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Machine learning classification of entrepreneurs in British historical
census data

Piero Montebrunoa, Robert J. Bennetta,∗, Harry Smitha, Carry van Lieshouta

aUniversity of Cambridge, Department of Geography and Cambridge Group for the History of Population and
Social Structure, Downing Place, Cambridge, CB2 3EN, UK.

Abstract

This paper presents a binary classification of entrepreneurs in British historical data based

on the recent availability of big data from the I-CeM dataset. The main task of the paper is

to attribute an employment status to individuals that did not fully report entrepreneur status in

earlier censuses (1851-1881). The paper assesses the accuracy of different classifiers and machine

learning algorithms, including Deep Learning, for this classification problem. We first adopt a

ground-truth dataset from the later censuses to train the computer with a Logistic Regression

(which is standard in the literature for this kind of binary classification) to recognize entrepreneurs

distinct from non-entrepreneurs (i.e. workers). Our initial accuracy for this base-line method is

0.74. We compare the Logistic Regression with ten optimized machine learning algorithms: Nearest

Neighbors, Linear and Radial Support Vector Machine, Gaussian Process, Decision Tree, Random

Forest, Neural Network, AdaBoost, Naive Bayes, and Quadratic Discriminant Analysis. The best

results are boosting and ensemble methods. AdaBoost achieves an accuracy of 0.95. Deep-Learning,

as a standalone category of algorithms, further improves accuracy to 0.96 without using the rich

text-data that characterizes the OccString feature, a string of up to 500 characters with the full

occupational statement of each individual collected in the earlier censuses. Finally, and now using

this OccString feature, we implement both shallow (bag-of-words algorithm) learning and Deep

Learning (Recurrent Neural Network with a Long Short-Term Memory layer) algorithms. These
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methods all achieve accuracies above 0.99 with Deep Learning Recurrent Neural Network as the

best model with an accuracy of 0.9978. The results show that standard algorithms for classification

can be outperformed by machine learning algorithms. This confirms the value of extending the

techniques traditionally used in the literature for this type of classification problem.

Keywords: machine learning, deep learning, logistic regression, classification, big data, census
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1. Introduction

Modern information processing techniques are as applicable to classifying and identifying pat-

terns in historical data as they are to modern data. An important historical question has been

‘who were entrepreneurs in the past?’ This is a first and essential step towards identifying their

characteristics and understanding their behaviour. The analysis of historical developments in en-

trepreneurship has lacked until recently sufficient data to be confident about the scale of historical

activity and trends over time. After major efforts of transcription and data coding large scale, his-

torical sources are now becoming available that allow entrepreneurs to be identified in the past from

their descriptions of themselves. In England and Wales, a digitized version of the Victorian censuses

over 1851-1911 has become available through the I-CeM database (Higgs and Schürer, 2014; Schürer

et al., 2015). This has been enhanced in a supplementary database (the British Business Census

of Entrepreneurs, BBCE) that extracts the members of the population who can be identified as

entrepreneurs (Bennett et al., 2019). This provides a new resource for information analysis and also

introduces scope to make long-term comparisons between modern and previous historical patterns.

Unfortunately for the first four of these censuses (1851-81), accounting for nearly 80 million people,

only a limited question referring to employers was used by the census administrators which does

not allow direct and full identification of all entrepreneurs.

This paper studies the methodological challenge of classifying the ‘employment status’ of in-

dividuals as entrepreneurs (Ents) or workers (Ws) from the information that was self-reported in

the census. Classification methods are assessed that are based on the individuals’ demographics

and also the descriptive text of their occupational activities in the archival records of the Census

Enumerators Books (CEBs). Many learning methods have been developed in information science

for related classifications; e.g. binary linkage (Boutell et al., 2004), classifier chains (Read et al.,

2011), label powerset (Tsoumakas et al., 2011), rankings by pairwise comparison (Hüllermeier et al.,

2008; Fürnkranz et al., 2008). These developments have expanded the focus in textual processing

from title searches and tagging (Hu et al., 2006) to multiple tag interactions (Murthy and Gross,

2017; Al-Salemi et al., 2019; Tang et al., 2019), complex text interlinkages for result caching (Ku-

cukyilmaz et al., 2017), deep textual semantic interactions (Kastrati et al., 2019), and attempts

to identify sentiments through textual recurrence (Abdi et al., 2019). There is a rapidly growing

literature on machine learning in the information sciences. However, there have been few appli-
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cations to economic history. Schürer et al. (2015) developed a computerized classification method

for the same 1851-1911 I-CeM data as used in this paper: to standardize and code occupational

titles and also birthplace descriptors. This uses dictionaries of occupations and birthplaces and

then develops a hierarchical system of matching to link actual terminology to dictionary terms.

However, this is an artificial intelligence (AI) and not a machine learning (ML) method, though it

tackles a similar problem to that here. Other applications of ML to related social science questions

have used standard information science techniques such as Bayes Networks (Tang et al., 2016), used

by Alvarez-Galvez (2016), to tackle interrelationships between socioeconomic status and health in

Europe, or other machine learning methods used by Su and Meng (2016) to perform automated

text analysis of online forums to assess the response to China’s government policies, generalized

boosting used by Reichenberg and Berglund (2019) to overcome some of the deficiencies of an

inverse-probability weighting analysis, and structured learning used by Katz and Levin (2018) to

classify individuals into types of political supporters using ML, based on joint responses to eight

questions while estimating the association between each item and support dimension.

Our methodology first uses numerical and categorical variables from individuals’ demographics

given in the census and then applies text-based methods using the unique occupational string de-

scriptions available in the earlier censuses. This classification of the population is of importance for

understanding the scale and trends of entrepreneurship. The economic theory of entrepreneurship

relies on the classification of individuals as Employer (E) and Own-account (OA) which was the

Victorian census term for those proprietors operating on their own with no employees, as distinct

from Ws. The sum of E and OA gives all self-employed, which following Parker (2004) and Blanch-

flower and Oswald (1998) we use as the definition of all Ents. The methodology developed here for

entrepreneurs is focused on evaluating alternative estimation methods for this classification. How-

ever, the paper has broader relevance for any classification process attempted in other disciplines.

Thus, it is not restricted to historical data.

The paper uses new developments in AI. AI refers to computers’ thinking as humans do; as

defined by The Editors of the American Heritage Dictionaries (2011), the verb to think can be

defined as: “To exercise the power of reason, as by conceiving ideas, drawing inferences, and using

judgment”. This can be expanded by using training that involves known patterns as the input of
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the learning process where the patterns do not have explicit rules when computerized this is called

a form of machine learning (ML). The process can be further expanded to deep learning (DL)

when the model used is a distillation over several layers, or filters, where each attempts a better

representation of the data. This is often called a neural network because its inspiration comes

from understanding how the brain learns, though neural networks are not themselves considered a

representation of the brain. François Chollet (2018) provides the following useful relation:

Artificial Intelligence ⊃ Machine Learning ⊃ Deep Learning

The methodology developed in this paper uses AI, ML, and DL. The historical mid-Victorian cen-

suses in the UK that are now available as a digital database were collected in two formats: first,

for 1851-81 a question was used that sought to distinguish employers and ‘masters’; second, for

1891-1911 the question was modified to ask individuals explicitly to identify themselves as employ-

ers, own account, or workers: termed their ‘employment status’. Hence, for the later period, the

question attempted to collect full information on all entrepreneurs (as employers or own account)

for the whole population. The change in the questions was a response to pressures from social

scientists led by Charles Booth and Alfred Marshall, that the census administrators (General Reg-

ister Office: GRO) should introduce a new question that identified the self-employed (Treasury

Committee, 1890; see also Higgs, 2004).

The result of this change was a major improvement in census design as it provided a separate

classifier that explicitly identified entrepreneurs, which was additional to their textual description

of their occupation but also a fundamental loss of information as the 500-character occupational

string was reduced to a 70 character one (see below for a detailed discussion). As a result, there

is a discontinuity between the earlier censuses before 1891 where the census question provides po-

tentially full coverage of employers from the string “employing...” in the OccString feature, but

only partial coverage of own account for those cases where they identified themselves as the string

‘masters’ in the same OccString. The term ‘master’ had a historical meaning for those trained or

apprenticed in some trades who could operate alone or employ others, but it was a term that was

obsolete in many occupations by the mid-Victorian period, whilst in other occupations ‘master’ had

never been used (for example in professions, commerce, transport, and many retail trades). Indeed,

in 1851 only about 6 per cent of entrepreneurs used the term master, which fell to about 3-4 per
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cent by 1881 (Bennett et al., 2018).

The classification problem that we tackle is: can the explicit information in the later censuses

on ‘employment status’ be used to train a classifier to identify entrepreneurs in the early censuses

using their demographics or/and their textual responses to the question on employers, masters, and

other occupations? Also, can information gathered from a subsample of the early censuses be used

to train a classifier to generalize and identify entrepreneurs using standard demographic or/and

text features? Finding a way to estimate entrepreneurial status for this early period is an impor-

tant challenge since the later census questions align closely with modern censuses, thus allowing

a continuous series of to be developed from 1891 to the present. Having an available benchmark

for entrepreneurial status for 1851-81 allows the time series to be extended from 1851 up to the

present, and it would also help develop long-term comparisons backwards to earlier periods before

1851.

Despite the progressive adoption of machine learning, this paper is one of the first to apply

machine learning in a historical setting. Moreover, this use of machine learning solves a method-

ological gap in the classification of millions of individuals that on the night of each census responded

with valuable demographic and economic information. In this paper we describe the classification

problem, present the methodology for applying ML, and test the performance of different ML

algorithms.

2. Research objective

The machine learning method we develop seeks to tackle a binary classification problem (if the

labels are W and Ent), or a multi-class classification problem (if the labels are W, E and OA)

(Boutell et al., 2004; Tsoumakas et al., 2011; Read et al., 2011). We test the performance of dif-

ferent ML algorithms against a traditional probability-based model using logistic regression (LR).

LR is a standard in the literature for any binary classification(Cameron and Trivedi, 2005) and has

been used in many information processing applications. It has also been the algorithm of election

previously used to tackle the problem at hand by (Bennett et al., 2018, 2019). It is used here as a

benchmark for comparison.
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LR estimates the probability or likelihood of being in one of two alternatives. In our case, a bi-

nary classification of entrepreneurs should estimate the probability of being an entrepreneur in our

data. As Chollet (2018) poses, LR is the “hello world” of modern machine learning. Our research

objective is to apply ML algorithms not traditionally used and compare the performance of these

algorithms for classification of entrepreneurs for British historical census data. We implement a

range of new methods in the field of information science to test and compare ML algorithms that

can potentially outperform the standard LR. Thus, our research question is: can alternative meth-

ods in ML exceed in performance the LR in our binary classification of entrepreneurs; and which

alternative methods give the best performance. In an appendix, we also explore the multi-class

classification of individuals (as Worker, Employer, and Own account).

The area of ML that we develop can be understood as predictive or supervized process of learn-

ing a mapping from inputs x to outputs y given a labeled set of inputs pairs D = {(xn, yn)}N
n=1

whith D the training set, and N the number of training examples (Murphy, 2012). In ML the

inputs x are features (or attributes) while the outputs y are labels (or targets). When y is nominal

or unordered-categorical with j categories and j goes from 1 to C, the problem is classification or

pattern recognition (Murphy, 2012). If C = 2, the classification is binary and y is taken to be {0, 1}.

If C > 2, the classification is multi-class (Murphy, 2012) . Traditional ML follows a method called

function approximation where it is assumed that y = f(x) for some unknown function f and the

learning process is aimed at estimating the function f given a labeled training set, and then to

make the predictions as follows:

ŷ = f̂(x)

The process of calculating out-of-training-set predictions is then called generalization. Addition-

ally, an algorithm that puts into action classification is called a classifier. It can also refer to the

mathematical function performed by a classification algorithm, that maps features to labels. In our

case, the chosen base-line classifier is the logit model (LR) for the binary responses and the MNL

for the multi-class responses. This is a traditional classifier approach (e.g. Cheng and Hüllermeier
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(2009)). The logit models are applied by using the attributes of each individual that most closely

correlate with the entrepreneurial status where this was recorded in the later censuses. This logit

estimate is then applied to the earlier censuses to classify individuals where only partial records

of entrepreneur status were recorded. This gives the binary probability of being an entrepreneur

(Ent) or not (W).

3. Methodology

In our previous work, we have applied two models, see for instance, Bennett et al. (2018) and

Bennett et al. (2019). The two theoretical and original models are:

Model Classifier Type Labels

Logistic Regression LR Binary W, Ent

Multinomial Regression MNL Multi-class W, E, OA

We have used LR and MNL to classify entrepreneurial (binary) and employment (multi-class). Both

models have been useful, feasible and rewarding as a very standard way of ML. We have used them in

data- and time-intensive settings with approximately 120,000,000 data points. In particular we took

labeled data to estimate the coefficients and then predict or generalize to unlabeled data. We use

an LR or an MNL classifier because they are, as stated above, the most used in the literature. But

ML is increasing dramatically the performance of new algorithms and classifiers to solve analogous

problems, thus we want to test in a controlled environment the performance of the LR (we do

not use MNL for simplicity and clarity in the main figures of the paper as it is easier to visualize

and present the results for the LR, but we present the main MNL results in tables and assess the

differing mathematical characteristics in an appendix). We use golden data sets and the simplest

metric possible (accuracy) to test different models. We present the comparison of accuracy up front

for ease of understanding, but the main discussions and conclusions are to be found later in the

paper. The first set of models are as follow:
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Model Classifier Type Labels Features Dataset Tr/T set Accur

1891 LR Logistic

Regression

Binary W, Ent

(responses

recorded in

the census)

SubOccode, RSD

Density, Age, Sex,

Marital status,

Relationship to the

head, Servants (not

OccString)

1,000 W,

1,000 Ent

from 1891

Tr: random

60%, T: ran-

dom 40%

0.74

1851 LR Logistic

Regression

Binary W, Ent

(clerical

responses us-

ing strings)

the same 1,000 W,

1,000 Ent

from 1851

the same 0.82

1851 Ad-

aBoost

AdaBoost Binary the same the same maximum

possible set

of extracted.

70,872 W,

70,872 Ent

from 1851

the same 0.95

1851 Bag

of words

AdaBoost Binary the same the same + Occ-

String (Bag of

words)

the same the same 0.9949

The 1891 LR uses a dataset where labels were self-reported by the individuals as a result of the ques-

tion that included now a three-column self-reporting employment status with the labels: W, E, OA.

We use the simpler: W, Ent, where Ent is E or OA. This model attempts to test the performance of

the LR in this ground-truth dataset. We then switch to an 1851 dataset where the labels have been

attributed by a clerical human-led intervention that used all available information including cen-

sus names and non-census genealogy, internet or third-party information like Directors Directories,

Chamber of Commerce data, and other historical sources. The 1851 LR is the base model where

the labels are clerical, and the classifier is the standard LR. This is applied to a sample dataset of

1,000 individuals. 1851 AdaBoost is the same model but with two innovations: first, as classifier

AdaBoost which is the best performing in the two features graphical ten-classifier comparison be-

low, and second we have expanded the dataset to the maximum possible set of “extracted”—the

9



ones where the clerical attribution of labels was guided by the employer and master titles in the

BBCE which implies 70,872 W and 70,872 Ent. The 1851 Bag of words is the same model but with

the addition of using the OccString features, only available for the censuses 1851, 1861, 1871, 1881,

but not for the later censuses where the Booth & Marshall three-column self-reporting classification

reduced the strings from up to 500 characters to less than 70 producing a fundamental loss of in-

formation. The 1851 Bag of words model outperforms any other model, inclusive of Deep Learning

without OccString (as it will become clearer below Deep Learning with OccString performs even

better at the top of all our tested methods), showing the importance of the feature OccString and

its ML use, which suggests a major focus for the future avenues of research on the issue. The bag

of word method relies on splitting each instance (a sentence) into its component tokens (tokens

meaning any word, number or punctuation sign) and acquiring some information about them like

the count that each token repeats itself, both in an unstructured and unordered way, thus the term

bag of words. The method starts from transforming each instance of OccString to a vector of length

equal to the vocabulary of our corpus of OccStrings. The simplest way to do this, and the way that

we choose, is to a natural language processor in scikit-learn called CountVectorize which transforms

each instance of OccString into vector with the counts that each token repeats itself. For example,

suppose the corpus of OccString answers were the following three instances: “Piano forte maker

master”, “Boot and shoe maker employing 4 men”, “Iron mine proprietor employing 70 men &

engineer empg [sic] 100 men total 170 men”. The vocabulary would be of 18 tokens that sorted

would look like ‘100’:0,‘170’:1,...,‘and’:3,‘boot’:4,....,‘piano:14’,‘proprietor:15’,‘shoe’:16,‘total’:17. So

each instance would be an 18-dimensional vector with the count of each vocabulary in the instance

and zeros for not mentioned words. For example, the first instance would be [0 0 0 0 0 0 0 0 1 0

1 1 0 0 1 0 0 0] were the last one is in the position 14 which represents precisely the token ‘piano’.

We use this CountVectorize tool from sciki-learn, and the maximum expanded dataset vocabulary

is rather small with 5,706 tokens in the vocabulary so that there is no need of other techniques, for

example, TfidfVectorizer or HashingVectorizer.

Next, the following are the settings of a comparison between the base-line LR model in a two-

feature setting with iteratively SubOccode, Age, and RSD Density, with ten other ML classifiers:
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Classifier Type Labels Features Dataset Training set Acc

Nearest Neighbors Binary W,Ent SubOccode, Age 1,000 W, 1,000 Ent

from 1851 with clerical

responses using strings

(not OccString)

training (ran-

dom 60%),

test (random

40%)

0.92

Nearest Neighbors Binary W,Ent SubOccode, RSD Density the same the same 0.90

Nearest Neighbors Binary W,Ent Age, RSD Density the same the same 0.66

Linear SVM Binary W,Ent SubOccode, Age the same the same 0.78

Linear SVM Binary W,Ent SubOccode, RSD Density the same the same 0.77

Linear SVM Binary W,Ent Age, RSD Density the same the same 0.70

RBF SVM Binary W,Ent SubOccode, Age the same the same 0.87

RBF SVM Binary W,Ent SubOccode, RSD Density the same the same 0.89

RBF SVM Binary W,Ent Age, RSD Density the same the same 0.72

Gaussian Process Binary W,Ent SubOccode, Age the same the same 0.93

Gaussian Process Binary W,Ent SubOccode, RSD Density the same the same 0.89

Gaussian Process Binary W,Ent Age, RSD Density the same the same 0.73

Decision Tree Binary W,Ent SubOccode, Age the same the same 0.93

Decision Tree Binary W,Ent SubOccode, RSD Density the same the same 0.91

Decision Tree Binary W,Ent Age, RSD Density the same the same 0.72

Random Forest Binary W,Ent SubOccode, Age the same the same 0.93

Random Forest Binary W,Ent SubOccode, RSD Density the same the same 0.91

Random Forest Binary W,Ent Age, RSD Density the same the same 0.73

Neural Net Binary W,Ent SubOccode, Age the same the same 0.84

Neural Net Binary W,Ent SubOccode, RSD Density the same the same 0.78

Neural Net Binary W,Ent Age, RSD Density the same the same 0.72

AdaBoost Binary W,Ent SubOccode, Age the same the same 0.94

AdaBoost Binary W,Ent SubOccode, RSD Density the same the same 0.90

AdaBoost Binary W,Ent Age, RSD Density the same the same 0.72

Naive Bayes Binary W,Ent SubOccode, Age the same the same 0.81

Naive Bayes Binary W,Ent SubOccode, RSD Density the same the same 0.71

Naive Bayes Binary W,Ent Age, RSD Density the same the same 0.71

QDA Binary W,Ent SubOccode, Age the same the same 0.79

QDA Binary W,Ent SubOccode, RSD Density the same the same 0.71

QDA Binary W,Ent Age, RSD Density the same the same 0.71

LR (Baseline) Binary W,Ent SubOccode, Age the same the same 0.76

LR (Baseline) Binary W,Ent SubOccode, RSD Density the same the same 0.69

LR (Baseline) Binary W,Ent Age, RSD Density the same the same 0.70
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As said, each model is tested with three pairs of two variables from SubOccode, Age and RSD

Density. SubOccode is a 844 classification derived from the occupation string provided by I-CeM

database (Higgs and Schürer, 2014; Schürer et al., 2015) and can be understood as the minimal

observation available in the OccString. It is not the OccString but its minimal information. For

instance, for “Piano forte maker master” has SubOccode “Piano organ maker”, “Boot and shoe

maker employing 4 men” has “Shoe and boot makers (and repairers)”, and “Iron mine proprietor

employing 70 men & engineer empg [sic] 100 men total 170 men” has “Iron miner, quarrier”. So the

more information the string has, the greater the loss of information. Age is the age of the individ-

ual, and RSD (Registration Sub District) Density is the population density at the Registration Sub

District geographical level. The ten models are compared with the LR (Baseline) at the bottom of

the table. The best performing model is AdaBoost, that is why it is used in a full setting in 1851

AdaBoost model above.

The next box shows a completely different approach, Deep Learning. In Deep Learning we

aim at two things: first to outperform 1851 AdaBoost model with the full set of features but not

OccString, and then to outperform 1851 Bag of words with just OccString. The following model

attempts and succeeds in the first task:

Model: Deep Learning; Architecture: Sequential Neural Network with 2 Dense Layers (16 hidden

units) plus a rectified linear unit (“relu”) activation and input shape of (906,) + 1 Dense Layer

(1 hidden unit) plus a sigmoid activation; Optimizer: Root Mean Square Propagation (RMSprop);

Loss: binary crossentropy; Metrics: Accuracy; Type: Binary; Labels: W, Ent; Features: SubOc-

code, RSD Density, Age, Sex, Marital status, Relationship to the head, Servants (not OccString);

Dataset: maximum possible set of extracted. 70,872 W, 70,872 Ent; Epochs: 20; Batch size: 512;

Accuracy: 0.96

In this case we use an architecture with just three layers, a RMSprop optimizer, a binary crossen-

tropy loss function, 20 epochs and 512 batch size. This is the best performing model which does

not use the OccString feature which is remarkable because it performs better than all the non-Deep

Learning ML cases.

Next using only OccString, we build two additional DL models that do not use Bag of words
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but embed sentences in sequences of vectors: first a simple Dense architecture after flattening as

follows:

Model: Deep Learning; Architecture: Sequential Neural Network with 1 Embedding Layer + 1

Flatten Layer + 1 Dense Layer (32 hidden units) plus a rectified linear unit (“relu”) activation + 1

Dense Layer (1 hidden unit) plus a sigmoid activation; Optimizer: Root Mean Square Propagation

(RMSprop); Loss: binary crossentropy; Metrics: Accuracy; Type: Binary; Labels: W, Ent; Fea-

tures: OccString; Dataset: maximum possible set of extracted. 70,872 W, 70,872 Ent; Epochs: 10;

Batch size: 32; Accuracy: 0.9964

And then a more tailored one, with a Recurrent Neural Network (RNN) with a Long short-term

memory (LSTM) layer:

Model: Deep Learning; Architecture: Recurrent Neural Network (RNN) with 1 Embedding Layer

+ 1 Flatten Layer + 1 LSTM Layer + 1 Dense Layer (1 hidden unit) plus a sigmoid activation;

Optimizer: Root Mean Square Propagation (RMSprop); Loss: binary crossentropy; Metrics: Ac-

curacy; Type: Binary; Labels: W, Ent; Features: OccString; Dataset: maximum possible set of

extracted. 70,872 W, 70,872 Ent; Epochs: 10; Batch size: 32; Accuracy: 0.9978

When working with text data, RNN (like SLTM or Gated Recurrent Unit Network, GRU) and

convnets (Convolutional Networks) are to be preferred (Chollet, 2018). “The embedding layer is as

a dictionary that maps integer indices (which stand for specific words) to dense vectors” in a rel-

atively low-dimensional and learned from data manner (Chollet, 2018). This is strikingly different

from the previous 1851 Bag of word model, where the encoding is “sparse, high-dimensional, and

hardcoded” (Chollet, 2018). Hence, we have shown that LSTM with embedding of the occupational

string but no other pre-processing as a bag of words, performs better than DL Dense and shallow

learning 1851 Bag of words. This is one of the key results of this paper.

4. Data

The data that we seek to classify are the transcriptions of the 1851-1911 censuses of England and

Wales as provided in Higgs and Schürer (2014) supplemented as in Bennett et al. (2019). For our
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purpose, we use only the non-farm population of entrepreneurs because the census data collected

on farmers is sufficient to allow their entrepreneurial status to be identified without the need for

machine learning or supplementation of census responses; hence they do not need the estimation

processes discussed here (for an assessment of shifts in agrarian entrepreneurs see Montebruno et al.

(2019a)). For non-farm entrepreneurs, Table 1 confirms that, since the means and the medians

for each feature are statistically significantly different for each entrepreneur label class for the

later censuses (in this case for 1891 as an example), a binary classification can be used based on

the features of 1891 as a training set. All the t- and z-statistics of the two-sample t-test with

equal variances and the two-sample Wilcoxon rank-sum, or Mann-Whitney, tests show that the

difference between the means and the medians for the group are statistically significantly different

from zero with p-values roughly equal to zero. At the same time, Table 2 shows a similar picture

for classifying multiple attributes using the MNL with same features but now with labels 1 =

Worker (W), 2 = Employer (E), and 3 = Own account (OA). Again the t- and z-statistics are

all statistically significantly different from zero with corresponding p-values (almost) equal to zero.

Hence, in our data, the attributes of Ents as a whole are statistically distinct from W, and E and

OA are statistically distinct from each other and W.

5. Empirical analysis

The empirical analysis relies on three ground-truth (gold standard) datasets: “1891

1000 Ent”, “1851 1000 Ent”, and “1851 MAX(Extracted)” available for download in

Mendeley Data (Montebruno et al., 2020). All the results of this paper can be repli-

cated using those datasets. Our approach to the problem of classification of the 1851-81 censuses

is to train the data with the known labels in the later 1891-1911 censuses, using the entrepreneur

status that is fully reported in these later censuses (but not the earlier ones). Following the definition

of predictive or supervized ML, we first develop a base-line model by approximating the unknown

classification function with a logit (LR) model, using as training set the 1891 census where the

labels 0 = Worker and 1 = Entrepreneur come from the reported employment status responses

given in this census that are not available in earlier censuses. The LR classifier uses as classifi-

cation features the following: the coding of the individual’s occupational statement (SubOccode:

See Bennett et al. (2018), for the list of the 844 occupational categories, which are sub-divisions

of the I-CeM Occodes), Registration- sub-district (RSD) population Density (to use information
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of each individual’s location), the individual’s Age, Sex, Marital status, Relationship to the head

of the household, and Number of servants in the household (which is a family resource surrogate).

The method tests the accuracy of the LR for classifying individuals for whom their entrepreneur

status is known from their 1891 census responses. The dataset has 1,000 entrepreneurs and 1,000

non-entrepreneurs (the training set is a random subset of 60% and the test set a random subset of

the other 40% of the full datasets). The LR achieves an accuracy of 0.74 and a confusion matrix

(see below for a full explanation) given in Figure 1. The full trained model is presented in Table 3

where a logit classifier is used and each weight (w) and its t-statistic are given. The same model

but stripped of the SubOccode feature for computing efficiency is given in Table 4 where not only

weights but also partial derivative marginal effects are provided. Note that the marginal effects are

given only for the level variables and not for the squared, interaction and constant terms.

A similar procedure is followed with an MNL model with labels W/E/OA dropping the SubOc-

code feature for ease of computation with a dataset of 1,000 in each category (and similarly defined

training set as above). Table 5 shows each weight (w) and its t-statistic, while Table 6 shows the

partial derivative marginal effects for each variable in levels.

The performance of the method is improved by keeping the standard LR classifier but using a

dataset for training and testing purposes from the 1851-81 censuses with labels derived not from

full information of entrepreneurial status as in the later censuses where information of employment

status was given in a second question but, instead, from clerical labeling by researchers of employ-

ment status using the occupation text strings of a large subsample of individuals as W and Ent.

The occupational strings are contained in the Higgs and Schürer (2014) dataset, with the clerical

coding of entrepreneur status derived from Bennett et al. (2019). The strings have terms such

as House servant, “Piano forte maker master”, and other examples introduced earlier. Here the

dataset has 1,000 W, and 1,000 Ent from 1851. The use of this 1851 dataset to train the LR method

increases performance to 0.82 for the accuracy of estimating entrepreneurial status, as shown in the

confusion matrix Figure 2. The quest to keep improving on these methods is the main aim of the

rest of the paper. As (Wolpert, 1996) established there is no universally best model (i.e. the no free

lunch theorem), and the assumptions that work well in one problem do not necessarily work well in

another. Thus, our aim is to actively look for better performance among the inherent uncertainties
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of ML algorithms applied to this new research problem.

6. Results

6.1. Classifier comparison

Using Python library scikit-learn (Pedregosa et al., 2011), we compare a range of alternative

classifiers to the standard logistic regression based on coding by Varoquaux and Müller (2018) (under

a 3-clause BSD License). Figure 6 shows the accuracy and 2-D predicted probability grid for the

label being an entrepreneur (Ent) with 2,000 balanced random data points for ten classification

algorithms: Nearest Neighbors, Linear Support Vector Machine (SVM), Radial Basis Function

(RBF) SVM, Gaussian Process, Decision Tree, Random Forest, Neural Network (Net), Adaptive

Boosting (AdaBoost), Naive Bayes, and Quadratic Discriminant Analysis (QDA) (see Zhang and

Zhou (2007); Schapire and Singer (1999); Tang et al. (2016); Tong and Chang (2001); Wu et al.

(2014); Alvarez-Galvez (2016); Freund and Schapire (1996); Friedman (2001); Murphy (2012)). In

the first row of the figure the features are SubOccode and Age, in the second row SubOccode

and RSD Density and SubOccode, and in the third Age and RSD Density. The purple circles are

Ws and the green ones Ents. The color in the background is the 2-D predicted probability grid

which means that when the grid is purple a test point will be classified as W and when the color

is green a test point will be classified as Ent. The resulting probability patterns are strikingly

similar to known patterns from the data (see Bennett et al. (2018)); e.g. that younger and older

people are less entrepreneurial compared to middle years, and that lower density locations and

certain SubOccodes are more entrepreneurial. The results show that the best performing methods

are AdaBoost (which achieves accuracy of 0.94, 0.90, and 0.72, respectively, for all three rows),

Decision Tree and Random Forest (both respectively 0.93, 0.91, and 0.72), and Gaussian Process

(0.93, 0.89, 0.73). The standard LR performs systematically worse than almost all of the other

methods tested here. Also, it can be seen that the best predictions are made using the features

SubOccode and Age in combination, while the poorest predictions are made from Age and RSD

Density. Of course, these are just three features for ease of visualization, but our final model

selection uses all available features in the dataset.
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6.2. Confusion matrix

The assessment of the classification of Ents and Ws by Age and Suboccode using the benchmark

LR can be visualized in Figure 5. (Note to referees: this fig should appear legible at full-

page size if color is retained). There are two areas separated by a linear hyperplane. The first

has a green zone on top, and to the right where the probability indicates a likelihood of being an

Ent with two sets of individuals: green circles or True Positives (TP), true Ents predicted as Ents,

and light purple crosses or False Positives (FP), true Ws predicted as Ents. The second area has a

purple zone at the bottom, and to the left where the probability indicates a likelihood of being a W

with again two sets of individuals: light green crosses or False Negatives (FN), true Ents predicted

as Ws, and purple circles or True Negatives (TNs), true Ws predicted as Ws. Once we have selected

the classifier, we run the AdaBoost method of Freund and Schapire (1996) using a parametrization

suggested in Dawe (2018) (under a 3-clause BSD License) for the dataset with the maximum possible

set of “extracted” (those labeled according to their strings or type of employment occupation codes)

Ents (after excluding farmers). The method is now applied to the full 1851 labeled subsample of

70,872 Ws, 35,436 Es, and 35,436 OAs. In the binary classification problem, the following table

shows at the bottom and in bold the predicted labels (−̂, +̂), on the left and in bold the actual

labels (−,+), four cells with TN, FP, FN, and TP:

N−̂ N+̂ TOTALS

− TN FP N−

+ FN TP N+

−̂ +̂

The confusion matrix is similar with the only difference that the number in the cells are rates over

the previous table numbers after summation by rows. In particular it is important the sum of the

rows or the true number of negatives, upper row or N− = TN + FP , and the true number of

positives, lower row or N+ = FN + TP :
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− Specificity False Alarm (Denominator N−)

+ Missed Detection Sensitivity (Denominator N+)

−̂ +̂

Upper left, the Specificity Rate, TN/N−; upper right the False Alarm, Type I errors, or False

Positive Rate, FP/N−; lower right, the Sensitivity, Recall, True Positive or Hit Rate, TP/N+;

and lower left, the Missed Detection, Type II errors, or False Negative Rate, FN/N+. Not shown

are the rates summing the columns for the “called” number of positives, right column or N+̂, and

the “called” number of negatives, left column or N−̂. For example, Figure 3 shows an accuracy of

95% with TP of 27,561, TN of 26,267, FP 2104, and FN of 766. The AdaBoost classifier results in

a reduced number of False Alarms (FP) and almost no Missed Detections (FN) as expected from

Schapire and Singer (1999), Murphy (2012), and Al-Salemi et al. (2019) with a Sensitivity Rate of

97.3%, a Specificity Rate of 92.6%, a False Alarm Rate of only 7.4%, and a Missed Detection Rate

of 2.7%. The Precision Rate of 92.9%, not shown in the confusion matrix because the denominator

is the sum of the right column or N+̂, the predicted number of positives.

6.3. ROC curves

A further consideration is the extent of true positives and false negatives. The receiver operating

characteristic (ROC) curve (Fawcett, 2006) is a means to assess this. Figure 7 uses the ROC plot:

the Sensitivity Rate or True Positive Rate against the False Alarm or False Positive Rate at different

thresholds τ or cut-offs of the probability of being an Ent. If τ = 0 we are at the top right corner

of Figure 7 where everyone is classified as an Ent so the True Positive and False Positive Rates

both equal one as the TP, FP > 0 while FN, TN = 0. An analogous case, when τ = 1 is

at the bottom left corner where everybody is classified as a W and both rates are now zero as

TP, FP = 0 while FN, TN > 0. Along the diagonal and for different τs the two rates are equal

as long as the Ent/W assignment is random. We plot the ROC curve for the following classifiers:

RandomTrees (RT), RandomForest (RF), GradientBoosting (GBT) as both stand-alone methods

and combined with LR following coding by Head (2018) under a 3-clause BSD License. The best

classifier is the one which achieves the top left corner. Again, the preferred comparison classifier

is a boosting method—as discussed in Friedman (2001) and James et al. (2013). In fact Gradient
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Boosting associated with the LR has the purple or outer-most curve giving the best ROC curve

among all the classifiers, see Figure 7b. Similar to Section 4.1, the second place is achieved by the

ensemble method RT that relies on the wisdom of the crowd, see Géron (2017).

6.4. Bag of words

A bag of words, Chollet (2018), is the result of a two-stage process. First, tokenization or the

breaking of text into units called tokens, and second, a vectorization or the association of numeric

vectors with the generated tokens. The term bag “refers to the fact that [one is] dealing with a set

of tokens rather than a list or sequence: the tokens have no specific order.”1 The data are the same

maximum possible set of “extracted” Ents, but now the feature OccStrings is added to the same

maximum “extracted” set. This is similar to many web-search algorithms (Kucukyilmaz et al.,

2017) and title extraction (Hu et al., 2006), without using the semantic links between textual items

used by Kastrati et al. (2019). This produces the confusion matrix in Figure 4 with an accuracy

of more than 99% still using the AdaBoost parametrization suggested by Dawe (2018). This result

shows the power of using the full occupational descriptor text in the form of a bag of words to solve

this ML task.

6.5. Deep Learning

6.5.1. General features

Deep Neural Networks (DNN) are an important advance in the art of ML (McCulloch and Pitts,

1943; Rosenblatt, 1958; Rumelhart et al., 1988) which is particularly valuable for complex textual

classification (Abdi et al., 2019; Kastrati et al., 2019). As suggested by Chollet (2018), a good

metaphor of DL is the uncrumpling of a complicated manyfold of data. For example, imagine two

sheets of colored paper: one green for Ents and one purple for Ws. Put them one on top of the

other and crumple them into a ball of paper. Now you cannot tell them apart. DL consists of

chains of geometric operations (underlying tensor operations) to uncrumple this ball of paper in

order to separate—that is to classify—the Ents green sheet from the Ws purple one; or “finding

neat representations for complex, highly folded manifolds” (Chollet, 2018). A simple architecture

of DL should include an input of features, layers of data transformation parametrized by weights,

1As a hash in Perl. See Figure 6-2. A hash as a barrel of data. (Schwartz et al., 2008). Or an R list, a Python

dictionary or even a C structure, see (Matloff, 2011)
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a prediction, a loss function to measure the distance between the prediction and the true label

(which is a loss score used as a feedback signal), an optimizer to adjust the weights in order to

reduce the loss score in the next instance of the input of features. As a result, the model learns

with many layers of data transformation. All the previous shallow learning has one layer where

its weights are learned by the classifier. For instance, in our base-line, the Logistic Regression is

applied to the training data, and the then calculated weights are used to predict the label, and

then a loss function permits finding the accuracy of the test. In shallow learning, as with the LR,

the process still includes a feedback signal to fine-tune the weights since each data point permits

a more specific adjustment of the logistic curve to the data, but this happens in a one-layer-deep

circuit. In DL the architecture of the data transformation is made as complex as needed so that the

fine-tuning is through a multi-dimensional chain of data learning processes; learning is embedded

in many layers of discretional data munging. Using deep learning, it is possible to produce the best

performance for the problem at hand with an accuracy of 96% after transforming the features to

tensors, coding categorical variables as 2D-tensors with normalization, and building a sequential

neural network with two Dense layers of sixteen hidden units, a “relu” (rectified linear unit, or non-

linearity) activation, plus a final layer with just one hidden unit and a “sigmoid” activation. We use

the Keras library, and Tensor Flow backend (Abadi et al., 2015) Notice that this model does not

use the power of the OccStrings analyzed in the previous section. So, the improvements can only

be attributable to the DL method. Figure 8 shows the loss and the accuracy of both the training

and the validation sets. Overall the model performs well both in the training and, importantly, also

in the validation sets. This implies that the model generalizes well since it performs well on data

it has never seen before. Also, it suggests that overfitting to the training data is not a problem for

this model with its current capacity (or number of learnable parameters) and amount of training

data. This result permits us to conclude that DL outperforms the conventional ML models in the

task of binary classification when general features are included (but not OccString)

6.5.2. Deep Learning for text-data

One interesting question to be answered in this paper is whether a DL model could outperform

the very successful 1851 Bag of word conventional ML model with AdaBoost and using a pre-

processed bag of words vector encoding. To test this we built two models as described in the

Methodology: one SNN with Embedding, that is a dense, lower-dimensional and learned from data
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word representation in contrast with the sparse, high-dimensional, and hardcoded bag of word

representation; the other a RNN model with a LSTM layer. Both perform better than the 1851

Bag of word with accuracies of 0.9964, and 0.9978 compared with 0.9949. The LSTM loss and

accuracy are shown in Figure 9.

7. Assessment and Conclusion

This paper uses methodological advances in machine learning to apply to historical census data

classification. In particular, it has shown that boosting, followed by ensemble methods, sometimes

associated with LR, among the probabilistic approaches generate sizable improvements in accuracy

over the benchmark of a stand-alone LR for the classification of individuals by their entrepreneurial

status for the early censuses. The results tend to confirm Hindman (2015) who suggests that “En-

semble models illustrate what is possible in terms of predictive accuracy, and they provide the best

yardstick with which to judge simpler models” ... “Ensemble methods .... are almost always a

superior choice to the OLS and logit models that dominate empirical social science work today”.

At the same time, significant improvements in the accuracy of the census classifications assessed

here can be achieved with a bag-of-words strategy using the OccString feature in the data, which

employs advances in text and natural language pre-processing. However, DL with neural networks

performs at the top of all the tested models. This confirms that ML, and, especially, DL can be

actively developed to tackle classification of historical data. This case study has proved that ML

and, in particular, DL are techniques that are valuable for classification of historical data; they

also encourage subsequent exploration of record linkage of historical census data as recently de-

scribed by Capobianco and Marinai (2019) and Liu et al. (2019). Our efforts demonstrate that a

multidisciplinary approach to traditional information classification tasks can realize the potential

of a “big data revolution” (Hindman, 2015). As Hindman (2015) suggests “[n]ew data sources and

better algorithms do allow social scientists of all stripes to offer most accurate forecasts in many ...

areas”. Finally, the addition of machine learning to traditional methodological techniques suggests

that the use of big data techniques (even for small sample queries) can help to understand and

improve testing of theory.

The main implication of our results is to show that expanding the range of methods applied to

the binary classification of big data in the information sciences can produce important increases
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in performance so researchers should actively look for the best performing algorithm. Our results

highlight that theoretically binary classification tasks like the ones presented in the empirical part

of this paper, should not only be tackled by standard LR but also should explore more general

ML algorithms, especially boosting and ensemble methods, which have performances that greatly

outperform the LR. The paper suggests that a wide range of ML methods are preferable options to

solve classification tasks. As our results show ten common but optimized, ML algorithms perform

better than the LR in almost every case. This is a valuable conclusion indicating that researchers

should test and compare different ML algorithms before accepting the results from any one method.

This should not be surprising since it confirms Wolpert’s (1996) famous “no free lunch theorem”

(i.e. that there is no universally best model). Also, our results show that empirically, AdaBoost

outperformed all other ML methods. At the same time, DL as a special method and in particu-

lar using TensorFlow library is an even better choice for our data, indicating that future research

should focus on further developments of neural network algorithms as classifier tools for this task.

Another lesson from this paper is that text-based classifications perform better in both shal-

low and deep learning. Similar methodologies in the literature were interpreted by Kastrati et al.

(2019) as integrating learning into an ontology-based on the semantics in the text, or by Abdi et al.

(2019) as allowing sentiment analysis, although our text descriptors are too brief and simplistic to

utilize such approaches. However, shallow models’ text-encoding as a bag of word and deep models’

text-embedding perform at the top of the list among all the model tested. This suggests avenues

for future research.

Overall, our efforts have shown that the most accurate method for the task at hand is Deep

Learning both if we restrict to using or not using OccString. Deep Learning outperforms AdaBoost

when all the features but OccString are used, and Deep Learning outperforms the 1851 Bag-of-words

AdaBoost model especially with an RNN architecture. The Deep Learning model with LSTM layer

reaches a 0.9978 accuracy, and the top-ranked accuracy among all our models. Thus, our recom-

mendations are to use Deep Learning and use OccString when this variable is available (as in the

earlier censuses 1851-1881).

The paper has focused on the methodological advances offered by ML, and the comparison of
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different methods for implementing ML. Future developments of these methods can be used to

join up the historical censuses with modern data so that the long-term trends in entrepreneurship

can be examined over time. This begins to allow evaluations of the effects of changing descrip-

tors of entrepreneurial behaviour and the effect of different economic conditions on decision choices

between waged work and employer or own account status. Indeed the results of the application

of the methods used here for identifying entrepreneurial status 1851-81 linked to the later period

1891-1911, and then linked to modern censuses show that the Victorian period had a higher rate

of entrepreneurship than any subsequent time in Britain (Bennett et al., 2019). Besides, the avail-

ability of a database on the full population of entrepreneurs over time can be used to study the

statistical characteristics of the firm size distribution (Montebruno et al., 2019b,c), and the study of

the determinants of Victorian entrepreneurship (Bennett et al., 2019). Moreover the data deposit

of the estimates of entrepreneurial status based on the methods used in this paper allow other

researchers to develop answers to other research questions; such as persistence in entrepreneurship

over time, growth and change in firm sizes, and using record-linkage between census years, open

up new potential to examine the life stages and career evolution of entrepreneurs and switching

between different employment statuses.
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Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K., 2008. Label ranking by learning pairwise

preferences. Artificial Intelligence 172, 1897–1916. doi:10.1016/j.artint.2008.08.002.

James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An introduction to statistical learning:

with applications in R. Springer texts in statistics, Springer, New York; Heidelberg; Dordrecht;

London.

Kastrati, Z., Imran, A.S., Yayilgan, S.Y., 2019. The impact of deep learning on document clas-

sification using semantically rich representations. Information Processing and Management 56,

1618–1632. doi:10.1016/j.ipm.2019.05.003.

Kucukyilmaz, T., Cambazoglu, B.B., Aykanat, C., Baeza-Yates, R., 2017. A machine learning

approach for result caching in web search engines. Information Processing and Management 53,

834–850. doi:10.1016/j.ipm.2017.02.006.

Liu, Y., Jin, L., Lai, S., 2019. Automatic labeling of large amounts of handwritten char-

acters with gate-guided dynamic deep learning. Pattern Recognition Letters 119, 94–102.

doi:10.1016/j.patrec.2017.09.042.

Matloff, N.S., 2011. The art of R programming. No Starch Press, San Francisco, California.

McCulloch, W., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. The

bulletin of mathematical biophysics 5, 115–133. doi:10.1007/bf02478259.

Montebruno, P., Bennett, R., Van Lieshout, C., Smith, H., Satchell, A., 2019a. Shifts in agrarian

entrepreneurship in mid-Victorian England and Wales. The Agricultural History Review 67,

71–108.

26



Montebruno, P., Bennett, R.J., van Lieshout, C., Smith, H., 2019b. A tale of two tails: Do Power

Law and Lognormal models fit firm-size distributions in the mid-Victorian era? Physica A:

Statistical Mechanics and its Applications 573, 858–875. doi:10.1016/j.physa.2019.02.054.

Montebruno, P., Bennett, R.J., van Lieshout, C., Smith, H., 2019c. Research data supporting

“A tale of two tails: Do Power Law and Lognormal models fit firm-size distributions in the

mid-Victorian era?”. Mendeley Data doi:10.17632/86xkkncmw3.1.

Montebruno, P., Bennett, R.J., Smith, H., van Lieshout, C., 2020. Research data sup-

porting “Machine learning in the processing of historical census data”. Mendeley Data

doi:10.17632/p4zptr98dh.1.

Murphy, K., 2012. Machine Learning A Probabilistic Perspective. The MIT Press, Cambridge,

Massachusetts, London, England.

Murthy, D., Gross, A.J., 2017. Social media processes in disasters: Implications of emergent

technology use. Social Science Research 63, 356–370. doi:10.1016/j.ssresearch.2016.09.015.

Parker, S.C., 2004. The Economics of Self-Employment and Entrepreneurship. Cambridge Univer-

sity Press, Cambridge, England. doi:10.1017/cbo9780511493430.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,

M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine Learning in Python. Journal of

Machine Learning Research 12, 2825–2830.

Rabe-Hesketh, S., Skrondal, A., 2012. Multilevel and longitudinal modelling using Stata. Volume

2, Categorical responses, counts, and survival. 3rd ed. ed., Stata Press, College Station, Texas.

Read, J., Pfahringer, B., Holmes, G., Frank, E., 2011. Classifier chains for multi-label classification.

Machine Learning 85, 333–359. doi:10.1007/s10994-011-5256-5.

Reichenberg, O., Berglund, T., 2019. “Stepping up or stepping down?“: The earnings differences

associated with Swedish temporary workers’ employment sequences. Social Science Research

doi:10.1016/j.ssresearch.2019.04.007.

27



Rosenblatt, F., 1958. The perceptron: A probabilistic model for information storage and organiza-

tion in the brain. Psychological Review 65, 386–408. doi:10.1037/h0042519.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1988. Learning Internal Representations by Er-

ror Propagation, in: Collins, A., Smith, E.E. (Eds.), Readings in Cognitive Science. Morgan

Kaufmann, pp. 399–421. doi:10.1016/B978-1-4832-1446-7.50035-2.

Schapire, R., Singer, Y., 1999. Improved Boosting Algorithms Using Confidence-rated Predictions.

Machine Learning 37, 297–336. doi:10.1023/A:100761452.
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Figure 1: Confusion matrix for the binary classification of being W or Ent: 1891 Logistic Regression.
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Figure 2: Confusion matrix for the binary classification of being W or Ent: 1851 Logistic Regression
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Figure 3: Confusion matrix for the binary classification of being W or Ent: 1851 AdaBoost

W Ent
Predicted label

W
En

t
Ac

tu
al

 la
be

l

0.926 0.074

0.026 0.974

Accuracy Score: 0.95

0.0

0.2

0.4

0.6

0.8

1.0

Input data 70,872 W / 70,872 Ent

32



Figure 4: Confusion matrix for the binary classification of being W or Ent using the AdaBoost classifiers with the

OccString feature (Bags of words), 1851
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Figure 6: 2-D predicted probability and accuracy comparing Logistic Regression to competing classification algorithms
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Note to Figure 5 2-D predicted probability and accuracy comparing Logistic Regression (LR,

three boxes down and far left) to ten alternative and competing classification algorithms (Nearest

Neighbors, Linear SVM, RBF SVM, Gaussian Process, Decision Tree, Random Forest, Neural Net,

AdaBoost, Naive Bayes, and QDA) for the label being an Ent with 2000 balanced random data

points (1000 Ws, 500 Es and 500 OAs. That is 1000 Ws and 1000 Ents). The three boxes (the

upper using SubOccode and Age, the middle using SubOccode and RSD Density, and the bottom

using Age and RSD Density) in the first half-column, i.e., up and far left are the input data. The

purple figures—that is circles and triangles—are Ws and the green ones are Ents. The circles are

the training set (60% of the total) and the triangles are the testing set (40% of the total). The

input data are repeated in each classification algorithm with the background color being the 2-D

predicted probability grid: when the grid is purple a test point—that is a triangle—is classified as

W irrespective of its true value or color and when the color is green a test point is classified as

Ent, also irrespective of its true value or color. According to this classification of the test points

the accuracy for each method is calculated. The code is used from (Varoquaux and Müller, 2018)

under a 3-clause BSD License.
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Figure 7: Receiving operating charateristic (ROC) curve for the binary classification of being or not an Entrepreneur

using RandomTrees (RT), RandomForest (RF), GradientBoosting (GBT) as stand-alone methods or combined with

Logistic Regression (LR)
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(b) ROC curve (zoomed in at top left)
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Figure 8: Loss and accuracy of deep learning for a Dense Sequential Neural Network (SNN) with all the features but

not with OccString in the maximum possible set of extracted Entrepreneurs
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Figure 9: Loss and accuracy of deep learning for the Long Short-Term Memory (LSTM) Recurrent Neural Network

(RNN) with only OccString feature in the maximum possible set of extracted Entrepreneurs

(a) Loss

(b) Accuracy

Input data as for Figure 8.
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Table 3: Logit model weights.

Labels: W/Ent
Feature Weight (w) t-stat

SubOccode
52. Schoolmasters And Teachers (Default) Minus Suboccode 802 3.959∗∗∗ (126.62)

105. Laundry Wrk: Washer, Iron, Etc. (Not Dom) Minus Suboccode 805 5.038∗∗∗ (167.28)

141. Carmen Carriers Carters And Draymen 3.622∗∗∗ (118.78)

173. Farmer, Grazier 7.342∗∗∗ (242.39)

196. Coal Miners - Hewers, Workers At The Coal Face 0 (.)

262. Blacksmiths Minus Suboccode 812 3.861∗∗∗ (127.46)

409. Carpenter, Joiner Minus Suboccode 820 3.601∗∗∗ (120.29)

551. Cotton & Cotton Good Mf Weaving Processes 0.136∗ (2.26)

653. Tailors Not Merchants- Default Minus Subocc 858 4.482∗∗∗ (149.15)

657. Dressmakers 6.768∗∗∗ (226.57)

663. Shoe & Boot Maker (& Repairer) Minus Suboccode 862 4.721∗∗∗ (159.43)

RSD Density -0.00706∗∗∗ (-132.86)

RSD Density × RSD Density 0.0000175∗∗∗ (79.98)

Age 0.135∗∗∗ (239.21)

Age × Age -0.00102∗∗∗ (-165.09)

Sex
1. Male 0 (.)

2. Female -0.0363∗∗∗ (-5.58)

Marital status
1. Single 0 (.)

2. Married -0.106∗∗∗ (-17.45)

4. Widowed -0.0167 (-1.95)

2. Female × 2. Married 0.297∗∗∗ (33.05)

2. Female × 4. Widowed 0.0300∗∗ (2.89)

Relationship to the head
1. Head 0 (.)

2. CFU member -0.829∗∗∗ (-138.86)

3. Older generation -0.893∗∗∗ (-52.83)

4. Siblings -0.728∗∗∗ (-72.65)

5. Other family -1.053∗∗∗ (-77.18)

6. Servants -3.186∗∗∗ (-69.34)

7. Working title -2.773∗∗∗ (-75.91)

8. Lodgers/boarders -1.184∗∗∗ (-162.58)

9. Non-household -1.429∗∗∗ (-48.37)

10. Unknown -0.574∗∗∗ (-46.14)

Number of servants 0.524∗∗∗ (154.61)

Constant -8.851∗∗∗ (-278.30)

Observations 7,213,217
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Weights (w, second column) calculated from the 1891 training data for features (base category) SubOccode (196)

(Only 11 example SubOccodes are shown from the 844 estimated), RSD Density, Age, Sex (Male), Marital status

(Single), Relationship to the head (Head), and Number of servants. Binary labels are Worker (W) and Entrepreneur

(Ent). In parentheses, t-statistics (third column).
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Table 4: Logit model weights and marginal effects without the SubOccode.

Labels: W/Ent

Feature w/se ∂y/∂x/se

RSD Density -0.005∗∗∗ -0.001∗∗∗

(0.000) (0.000)
RSD Density × RSD Density 0.000∗∗∗

(0.000)
Age 0.115∗∗∗ 0.009∗∗∗

(0.000) (0.000)
Age × Age -0.001∗∗∗

(0.000)
Sex

1. Male 0.000 0.000
(.) (0.000)

2. Female 0.776∗∗∗ 0.143∗∗∗

(0.004) (0.001)
Martial status

1. Single 0.000 0.000
(.) (0.000)

2. Married -0.286∗∗∗ -0.036∗∗∗

(0.005) (0.001)
4. Widowed -0.268∗∗∗ -0.039∗∗∗

(0.007) (0.001)
2. Female × 2. Married 0.174∗∗∗

(0.007)
2. Female × 4. Widowed 0.011

(0.008)
Relationship to the head

1. Head 0.000 0.000
(.) (0.000)

2. CFU member -0.902∗∗∗ -0.138∗∗∗

(0.005) (0.001)
3. Older generation -1.128∗∗∗ -0.162∗∗∗

(0.013) (0.001)
4. Siblings -0.807∗∗∗ -0.127∗∗∗

(0.008) (0.001)
5. Other family -1.071∗∗∗ -0.156∗∗∗

(0.013) (0.001)
6. Servants -3.240∗∗∗ -0.253∗∗∗

(0.045) (0.001)
7. Working title -2.256∗∗∗ -0.230∗∗∗

(0.035) (0.001)
8. Lodgers/boarders -1.208∗∗∗ -0.169∗∗∗

(0.006) (0.001)
9. Non-household -1.549∗∗∗ -0.195∗∗∗

(0.025) (0.002)
10. Unknown -0.232∗∗∗ -0.043∗∗∗

(0.010) (0.002)
Number of servants 1.018∗∗∗ 0.150∗∗∗

(0.003) (0.000)
Constant -4.132∗∗∗

(0.010)

Observations 7,213,217
Pseudo R2 0.193
Chi-squared 887,072.910
p-value 0.000
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Weights (w, second column) and marginal effects (∂y/∂x, third column) calculated from the 1891 training data

for same features and labels of the previous tables but without SubOccode for computing efficiency. Note that the

Female weight is now positive. In parentheses and below, standard errors (se).
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Table 5: MNL model weights without SubOccode.

Labels: W/E/OA
Feature Weight (w) t-stat Weight (w) t-stat

2.Employer 3.Own account
RSD Density -0.00745∗∗∗ (-105.62) -0.00365∗∗∗ (-72.43)

RSD Density × RSD Density 0.0000217∗∗∗ (80.07) 0.00000929∗∗∗ (42.80)

Age 0.119∗∗∗ (158.85) 0.114∗∗∗ (229.08)

Age × Age -0.000793∗∗∗ (-101.43) -0.000778∗∗∗ (-145.02)

Sex
1. Male 0 (.) 0 (.)

2. Female -0.271∗∗∗ (-26.55) 0.947∗∗∗ (206.47)

Marital status
1. Single 0 (.) 0 (.)

2. Married 0.0396∗∗∗ (4.74) -0.504∗∗∗ (-89.45)

4. Widowed -0.283∗∗∗ (-26.28) -0.290∗∗∗ (-38.29)

2. Female × 2. Married 0.115∗∗∗ (7.44) 0.370∗∗∗ (48.25)

2. Female × 4. Widowed 0.439∗∗∗ (30.54) 0.00476 (0.57)

Relationship to the head
1. Head 0 (.) 0 (.)

2. CFU member -1.029∗∗∗ (-108.67) -0.872∗∗∗ (-161.54)

3. Older generation -1.242∗∗∗ (-50.43) -1.087∗∗∗ (-73.87)

4. Siblings -0.845∗∗∗ (-52.84) -0.785∗∗∗ (-89.18)

5. Other family -1.464∗∗∗ (-46.07) -0.962∗∗∗ (-75.13)

6. Servants -3.173∗∗∗ (-29.52) -3.268∗∗∗ (-67.07)

7. Working title -2.162∗∗∗ (-25.26) -2.276∗∗∗ (-60.20)

8. Lodgers/boarders -1.480∗∗∗ (-119.60) -1.158∗∗∗ (-171.50)

9. Non-household -1.829∗∗∗ (-35.02) -1.493∗∗∗ (-54.88)

10. Unknown -0.171∗∗∗ (-9.08) -0.257∗∗∗ (-22.05)

Number of servants 1.430∗∗∗ (361.84) 0.705∗∗∗ (212.89)

Constant -5.535∗∗∗ (-308.16) -4.390∗∗∗ (-384.13)

Observations 7,173,550

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Weights (w, second and fourth columns) calculated from the 1891 training data for the features without SubOccode

for ease of computation.is now positive. Multi-class labels are Worker (W), Employer (E), and Own account (OA)

(Worker is base category). In parentheses (third and fifth columns), t-stat).
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Table 6: MNL model marginal effects without the SubOccode.

Labels: W/E/OA
Feature ∂y/∂x/se ∂y/∂x/se ∂y/∂x/se
RSD Density 0.001∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000)
Age -0.009∗∗∗ 0.002∗∗∗ 0.007∗∗∗

(0.000) (0.000) (0.000)
Sex
1. Male 0.000 0.000 0.000

(0.000) (0.000) (0.000)
2. Female -0.143∗∗∗ -0.014∗∗∗ 0.157∗∗∗

(0.001) (0.000) (0.001)
Martial status
1. Single 0.000 0.000 0.000

(0.000) (0.000) (0.000)
2. Married 0.042∗∗∗ 0.005∗∗∗ -0.047∗∗∗

(0.001) (0.000) (0.001)
4. Widowed 0.038∗∗∗ -0.004∗∗∗ -0.034∗∗∗

(0.001) (0.000) (0.001)
Relationship to the head
1. Head 0.000 0.000 0.000

(0.000) (0.000) (0.000)
2. CFU member 0.136∗∗∗ -0.038∗∗∗ -0.098∗∗∗

(0.001) (0.000) (0.001)
3. Older generation 0.157∗∗∗ -0.043∗∗∗ -0.114∗∗∗

(0.001) (0.001) (0.001)
4. Siblings 0.124∗∗∗ -0.033∗∗∗ -0.090∗∗∗

(0.001) (0.001) (0.001)
5. Other family 0.152∗∗∗ -0.048∗∗∗ -0.104∗∗∗

(0.001) (0.001) (0.001)
6. Servants 0.246∗∗∗ -0.063∗∗∗ -0.183∗∗∗

(0.001) (0.000) (0.001)
7. Working title 0.224∗∗∗ -0.057∗∗∗ -0.167∗∗∗

(0.001) (0.001) (0.001)
8. Lodgers/boarders 0.167∗∗∗ -0.048∗∗∗ -0.119∗∗∗

(0.001) (0.000) (0.001)
9. Non-household 0.192∗∗∗ -0.053∗∗∗ -0.139∗∗∗

(0.002) (0.001) (0.001)
10. Unknown 0.042∗∗∗ -0.007∗∗∗ -0.035∗∗∗

(0.002) (0.001) (0.002)
Number of servants -0.126∗∗∗ 0.053∗∗∗ 0.073∗∗∗

(0.000) (0.000) (0.000)
Constant -4.132∗∗∗

(0.010)
Observations 7,173,550
Pseudo R2 0.185
Chi-squared 995,776.903
p-value 0.000
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Marginal effects (∂y/∂x) calculated from the 1891 training data for same features and labels of the previous tables

but without SubOccode for computing efficiency. Multi-class labels are Worker (W), Employer (E), and Own account

(OA) In parentheses and below, standard errors (se).
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Appendix A. Mathematical Appendix

As first established by Goldberger (1991), the function of interest is the conditional expectation

function (CEF) which in the case of a given value i of a binary label, yi, is the probability that the

label is 1 given the value of a feature i, xi as presented in Rabe-Hesketh and Skrondal (2012):

E(yi|x) = Pr(yi = 1|x)

The probability must lie between 0 and 1, thus a non-linear link function is used to estimate

the following linear relation (Rabe-Hesketh and Skrondal, 2012):

link{Pr(yi = 1|x)} = bias+ weights′ x

where the intercept is called bias and the slope coefficients are called weights (Murphy, 2012).

Sometimes bias and weights together are also called parameters (Goodfellow et al., 2016). The link

function that we use in this paper is the logit defined as the logarithm of the odds by Rabe-Hesketh

and Skrondal (2012):

logit{Pr(yi = 1|x)} ≡ logarithm {odds(yi = 1|x)} = bias+ weights′ x

and the odds that the label is one are defined as follows (Rabe-Hesketh and Skrondal, 2012):

odds(yi = 1|x) ≡
Pr(yi = 1|x)

1− Pr(yi = 1|x)

Taking the inverse of the logit function makes possible to estimate the probability that the label

is one given a certain value of the feature (Rabe-Hesketh and Skrondal, 2012):

Pr(yi = 1|x) = logit−1(bias+ weights′ x) ≡
expbias+weights′ x

1 + expbias+weights′ x
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Being Pr(yi = 0|x) = 1− Pr(yi = 1|x), then also:

Pr(yi = 0|x) =
1

1 + expbias+weights′ x

The logit model forms part of the so-called single-index models where the CEF is equal to a non-

linear mean function F () (i.e., the inverse of the logit, or logit−1) of a single index, weights′ x,

of the features and the weights, following Cameron and Trivedi (2005):

E(y|x) = F (weights′ x)

And the effect on the CEF of a change in the ith regressor is, according to Cameron and Trivedi

(2005):

∂E(y|xi)
∂xi

= F ′(weights′ x)weighti

and F ′ = ∂F ()
∂

. Thus the relative effect of changes in regressors is equal to the ratio of the weights,

also following Cameron and Trivedi (2005):

∂E(y|xi)/∂xi

∂E(y|xk)/∂xk

=
weighti

weightk

as F ′(weights′ x) cancels in the numerator and the denominator. This means that, for instance,

if weighti is three times weightk, then a one unit change of xi has three times the effect of a

one-unit change in xk. And if F () is monotonic, as the inverse logit is, then the signs of the weights

command the signs of the effects for all possible values of the feature.

In the case of a multi-class label, for example, if we are classifying individuals into entrepreneurial

status of E, OA or non-entrepreneurs as W, a general model can be written following Cameron and
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Trivedi (2005) where J is a given category out of the j categories and j goes from 1 to C:

Pr(yj = J |x) =
expbias[J]+weights[J] x∑C

j=1 expbias[j]+weights[j] x

where the superscript enclosed in the square brackets, [], is used to signal that the weights and

the bias pertain to a given class, j and the denominator is equal to the sum of the numerators,

so that the probabilities sum up to one. Consequently, this is a MNL with alternative-invariant

features with alternative-specific weights. Also, the first, usually the most frequent category, is

taken as base category which means the following two important assumptions: bias[1] = 0 and

weight
[1]
i = 0, so each weight must be interpreted as the change in probability that a unit increase

in a given feature with respect to the base category. For the case, where C = 3 with categories

(j = 1) ≡ Worker, (j = 2) ≡ Employer, and (j = 3) ≡ Own account the probabilities

are as follows using Rabe-Hesketh and Skrondal (2012):

Pr(yj = 1|x) =
1

1 + expbias[2]+weights[2] x + expbias[3]+weights[3] x

Pr(yj = 2|x) =
expbias[2]+weights[2] x

1 + expbias[2]+weights[2] x + expbias[3]+weights[3] x

Pr(yj = 3|x) =
expbias[3]+weights[3] x

1 + expbias[2]+weights[2] x + expbias[3]+weights[3] x

This is a discrete choice model to predict the employment status of any economically active individ-

ual in the census using, as previously said, alternative-invariant features with alternative-specific

weights.
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