuffling the three

blocks. Another one is a fully-random list, which is generated by randomly sampling the elements

in v without replacement. Finally, for each generated list, we draw a random integer from 1 to 20

and add it to all the elements in the list.

Among the fully-sorted, 3-block-sorted, and fully-random lists, we randomly assign two of the lists
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to each experiment subject. We have recruited 87 subjects on Amazon Mechanical Turk (MTurk)

for this experiment. Each subject earns a bonus when she selects the highest-utility product in a

list.

Clearly, the level of orderedness as measured by orderedness entropy varies significantly across

lists. In particular, for the fully-sorted, 3-block-sorted, and fully-random product lists, the ordered-

ness entropy on average is 0.69, 0.99 and 2.25, respectively. Then, we examine if the experiment

subjects need to spend more time to make a choice when they encounter higher orderedness entropy.

A screenshot of one example of this experiment can be found in Figure C.1.

Experiment 2 on Sorting Behaviors: We introduce an experiment similar to the reduced-

form setting, in which a product has multiple attributes and the consumers decide whether to sort

the list of options and which attribute to sort on. The difference between the experiment and the

reduced-form setting is that we observe consumers’ utilities in the experiment. As indicated in

the reduced-form analysis, consumers tend to sort on the product attribute which induces a larger

amount of reduction in orderedness entropy. However, one potential concern with this interpretation

is that a product attribute corresponding to more orderedness entropy reduction could also be more

relevant for consumers; as a result, consumers sort on that attribute not only to reduce orderedness

entropy, but also to better predict the ordering of the overall product utilities. Without knowing

consumers’ utilities, we cannot disentangle these two hypotheses. With the help of experimental

design, we not only know consumers’ utilities, but we can also make sure that all the product

attributes are equally predictive of the overall product utilities. Based on this foundation, we can

test if consumers apply sorting to reduce orderedness entropy.

In this experiment, the total utility of a product is set to be the sum of its three attribute

values. Different product attributes may have different numbers of support points. More specifically,

each decision context includes 20 products, and each of the three product attributes is a list of

20 values that could have 2, 3, 5 or 11 support points with values evenly spread out between

0 and 10. In particular, a fully-sorted list of a 2-support-points product attribute is set to be

v2 = [0, 0, ..., 0, 10, 10, ..., 10], a 3-support-points one is v3 = [0, ..., 0, 5, ..., 5, 10, ..., 10], a 5-support-

points one is v5 = [2, ..., 2, 4, ..., 4, 6, ..., 6, 8, ..., 8, 10, ..., 10], and finally an 11-support-points one is
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Figure C.1: Screenshot of Experiment 1: we examine the subjects’ response time for understanding
a list of one-attribute products.
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v11 = [0, 1, 2, 2, ..., 9, 9, 10, 10].

Furthermore, a decision context could be either a combination of the (2,3,11)-support-points

product attributes, or the (2,5,11)-support-points product attributes. Also, to allow different ranges

of orderedness entropy reduction, each product attribute could be fully-sorted, 3-block-sorted or

fully-random, as described in Experiment 1. Thus, for the decision context with either the (2,3,11)-

support-points or the (2,5,11)-support-points product attributes, there are seven designs: (1) one

design where all the attributes are fully-random, (2) two designs where the first attribute is either

3-block sorted or fully-sorted, (3) two designs where the second attribute is either 3-block sorted or

fully-sorted, and (4) two designs where the third attribute is either 3-block sorted or fully-sorted.

Overall, we have 14 designs, and the orderedness entropy varies significantly across designs. We also

randomly permute the columns of the product attributes.

Last but not least, we define the predictability of a product attribute for the overall product

utilities as the Spearman’s Rank-Order Correlation between the ranking of a given product attribute

value and that of the overall product utilities. Then, we adjust the range of each product attribute

so that different product attributes have similar amount of predictability for the overall product

utilities.

We have 85 subjects for the second experiment. Each subject is assigned four out of the seven

designs described above for the (2,3,11)-support-points product attributes as follows: design (1) and

one random design from (2), (3), and (4). Furthermore, each subject is assigned another four designs

out of the seven for the (2,5,11)-support-points product attributes. The screenshot of one example

of the second experiment can be found in Figure C.2, which presents a (2,5,11)-design with fully

random attributes.

C.2 Experimental Findings

Experiment 1: The findings of the first experiment indicate that the more sorted the product

utilities are, the less time spent on making a choice decision. As is reported in Table C.1, the

experimental results show that when the orderedness entropy of the product attribute list increases

by one unit, the subjects on average spend 2 more seconds on comprehending the list. Hence, the

7



Figure C.2: Screenshot of Experiment 2: we examine the subjects’ sorting behaviors for understand-
ing a list of three-attributes products.
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Response Time (std. err.)

Orderedness Entropy 2.01 (0.59)
Intercept 8.55 (0.91)

Number of Observations 174

Table C.1: Experimental evidence: consumers’ response time as a function of orderedness entropy.
This experiment contains a list of products with one product attribute. The positive coefficient of
orderedness entropy indicates that, on average, consumers spend more time to understand, compare,
and choose from a product list when the list is more disordered. Bold fonts indicate estimates
significant at the 95% level.

subjects on average spend 3.13 additional seconds to understand a fully-random attribute list of

20 products than to understand a fully-sorted one. Therefore, the experimental findings support

the idea that the orderedness entropy measure reasonably proxies the amount of cognitive efforts

required for understanding a list of product attribute.

Experiment 2: The outcomes of the second experiment indicate that the subjects tend to sort

on a product attribute which generates a page with lower orderedness entropy. Like the reduced-

form analysis, we use a multinomial logit model to study the choice probability of sorting on j ∈

SV = {No Sorting, Feature 1, Feature 2, Feature 3} as follows:

P (sort on j) =
exp

(
Interceptj + ηEntropyj + ξRankCorrj

)∑
k∈SV exp (Interceptk + ηEntropyk + ξRankCorrk)

.

As can be seen from Table C.2, the estimated coefficient of orderedness entropy is negative and sig-

nificant at the 95% level. Once again, this finding suggests that orderedness entropy appropriately

proxies the amount of cognitive cost required for comprehending and comparing a list of products,

and consumers actively apply sorting to reduce that cost. Moreover, the insignificance of the es-

timated rank correlation coefficient in the second specification confirms that we have successfully

matched the degree of predictability across product attributes in the experimental design. The es-

timate of the orderedness entropy coefficient is robust to the introduction of the rank correlation

variable, which supports our conclusion that the reduction of orderedness entropy is indeed one

purpose (which may not be the only purpose) for the consumers to apply sorting to the search-result

pages.
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Specification 1 Specification 2

Orderedness Entropy Coefficient η -0.36 (0.11) -0.35 (0.11)
Rank Correlation Coefficient ξ -0.14 (0.21)
Intercept Sorting Attribute 1 0.39 (0.11) 0.36 (0.12)
Intercept Sorting Attribute 2 -0.06 (0.12) -0.10 (0.13)
Intercept Sorting Attribute 3 -0.36 (0.13) -0.40 (0.14)

Number of Observations 680 680

Table C.2: Experimental evidence: consumers’ sorting behaviors as a reaction to orderedness entropy.
This experiment contains a list of products with three product attributes. The negative coefficient
of orderedness entropy indicates that consumers tend to sort on a product attribute which generates
a page with lower orderedness entropy. The insignificance of the rank correlation coefficient in the
second specification confirms that consumers indeed sort a list of options for the purpose of reducing
orderedness entropy, rather than for the purpose of locating the highest utility product. Bold fonts
indicate estimates significant at the 95% level.

D Unified and Multiple Sequential Search Models

D.1 Unified Sequential Search Model

The unified sequential search model has the following state variables: the set of unsampled products

Ō (which is the union of the set of unsampled products on the current refinement S̄ and the set of

unsampled products on the previously visited refinements T̄ ), the set of unvisited refinements R̄, the

current refinement rf , and the current best utility y. We use O,S, T,R for the respective sampled

counterparts. We suppress the subscripts for consumer h and search session se in this section to

avoid notational clutter, because the search model concerns the search process for a given consumer

within a search session. When the context calls for the distinction of different consumers and search

sessions, such as when we specify the likelihood across consumers and search sessions, we restore the

subscripts.

Equations (D.1) - (D.4) specify the value functions of the fully forward looking search process.

Φ
(
Ō, R̄, rf, y

)
= max {y, (D.1)

max
j∈Ō

{
−cP (rf, j) + EjΦ

(
Ō − {j}, R̄, rfj ,max {y, uj}

)}
, (D.2)

max
rf ′∈R̄

{
−cR(rf ′) + Erf ′Φ

(
Ō ∪ S̄rf ′ , R̄− {rf ′}, rf ′, y

)}}
(D.3)

Φ (∅, ∅, rf, y) = y (D.4)
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Lines (D.1) - (D.3) specify the choices that a consumer has at any stage:

1. The consumer can choose to exit the search with the current best utility y. (Line (D.1))

2. The consumer can choose to sample a product j that generates the highest option value,

computed as the tradeoff between the product clicking cost cP (rf, j) and the continuation

value to sample product j. (Line (D.2)). Note that when the consumer is evaluating product

j as a search option, the product could be on the current refinement or on a previously visited

refinement. Recall that for a product on the current refinement, the consumer incurs clicking

baseline cost, position cost, and the expected detail page loading time cost; for a product on

a previously visited refinement, the consumer incurs these three costs as well as the expected

refinement loading time cost. In order to differentiate the product clicking cost for either

case, cP (rf, j) is a function of rf and j, where rf indicates the current refinement, and the

argument j is an index for product j, which contains all the relevant information for product

j including the refinement rfj of product j. When the refinement of product j is different

from the current refinement (rfj 6= rf), the consumer pays the additional cost for switching

refinement. The value function to sample a product will have the following as its updated state

variables: a new set of unsampled products Ō − {j} with product j being no longer a search

option, the same set of unvisited refinements R̄ as before, the refinement rfj that product j is

on, and the updated current best utility max {y, uj}.

3. The consumer can choose to visit a refinement rf ′ that generates the highest option value,

computed as the tradeoff between the refinement search cost cR(rf ′) and the continuation

value to visit refinement rf ′ (Line (D.3)). The refinement search cost contains the expected

refinement loading time cost, the expected cognitive cost, and the refinement baseline cost.

The value function to visit a refinement will have the following as its updated state variables:

a new set of unsampled products Ō∪ S̄rf ′ with new product availabilities S̄rf ′ being discovered

and added as search options, a new set of unvisited refinements R̄−{rf ′} with refinement rf ′

being no longer a search option, the new current refinement rf ′, and the same current best

utility y as before.

Equation (D.4) specifies the base case that the value function equals the current best utility when

there are no more searches to be performed.
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The new model tries to capture the important information and cost structures during the con-

sumer search process on modern platforms, as described in the conceptualization. It also accommo-

dates search behaviors that are commonplace on modern platforms. In particular,

• Consumers discover new product availabilities, S̄rf ′ , and expand their search options Ō after

they visit a new refinement rf ′, rather than knowing them all before commencing any search.

• Product information is separated into the revealed portion that is discovered as the consumer

visits a new refinement, and the hidden portion to be searched as the consumer visits a product

detail page. The model assumes that the consumer accounts for such uncertain information

through the following integrations:

1. For the value function of visiting a new refinement, the integration (Erf ′) is taken over

the joint distribution of the partially revealed product attribute values for an ordered list

of products on refinement rf ′;

2. For the value function of sampling a product, the integration (Ej) is taken over the

conditional distribution of the hidden component of the product utility given the revealed

product attribute values.

• Consumers may re-visit old refinements to sample products, because search options Ō include

unsampled products on all the visited refinements.

• The search cost is flexible enough to distinguish sampling products on the current refinement

versus on the previously visited refinements.

These model capabilities are important for researchers to study the preference and cost parameters of

the consumers. The additional model flexibility also allows the researchers to answer new managerial

questions, including the determination of the optimal amount of information to reveal in the outer

layer.

However, the capabilities and flexibility of the new model come at a cost. Since the consumers

could expand their search options when they visit new refinements, there is no simple optimal

solution as specified in Weitzman (1979) for the dynamic programming problem. Rather, solving

the fully forward looking problem poses the following enormous computation challenges:
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1. The curse of dimensionality arises due to the exponential growth of decision paths of varying

length along which the decisions to sample products and to visit refinements interleave;

2. The integration, Erf ′ , for each refinement is computationally difficult, and even estimating the

relevant distributions involved in the integration is a formidable task itself.

Therefore, regrettably, using the fully forward looking model in its original form is not viable for

our empirical analysis.

D.2 Multiple Sequential Search Model

The multiple sequential search model simplifies the unified sequential search model by balancing

model flexibility and computation tractability. In the following, we first present our multiple se-

quential search model, and then we compare it with the unified model.

In the multiple sequential search model, each search problem is anchored to the current refinement

the consumer is visiting. When the consumer decides to visit a different refinement from the one

she is currently at, we assume the consumer starts a new search problem. Suppose a consumer in a

search session has B search problems. Within the bth search problem (b ∈ {1, ..., B}), the consumer

is assumed to engage in the traditional sequential search where both the unvisited refinements and

unsampled products on the visited refinements are search options. Equations (D.5) - (D.8) specify

the value function of the bth problem in the multiple sequential search model. The notations are

the same as the ones used in the unified model, except that we use subscript b to indicate that the

quantities are for the bth search problem.

Φb

(
Ōb, R̄b, yb

)
= max {yb, (D.5)

max
j∈Ōb

{
−cP (rfb, j) + EjΦb

(
Ōb − {j}, R̄b,max {yb, uj}

)}
, (D.6)

max
rf ′∈R̄b

{
−cR(rf ′) + Erf ′Φb

(
Ōb, R̄b − {rf ′},max {yb, Urf ′}

)}}
(D.7)

Φb (∅, ∅, yb) = yb (D.8)

The multiple sequential search model has a very similar structure with the unified model. In

particular, the option values for stopping (Line (D.1) vs (D.5)) and for sampling a product on the

visited refinements (Line (D.2) vs (D.6)) are computed in the same way. The base case (Equation

(D.4) vs (D.8)) is also the same. The most prominent deviation from the unified model is the
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computation of the continuation value of searching a refinement (Line (D.3) vs (D.7)). Below we

discuss in details the differences between the multiple and unified sequential search models.

First, the multiple sequential search model simplifies the computation of the exact continuation

value of searching a refinement. Since the exact continuation value takes into account the benefit of

expanding the search options, no simple optimal solution as specified in Weitzman (1979) is available

for the dynamic programming problem. Also, from the consumer’s perspective, computing the exact

continuation value needs to mentally hypothesize what happens beyond reaching a new refinement,

which depends on too much information that is unobserved, including the would-be partially revealed

product attribute values of an ordered list of products on the refinement. Provided that accounting

for such uncertainty is quite difficult to perform, both mentally and computationally, we assume

that the consumer uses a heuristic yet intuitive utility distribution to characterize the benefit of

searching a refinement. Following the same one-step-ahead approximation adopted in De los Santos

and Koulayev (2017), we assume that the consumer believes that the benefit of searching a refinement

is captured by the distribution of the highest product utility on the refinement. In other words, as

De los Santos and Koulayev (2017) put it, the consumer mentally hypothesizes that she will select

the highest utility option on the refinement as is in a standard multinomial discrete choice setting.

Accordingly, instead of integrating over S̄rf ′ as in Line (D.3), where the uncertainty comes from

the joint distribution of the partially revealed product attribute values of an ordered list of products

on refinement rf ′, we integrate over the highest product utility on the refinement, Urf ′ , which is much

simpler as the uncertainty is based on a scalar.6 With this simplification, the curse of dimensionality

of the dynamic programming problem is addressed. The bth search problem has the same structure

as the problem in Weitzman (1979), and therefore Equations (9) - (14) in the paper characterize

the optimal solutions of the dynamic programming problem, which utilize the reservation utilities

of searching a refinement and sampling a product as defined in Equations (7) and (8) of the paper.

Second, when the consumer decides to visit a new refinement, the consumer updates the state

variables in the same way as she does in the unified model, whereas the deviation from the unified

model is that the consumer now enters a new search problem. In particular, when the consumer

visits a new refinement rf ′, the consumer starts the (b + 1)th search problem and rfb is updated
6For our empirical analysis, we assume that the distribution of Urf , namely Fh,rf , is a normal distribution for

which its first and second moments are unbiased estimates of the mean and variance of the maximum product utility
on refinement rf , as discussed in details in Section 7.2 of the paper.
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to rfb+1 = rf ′. Meanwhile, the consumer updates her state variables as follows: Ōb becomes

Ōb+1 = Ōb ∪ S̄rf ′ , where the available products S̄rf ′ on refinement rf ′, are added as the search

options; R̄b is updated to R̄b+1 = R̄b − {rf ′} with refinement rf ′ removed from the search options;

and the current best utility, yb, is updated to be the best product utility discovered so far. With

the updated state variables Ōb+1, R̄b+1 and yb+1, the consumer starts the (b+ 1)th search problem

as characterized in Lines (D.5) - (D.8).

Note that, due to the one-step-ahead approximation, the consumer necessarily starts a new

search problem when she switches to a new refinement, because the product availabilities on the

new refinement are approximately considered before she switches the refinement, and the product

availabilities (i.e. the partially revealed product attributes of an ordered list of products on the new

refinement) are fully updated after she switches the refinement. Overall, the multiple sequential

search model contains a sequence of the Weitzman’s problems, which are separated by the different

amount of information the consumer has acquired before and after switching a refinement.

Third, we note that rf is a state variable in the unified sequential search model, but it is not

a state variable in the multiple sequential search model. This is because in the multiple sequential

search model, each search problem is uniquely indexed by subscript b; since the subscript b corre-

sponds one-to-one to the current refinement rfb, we no longer need rfb as a state variable provided

that we index each search problem using b. In the unified sequential search model, we need rf as a

state variable to keep track of the refinement the consumer is looking at.

Finally, we compare our multiple sequential search model with the model studied in De los

Santos and Koulayev (2017). We adopt the same one-step-ahead approach by using an intuitive

utility distribution to characterize the benefit of searching a refinement. We differ, however, in how

the current best offer is updated and in the range of search options being considered during the search

process. In terms of the update of the current best offer, their model assumes that, after switching

refinements, the consumer decides whether to click on at most one product on the refinement,

captured in a reduced-form fashion by a discrete choice model. As a result, all product attributes

and random utility shocks are assumed known to consumers after they visit a refinement. In our

model, we assume the consumer still engages in sequential search, because she only observes the

partially revealed product attributes and does not know the hidden attributes and utility shocks.

The update of the current best utility is realized through selective sampling of products, which

15



informs the researchers about the product clicking costs, separately from the refinement search

costs. In terms of the refinement choice, both models assume the consumer computes and compares

the reservation utilities of the unvisited refinements for search decision. The difference is that, in our

model, the consumer additionally considers the reservation utilities of the unsampled products, and

the set of the unsampled products may increase as the consumer uncovers new partially revealed

products as she visits new refinements.

In summary, we only simplify the component of the unified sequential search model (i.e. the

computation of the refinement option value) for which the consumer does not have much information

about before they proceed further in the search process, while still maintaining the overall sequential

search framework and model capabilities. We hope this simplification is consistent with our central

modeling principle to capture the consumer information and cost structure more realistically, while

accounting for model tractability. Our model extends that of De los Santos and Koulayev (2017).7

It grants us the flexibility to have distinct search costs for refinement visiting and product clicking,

and allows the change in the platform design to affect refinement visiting and product sampling

through changes in cognitive costs and partially revealed information. This flexibility is crucial to

answering our managerial question.
7

Our paper also relates to recent papers in the context of dynamic consumer learning through modeling
consumers’ bounded cognitive ability via heuristic approaches. For example, Ching et al. (2014) points
out that it is cognitively taxing for consumers to solve a learning problem in each purchase occasion.
Given a product category, they propose to have a heuristic reduced-form first stage of decision to consider.
The consumers only solve the learning problem on the purchase occasions when they decide to consider.
As another example, Tehrani and Ching (2019) starts from the concern of cognitive burden placed on
consumers for solving dynamic problems. They introduce a heuristic valuation of exploration, which
additively augments the myopic valuation of a choice. This improved model, myopic-VPI, does not solve
the dynamic learning problem, but, due to its computational tractability, more plausibly approximates
the consumer learning process under bounded cognition. In our paper, we too believe bounded cognitive
ability is an important component in the consumer search process, as manifested by platforms providing
sorting and filtering facilities and consumers actively using such facilities to reduce cognitive cost. This
cost also has important managerial implications. As a result, we come up with a heuristic measure of
cognitive cost to enrich the consumer search model.
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E Identification, Monte Carlo Simulations, and Model Fit

E.1 Identification

The foundation of our empirical study is the identification of the parameters of consumer preference

and search costs. We adopt the same identification strategy as the one in Chen and Yao (2016), while

our study emphasizes the distinctions between the refinement visiting costs and product clicking

costs, and our identification relies on different exclusion restriction variables. We also use Monte

Carlo simulations to demonstrate the identification and estimation performance of our empirical

framework.

Preference Parameters: Various sources of the observational data variations contribute to

the identification of the mean preference parameters. First, the consumers’ decisions on which

refinements to visit reveal their preferences as follows. At each decision stage, the consumer evaluates

the expected returns of visiting different refinements to determine whether to search a refinement

and which refinement to search. The expected return depends on the distribution of the best product

utility on each refinement, which in turn depends on the joint distribution of the product attributes

on the refinement and consumer’s preferences for the product attributes. The sequence of consumer

refinement visiting reveals the ordering of the expected returns of the refinements, and hence the

consumer preferences. For instance, suppose a consumer sorts on “prices from low to high” and visits

the first few pages of the returned results. Given that the same sorting variable is applied, intuitively

the first few pages and the remaining pages have similar levels of orderedness entropies (and thus

similar amount of refinement costs), while consumers’ decisions on visiting the first few pages rather

than the later pages reveal the consumers’ preferences for lower prices. Therefore, controlling for the

variations of search costs across refinements, the average orderings of consumers’ refinement visiting

reveal the mean preference parameters.

Second, in a similar manner as the identification based on refinement visiting, the aggregate

orderings of the consumers’ product clicking also reveal their mean preferences. In particular, the

utility of clicking a product depends on the revealed product attributes and the conditional distri-

bution of the hidden product attributes, as well as consumers’ mean preferences for these product

attributes. Consumers’ decision on clicking a product suggests that the product has the highest

expected returns among the unclicked products, which in turn is informative about consumers’
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preferences (after controlling for the different clicking costs across products).

Finally, provided that the attribute values vary across products, the purchase frequencies over

products among the set of sampled products provide identification for the mean preference coeffi-

cients. This source of identification is similar as in the classical multinomial discrete choice setting,

where we need to normalize the outside option utility to be uh0,se = εh0,se, and εhj,se follows the

standard normal distribution.

The heterogeneity of the preference coefficients across consumers can be recovered since we

observe a sequence of decisions for each individual consumer, including refinement visiting, product

clicking and purchasing. The repeated observations for each consumer are informative for consumer-

specific preference coefficients, and the variations of consumer-specific preference coefficients provide

identification for the heterogeneity of the preference coefficients across consumers.

Search Cost Parameters: The consumers encounter both the costs of visiting refinements and

the costs of clicking products. More specifically, the refinement visiting cost parameters include the

consumers’ responsiveness to the expected information complexity and to the expected loading time,

and the refinement baseline cost. Also, the product clicking cost parameters include the consumers’

reactions to the product positions and to the expected loading time, and the clicking baseline cost.

For these parameters, we first discuss the identification of the mean parameter values and then the

heterogeneity across consumers.

The information complexity level as measured by orderedness entropy varies significantly across

refinement options. Controlling for the effects of applying various sorting and filtering variables on

the product utility distributions of refinements, the correlation between the frequency with which

refinements are visited and the corresponding orderedness entropies informs about consumers’ mean

responsiveness to orderedness entropy.

Similarly, products have different positions on refinements. Controlling for the differences in the

conditional utility distributions across products given the partially revealed product attributes, the

correlation between the frequency with which products are clicked and the specific product positions

provides identification for consumers’ mean reactions to positions.

Moreover, consumers consider the unvisited refinements and unclicked products on the visited

refinements together. The expected loading time is different for visiting refinements and clicking

products, and is different across consumers. Thus, the effects of the variations in loading time on
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consumers’ search decisions reveal consumers’ reactions to loading time.

Consumers make purchase decisions based on the product utilities as functions of product at-

tributes. The exclusion restrictions are defined as the variables that only affect consumers’ search

costs but not the product utilities, and thus they do not influence purchase decisions directly. Fol-

lowing the literature of selection models and the identification strategy in Chen and Yao (2016), the

availability of the exclusion restriction variables enables the separate identification of the baseline

utility parameter and the baseline search cost coefficients. In our empirical setting, we have different

exclusion restriction variables for the refinement visiting costs and product clicking costs. In par-

ticular, the expected orderedness entropies and refinement loading time only affect the refinement

visiting costs, and the positions and expected product-detail page loading time only determine the

product clicking costs, while all of them do not appear in the consumer utility functions. Therefore,

the baseline costs for both the refinement visiting and product clicking, as well as the baseline utility

coefficient are separately identifiable.

Finally, we have repeated observations for consumers’ decisions on searching and clicking, which

are informative for consumer-specific search cost coefficients, and thus enable the identification of

the search cost heterogeneities.

E.2 Monte Carlo Simulations

We use Monte Carlo simulations to demonstrate the identifiability and estimation performance of

the model.

We first simulate the platform data, and then we use the search model described in Section 7

of the paper to simulate consumer behaviors. For the platform data, we simulate attribute values

for 28 products, each having two revealed attributes, i.e., price and hotel star, and one hidden

attribute, hotel rating. Prices and hotel stars are distributed independently from the continuous

uniform distribution between 100 and 300 and from the discrete uniform distribution between 1 and

5, respectively. Hotel rating is related to price and hotel star linearly as

Rating = 1 + 2.0× log (Price) + 0.4× Star + ε

ε ∼ N (0, 0.25) .
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Each refinement can display up to 7 products. For the default-ranking refinement, the 28 products

are randomly distributed on 4 pages. In terms of the filtering functionality, for simplicity, we allow

consumers to filter price to the range of [100, 200] for lower priced options, which reduces the search-

result size to 14 products. In terms of the sorting functionality, consumers may sort on price or hotel

star. Consumers may also simultaneously apply filtering and sorting to the products. In total, there

are 18 refinements for consumers to consider (i.e., the unfiltered search results span 4 pages for using

default ranking, sorting on price, and sorting on hotel star; and the search results filtered for lower

priced products span 2 pages for using default ranking, sorting on price, and sorting on hotel star).

The refinement loading time is an i.i.d random draw for each consumer per search session from the

continuous uniform distribution between 2 and 5, and similarly the product-detail page loading time

is an i.i.d random draw uniformly distributed between 1 and 3. We simulate 200 sets of platform

data, based on which rational expectations of orderedness entropy and best utility distribution are

derived for each refinement, and the parameters in the belief distribution for the unrevealed product

utilities conditional on the revealed product attributes are estimated.

For the consumer search model, product utility depends on price, hotel star, hotel rating, and

utility shock. Consumer refinement search cost depends on the refinement baseline cost, price entropy

cost, hotel star entropy cost, and refinement loading time cost. Consumer clicking cost depends on

the clicking baseline cost, position cost and product-detail page loading time cost. In each bootstrap

sample, we simulate the behaviors for 100 heterogeneous consumers, each having 2 purchase sessions.

We estimate the model parameters using the simulated consumer behavior. Due to the computation

time constraint, we set the number of heterogeneity draws to be 50, and the number of random

utility draws to be 50 for each consumer in the simulated maximum likelihood estimation. Finally,

we repeat the process 30 times, and we report the bootstrap means and standard errors for the

estimated preference and cost coefficients below in Table E.1.

Table E.1 shows the true model parameters and the estimated parameters. The estimates are

overall quite close to the true values and are all significant. Therefore, the Monte Carlo simulations

provide supportive evidence that our model parameters can be identified and well estimated.
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True Parameter Est. Parameter (SE)

Preference
Mean

Revealed
Price -0.120 -0.106 (0.014)
Star 1.730 1.508 (0.228)

Unrevealed Rating 1.920 1.901 (0.175)

Preference
Heterogeneity

Revealed
Price SD 0.030 0.031 (0.002)
Star SD 0.468 0.468 (0.027)

Unrevealed Rating SD 0.538 0.539 (0.064)

Search Cost
Mean

Refinement
Base 0.309 0.357 (0.056)

Price Entropy 0.106 0.114 (0.010)
Star Entropy 0.145 0.153 (0.012)

Time Time (Sec) 0.008 0.008 (0.001)

Click
Click Base 0.054 0.047 (0.005)

Click Position 0.012 0.011 (0.001)

Search Cost
Heterogeneity

Refinement
Base SD 0.070 0.081 (0.013)

Price Entropy SD 0.036 0.039 (0.004)
Star Entropy SD 0.055 0.058 (0.006)

Time Time (Sec) SD 0.004 0.004 (4.3e-04)

Click
Click Base SD 0.023 0.020 (0.003)

Click Position SD 0.006 0.005 (0.001)

Table E.1: Monte Carlo estimation results. Bold fonts indicate estimates significant at the 95%
level.
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E.3 Model Fit

To examine how well the model fits the data, we compare the simulated consumer behaviors with

the observed ones in terms of the following moments that are free of model parameters: number of

searches, number of clicks, purchase probability, and platform revenue. We consider both the in-

sample and out-of-sample settings. In the in-sample setting, both the training and test data are the

same as the full data. In the out-of-sample setting, training data is composed of a random sample

of 80% of consumers, and test data is composed of the remaining 20%. In either setting, we first

estimate the heterogeneous model on the training data, using both the platform’s decision context

data and the consumer behavior data. Then we sample 400 sets of coefficients from the heterogeneity

distribution of the model parameters. For each set of coefficients, we simulate consumer behavior

on the respective test data using the platform’s decision context data only. We then compare the

simulated against the observed behaviors in the test data using the aforementioned moments.

We find that the observed and simulated moments are very close. In terms of the in-sample

fit, the average number of searches, number of clicks, purchase probability and revenue for the

observed data are 3.769, 3.015, 0.198 and 87.001, respectively, and for the simulated ones are 3.990,

3.260, 0.308, 89.734, respectively. The p-values for testing the differences between the observed and

simulated means are 0.478, 0.482, 0.394 and 0.496, respectively, which suggest that we cannot reject

the null hypotheses that the observed and simulated means are the same for these behavior measures.

Also, in terms of the out-of-sample fit, the average number of searches, number of clicks, purchase

probability and revenue for the observed data are 3.718, 2.679, 0.244 and 102.930, respectively, and

for the simulated ones are 3.999, 3.313, 0.312 and 88.764, respectively. The p-values for testing the

differences between the observed and simulated means are 0.473, 0.455, 0.439 and 0.520, respectively,

which again suggest that the observed and simulated means are very close.

F Main Counterfactual

F.1 Behavioral Responses

Within any given plot of Figure F.1, the horizontal coordinate of each point corresponds to the aver-

age orderedness entropy over all refinements on the search platform under a particular information
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layout, and the vertical coordinate corresponds to the average behavioral response simulated under

that information layout.

A clear separation exists between two point clouds. The blue point cloud corresponds to the

information layouts that do not reveal price, and the green point cloud corresponds to those that do

reveal price. Because price is the most complex product attribute to understand, the information

layouts in the blue point cloud have lower information complexity than those in the green point

cloud, and hence are situated to the left in the horizontal coordinates. Putting the price attribute

aside, the information layouts that have the same set of attributes (excluding price) revealed will

have the same relative position within each of the two clouds. In other words, the leftmost points

in each cloud correspond to the layouts that have few product attributes revealed, whereas the

rightmost points correspond to those that have the most attributes revealed. We see that any two

such identical information layouts (excluding price) differ in the level of the behavioral responses.

The solid lines are the nonparametric regression fit to the point clouds.

The separation of the two point clouds shows that price is an important product attribute whose

presence in the outer layer will dramatically change the consumer search behavior. This phenomenon

is not only because price is the most complex attribute to understand, but also because it has

considerable uncertainty and the presence of this attribute in refinements will change the benefit

of the product clicking behavior. We will further explain the impact of the presence of the price

attribute when we discuss each behavioral response below.

To understand the product clicking behavior in the “Number of Product Clicks” panel in Figure

F.1, we note an inverse relationship exists between the information complexity and the conditional

standard deviation of the unrevealed product utility: as the outer layer reveals more attributes,

each refinement page has greater information complexity, and each product has less uncertainty for

the consumers; furthermore, the conditional standard deviation of the unrevealed product utility

becomes lower. Because the conditional standard deviation of the unrevealed utility captures the

marginal benefit of clicking, this inverse relationship implies that as the information complexity

increases, the benefit of clicking decreases, and hence the number of clicks decreases. The difference

between the two point clouds comes from the fact that revealing price in the information layouts

reduces the conditional standard deviation of the unrevealed utility, hence lowering the number of

product clicks.
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The “Number of Refinement Searches” panel in Figure F.1 is a direct illustration of how cognitive

cost affects the consumer search process: as information complexity increases, the marginal cost of

visiting additional refinement increases, and hence the number of refinement searches decreases.

The two point clouds are different because revealing price adds to the cognitive cost and hence

reduces the number of refinement searches in the green point cloud. This finding shows that, when

considering platform design, search platforms need to take into account the cognitive cost embedded

in information layouts.

The previous two results explain the pattern in the “Purchase Probability” panel in Figure F.1: as

the consumer searches less, she is less likely to find what she would like to purchase. As a result, we

see purchase probability decreases as information complexity increases. Also, purchase probability

is lower, at the same relative position, in the information layouts that reveal price versus those that

do not reveal price.

The “Purchase Session Utility” panel in Figure F.1 shows how consumer utility at the end of

the search process responds to information layouts in a purchase session. Here, consumer utility

is defined to be the purchased product or the outside option utility, depending on the consumer

purchase decision. Recall that this purchase session utility, like all the other behavioral statistics,

is an average quantity over simulation runs under a given information layout, so it is the expected

consumer utility as she goes through the search process. On average, consumer utility is higher

when the consumer searches and clicks more. This finding is true both within and across the two

point clouds.

The “Purchased Product Price” panel in Figure F.1 shows the response of the chosen product

price conditional on purchase with respect to the changes in information layouts. When consumers

search within information layouts that reveal price, they may directly select on price. As information

complexity increases, consumers search fewer refinements, and hence reduce their price selection

ability. This leads to higher transaction prices as information complexity increases.

On the other hand, when consumers search within information layouts that do not reveal price,

they need to form rational predictions about the product price given the revealed product attributes.

This lack of price information limits consumers’ ability to select on price, and the positive search

cost leads to general higher purchase prices when price is not revealed than when it is revealed.

Furthermore, as more attributes are revealed, consumers may use that information to predict price
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more accurately, and hence select on expected price, leading to the downward sloping trend of the

transaction price.

The “Revenue” panel in Figure F.1 shows the response of revenue to the change in information

layouts. Recall that we define revenue to be the purchased product price accounting for purchase

probability, so the observed pattern is a natural outcome of the respective panels we have seen

above. In general, we see revenue decreases as more information is revealed, and not revealing price

generates more revenue than revealing price does. Also, not revealing price makes revenue much

more responsive to the change in information complexity than revealing price does.

Search platforms care not only about revenue, but also about consumer welfare, because arguably

consumer welfare creates customer loyalty, which makes consumers more likely to return to the search

platform even when their outside options increase. Recall that we define consumer welfare to be the

purchase session utility (defined above) net of the total accumulated search costs. The “Consumer

Welfare” panel in Figure F.1 shows the response of consumer welfare to the variation in information

complexity. First, we observe that, in general, revealing price is more beneficial to the consumers

than not revealing price. Second, providing consumers with more product information will improve

consumer welfare, but too much information provision is not beneficial either. We see that very low

information provision makes consumers incur a large amount of product clicks and refinement visits

on the extensive margin, which corresponds to high total search cost and welfare loss. At the other

extreme, too much information causes consumers to stop searching prematurely, leading to utility

loss, and eventually welfare loss. Hence, the optimal information layouts for consumer welfare are

in the intermediate range of information complexity.

Finally, we need to be cautious about the implication of the bounded rationality assumption on

the counterfactual results. In the multiple sequential search model, we assume that the refinement

utility distribution is approximated by the best product utility distribution on each refinement.

Under this assumption, when the platform moves product attributes from the outer to the inner

layer, the refinement utility distribution is not affected. However, for a fully-forward-looking con-

sumer, when some important product features are moved to the inner layer, she may click more

products and pay more clicking costs to find out the attribute information. As a result, not only

the consumer’s cognitive cost of understanding the outer layer is reduced, but also the benefit of

visiting a refinement is likely to be reduced as well. If we were able to solve the fully-forward-looking
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dynamic programming problem, these effects would be correctly reflected in the value function of

visiting a refinement. However, it is neither easy nor feasible to relax the bounded rationality as-

sumption which utilizes the first-order-statistic approximation. This approximation could lead to

an over-estimation of the inverse relationship between the information complexity and the num-

ber of refinement searches. Hence, we need to be aware of the implication and restriction of the

approximation when interpreting the counterfactual result.

F.2 Pareto Improving Information Layouts

To understand how the search platform may increase revenue and consumer welfare compared to

the current information layout, we select several Pareto improving information layouts, and compare

the associated information complexity, consumer welfare, and platform revenue in Table F.1.8 In

particular, we compare layouts that are minimalist style, welfare maximizing, and revenue maximiz-

ing, as well as two win-win scenario layouts to the current layout. We define minimalist style layout

to be the one that reveals the fewest product attributes, given that it is a Pareto improving layout.

We see the minimalist style layout simplifies the current layout by removing three attributes from

display. This simplification increases consumer welfare by 15.28% while keeping the current revenue

level intact. In the consumer welfare maximizing layout, the platform may in addition display

two more attributes that consumers care about to reduce search cost. This addition will increase

consumer welfare by 95% without losing revenue. In the revenue maximizing layout, some important

product attributes, including price, are replaced with less important ones. The main driver of the

revenue hike is that price is not revealed, which will reduce consumers’ direct selection on price. The
8

Similar to the counterfactual analysis in most structural model papers, our observational data set does
not include the information on how the subjects respond to the policy change. As a result, we need to
rely on the model to extrapolate beyond the data variations we observe. In particular, as we perturb
the information layout in the consumer’s search context, we need to assume that the consumer search
mechanisms, namely the benefit and cost trade-offs behind the consumer’s decisions, including refinement
searching, product clicking and purchasing, remain the same.
As there is no data to verify the predicted consumer’s response given by the model, taking the counter-
factual results too literally could be misleading. Intuitively, the farther away the alternative layout from
the current layout, the more room there is for the deviation from the model-predicted behavior. We in-
clude the whole spectrum of the counterfactual settings in order to gain a more complete understanding
of the model behavior. As the Pareto improving layouts we consider are relatively close to the current
layout, they are also relatively more robust. For practitioners, the Pareto improving layouts suggested
by the model could be potentially interesting directions to further explore in the vast strategy search
space.
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Figure F.1: This figure shows the various behavioral responses of the consumer search process as in-
formation layouts vary. Within any given plot, the horizontal coordinate of each point corresponds
to the average orderedness entropy over all refinements on the search platform under a particu-
lar information layout, and the vertical coordinate corresponds to the average behavioral response
simulated under that information layout. 27



addition of the less important attributes will deter consumers from searching excessively, avoiding

too much search cost. This change in layout results in about a 60% increase in revenue without

hurting consumer welfare.

Many win-win information layouts exist in which both consumer welfare and platform revenue

may be improved. We have selected two such layouts, one revealing product price and the other not.

When product price is revealed, we may remove some attributes that consumers care about. This

reduces the cognitive cost of search refinements, which results in a 46% increase in consumer welfare.

At the same time, consumers are more likely to choose the higher priced product, using price as

predictors for the important unrevealed attributes. This results in a 25% increase in revenue. When

price is not revealed, we may reveal some additional attributes to consumers to compensate for price

and prevent consumers from engaging in excessive search. Overall consumer search cost is reduced.

This change in layout leads to a 19% increase in consumer welfare and a 53% increase in platform

revenue.

G Alternative Counterfactual

Online platforms often display products according to aggregate popularity ranking as the default

sorting method, measured by, for example, sales volume, and this is the case for the platform

in our study. However, such ranking does not account for the cognitive cost of comprehending

and comparing products displayed. In this counterfactual study, we examine if we could Pareto

improve both platform revenue and consumer welfare by having a more ordered presentation for the

refinements using the default ranking.9

In particular, for a given refinement using the default ranking, we apply “local sorting” as opposed

to “global sorting.” Global sorting is the same as applying regular sorting variable. For a search

result that spans multiple pages, global sorting will completely reorder the products over different

paginations. In contrast, local sorting retains the set of products on a given page and reorders them

without extending beyond the pagination boundary. Local sorting is relevant to platforms, because

platforms may have special sponsorship agreements with product vendors by placing products on

certain pages of particular search results. Local sorting could retain such agreements, while poten-
9We thank an anonymous referee for suggesting this counterfactual study.

28



Current Minimalist Max Welfare Max Revenue Win-Win 1 Win-Win 2

Information Complexity 0.0663 0.0484 0.0787 0.0629 0.0574 0.0566

Consumer Welfare 0.0563 0.0649 0.1097 0.0620 0.0821 0.0670

Revenue 67.11 68.56 67.48 107.12 83.73 102.47

Price x x x x

Consumer Rating x x x x x

Hotel Star x x x x x x

Breakfast x x x x

Cancel Allowed x x x x x

Wifi in room x x x x x x

Kingsize bed x x x x x x

Wi-Fi in public areas x x x x x x

Parking x x x x x

Meeting rooms x x x x x

Gym x x x x x

Restaurant x x x x x

Airport pickup service x x x x

Outdoor swimming pool x x x x x

Free toiletries (less than six items) x

Free toiletries (more than six items) x x

Free domestic long-distance calls x x

Free bottled water x

Free map x x x

Free newspaper

Pets Allowed

Free Afternoon Tea x

Free Guide Service x x

Table F.1: We select several Pareto improving information layouts, and compare the associated levels
of information complexity, consumer welfare, and platform revenue in order to understand how the
search platform may increase revenue and consumer welfare compared to the current information
layout. An “x” in the layout column represents the revelation of the respective product attribute.
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tially help both platforms and consumers. We apply local sorting to a given refinement page using

a product attribute that reduces entropy cost most. Then we simulate 500 runs of the consumer

search process using the mean estimation result in Section 9 of the paper and the randomly sampled

refinement realizations. We then average the consumer behavior moments over the simulation runs

as the typical consumer response to this platform modification, detailed in Table G.1.

We see that information complexity, which is the average refinement entropy cost, has reduced

by 8.5% due to the local sorting of the default-ranking refinements. Also, the number of refinement

searches has decreased by about 22.4%, but the fraction of refinement searches using the locally

sorted default ranking has increased by 19.8%. At the same time, the number of product clicks has

increased by 7.4%.

The counterfactual findings are very intuitive. As the information complexity of the default-

ranking refinements decreases, consumers visit these refinements more, which can be seen from the

increasing fraction of the refinement searches using the locally sorted default ranking. Provided that

the default-ranking refinements are based on aggregate popularity ranking, products that better fit

the average consumer tastes are ranked higher, and the local sorting mostly maintains the overall

popularity ranking. In contrast, global sorting completely reshuffles products along one dimension

of product attributes over different paginations, which may not be ideal in other product attributes.

Consumers need to search over more refinements using global sorting in order to find what they like

compared to using locally sorted default ranking. This explains why in the counterfactual setting,

the number of refinement searches decreases as the consumers use the locally sorted default ranking

more, and the number of product clicks increases as the default-ranking refinements cater more

preferable product options. As a result, purchase session utility has increased by 7.3%, and total

search cost has reduced by 5.7%, which leads to an increase of consumer welfare by 59.3%. The

revenue remains about the same.

In summary, by accounting for the cognitive cost that consumers may incur during their search

process, local sorting of refinements using the default ranking is a Pareto improving strategy that

platforms may consider adopting to increase consumer welfare without losing on platform revenue.
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Current Locally Sorted

Information Complexity 0.0663 0.0607

Number of Refinement Searches 2.2580 1.7520

Fraction of Refinement Searches using Locally Sorted Default Ranking 0.7307 0.8756

Number of Product Clicks 2.4980 2.6820

Purchase Session Utility 0.2799 0.3004

Total Search Cost 0.2236 0.2108

Revenue 67.11 67.61

Consumer Welfare 0.0563 0.0897

Table G.1: The comparison of consumer behaviors under the current platform design versus the
modification where the refinements using the default ranking are made more orderly by locally
sorting the attribute that reduces the cognitive cost most. We see that local sorting is a Pareto
improving strategy that platforms may consider adopting to increase consumer welfare without
losing on platform revenue.
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