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Abstract 

Flooding risk results from complex interactions between hydrological hazards (e.g. riverine 
inundation during periods of heavy rainfall), exposure, vulnerability (e.g. the potential for structural 
damage or loss of life), and resilience (how well we recover, learn from, and adapt to past floods). 
Building on recent coupled conceptualizations of these complex interactions, we characterize 
human-flood interactions (collective memory and risk enduring attitude) at a more comprehensive 
scale than has been attempted to date across 50 United States metropolitan statistical areas with 
a socio-hydrologic (SH) model calibrated with accessible local data (historical records of annual 
peak streamflow, flood insurance loss claims, active insurance policy records, and population 
density). A cluster analysis on calibrated SH model parameter sets for metropolitan areas identified 
two dominant behaviors: 1) “risk enduring” cities with lower flooding defenses and longer memory 
of past flood loss events, and 2) “risk averse” cities with higher flooding defenses and reduced 
memory of past flooding. These divergent behaviors correlated with differences in local stream 
flashiness indices (i.e. the frequency and rapidity of daily changes in streamflow), maximum dam 
heights, and the proportion of white to non-white residents in US metropolitan areas. Risk averse 
cities tended to exist within regions characterized by flashier streamflow conditions,  larger dams, 
and larger proportions of white residents. Our research supports the development of socio-
hydrologic models in urban metropolitan areas and the design of risk management strategies that 
consider both demographically heterogeneous populations, changing flood defenses, and temporal 
changes in community risk perceptions and tolerance. 

Significance Statement 

Flooding remains one of the costliest natural disasters globally. Perceptions of- and strategies for 
mitigating-riverine flooding risk vary both within and across communities, yet this is often 
overlooked in formal planning efforts. We fit a socio-hydrologic model to 50 US metropolitan areas 
to understand divergent community risk behaviors. We identified two archetypes: “risk-enduring” 
communities with lower flood defenses and longer memory of past floods, and “risk averse” 
communities with higher defenses but shorter memory. Behaviors were correlated with streamflow 
conditions, local dam heights, and the proportion of white to non-white residents. Our findings 
highlight a potential awareness of local hydrology that may drive perceptions of risk as well as racial 
inequity in flood exposure and resilience within the US. 

 
Main Text 
 
1. Introduction 
 
Global annual riverine flooding losses are projected to rise from 45 billion USD in 2019 to 535 billion 
USD by 2050(1). Annual average flooding losses across the US rose from 1.1 billion USD in the 
1980s to 4.92 billion USD in the 2010s(2). While some increase in loss can be attributed to the 
increasing frequency and intensity of storms, the risk posed by flooding is a complex interaction 
between riverine inundation, exposure and vulnerability (e.g. the potential for structural damage or 
loss of life), and resilience (how well we can recover, learn from, and adapt to past floods)(3). 
Mitigation strategies that focus exclusively along one dimension of risk (e.g. levee construction to 
reduce exposure to riverine hazards(4)), might change human perceptions and behaviors in ways 
that increase the long-term risks of communities (e.g. through reduced memory of past flooding)(5). 
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Minimization of flooding risk requires that mitigation practices account for physical hazards, 
community vulnerabilities, perceptions held by at-risk populations(6–8), and trust between the 
public and decision makers(9). 
 
Strategies for mitigating flooding risk vary within and across communities(10, 11), and are mediated 
by the political institutions and economic interests that dominate local decision-making around land 
use and real estate development(12). Prior research has characterized flood mitigation practices 
as either being “green”, for managing their hazards through migration, or “technological”, reliant on 
flood control infrastructure for risk mitigation(13). Satellite nighttime light data provides some 
evidence that these divergent strategies are both globally ubiquitous (14). Within the US, both 
strategies are used in formal flood control practices. The US Flood Control Act of 1936 authorized 
federal capital investments in flood control such as the construction of levees and dams to reduce 
community exposure, while facilitating continued economic development(15). Buyout programs 
authorize the use of pooled resources to relocate at-risk residents, yet this functions occasionally 
as an unevenly used mechanism of flood migration in the US due to political projects misaligning 
with social movements (16–18). Within the limits of state regulations, individuals can manage their 
risk independently of their community through the purchase of optional supplementary flood 
insurance policies, by choosing how to rebuild in-place following disasters, or by migrating. 
Globally, flood perceptions(19–21), vulnerabilities (22), and approaches to exposure management 
(11) vary based on sociodemographic factors and public policies. 
 
One possible explanation for these variations is that individual residents and empowered decision-
makers (e.g. policy-makers, real estate developers, and lenders) vary in their awareness of 
hydrology and its potential socioeconomic impacts (e.g. flooding leading to health and economic 
losses), or in their prioritization of hydrologic risks(23). Experience with floods may increase 
homeowner’s perceptions, preparedness, and risk tolerance(7), but only as long as communities 
retain “memories” of past events(24). Community memory (i.e. sustained community-scale 
behaviors in response to an environmental stimuli) can be altered through various mechanisms 
such as the salience of the literal memories of living witnesses(23), emigration of experienced 
residents and migration by those with less local flood knowledge(25), land use change in flood-
prone regions(26), and publication of floodplain maps(27). Flooding may lead to migration from 
floodplains, yet populations may return within a decade(25) when the memories of living witnesses 
in flood prone regions are lost across generations(23). Take-up rates in flood insurance programs 
tend to increase after catastrophic flooding events, and then lapse during periods of calm(10, 28). 
Taken together, this evidence suggests that communities lose their risk-awareness over time during 
periods of calm, and highlights that in the absence of new or strengthened regulations, or where 
existing ones are not enforced, people continue to build and live in risk prone areas. Memories of 
past flood events are most meaningful if they are institutionalized in changes to building codes, 
land use ordinances, and other local regulations affecting development, which work to prevent the 
recurrence of flood losses. Understanding the considerable variation in knowledge, awareness and 
flood preparedness among metropolitan areas in the US, may be related to how frequently a 
community experiences flooding-related socioeconomic loss(29). 
 
Another potential driver of divergent approaches to flood risk is the uneven distribution of resources, 
in a US political economic context defined by profound and racialized disparities in income and 
wealth, both within and across flood-prone communities(30). Flooding events frequently serve as 
moments of widespread social upheaval, but their effects are patterned in ways that reflect the 
existing social order. Poorer and marginalized populations suffer worst, being more likely to live in 
already neglected environments without protective infrastructure. Across the US, residents of 
riverine floodplains are disproportionately the economically disadvantaged(31), who are consigned 
to cheaper- and more dangerous-land. Lower value properties tend to lose a greater portion of their 
value from flooding events than do more expensive properties(22), with deleterious long-term 
effects on the economic security of homeowners whose tenure may already be relatively 
precarious. Low-income residents and communities of color often have the hardest time recovering 
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from flood events, as resources often flow to more affluent residents and powerful industrial 
interests, while the communities in need are instead exposed to downward mobility and 
displacement(32, 33). Residents who cannot afford to migrate after a flood may become trapped 
in a cycle of loss and decreasing home equity, limiting their ability to recover or relocate following 
future floods(17, 34). Those who do migrate-or, perhaps more accurately, are displaced-leave 
some US floodplains predominantly white (20, 34–36), exacerbating longer trajectories of 
gentrification(37). This growing area of research suggests that variations in the perceptions and 
community responses to floods may reflect longer histories of racialized inequality, reproduced 
through uneven and often discriminatory access to safe and affordable housing, as well as disaster 
relief.  
 
We are confronted with the task of designing flooding risk management strategies that consider 
heterogeneous and unequal populations and anticipate temporal changes in risk perceptions and 
tolerance. Socio-hydrological (SH) models, numerical approximations of human responses to 
environmental stimuli, may provide a robust objective framework where complex human-flood 
relationships can be examined(5, 24, 38, 39). Though human-water dynamics have a history of 
integrated analysis in hydrology (40) the ontological aspiration in SH analysis is to capture the 
range of human behavior in the interaction with natural systems(41). We calibrated a current-
generation SH model(42) to 50 US metropolitan areas to disaggregate and quantify potentially 
independent dimensions of flood risk behavior (e.g. risk tolerance vs. memory retention of past 
losses) and to better understand if demographics or hydrologic conditions can explain these 
variations. While the development and refinement of this SH model has previously relied on unified 
entity (community) modeling or detailed long-term records in a European context (6, 42) this work 
frames human-flood dynamics across a variety of US metropolitan hydrologic and social 
demographics. We calibrated this SH model, forced with peak annual streamflow records, to 
historical National Flood Insurance Program (NFIP) claims, active insurance policy records, and 
trends in US census derived population densities. This modeling exercise is forwarded as a means 
of addressing the following questions: 

• Can an SH model accurately predict trends in flooding claim losses and insurance policy take 
up rates for US metropolitan areas from historical peak annual streamflow records? 

• Which archetypal responses exist among aggregated US metropolitan area perceptions and 
responses to flooding? 

• Do divergent flood risk behaviors of US metropolitan areas align with current hydrologic or 
social demographics? 

2. Results 
 
2.1 Estimation of Socio-Hydrological Parameters 
 

Multi-Objective Generalized Sensitivity Analysis revealed that simulation of NFIP insurance claims 
(RMSEC), active insurance policies (RMSEP), and population density (RMSED) provided a 
sensitivity to all SH model parameter values with the exception of decay of precautionary measures 
(μp) (Fig. 1). Policy records were the most informative dataset for model parameterization, providing 
information on: anxiousness (αa), activeness (αp), preparedness (αr), flood threshold (H), population 
growth rate (U), and forgetfulness (μa). Historical claims records and population density provided 
some information on the SH parameters risk taking attitude (αd), αa, αp, μa, H, and U.  

The SH model was capable of adequately predicting historical flood insurance claims, active flood 

policies, and population dynamics as defined by the calibration criteria (𝑅𝑀𝑆𝐸𝑀 < 0.025 and 
𝑁𝑆𝐸𝐶 > 0) for a subset (50 out of 247; 20.2%) of US metropolitan areas (Fig. 2). Calibrated SH 

parameters demonstrated significant spatial autocorrelation in the flooding threshold, H, but not for 
other parameters (Fig. 2). Metropolitan areas meeting calibration thresholds had significantly more 
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flood insurance claims per capita (λ), smaller populations (approximately less than 100,000 
residents), lower maximum dam heights, smaller temporal changes in the proportion of white 
residents (Δ%white2010) and total population (Δ Pop) than those not meeting thresholds, but were 
otherwise similar across all other socio-environmental demographics (Fig. 3). A comparison of SH 
parameterization for two contrasting metropolitan areas is presented in the SI Appendix (SI 
Appendix, Section S3). 
 
We note that the parameter names previously established for this model(42) may actually represent 
alternative mechanisms (e.g. forgetfulness (μa) may more accurately describe changes in salience 
of flooding risks or how effectively memories of flooding risks become encoded in policy rather than 
literal memories). 
  
2.2 Identification of Prototypical Flood Behaviors across US Metropolitan Areas 
 
We identified two archetypal flood behaviors primarily by variations in three SH parameters: risk 
taking attitude (αd), forgetfulness (μa), and population growth rate (U) (where KS-test p-value < 
0.05) (Fig. 4). Of secondary importance were the flood threshold (H), activeness (αp), and 
effectiveness of preparation (αr) (where KS-test 0.05 < p-value < 0.1).  
 
Cluster separation aligned with significant differences (p-value < 0.05) in the metropolitan area 
distributions of stream flashiness index (R-B) and the proportion of white residents (%white) (Fig. 
4). Differences in poverty, home age, and partisan lean (Lean538) between clusters were significant 
at the p-value < 0.1 threshold. Both clusters of metropolitan areas had similar contributing 
watershed areas, populations (Pop2018), percentage of properties with mortgages (%Mortgage), 
density of vacancies (Vacancy), and rates of flood insurance claim generation (λ).  
  
3. Discussion 
 
3.1 Application of SH Models to US Metropolitan Areas 
 

Our work revealed that this SH model was only a valid representation of a subset of metropolitan 
areas (Fig. 3). The importance of historical flooding records (λ) for determining social responses to 
flooding (Fig. 3) is directly interpretable: without records of substantial flooding events, the accuracy 
of model-simulated responses to flooding cannot be evaluated. Stronger calibration to metropolitan 
areas with lower populations may indicate that smaller US communities are more likely to be 
demographically homogenous or behave more consistently (i.e. more temporally static model 
parameters) with respect to floods through time than larger metropolitan areas. Further research is 
required to determine the appropriate scales and assumptions that may limit the applicability of SH 
models for understanding community flood behavior. In particular, the SH parameters were 
considered to be temporally invariant in both this research and in the case study(42). In reality, the 
composition and behavior of populations is likely constantly shifting due to changes in population 
density and demographics of affected people(16, 17, 25), changes in the collective memory of past 
floods(23), levels of experience and education(38), perceptions of risks and recovery potential(21), 
and the policies, publications, and economic pressures that drive population changes in flood-
exposed areas(43). This possibly explains the significant variations in the change in proportion of 
white residents (Δ%white2010) and total population (Δ Pop) (Fig. 3). 
 
The SH model(42) includes a relatively simplistic approximation of loss resulting from over-
threshold discharge events. A review of historical NFIP claims records across the US demonstrated 
that hazard to loss functions (i.e. the social and economic damages that results from a specific 
extents and durations of inundation) are heterogeneous with substantial variations by house 
value(22). Proper definition of hazard thresholds must extend beyond common structural 
considerations to include the socio-economic status of residents(44). The same event might be 
considered nuisance flooding to an affluent community with the means for recovery but devastating 
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to a poorer one. While our research identified some relationships between social demographics of 
metropolitan areas and model performance (Fig. 3) future research may consider applying SH 
models in a semi-distributed manner to group regions of similar socio-economic demographics (e.g. 
US census tracts) and therefore possibly more similar behaviors, reflecting more analogous 
situations relative to privilege and disadvantage. Critical assessment of the economic and social 
constructs that drive the movement of people back into flood vulnerable land may yield additional 
insight into the dynamic forces driving housing choice in hazards areas. Examining the weight of 
housing choice versus societal pressures could demonstrate why collective memory events and 
community engagement have limited flood resilience response.    

3.2 Identification of Archetypal Flood Behaviors across US Metropolitan Areas 
 
The primary predictors of divergent SH model-derived risk behaviors were the R-B index, maximum 
dam height, and the proportion of white residents in metropolitan areas (Fig. 4). Clusters also 
aligned with home age, poverty, and political lean (lean538) though these variables demonstrated 
correlation with the proportion of white residents (SI Appendix, Fig. S2). Though significant 
relationships were identified, the inability of the SH model to validate for a majority of metropolitan 
areas may limit the transferability of our conclusions to other metropolitan areas. Further, we 
applied the SH model to metropolitan areas as the base unit. This approach presumes 
homogenous populations, neglecting possible variations in perceptions and behaviors among 
socio-economic groups, or in how they are treated by relevant public policy. Significant 
relationships between demographics and behavior (Fig. 4) may indicate further work is required to 
disaggregate heterogeneous populations to characterize community behaviors. 
 
Both the clustering (Fig. 4) and LASSO regression analysis (SI Appendix, Fig. S3) demonstrated 
the importance of the R-B index and local maximum dam height in defining community flood 
behaviors. LASSO specifically indicated that flashier streams correlated positively with higher flood 
defenses, H, and maximum dam heights were negatively correlated with risk taking attitude, αd. 
This result possibly indicates that community actions or governance reflect some intuitive 
awareness and allowed management of local hydrologic conditions and the risks posed by streams 
that regularly receive surface runoff. Flashy streams, with unpredictable flow regimes and less flood 
control infrastructure, possibly contribute to some innate community concern for the potential 
consequences of floods(29). In contrast, streams that have relatively predictable flow regimes that 
do not deviate from expected patterns (e.g. strongly seasonal flow regimes in Mediterranean 
climates) and larger dams may be of less concern to communities. These variations could indicate 
both “green” and “technological” societies, relying on migration and investments in flood control 
infrastructure respectively(13). This class of SH models(5, 6, 42) incorporate the assumption that 
increases in community awareness and preparedness only occur in response to over-threshold 
flood events that cause damage (SI Appendix, Fig. S1). Despite clear variations in hazard and loss 
across metropolitan areas, (captured by the number of claims per capita, λ) historical claims were 
not predictive of H.  
 
Conceptual models of flooding risk perceptions and insurance demand are often centered on the 
belief that residents have the means to purchase insurance, and vary only in how they perceive 
risk(10). While this paradigm possibly holds in some cities, research suggests other communities 
may be faced with few or no options to mitigate flooding (27) or relocate(17, 34). We observe 
separation between metropolitan areas with high proportions of white residents (and lower poverty) 
from those of racially diverse cities (with greater poverty) (Fig 4 & SI Appendix, Fig S2). The 
approaches to flood risk exhibited in racially diverse cities may reflect lower economic capacity 
among residents to participate in NFIP(45, 46)  or barriers to navigating bureaucracies(35). The 
cluster of “risk-enduring” metropolitan areas may be cities in which residents are trapped in cycles 
of flooding and loss, unable to migrate from floodplains, similar to other populations(17, 34, 47), in 
contrast with the idea of a green society that copes with flooding through planned migration and 
development(13). The second cluster of risk averse metropolitan areas with a greater proportion of 
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white residents (Fig. 4) possibly represents residents with lower barriers to participation in NFIP. 
For these residents, the alignment of risk averse parameter values (Fig. 4) may reflect their capacity 
to participate in federal programs. Furthermore, areas with more affluent residents and higher 
property values are better equipped to raise revenues (largely based on tax-assessed property) 
that will pay for the building and maintenance of expensive structural flood protection projects. Such 
options may be unavailable to less privileged areas, come at the expense of other public services, 
or require taking on large municipal debts. The positive correlation between higher flood risk 
defenses (H) and increasing forgetfulness (μa) (SI Appendix, Fig. S3) is similar to the “levee-effect” 
or “safe development paradox” described by others where the establishment of flood defenses can 
lead to a gradual (across years to decades) reduced awareness of flooding(8, 29).  
 
3.3 Implications for US Flood Risk Mitigation 
 
The various tools used to mitigate flood hazard and risk in the US (e.g. dam and levee construction, 
buyout programs, flood insurance) frequently carry hidden consequences related to shifts in 
community risk perceptions and behaviors (and often demographics) after implementation. Some 
exposure to flooding can induce individual and community actions, such as migration from 
floodplains that can reduce long-term vulnerability(23). Conversely, a lack of direct experience with 
periodic inundation in flood-prone regions, a possible outcome of dam or levee construction(6, 8), 
could increase the uncertainty and cognitive bias of decision makers(29) and homeowners(48), 
leading to non-optimal decisions concerning long-term risk management. Well-designed 
government assisted migration can reduce flooding risk and promote socio-economic equity(49). 
US state and federal (FEMA) government facilitated migration has tended to disproportionately 
occur in more populous and prosperous communities, where residents and local officials have the 
resources to navigate and withstand complex, lengthy bureaucratic processes(50, 51). These 
findings, coupled with a lack of decision-making transparency surrounding buyouts, has led to some 
criticism of these programs(16, 17). 
 
Flood insurance programs (e.g. NFIP) may encourage resident-driven migration, and distribute 
losses across a broad tax base, protecting individuals from catastrophic loss; however, these 
dynamics frequently play out with greater complexity. Where insurance rates are less than flood 
losses, individuals may be encouraged to migrate into floodplains, amplifying total societal 
losses(52). This encouragement may come from government policies that allow the sale of 
subsidized housing in flood prone areas, eliciting the movement of socioeconomically 
disadvantaged people into these flood prone areas and thus amplifying the effects of 
socioeconomic status on hazard vulnerability.  Other factors limiting community resilience, such as 
the influence of racist policies, institutions, and practices by local government may also limit the 
movement of vulnerable people from these hazard areas. The disproportionate rate in which 
disadvantaged people are encouraged to migrate into flood plains may be exacerbated through the 
acceleration of climate change(37). 
 
Increases in population and development density through the monetization of hazardous land for 
the development of low-income housing could pose further risk for vulnerable communities who 
face disparate outcomes during flooding disasters. Riverine-flood influenced regions of Florida 
experienced increases in housing development after the establishment of NFIP, whereas coastal 
regions experienced decreased housing density(52). At-risk property values may decrease after 
publication of floodplain delineations, but housing densities remain unchanged(53). Researchers 
have recommended against uniform flood insurance coverage and instead proposed explicit 
consideration for population heterogeneity(46). Following widespread outcry about the economic 
effects of increasing flood insurance premiums on lower-income policyholders, FEMA has 
committed to introducing an “affordability framework” to the NFIP(43). Even simplistic 
approximations of community perceptions and responses to flood hazards, as presented in this 
research, could support more critical evaluations of community behaviors. Such studies are 
necessary to understand how socio-economic demographics and human behaviors influence 
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exposure to risk under NFIP in US metropolitan areas. Future research should investigate the 
structure and calibration of SH models to improve their representation of complex human-flood 
interactions.  
 
4. Methodology 
 
4.1 Socio-Hydrological Data 
 
We selected 247 US metropolitan core based statistical areas(54), with nearby USGS gaging 
stations with active records from 1950 – present (SI Appendix , Section S1). Metropolitan areas 
influenced by any coastal (lake or ocean) flooding events were removed from consideration through 
a visual map screening. We collected daily USGS streamflow records from USGS streamflow 
catalog (1979 – 2019)(55). Five-year population totals and annual population estimates (2010 – 
2019)(54), annual NFIP flood insurance claims (1979 – 2019), and active flood policies (2009 – 
2019)(56) were aggregated to metropolitan areas by census tract. The number of dams and 
maximum dam height were collected from the US Army Corps of Engineers National Inventory of 
Dams(57). 
 
4.2 Socio-Hydrological Model Description 
 
We applied an SH model(42) to simulate economic losses and temporal changes in population 
density, awareness of, and preparedness for flooding in each of the US metropolitan areas.  The 
SH model predicts annual economic losses (USD) from a time series of annual peak riverine 
discharge. In response to loss events, the model simulates increases in awareness and 
preparedness for future floods as well as potential changes in population density. In years with no 
loss, community flood mitigation measures gradually decay and population density can increase. 
A detailed description of the SH model processes, equations, and parameters is presented in the 
SI Appendix (SI Appendix, Section S2). Community behaviors were defined by SH parameters 
related to flooding risk, vulnerability, resilience, and memory (Table 1). Initial model parameter 
ranges were adopted from prior research(42), and increased until calibration scores (RMSE, NSE) 
stabilized. 
 
The SH model parameterization was calibrated against records of loss (NFIP claims), 
preparedness (active NFIP policies), and population density. The annual proportion of residents 
with active NFIP policies was estimated as the number of active NFIP policies divided by census 
estimated population (2009 – 2019). The proportion of flood losses were estimated as the annual 
total NFIP claims (1975 – 2018) divided by the estimated total metropolitan area property value 
(USD1USD-1). Metropolitan area property value was estimated as the number of properties 
multiplied by the average owner occupied property value(54). Annual population densities (2010-
2018) were derived from the US census(54). Maximum population density was estimated as 120% 
of the historical maximum population(54).  
 
Nationally, NFIP policy take-up rates rose steadily from 1978 – 2009 resulting from changes in the 
NFIP program(58). Since 2009, the number of active policies has steadily declined nationwide 
(though increases are observed in specific metropolitan areas following high riverine discharge and 
flooding claim generation events). We consider changes in the number of active policies within 
metropolitan areas from 2009 – 2019 to be reflective of attrition and uptake in community flood 
preparedness. 
 
4.3 Socio-Hydrological Parameters Sensitivity and Estimation 
 

SH model sensitivity to parameter values was evaluated with the Multi-Objective Generalized 
Sensitivity Analysis algorithm(59). We analyzed sensitivity for Albany, GA US with 10,000 model 
simulations, sampling parameters uniformly within the feasible parameter ranges presented in 



 

 

9 

 

Table 1. We measured sensitivity of the Root Mean Square Error (RMSE) objective function 
computed between observed and predicted claims (RMSEC), active policies (RMSEP), and 
population density (RMSED), as well as a measure of global sensitivity. Parameter sensitivity is 
discussed at α < 0.1, 0.05, and 0.01 thresholds. 

Globally optimal SH model parameter vectors were estimated for all metropolitan areas with the 

Dynamically Dimensioned Search (DDS) algorithm(60), minimizing the function 𝑅𝑀𝑆𝐸𝑀 =
 ∑(𝑅𝑀𝑆𝐸𝐶 , 𝑅𝑀𝑆𝐸𝑃, 𝑅𝑀𝑆𝐸𝐷)  across 30,000 simulations for each metropolitan area. Each 

calibration result was evaluated against a maximum RMSE and minimum Nash Sutcliffe Efficiency 
(NSE) threshold to separate meaningful calibrations from those areas that did not calibrate well. 

We accepted evaluations where 𝑅𝑀𝑆𝐸𝑀 < 0.025 and 𝑁𝑆𝐸𝐶 > 0. The use of an NSE threshold of 

0 eliminated metropolitan areas where SH estimates of historical claims was not better than the 
long-term average.  
 
We tested for significant spatial-autocorrelation in calibrated SH model parameters via Moran’s I. 
We compared SH model performance to several hydrologic and socio-economic demographic 
characteristics of metropolitan areas: (Richards-Baker Flashiness index [R-B], contributing 
watershed area [Area], number of flood claims per capita [λ], 2018 population [Pop2018], 
percentage of residents below the poverty line [Poverty], percentage of properties with a mortgage 
[%mortgage], median house age [HouseAge], the density of vacant properties [Vacant], the 
percentage of the population that is white [%white], partisan lean [Lean538]), the number of NID 
dams, the maximum dam height, as well as changes in %mortgage, Poverty, Vacancy, %white,  
and total population form 2010 to 2018 (SI Appendix, Table S1). We also evaluated change in 
%white from 1970 – 2018(61). We estimated relationships between demographic characteristics 
and model performance through a two-sample Kolmogorov-Smirnov test comparing the 
distributions of demographics for those metropolitan areas for which the SH model produced 
acceptable and unacceptable calibration results. We discuss significance at the α < 0.1 and 0.05 
levels. 
 
4.4 Identification of Prototypical Flood Behaviors across US Metropolitan Areas  
 
We identified divergent behaviors among metropolitan areas with respect to flooding hazards and 
risks with K-means clustering across vectors of calibrated SH parameter values for all metropolitan 
areas where the calibration result was accepted. The optimal number of clusters (n=2) was 
determined with the Calinski-Harabasz Index. We first compared the marginal distributions of each 
SH model parameter between the two clusters. We identified SH parameters (Table 1) to which the 
clustering algorithm was sensitive with a 2-sample Kolmogorov-Smirnov test. Significance is 
assessed at the α < 0.1 and α < 0.05 levels.  
 
Next, we compared the empirical distributions of hydrologic and social demographic characteristics 
(SI Appendix, Table S1) between metropolitan areas in each of the two clusters to determine if 
social or hydrologic conditions drive community behavior with respect to flooding. Significance is 
determined with a 2-sample Kolmogorov-Smirnov test (significance is assessed at the α < 0.1 and 
α < 0.05 levels). 
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Figures and Tables 
 

 
Fig. 1. Sensitivity of Root Mean Square Error (RMSE) computed from claims (C, red), policies (P, 
blue), population density (D, black), and global sensitivity (yellow). Socio-hydrologic parameter 
significance is presented at the α = 0.1 (red ring), 0.05 (green ring), 0.01 (black ring) levels. Model 
parameters include: discharge threshold for flooding losses (H), risk taking attitude (αd), 
anxiousness (αa), activeness (αp), effectiveness of preparation (αr), forgetfulness (μa), decay of 
precautionary measures (μp), and ambient population growth rate (U).  
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Fig. 2. Calibrated SH model parameter values (colors). Gray dots indicate metropolitan areas that 
did not meet calibration thresholds. P-values are the significance of Moran’s I test for spatial 
autocorrelation. 
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Fig. 3. Socio-hydrologic demographics for metropolitan areas meeting calibration thresholds 
(blue) and metropolitan areas not meeting calibration thresholds (gray). KS indicates the 2-
sample KS-test p-value. Green shading indicates significance at α < 0.05. Blue shading indicates 
significance at α < 0.1. 
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Fig. 4. Parallel axis plot showing k-means cluster analysis of SH model parameters (top). Dark 
lines indicate prototypical SH clusters, light lines indicate calibrated model parameter sets for 
individual cities within each cluster. Significant parameter separation at the α < 0.05 and 0.1 
thresholds are indicated by ** and * respectively. Empirical distributions of socio-hydrologic 
demographics for each of the identified clusters (bottom). KS indicates 2-sample KS-test p-value. 
Green shading indicates significance at α < 0.05. Blue shading indicates significance at α < 0.1. 
 



 

 

19 

 

 
Table 1. Socio-hydrological model parameters(42) and feasible ranges used for metropolitan 
area calibration. HMAX indicates the feasible upper limit of peak discharge. nh and nm represent the 
number of properties within the study area and the number of precautionary measures, 
respectively. The model time step is t. 
 

Parameter Description Feasible Range 

H [mm] discharge threshold for flooding losses (0, HMAX) 

αd [(1/(nh/nh))] risk taking attitude (0.001,100) 

αa (1/(USD/USD)) anxiousness (0.001,25) 

αp [((nm/nm)/(nh/nh))] activeness (0.001,3) 

αr [(1/(nm/nm))] effectiveness of preparation (0.001,3) 

βR [((USD/m2)/(USD/m2))] Over-threshold discharge to loss ratio 1 

μa [t-1] forgetfulness (0.001,3) 

μp [t-1] decay of precautionary measures (0.001,3) 

U [t-1] ambient population growth rate (0.001,5) 
 
 
 


