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Abstract

The 7 = 2 Conjecture predicts that every ideal minimally non-packing clutter has covering number two. In
the original paper where the conjecture was proposed, in addition to an infinite class of such clutters, thirteen
small instances were provided. The construction of the small instances followed an ad-hoc procedure and
why it worked has remained a mystery, until now. In this paper, using the theory of clean tangled clutters,
we identify key structural features about these small instances, in turn leading us to a second infinite class of
ideal minimally non-packing clutters with covering number two. Unlike the previous infinite class consisting
of cuboids with unbounded rank, our class is made up of non-cuboids, all with rank three.

Keywords. Clutters, ideal minimally non-packing clutters, the QQ¢ property, the 7 = 2 Conjecture, clean

tangled clutters.

1 Introduction

Let C be a clutter over ground set V.! The packing number, denoted v(C), is the maximum number of pairwise
disjoint members. The covering number, denoted 7(C), is the minimum cardinality of a cover, i.e. the minimum
number of elements needed to intersect every member. We have v(C) < 7(C); this motivates the following

standard definitions:
o C packsif v(C) = 7(C).
e ( has the packing property if every minor of C, including C itself, packs [9].
e C is minimally non-packing if C does not pack, but every proper minor of C packs [9].

Observe that a clutter has the packing property if, and only if, it has no minimally non-packing minor. It was

proved in [9] that if C has the packing property, then the set covering polyhedron
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ITo pick up the pace of the introduction, we have assumed familiarity with standard notions such as clutters, minors, etc. and have

postponed their definition to §1.1.



is integral, that is, C is ideal [10]. This implication is a consequence of a powerful theorem of Lehman [16] on
the structure of a minimally non-ideal clutter, i.e. a non-ideal clutter whose proper minors are ideal. Since the
packing property implies idealness, every minimally non-packing clutter is either ideal or minimally non-ideal.
An important conjecture in the area is the Replication Conjecture [7], stating that a minimally non-packing
clutter cannot have replicated elements. Lehman’s theorem verifies the conjecture for the minimally non-ideal
clutters (see [9]). It therefore remains to prove that an ideal minimally non-packing clutter cannot admit repli-
cated elements. To solve the remaining case, Cornuéjols, Guenin and Margot made the following stronger

conjecture:
Conjecture 1 (7 = 2 Conjecture [9]). Every ideal minimally non-packing clutter has covering number two.

All the examples of ideal minimally non-packing clutters known at the time had covering number two,
making the authors of [9] believe the conjecture above. The reader may think that the reason for believing the
conjecture is somewhat superficial but, recently, geometric evidence supporting the conjecture was provided
in [1].

Given the 7 = 2 Conjecture, a natural research direction is to study, give examples of, and characterize ideal
minimally non-packing clutters with covering number two. In [9], the authors provided an infinite class of such
clutters along with thirteen small examples. The infinite class of ideal minimally non-packing clutters consists
of cuboids, and in papers [4, 1], by using the theory of cuboids, more than 700 new small cuboid examples were
generated via a computer program. Twelve of the thirteen small examples [9], however, are not cuboids. Other
than the fact that they belong to chains of ideal minimally non-packing clutters starting with Qg [4], not much
else has been known about them.

In this paper, we use the theory of clean tangled clutters to identify key structural properties about the thirteen
small examples of ideal minimally non-packing clutters with covering number two, and in general about those
with rank three. This investigation leads us to a new infinite class of ideal minimally non-packing clutters with
covering number two, clutters which share the identified structural properties with the thirteen small examples.

Since the new infinite class of ideal minimally non-packing clutters is easy to describe, and the proof of
correctness does not need much overhead knowledge, we present these two things first. Given a clutter C over
ground set V', we define G(C) as the graph with vertices V' and edges corresponding to the two-element minimal

covers of C.
Theorem 2. Let C be a clutter, and let G = G(C). Assume that

e (G is bipartite and has exactly 3 connected components,

the first connected component of G has two vertices 1,2 and an edge between them,

the second connected component of G has two vertices 3,4 and an edge between them,

the third connected component of G is a path on at least four edges, where the first edge is {5,6}, the last
edge is {5',6'}, 5,5’ belong to the same part of the bipartition, and 6,6’ belong to the other part of the

bipartition, and



e the minimal covers of C of cardinality different from two are precisely

{2,4,6},{2,3,5},{1,4,5'},{1,3,6'} and {3,5,6'},{4,5 6}

Then C is an ideal minimally non-packing clutter. (See Figure 1 for an illustration of the graph G.)

After introducing some definitions and a preliminary in §1.1, we prove Theorem 2 in §2. Then we prove in
63 that all ideal minimally non-packing clutters with covering number two and rank three share certain structural
properties — properties that our new examples enjoy. We conclude the paper in §4 by describing the thirteen
examples of ideal minimally non-packing clutters of [9] that we alluded to, and noting that these examples also

enjoy the structural properties discussed in §3.

1.1 Definitions and a preliminary

Given a finite set V, a clutter C over ground set V' is a family of subsets of V', such that C ¢ C’ forall C,C’ € C.
We refer to elements of V' simply as elements, and sets in C as members. A cover of C is a subset B C V with
BnNC # Qforall C € C. A transversal of C is a cover B C V with [BN C| = 1 forall C € C. A cover is
minimal if it does not contain another cover. The blocker b(C) of C is the clutter over ground set V' consisting of
the minimal covers of C [11]. For all clutters C, we have b(b(C)) = C [11, 14].

For disjoint I, J C V, the minor C \ I/.J of C obtained by deleting I and contracting J is the clutter over
ground set V' — (I U J) consisting of the inclusion-wise minimal sets in {C'\ J : C € C,C NI = 0}. We
say that C \ I/J is a proper minor of C if I U J # (). Deletions in C correspond to contractions in b(C), and
contractions in C correspond to deletions in b(C), so that b(C \ I/J) = b(C)/I \ J [20].

Recall that a clutter C is ideal if its set covering polyhedron
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is integral. Idealness is closed under taking the blocker and minors. That is, C is ideal if and only if b(C) is
ideal [13, 15], and if C is ideal, then all minors of C are ideal [21].
We now give some examples of non-ideal clutters. For any integer n > 3, the clutter A,, over ground set

[n] ={1,...,n} is given by

An = {{1,2},{1,3},...,{1,n},{2,3,....,n}}

More generally, a delta is any clutter whose elements can be relabeled to obtain A,, for some n. An extended

odd hole is any clutter whose elements can be relabeled as [n], for odd n > 5, to obtain a clutter C of the form

C={{1,2},{2,3},...,{n—L,n}, {n,1}} U ¢’

where C’ consists of members with cardinality three or more. Note that the set covering polyhedron of A,

n—2 1 1
n—1"n—-17"""7n-1

has a fractional vertex ( ) and the set covering polyhedron of any extended odd hole has a
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odd hole is also non-ideal. We might also remark that b(A,,) is non-ideal, except that b(A,,) = A,,. We need

fractional vertex ( oy %) Since a clutter C is ideal if and only if b(C) is ideal, the blocker of any extended

the following result for the proof of Theorem 2:

Theorem 3 ([16], see also [19]). Every minimally non-packing clutter with covering number two is ideal, a

delta, or the blocker of an extended odd hole.

2 Validity of our construction

We begin with a few definitions and notions. Let C be a clutter over ground set V. Recall that G(C) is the graph

with vertices V' and edges corresponding to the two-element minimal covers of C.

Definition 4 ([2, 3]). A clutter C is tangled if 7(C) = 2 and every element of C is in a cardinality-two cover. That
is, C is tangled if G(C) has no isolated vertex.

Note that for a tangled clutter C, every member of C is a vertex cover of G(C). (The converse, however, is

not true.)
Definition 5. The rank of a tangled clutter C, denoted rank(C), is the number of connected components of G(C).

Note that the clutters C described in Theorem 2 are tangled, have rank three, and G(C) is bipartite. We will
use these properties, along with the following lemma, to show that the clutters described in Theorem 2 do not

pack:

Lemma 6. Let C be a tangled clutter with rank three, and suppose G(C) is bipartite. Denote by {Uy, V1 },
{Us,Va}, {Us, Vs} the bipartitions of the connected components of G(C). If Vi U Vo U V3, Uy U Uy U V3,
Uy, UVo UUs, Vi U U UUs are covers of C, then C does not pack.

Proof. Suppose for contradiction that C packs, so that C has disjoint members C, Co. Then each edge of G(C)
must have exactly one end in each of (', Cs, so each C; respects the bipartition of each connected component
of G(C); thatis, C; N (U; UV;) € {U;,V;} fori € [2] and j € [3]. We may assume that Cy N (U U V) = U,
and so Cy N (U7 U V) = V3. We have two cases:

Case 1: C1 N (Ua U Vy) = Us and so Co N (Uz U Vo) = Vo, As V4 U Vo U Vs is a cover, it follows that
C1N(UsUV3) =Vzand so Cy N (Us U V3) = Us. But then Cs is disjoint from the cover U; U Us U V3.

Case 2: C1 N (U U V) = Vo and so Cy N (Us U Vi) = Us. As Vi U Uy U Us is a cover, it follows that
C1 N (U3 UV3) =Usand so Cy N (Us U V3) = V3. But then Cs is disjoint from the cover U; U Vo U Us.

In both cases we have a contradiction, so C does not pack. O

We will use the following lemma to show that the clutters described in Theorem 2 are minimally non-packing.

Note that this lemma applies even to clutters C where G/(C) has isolated vertices:

Lemma 7. Let C be a clutter over ground set V, and let G = G(C). Assume that:



(i) G is a bipartite graph with bipartition {Uy, Vy},
(ii) {B€b(C):|B|>2} <1, and
(iii) if B € b(C) satisfies |B| > 2, then B = {u, v, w} where
o u € Uyand{v,w} C Vp, and
e in G, either v, w belong to different connected components, or some neighbor of u is a cut-vertex of
G separating v and w.
Then C has the packing property.

Proof. We proceed by induction on |V'| > 2. The base case |V| = 2 holds trivially, so we may assume |V| > 3.

Also, we may assume 7(C) > 2.

Claim 1. C packs.

Proof of Claim. If 7(C) > 3, then every minimal cover of C has cardinality at least 3, so b(C) = {{u,v,w}}, so
C = {{u}, {v}, {w}}, which clearly packs. Otherwise, 7(C) = 2. Notice that both Uy, V; are covers of b(C), so

they each contain members of C, implying in turn that C has two disjoint members, so C packs. %
Claim 2. For each x € V, C/x has the packing property.

Proof of Claim. Notice that C/x satisfies (i)-(iii), so the claim follows from the induction hypothesis. O
Claim 3. Foreachxz € Vand N = {y € V : {z,y} € b(C)}, C\ /N has the packing property.

Proof of Claim. LetC' = C \ z/N. If N # (), then C’ has the packing property by Claim 2. We may therefore
assume that N = (). By the induction hypothesis, it suffices to prove that C’ satisfies (i)-(iii). If z ¢ {u,v,w},
then C’ clearly satisfies (i)-(iii). If € {v,w}, then since u € Uy and {v, w} C Vj, it follows that C’ satisfies
(i)-(iii). Otherwise x = u. As N = (), we see that v, w belong to different connected components of G, so C’

satisfies (i)-(iii), as required. O

These three claims imply that C has the packing property. To see this, consider an arbitrary minor C \ I/J of
C.If I = J = (), then the minor packs by Claim 1. If J 5 (), then the minor packs by Claim 2. Otherwise, J = ()
and I # 0. If 7(C \ I/J) < 2, then the minor obviously packs. Otherwise, 7(C \ I/J) > 2, so by Claim 3, the

minor packs. We have completed the induction step, thereby finishing the proof of the lemma. O

We are now ready to prove Theorem 2, stating that if C is tangled where G(C) is as illustrated in Figure 1, and
{2,4,6},{2,3,5},{1,4,5'},{1,3,6'} and {3,5,6'},{4,5',6} are the minimal covers of cardinality different

from two, then C is ideal minimally non-packing:

Proof of Theorem 2. Let C be a clutter satisfying the hypotheses of Theorem 2. Note that C is tangled. Let
{Us, V3} be the bipartition of the third connected component of G, where {5,5'} C Us and {6,6'} C V5. (See

Figure 1 for an illustration of G.)
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Figure 1: The four possibilities for G from Theorem 2.

Claim 1. C does not pack.

Proof of Claim. As {2,4,6},{2,3,5},{1,4,5},{1, 3,6} are minimal covers, {2,4} UV3,{2,3}UUs, {1,4}U
Us and {1, 3} U V3 are covers, so C does not pack by Lemma 6. O

In what follows, notice that in our setup, there is symmetry between 1, 2, between 3, 4, between 5, 6, between
5’,6', and between {5,6}, {5',6'}.
Claim 2. Every proper contraction minor of C packs.
Proof of Claim. Choose I C V such that 7(C/I) > 2. Let C' = C/I and notice that b(C") = b(C) \ I. Asa
result, 7(C’) € {2,3}. If 7(C’) = 3, then it can be readily checked that b(C’) has at most two members, each of
cardinality 3, implying in turn that C’ packs. Otherwise, 7(C') = 2, in which case we need to look for disjoint
members in C'. As disjoint members remain disjoint in contraction minors, we may assume that I = {z}. In

what follows, we find disjoint covers in b(C’). Assume in the first case that z € {1,2,3,4,5,6,5,6'}. By
symmetry, we may assume that x ¢ {2,4,6,5',6'}.

e If z =1, then {2,3} U V3, {4} U Us are disjoint covers of b(C").
e If z = 3, then {1,4} U V3, {2} U Us are disjoint covers of b(C").
e Otherwise, © = 5. Then {2,3} U (Us — {5}), {1, 4} U V3 are disjoint covers of b(C’).

Assume in the remaining case that x € V — {1,2,3,4,5,6,5,6'} = (Us U V3) — {5,6,5',6"}. Notice that
deleting x from G disconnects the third connected component, that is, G\ = has four connected components with
bipartitions {{1},{2}}, {{3}, {4}}, {US, V5'}, {UY, V4'}, where U UUY = Us — {z}, V{ U VY = V5 — {a},



5¢€Us,6 € VY5 €U and 6 € V3'. Observe now that {1,3} U (V4§ UUY),{2,4} U (U5 U V3') are disjoint
covers of b(C").

In each case, we proved that b(C’) has disjoint covers, giving disjoint members of C’ in turn, as desired. ¢

Claim 3. Let I C 'V be nonempty, such that I is disjoint from {1,2,3,4,5,6,5',6'} and not a cover of C. Let
N CV —1 be a set containing {y € V — I : {z,y} € b(C) for some z € I'}. Then C \ I/N packs.

Proof of Claim. Let C' = C \ I/N, and note that b(C') = b(C)/I \ N. As I N{1,2,3,4,5,6,5,6'} = 0, it
follows that b(C)/I \ N = b(C) \ (I U N), implying that C’ = C/(I U N, so C’ packs by Claim 2. O

Claim4. Let x € {1,2,3,4,5,6,5,6'} and N = {y € V : {x,y} € b(C)}. Then C \ x/N has the packing
property.

Proof of Claim. By symmetry, we may assume that z ¢ {2,4,6,5’,6’}. To prove the claim, it suffices to show
that C\ 1/2,C \ 3/4 and C \ 5/6 have the packing property.

Every minimal cover of C \ 1/2 has cardinality two, and the graph over vertex set V' — {1, 2} of the minimal
covers of the minor is bipartite with bipartition {3} U U3, {4} U V3, so C \ 1/2 has the packing property by
Lemma 7.

Every minimal cover of C \ 3/4 also has cardinality two, and the graph over vertex set V' — {3, 4} of the
minimal covers of the minor is bipartite with bipartition {1}UUs, {2} UV, so once again C \ 3/4 has the packing
property by Lemma 7.

Finally, let C’ = C \ 5/6, and let G’ be the graph over vertex set V' — {5,6} whose edges correspond to
the cardinality two minimal covers of C’. Notice that G’ is a bipartite graph with bipartition {1,3} U (Us —
{5}),{2,4} U (V3 — {6}). Moreover, there is only one minimal cover with cardinality greater than two, namely
{1,4,5'}. Furthermore, the neighbor 3 of 4 in G’ is a cut-vertex separating 1,5. Thus C’ has the packing
property by Lemma 7. O

These four claims imply that C is a minimally non-packing clutter. To see this, note first that the clutter does
not pack by Claim 1. Let C\ I/ J be a proper minor. If I = (), then the minor packs by Claim 2. Otherwise, I # ().
If 7(C\I/J) < 2, then the minor clearly packs. Otherwise, 7(C\1/J) > 2. If IN{1,2,3,4,5,6,5,6'} # (, then
the minor packs by Claim 4. Otherwise, I is disjoint from {1, 2, 3,4, 5,6,5',6’}. In this case, as 7(C\I/J) > 2,
it must be that J 2 {y € V — I : {z,y} € b(C) for some = € I}, so the minor packs by Claim 3. We have
exhausted all cases, so every proper minor of C packs, so C is a minimally non-packing clutter.

By Theorem 3, C is ideal, a delta, or the blocker of an extended odd hole. However, as G is a bipartite graph

with at least two connected components, C must be an ideal clutter, thereby finishing the proof. O

Take an integer » > 1. Given a set S C {0, 1}", the cuboid of S is the clutter over ground set [2r] whose
members have incidence vectors {(p1,1 — p1,...,pr, 1 —p,) : p € S}. We call a clutter a cuboid if it can be

obtained from the cuboid of some set S by relabeling elements of the ground set [2r]. In other words, a cuboid



is a clutter C whose ground set can be relabeled as [2r] for some integer » > 1, such that {2i — 1, 2i} for each

i € [r] is a transversal:
H1,2}nCl=|{3,4}nC|=---=|{2r—-1,2r} nC|=1 VC eC.

Notice that every member of C has cardinality r, and that {2i — 1, 2¢} for each ¢ € [r] is a cover. Thus, if C has no
cover of cardinality one, then C is a tangled clutter where G(C) has at least the edges {1,2}, {3,4},...,{2r —

1,2r}. Our construction has the promised properties:
Remark 8. The clutters C described in Theorem 2 have 7(C) = 2, rank(C) = 3, and are not cuboids.

Proof. The first two properties are immediate. To see that C is not a cuboid, note first that [V| > 9. If |V] is
odd, then we are clearly done. Otherwise, |V is even. We prove that C has a member of cardinality greater than
|[V'|/2, thereby finishing the proof. To this end, let {Us, V3} be the bipartition of the third connected component
of G(C), where {5,5'} C Uz and {6,6'} C V3. The third connected component is either a 56’- or 5'6-path (see
Figure 1). In the first case, {1,4,5} U V3 is a member of C of cardinality (|V'| 4+ 2)/2, while in the remaining
case, {1,3,6} U Us is a member of C of cardinality (|V| + 2)/2, as claimed. O

That our infinite class of ideal minimally non-packing clutters consists of non-cuboids all with rank three is
interesting because the only other known infinite class of such examples, due to [9], is a family of cuboids of
unbounded rank (see [4]).

3 Structure of ideal minimally non-packing clutters

Our goal in this section is to prove Theorem 21, that all ideal minimally non-packing clutters with covering
number two and rank three share certain structural properties. To describe these properties, we need a few

concepts first.

3.1 Clean tangled clutters, the core, and the setcore
Let us begin with the following definition:
Definition 9. A clutter C is clean if no minor of C is a delta or the blocker of an extended odd hole.

In particular, ideal clutters are clean, so the clutters obtained by our construction are clean. We are particularly
interested in clean tangled clutters. To see why the tangled assumption is reasonable, note that in general we
have 7(C \ v) < 7(C) and v(C \ v) < v(C). But if v is in no cover of cardinality 7(C), then 7(C \ v) = 7(C),

and in particular C cannot be minimally non-packing. To summarize:
Remark 10. Every ideal minimally non-packing clutter with covering number two is a clean tangled clutter.

For clean tangled clutters, the graph G(C) of cardinality-two covers takes a nice form:



Theorem 11 ([6], Remark 6 and Theorem 7). If C is a clean tangled clutter, then:
(i) G(C) is a bipartite graph without isolated vertices ([6], Remark 6).
If, in addition, G(C) is connected and {U1, V1} is the bipartition of G(C), then:
(ii) Neither of U1, V1 is a cover of C ([6], Theorem 7).
(iii) Uy, V1 are members of C.

Proof. (iii) It follows from (ii) that the complement of U;, namely V3, contains a member of C. Since every
member of C is a vertex cover of G(C) and no proper subset of V] is a vertex cover, it follows that V itself is a

member of C. Similarly, U; is a member of C, as required. O

For any clutter C, a fractional packing of C is a feasible point of the following linear program:

max lTy
s.t. Y(yc:velCel)<1l veV
y > 0.

The value of a fractional packing y is the value 1Ty of the linear program. It can be readily verified that by weak

duality, the value of any fractional packing is bounded above by 7(C). The following result was proved recently:

Theorem 12 ([6], Theorem 3 and [5], Lemma 1.6). IfC is a clean tangled clutter, then C has a fractional packing

of value two.
As aresult, we may study the structure of the members of C used in some such fractional packing:

Definition 13. Let C be a clean tangled clutter. Then the core of C is the clutter
core(C) = {C € C : yo > 0 for some fractional packing y of value two}.

We use a complementary slackness argument to prove the following:

Lemma 14. Ler C be a clean tangled clutter over ground set V. Then every member of core(C) is a transversal
of the cardinality-two covers of C. Moreover, for every fractional packing y of value two and for every element
veV,wehave ) (yo:veCel)=1

Proof. Let {u, v} be a cover of C, and let y be a fractional packing of C. Then we have

e :CeC)<D (yo:ueCel)+ ) (yoiveCel)<2

The first inequality follows from the fact that each C' € C contains either u or v, and the second follows from
adding the congestion inequalities for each of u,v. If y has value two, then Y (yc : C € C) = 2, so we have
equality above. The first equality implies that if yo > 0, then C' contains exactly one of u, v. Therefore, every
member of core(C) is a transversal of the cardinality-two covers {u, v}.

The second equality implies that Y "(yc :u € C € C) = > (uc : v € C € C) = 1. Since C is tangled, every
element v € V appears in some cardinality-two cover of C,s0 Y (yo :v € C € C) = 1forallv € V. O



As a result, since G(C) is bipartite, members of the core must respect the bipartition of each connected

component:

Remark 15. Let C be a clean tangled clutter, and let r = rank(C). For each i € [r], denote by {U;,V,} the
bipartition of the i"™ connected component of G(C). If C € core(C), then C N (U; UV;) € {U;, V;} fori € [r].

In other words, each C' € core(C) is determined by r binary choices; in each connected component, C' must

contain exactly one of the two parts of the bipartition. This allows a more concise representation of the core:

Definition 16. Let C be a clean tangled clutter, and let v = rank(C). For each i € [r], denote by {U;,V;} the
bipartition of the i connected component of G(C). For each C € core(C), define pc € {0,1}" such that

|
=

0 FCnNnU;UV)
1 ifCn(U; UV;)

(pc)i =

[
&

The setcore of C is the subset of {0,1}" given by setcore(C) = {p¢c : C € core(C)}. (The setcore is defined up
to relabeling and twisting coordinates, since our definition would change if U1, . .., U, were relabeled, or if the

roles of U;, V; were swapped.)

Given a clutter C over ground set V, we may obtain a new clutter by duplicating a chosen element v € V;

specifically, we obtain the clutter C’ over ground set V' U {v'} where v’ ¢ V, given by
C={Cu{v}:CeCveCtu{C:CeCv¢C}

In general, if C’ can be obtained from C by a finite number of duplications, we say that C’ is a duplication of C.

Note that:
Remark 17. Given a clean tangled clutter C, core(C) is a duplication of the cuboid of setcore(C).

Now consider the task of finding a fractional packing of C of value two. By definition, our fractional packing
may only use members in core(C), and by Lemma 14, our fractional packing must assign a total weight of 1 to
members C with (pc); = 0, and a total weight of 1 to members C with (pc); = 1, for each i € [r]. Therefore,
after a %-scaling, finding a fractional packing of value two becomes equivalent to expressing % -1€0,1]"asa

convex combination of setcore(C). Then Theorem 12 implies:
Remark 18. IfC is a clean tangled clutter, then the convex hull of setcore(C) contains % - 1. Moreover, for each

x € setcore(C), we can write % -1 as a convex combination of setcore(C) which assigns a nonzero weight to x.

3.2 Ideal minimally non-packing clutters of rank three

We just saw in Remark 18 that if C is a clean tangled clutter, then the setcore contains the center of the unit
hypercube in its convex hull. If we additionally assume C does not pack and has rank three, i.e. G(C) has exactly

three connected components, then the setcore is determined up to twisting:

10



Lemma 19. Let C be a clean tangled clutter with rank three, and assume that (0, 0,0) € setcore(C) and C does
not pack. Then setcore(C) = {(0,0,0), (1,1,0),(1,0,1),(0,1,1)}.

For the proof of the lemma, note that finding an integral packing of value two in C is equivalent to finding two
points p, g € setcore(C) such that p + ¢ = 1. That is, finding two disjoint members in C amounts to finding a

pair of antipodal points in setcore(C).

Proof. Since C is tangled, we have 7(C) = 2. Since C does not pack, setcore(C) does not have antipodal points,
s0 (1,1,1) ¢ setcore(C). By Remark 18, we can write (3, 3, %) as a convex combination of setcore(C) which
111

assigns a nonzero weight to (0, 0,0). Since (3, 3, ) lies on the plane 21 + 22 = 1, and (0, 0,0) lies on one side
of the plane, setcore(C) must contain a point on the other side, which must be (1,1, 0). Similarly, setcore(C)

contains (1,0, 1) and (0, 1, 1), and cannot contain any other points by the antipodality restriction. O

The hypothesis that setcore(C') = {(0,0,0), (1,1,0),(1,0,1),(0,1,1)} guarantees the presence of four

specific members of C, which in turn imposes restrictions on the minimal covers of C:

Lemma 20. Let C be a clean tangled clutter with rank three, and denote by {U1, V1 },{Ua, Va},{Us, V3} the

bipartitions of the connected components of G(C). Assume that
Ci=ViuVhuVs Co =V1 UUUUs Cs=U; UV UUs Cy=U;UUUV3
are members of C. Then:

(i) If C; is a cover for some i € [4], then C; contains a minimal cover of cardinality three, consisting of one

element from each connected component of G(C).

(ii) Assume that {v1,vs,v3} and {uy,us, v} are minimal covers of C for some uy € Uy, ug € Uy, v1 € V7,
vy € Vs, vg, 0% € V3 (see Figure 2). Then there exists a minimal cover B of C with BN(U UVy) = {uy,v1 }
and |B| < 3.

Proof. (i) By symmetry, it suffices to prove the statement for C;. Choose a cover B C V3 U Vo U V3 of
minimum cardinality. Then B intersects each V;, else B would be disjoint from one of C5, C'5, Cy. Suppose for
contradiction |[B N V;| > 2, and consider C' =C\ I/J for I = B — V3, J = (U2 U V2 UUs U V3) — B, so that
C’ has ground set U; U V1. We have two cases:

Case 1: 7(C') > 2. Since C’ is a minor of C, it follows that C’ is clean. Since the induced subgraph
G(C)[Uy U V1] is a subgraph of G(C'), it follows that C’ is tangled. Then G(C’) is bipartite by Theorem 11 (i).
The subgraph relation implies that G(C’) is connected and has bipartition {Uy, V; }, so U; is a member of C’ by
Theorem 11 (iii). But B — I = B N V; is a cover of C’ disjoint from U7, a contradiction.

Case 2: 7(C') < 1; that s, there exists D € b(C) with D C U; UV, UT and | DN (U UVy)| < 1. Therefore,
if D contains an element of Uy, then D N'V; = 0, so D is disjoint from C4 = V4 U Uy U Us, a contradiction.
Therefore, D is disjoint from Uy, so D C V; U Vo U Vs, and

|ID|<|D—-I+|I|<1+4+|B-Wi|<|BNnVi|+|B - V| =|B],
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Figure 2: The two minimal covers {vy, v, v}, {u1, ua, vi} provided in Lemma 20 (ii).

a contradiction to the minimality of B. Hence |B N V3| = 1, and similarly |[BN V| =1and |[BN V3| = 1.

(ii) Suppose otherwise. Let J = (U; U Vi) — {uy,v1}, and let ¢’ = C \ {uy,v1}/J; then our contrary
assumption implies 7(C") > 2. Since C’ is a minor of C, it follows that C’ is clean. Since the induced subgraph
G(C)[U2 U V5 U Us U V3] is a subgraph of G(C'), it follows that C’ is tangled. Then G(C’) is bipartite by
Theorem 11 (i).

Note that ug, vo are connected by an odd length path in G(C)[Uz U V3] and hence also in G(C')[Uz U V5].
Similarly, vs, v} are connected by an even length path in G(C)[Us U V3] and hence also in G(C’)[Us U Vs]. But
since {v1,v2,v3} and {uy, u2,v4} are minimal covers of C, it follows that {us,v5}, {v2, vz} are covers of C’,

hence edges of G(C’), which gives an odd cycle in G(C’), a contradiction. O
The following theorem summarizes the discussion in this section:

Theorem 21. Let C be an ideal minimally non-packing clutter with covering number two and rank three. Then:

(i) C is a clean tangled clutter.

(ii) G(C) is bipartite, and the bipartitions of the connected components may be labeled as {U1, V1 },{Us, Va2 },
{Us, V3}, in such a way that setcore(C) = {(0,0,0), (1,1,0),(1,0,1),(0,1,1)}, so that the following are

members of C:

Ci=ViUVaUVs, Co=U UU,UVs, Cya=UUVaUU;, Ci=V,UUsUUs

(iii) Each of C1,Cy, C3, Cy contains a minimal cover of cardinality three, consisting of one element from each

connected component of G(C).

(iv) If {v1,v2,v3} and {u1,us,vs} are minimal covers of C for some uy € Uy, ug € Uy, v1 € V1, vg € Vs,
v3, v € V3, then there exists a minimal cover B of C with B N (U; U Vy) = {uy,v1} and |B| < 3,
and similarly, there exists a minimal cover B’ of C with B' N (U U V) = {ug,v2} and |B’| < 3. (The
analogous statements obtained by using any of U1, Uz, Us, V1, Vs in the place of Vs also hold.)

Proof. Statement (i) follows from Remark 10. By Theorem 11 (i), G(C) is bipartite, and by Theorem 12,

core(C) is nonempty, so we may label the bipartitions of the connected components as {U;, V1}, {Us, Va},
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{Us,V3} in such a way that (0,0,0) € setcore(C). Then by Lemma 19, we have setcore(C) = {(0,0,0),
(1,1,0),(1,0,1),(0,1,1)}, so that Cy, Co, Cs, Cy are members of C.

Now we observe that (' is also a cover of C, since otherwise, C would have a member disjoint from C',
resulting in a pair of disjoint members, contradicting the assumption that C does not pack. Similarly, Cs, C5, Cy

are covers of C. Hence (iii) and (iv) follow from Lemma 20. L]

Consider the new ideal minimally non-packing clutters of Theorem 2. We leave it to the reader to verify that
the four minimal covers {2,4,6},{2,3,5},{1,4,5},{1, 3,6’} “come from” Theorem 21 (iii), while the two
minimal covers {3, 5,6'}, {4,5',6} come from Theorem 21 (iv).

The well-known clutter ) over ground set [6] is defined by

Qs ={{2,4,6},{1,3,6},{1,4,5},{2,3,5}}.
Theorem 21 (ii) and Remark 17 immediately imply:

Corollary 22. Let C be an ideal minimally non-packing clutter with covering number two and rank three. Then

core(C) is a duplication of Q.
It is known that all ideal minimally non-packing clutters with covering number two share a weaker property:

Theorem 23 ([9]). Let C be an ideal minimally non-packing clutter with covering number two. Then some subset

of C is a duplication of Q.

In general, this Qs-like subset need not be core(C) itself, since rank(C) may be greater than three. It is a

feature of our construction that the clutters obtained, having rank three, exhibit Js-like structure in their core.

4 Previously known constructions

We conclude by describing the small instances of ideal minimally non-packing clutters provided by Cornuéjols,
Guenin and Margot [9]. These constructions give thirteen ideal minimally non-packing clutters with covering
number two and rank three. In Figures 3 and 4, these clutters are depicted via their blockers; cardinality-two
minimal covers are shown as edges of a bipartite graph, and cardinality-three minimal covers are listed below
the graph (and there are no other minimal covers).

The first twelve clutters (see Figure 3) are obtained by a common construction and are denoted Q¢ ® X,
where X C [6], subject to some restrictions on X . The construction produces clutters with exactly four minimal
covers of cardinality three and no minimal covers of higher cardinality. The clutter Qg ® @ is just Qg. The

thirteenth clutter (see Figure 4) is a one-off example not conforming to the construction, and has the following
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incidence matrix:

1 1V 2 22 3 4 5 6
11 0 0 1 0 1 O
11 0 0 0 1 0 1
0 0 1.1 1 0 0 1
0 0 1 1 0 1 1 O
10 1 1 1 0 1 O
o 1.1 0 0 1 0 1
0 1.1 0 1 0 0 1
1 1 0 1 0 1 1 O

All of these clutters share the properties required by Theorem 21. For instance, for the thirteenth clutter with
the incidence matrix shown above, we have U; = {1,1'},V; = {2,2'}, Uy = {3},Vo = {4} and U3 =
{6}, V5 = {5}. The first four rows form the core, reaffirming (ii). The four members contain the minimal covers
{1',3,5},{1,4,6},{2/,3,6},{2,4, 5}, respectively, reaffirming (iii). Lastly, the five cardinality-two minimal

covers, along with the minimal cover {1, 2’, 6}, reaffirm (iv).

Late note on dijoins. After writing this paper, we noticed an intimate connection between our findings and
some results on dijoins from the early 2000s. Let us explain this connection.

Ideal minimally non-packing clutters arise naturally from directed graphs. Let D = (V, A) be a digraph. A
dicut is a cut of the form 67 (U) C A where 6~ (U) = (), for some nonempty and proper subset U of V. A dijoin
is any cover of the clutter of minimal dicuts. Equivalently, J C A is a dijoin if D/J is strongly connected.

Denote by C(D) be the clutter of minimal dijoins of D. It follows from a well-known result of Lucchesi and
Younger that C(D) is ideal [17]. Woodall’s Conjecture states that the clutter C(D) must pack, a problem that
has remained open to this date despite its simple statement [23]. The history of the problem is further muddled
by the fact that C does not have the packing property. (Deletion in the clutter does not correspond to deletion in
the digraph.)

Consider the three digraphs D, Do, D3 depicted in Figures 5, 6 and 7. The first digraph is due to Schri-
jver [18], while the other two are due to Cornuéjols and Guenin [8]. These digraphs were found as counterex-
amples to a conjecture of Edmonds and Giles on dijoins [12]. Even though C(D;), i € [3] pack, they do not have
the packing property. More specifically, for ¢ € [3], denote by I; the arc subset corresponding to the dashed arcs
of D;. Then the minor C(D;) \ I;,i € [3] is an ideal minimally non-packing clutter with covering number two.
In fact, C(D1) \ [1 = Qs ® {2,4,5}. The blocker of C(D;) \ I; is depicted next to D;, where cardinality-two
minimal covers are shown as edges of a bipartite graph, and all the other minimal covers are listed below the
graph. The reader will notice that each C(D;) \ I;,i € [3] has rank three. This can already be observed by
looking at the digraph, as the solid arcs form three connected components, each of which is an alternating path
of sources and sinks.

For more information, we refer the reader to Aaron Williams’s very interesting Master’s thesis [22]. He

has shown that, up to a novel reduction called folding, the three clutters C(D;) \ I;,i € [3] are the only ideal
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minimally non-packing clutters of covering number two and rank three coming from dijoins (see Chapter 6). He
has also shown that C(D) \ I cannot be ideal minimally non-packing with covering number two and rank four

(see Chapter 7).
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X={5,6}

{2,4,6}, {2,3,5}, {1,4,5'}, {1,3,6}
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X=(2,4,6} X={2,4,5}
{2,4,6), {2,3,5), {1,4',5}, {1,3,6"} {2,4,6}, {2,3,5), {1,4,5, {1,3,6}
1 3 3 5 5§ 1 3 3 5 5
2 2 4 6 6 2 2 4 & 6 6

X=(2,3,5,6} X=(2,3,4,5,6}
{2,4,6}, (23,5}, {1,4,5%, {1,3',6") {2,4,6}, {2,3,5}, {1,4,5'), {1,3',6")
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1 3 3 5 &
2 2 4 & 6 6
X={1,2,3,4,5,6}

{2,4.6}, {2,3,5}, {1,457}, {1",3,6}

Figure 3: The blockers of the twelve clutters Qg ® X from [9].
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2 2’ 4 6
{1°,3,5}, {1,4,6}, {2,4,5}, {2’,3,6} and {1,2’,6}

Figure 4: The blocker of the thirteenth ideal minimally non-packing clutter of rank three from [9].

2 2’ 4 4 6

{2,4,6}, {2°,3,5}, {1,4’,5’}, {1,3,6}

Figure 5: Left: The digraph D; from [18]. The unlabeled dashed arcs form the set I;. Right: An illustration of
the blocker of C(D1) \ I;.
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2 4 4 6 6’

{2,4,6}, {2,3',5}, {1,3,6}, {1,4’,5’}
{1,3,4}, {2,5,6}

Figure 6: Left: The digraph Dy from [8]. The unlabeled dashed arcs form the set I>. Right: An illustration of
the blocker of C(D3) \ Is.

2 2’ 4 4 6 6’

{2,3°,5}, {1,3,6’}, {1,4,5%}, {2’,4°,6}
{3,4’,6’}, {3,5,6’}

Figure 7: Left: The digraph D3 from [8]. The unlabeled dashed arcs form the set I5. Right: An illustration of
the blocker of C(Ds) \ Is.
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