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INTRODUCTION:Governments across the world
have implemented a wide range of non-
pharmaceutical interventions (NPIs) to miti-
gate the spread of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Given
the increasing death toll of the pandemic and
the social cost of some interventions, it is
critical to understand their relative effective-
ness. By considering the effects that inter-
ventions had on transmission during the first
wave of the outbreak, governments can make
more-informed decisions about how to con-
trol the pandemic.

RATIONALE: Rigorously studying the effective-
ness of individual interventions poses consid-
erable methodological challenges. Simulation
studies can explore scenarios, but they make
strong assumptions that may be difficult to
validate. Data-driven, cross-country modeling
comparing the timing of national interven-
tions to the subsequent numbers of cases or
deaths is a promising alternative approach.
We have collected chronological data on the

implementation of several interventions in
41 countries between January and the end
of May 2020, using independent double entry
by researchers to ensure high data quality.
Because countries deployed different com-
binations of interventions in different orders
and with different outcomes, it is possible to
disentangle the effect of individual interven-
tions. We estimate the effectiveness of specific
interventions with a Bayesian hierarchical
model by linking intervention implementa-
tion dates to national case and death counts.
We partially pool NPI effectiveness to allow
for country-specific NPI effects. Our model also
accounts for uncertainty in key epidemiological
parameters, such as the average delay from
infection to death. However, intervention ef-
fectiveness estimates should only be used for
policy-making if they are robust across a range
of modeling choices. We therefore support the
results with extensive empirical validation, in-
cluding 11 sensitivity analyses under 206 ex-
perimental conditions. In these analyses, we
show how results change when we vary the

data, the epidemiological parameters, or the
model structure or when we account for
confounders.

RESULTS: While exact intervention effectiveness
estimates varied with modeling assumptions,
broader trends in the results were highly con-
sistent across experimental conditions. To de-
scribe these trends, we categorized intervention
effect sizes as small, moderate, or large, corre-
sponding to posterior median reductions in
the reproduction numberR of <17.5%, between
17.5 and 35%, and >35%, respectively. Across
all experimental conditions, all interventions
could robustly be placed in one or two of these
categories. Closing both schools and universities
was consistently highly effective at reducing
transmission at the advent of the pandemic.
Banning gatherings was effective, with a large
effect size for limiting gatherings to 10 people
or less, amoderate-to-large effect for 100 people
or less, and a small-to-moderate effect for 1000
people or less. Targeted closures of face-to-face
businesses with a high risk of infection, such as
restaurants, bars, and nightclubs, had a small-
to-moderate effect. Closing most nonessential
businesses delivering personal services was only
somewhat more effective (moderate effect).
When these interventions were already in
place, issuing a stay-at-home order had only
a small additional effect. These results indicate
that, by using effective interventions, some
countries could control the epidemic while
avoiding stay-at-home orders.

CONCLUSION:We estimated the effects of non-
pharmaceutical interventions on COVID-19
transmission in 41 countries during the first
wave of the pandemic. Some interventions
were robustly more effective than others. This
work may provide insights into which areas of
public life require additional interventions to
be able to maintain activity despite the pan-
demic. However, because of the limitations
inherent in observational study designs, our
estimates should not be seen as final but
rather as a contribution to a diverse body of
evidence, alongside other retrospective studies,
simulation studies, and experimental trials.▪
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Gatherings limited to 1000 people or less

Gatherings limited to 100 people or less

Gatherings limited to 10 people or less

Some businesses closed

Most nonessential businesses closed

Additional benefit of stay-at-home order 
on top of above NPIs

Schools and universities closed

Posterior median reduction in Rt
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Median intervention effectiveness estimates across a suite of 206 analyses with different epidemio-
logical parameters, data, and modeling assumptions. Bayesian inference using a semimechanistic
hierarchical model with observed national case and death data across 41 countries between January and May
2020 is used to infer the effectiveness of several nonpharmaceutical interventions. Although precise
effectiveness estimates depend on the assumed data and parameters, there are clear trends across the
experimental conditions. Violins show kernel density estimates of the posterior median effectiveness across
the sensitivity analysis. Rt, instantaneous reproduction number.
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Governments are attempting to control the COVID-19 pandemic with nonpharmaceutical interventions
(NPIs). However, the effectiveness of different NPIs at reducing transmission is poorly understood. We
gathered chronological data on the implementation of NPIs for several European and non-European
countries between January and the end of May 2020. We estimated the effectiveness of these NPIs,
which range from limiting gathering sizes and closing businesses or educational institutions to
stay-at-home orders. To do so, we used a Bayesian hierarchical model that links NPI implementation
dates to national case and death counts and supported the results with extensive empirical validation.
Closing all educational institutions, limiting gatherings to 10 people or less, and closing face-to-face
businesses each reduced transmission considerably. The additional effect of stay-at-home orders was
comparatively small.

W
orldwide, governments have mobi-
lized resources to fight the COVID-19
pandemic. A wide range of non-
pharmaceutical interventions (NPIs)
has been deployed, including stay-at-

home orders and the closure of all nonessential
businesses. Recent analyses show that these
large-scale NPIs were jointly effective at reduc-
ing the virus’s effective reproduction number
Rt (1), but it is still largely unknown how
effective individual NPIs were. As more data

become available, we can move beyond esti-
mating the combined effect of a bundle of
NPIs and begin to understand the effects of
individual interventions. This can help govern-
ments efficiently control the epidemic, by
focusing on the most effective NPIs to ease
the burden put on the population.
A promising way to estimate NPI effective-

ness is data-driven, cross-country modeling:
inferring effectiveness by relating the NPIs
implemented in different countries to the
course of the epidemic in these countries. To
disentangle the effects of individual NPIs, we
need to leverage data from multiple coun-
tries with diverse sets of interventions in place.
Previous data-driven studies (table S8) esti-
mate effectiveness for individual countries
(2–4) or NPIs, although some exceptions do
exist [(1, 5–8); summarized in table S7]. In
contrast, we evaluated the impact of several
NPIs on the epidemic’s growth in 34 European
and 7 non-European countries. If all countries
implemented the same set of NPIs on the same
day, the individual effect of each NPI would
be unidentifiable. However, the COVID-19 re-
sponse was far less coordinated: Countries
implemented different sets of NPIs at differ-
ent times and in different orders (Fig. 1).
Evenwith diverse data frommany countries,

estimating NPI effects remains a challenging
task. To begin with, models are based on un-
certain epidemiological parameters; our NPI
effectiveness study incorporates some of this
uncertainty directly into the model. Further-
more, the data are retrospective and observa-
tional, meaning that unobserved factors could
confound the results. Also, NPI effectiveness
estimates can be highly sensitive to arbitrary

modeling decisions, as shown by two recent
replication studies (9, 10). And finally, large-
scale public NPI datasets suffer from frequent
inconsistencies (11) and missing data (12).
Hence, the data and the model must be care-
fully validated if they are to be used to guide
policy decisions. We have collected a large
public dataset on NPI implementation dates
that has been validated by independent double
entry, and we have extensively validated our
effectiveness estimates. This validation of data
and model is a crucial but often absent or in-
complete element of COVID-19 NPI effective-
ness studies (10).
Our results provide insight on the amount

of COVID-19 transmission associated with var-
ious areas and activities of public life, such as
gatherings of different sizes. Therefore, they
may inform the packages of interventions that
countries implement to control transmission
in current and future waves of infections. How-
ever, we need to be careful when interpreting
this study’s results. We only analyzed the effect
NPIs had between January and the end of May
2020, and NPI effectiveness may change over
time as circumstances change. Lifting an NPI
does not imply that transmission will return to
its original level, and our window of analysis
does not include relaxation of NPIs. These and
other limitations are detailed in the Discussion
section.

Cross-country NPI effectiveness modeling

Weanalyzed the effects of seven commonly used
NPIs between 22 January and 30May 2020. All
NPIs aimed to reduce the number of contacts
within the population (Table 1). If a country
lifted an NPI before 30 May, the window of
analysis for that country terminates on the
day of the lifting (seeMaterials andmethods).
To ensure high data quality, all NPI data were
independently entered by two of the authors
(independent double entry) using primary
sources and then manually compared with
several public datasets. Data on confirmed
COVID-19 cases and deaths were taken from
the Johns Hopkins Center for Systems Science
and Engineering (CSSE) COVID-19 Dataset
(13). The data used in this study, including
sources, are available online (14).
We estimated the effectiveness of NPIs with

a Bayesian hierarchical model. We used case
and death data from each country to infer the
number of new infections at each point in
time, which is itself used to infer the (instan-
taneous) reproduction number Rt over time.
NPI effects were then estimated by relating
the daily reproduction numbers to the active
NPIs, across all days and countries. This rela-
tively simple, data-driven approach allowed us
to sidestep assumptions about contact patterns
and intensity, infectiousness of different age
groups, and so forth that are typically required
in modeling studies. This approach also
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allowed us to directly model many sources
of uncertainty, such as uncertain epidemio-
logical parameters, differences in NPI effec-
tiveness between countries, unknown changes
in testing and infection fatality rates, and the
effect of unobserved influences on Rt. The
code is available online (14).

Effectiveness of individual NPIs

Our model enabled us to estimate the indi-
vidual effectiveness of each NPI, expressed as
a percentage reduction in Rt. We quantified
uncertainty with Bayesian prediction inter-
vals, which are wider than standard credible
intervals. Bayesian prediction intervals reflect
differences in NPI effectiveness across coun-

tries among several other sources of uncer-
tainty. They are analogous to the standard
deviation of the effectiveness across coun-
tries rather than the standard error of the
mean effectiveness. Under the default model
settings, the percentage reduction in Rt (with
95% prediction interval; Fig. 2) associated with
each NPI was as follows: limiting gatherings to
1000 people or less: 23% (0 to 40%); limit-
ing gatherings to 100 people or less: 34%
(12 to 52%); limiting gatherings to 10 people
or less: 42% (17 to 60%); closing some high-
risk face-to-face businesses: 18% (−8 to 40%);
closing most nonessential face-to-face busi-
nesses: 27% (−3 to 49%); closing both schools
and universities in conjunction: 38% (16 to

54%); and issuing stay-at-home orders (addi-
tional effect on top of all other NPIs): 13%
(−5 to 31%). Note that we were not able to
robustly disentangle the individual effects
of closing only schools or only universities,
because these NPIs were implemented on
the same day or in close succession in most
countries [except Iceland and Sweden, where
only universities were closed (see also fig.
S21)]. We thus reported “schools and uni-
versities closed” as one NPI.
Some NPIs frequently co-occurred, i.e., were

partly collinear. However, we were able to
isolate the effects of individual NPIs, because
the collinearity was imperfect and our data-
set large. For every pair of NPIs, we observed
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Fig. 1. Timing of NPI implementations in early 2020. Crossed-out icons signify when an NPI was lifted. Detailed definitions of the NPIs are given in Table 1.
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one without the other for 504 days across all
countries (country-days) on average (table S5).
Theminimumnumber of country-days for any
NPI pair is 148 (for limiting gatherings to 1000
or 100 attendees). Additionally, under exces-
sive collinearity, and insufficient data to over-
come it, individual effectiveness estimateswould
be highly sensitive to variations in the data and
model parameters (15). Indeed, high sensitivity
prevented Flaxman et al. (1), who had a smaller
dataset, from disentangling NPI effects (9). In
contrast, our effectiveness estimates are sub-
stantially less sensitive (see below). Finally, the
posterior correlations between the effectiveness
estimates are weak, further suggesting manage-
able collinearity (fig. S22).

Effectiveness of NPI combinations

Although the correlations between the indi-
vidual estimates were weak, we took them
into account when evaluating combined NPI
effectiveness. For example, if two NPIs fre-
quently co-occur, theremay bemore certainty
about the combined effectiveness than about
the effectiveness of each NPI individually.
Figure 3 shows the combined effectiveness of
the sets of NPIs that are most common in our
data. In combination, the NPIs in this study
reduced Rt by 77% (67 to 85%). Across coun-
tries, the mean Rt without any NPIs (i.e., the
R0) was 3.3 (table S4). Starting from this num-
ber, the estimated Rt likely could have been
brought below 1 by closing schools and univer-
sities, closing high-risk businesses, and limiting
gathering sizes to atmost 10 people. Readers can

interactively explore the effects of sets of NPIs
with our online mitigation calculator (16). A
comma-separated value file containing the
joint effectiveness of all NPI combinations is
available online (14).

Sensitivity and validation

We performed a range of validation and sen-
sitivity experiments (figs. S2 to S19). First, we
analyzed how the model extrapolated to coun-
tries that did not contribute data for fitting the
model, and we found that it could generate
calibrated forecasts for up to 2 months, with
uncertainty increasing over time. Multiple
sensitivity analyses showed how the results
changed when we modified the priors over
epidemiological parameters, excluded countries
from the dataset, used only deaths or confirmed
cases as observations, varied the data prepro-
cessing, and more. Finally, we tested our key
assumptions by showing results for several
alternative models [structural sensitivity (10)]
and examined possible confounding of our es-
timates by unobserved factors influencing Rt.
In total, we considered NPI effectiveness un-
der 206 alternative experimental conditions
(Fig. 4A). Compared with the results obtained
under our default settings (Figs. 2 and 3),
median NPI effectiveness varied under alter-
native plausible experimental conditions. How-
ever, the trends in the results are robust, and
someNPIs outperformed others under all tested
conditions. Although we tested large ranges
of plausible values, our experiments did not
include every possible source of uncertainty.

We categorized NPI effects into small, mod-
erate, and large, whichwe define as a posterior
median reduction inRt of <17.5%, between 17.5
and 35%, and >35%, respectively (vertical lines
in Fig. 4). Four of the NPIs fell into the same
category across a large fraction of experimen-
tal conditions: closing both schools and uni-
versities was associated with a large effect in
96% of experimental conditions, and limiting
gatherings to 10 people or less had a large ef-
fect in 99% of conditions. Closing most non-
essential businesses had a moderate effect in
98% of conditions. Issuing stay-at-home orders
(that is, in addition to the other NPIs) fell into
the “small effect” category in 96% of experi-
mental conditions. Three NPIs fell less clearly
into one category: Limiting gatherings to 1000
people or less had a small-to-moderate effect
(moderate in 81% of conditions) while limit-
ing gatherings to 100 people or less had a
moderate-to-large effect (moderate in 66% of
conditions). Finally, closing some high-risk
businesses, including bars, restaurants, and
nightclubs, had a small-to-moderate effect
(moderate in58%of conditions). Limitinggather-
ings to 1000 people or less was the NPI with the
highest variation in median effectiveness across
the experimental conditions (Fig. 4A),whichmay
reflect this NPI’s partial collinearity with limiting
gatherings to 100 people or less.
Aggregating all sensitivity analyses can hide

sensitivity to specific assumptions. We display
the median NPI effects in four categories of
sensitivity analyses (Fig. 4, B to E), and each
individual sensitivity analysis is shown in the
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Table 1. NPIs included in the study.

NPI Description

Gatherings limited to
1000 people or less

A country has set a size limit on gatherings. The limit is at most 1000 people
(often less), and gatherings above the maximum size are disallowed.

For example, a ban on gatherings of 500 people or more would be classified as
“gatherings limited to 1000 or less,” but a ban on gatherings of 2000 people or more would not.

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Gatherings limited to
100 people or less

A country has set a size limit on gatherings. The limit is at most 100 people (often less).
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Gatherings limited to
10 people or less

A country has set a size limit on gatherings. The limit is at most 10 people (often less).
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Some businesses closed

A country has specified a few kinds of face-to-face businesses that are
considered high risk and need to suspend operations (blacklist).

Common examples are restaurants, bars, nightclubs, cinemas, and gyms.
By default, businesses are not suspended.

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Most nonessential
businesses closed

A country has suspended the operations of many face-to-face businesses.
By default, face-to-face businesses are suspended unless they are designated as essential (whitelist).

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Schools closed A country has closed most or all schools.
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Universities closed A country has closed most or all universities and higher-education facilities.
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Stay-at-home order

An order for the general public to stay at home has been issued. This is mandatory, not just a
recommendation. Exemptions are usually granted for certain purposes (such as shopping,
exercise, or going to work) or, more rarely, for certain times of the day. Whenever countries

in our dataset introduced stay-at-home orders, they essentially always also implemented, or already
had in place, all other NPIs listed in this table. All these are encoded as distinct NPIs in the data. In our results,

we thus estimate the additional effect of a stay-at-home order on top of all other NPIs.
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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supplementary materials. The trends in the
results are also stable within these categories.

Discussion

We used a data-driven approach to estimate
the effects that seven nonpharmaceutical in-
terventions had on COVID-19 transmission in
41 countries between January and the end of
May 2020. We found that several NPIs were
associated with a clear reduction in Rt, in line
with mounting evidence that NPIs are effec-
tive at mitigating and suppressing outbreaks
of COVID-19. Furthermore, our results indicate
that some NPIs outperformed others. While
the exact effectiveness estimates vary with
modeling assumptions, the broad conclusions
discussed below are largely robust across
206 experimental conditions in 11 sensitivity
analyses.
Business closures and gathering bans both

seem to have been effective at reducing
COVID-19 transmission. Closing most non-
essential face-to-face businesseswas only some-
what more effective than targeted closures,
which only affected businesses with high in-
fection risk, such as bars, restaurants, and
nightclubs (see also Table 1). Therefore, tar-
geted business closures can be a promising
policy option in some circumstances. Limit-
ing gatherings to 10 people or less was more
effective than limits of up to 100 or 1000
people and had amore robust effect estimate.
Note that our estimates are derived fromdata
between January and May 2020, a period
when most gatherings were likely indoors
owing to the weather.
Whenever countries in our dataset intro-

duced stay-at-home orders, they essentially
always also implemented, or already had in
place, all other NPIs in this study. We ac-
counted for these other NPIs separately and
isolated the effect of ordering the population
to stay at home, in addition to the effect of all
other NPIs. In accordance with other studies
that took this approach (2, 6), we found that
issuing a stay-at-home order had a small effect
when a country had already closed educational
institutions and nonessential businesses and
hadbanned gatherings. In contrast, Flaxman et al.
(1) and Hsiang et al. (3) included the effect of
severalNPIs in the effectiveness of their stay-at-
home order (or “lockdown”) NPIs and accord-
ingly found a large effect for this NPI. Our
finding suggests that some countries may have
been able to reduce Rt to <1 without a stay-at-
home order (Fig. 3) by issuing other NPIs.
We found a large effect for closing both

schools and universities in conjunction, which
was remarkably robust across different model
structures, variations in the data, and epide-
miological assumptions (Fig. 4). This effect
remained robust when controlling for NPIs
excluded fromour study (fig. S9). Our approach
cannot distinguish direct effects on transmission
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Fig. 2. NPI effectiveness under default model settings. Posterior percentage reductions in Rt with
median, 50%, and 95% prediction intervals shown. Prediction intervals reflect many sources of uncertainty,
including NPI effectiveness varying by country and uncertainty in epidemiological parameters. A negative
1% reduction refers to a 1% increase in Rt. “Schools and universities closed” shows the joint effect of closing
both schools and universities; the individual effect of closing just one will be smaller (see text). Cumulative
effects are shown for hierarchical NPIs (gathering bans and business closures), that is, the result for “Most
nonessential businesses closed” shows the cumulative effect of two NPIs with separate parameters and
icons—closing some (high-risk) businesses, and additionally closing most remaining (non-high-risk but
nonessential) businesses given that some businesses are already closed.

A

B

Fig. 3. Combined NPI effectiveness for the 15 most commonly implemented sets of NPIs in our data.
Black and gray bars denote 50% and 95% Bayesian prediction intervals, respectively. (A) Predicted Rt after
implementation of each set of NPIs, assuming R0 = 3.3. (B) Maximum R0 that can be reduced to Rt below 1 by
common sets of NPIs. Readers can interactively explore the effects of all sets of NPIs, while setting R0 and
adjusting NPI effectiveness to local circumstances, with our online mitigation calculator (16).
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in schools and universities from indirect effects,
such as the general population behaving more
cautiously after school closures signaled the
gravity of the pandemic. Additionally, because
school and university closures were imple-
mented on the same day or in close succession
in most of the countries we studied, our ap-
proach cannot distinguish their individual ef-
fects (fig. S21). This limitation likely also holds
for other observational studies that do not in-
clude data on university closures and estimate
only the effect of school closures (1–3, 5–8).
Furthermore, our study does not provide evi-
dence on the effect of closing preschools and
nurseries.

Previous evidence on the role of pupils and
students in transmission is mixed. Although
infected young people (~12 to 25 years of age)
are often asymptomatic, they appear to shed
similar amounts of virus as older people
(17, 18) and might therefore infect higher-
risk individuals. Early data suggested that
children and young adults had a notably lower
observed incidence rate than older adults—
whether this was due to school and univer-
sity closures remains unknown (19–22). In
contrast, the recent resurgence of cases in
European countries has been concentrated
in the age group corresponding to secondary
school and higher education (especially the

latter) and is now spreading to older age
groups as well as primary school–aged children
(23, 24). Primary schools may be generally less
affected than secondary schools (20, 25–28),
perhaps partly because children under the age
of 12 are less susceptible to SARS-CoV-2 (29).
Our study has several limitations. (i) NPI

effectiveness may depend on the context of
implementation, such as the presence of other
NPIs, country demographics, and specific im-
plementation details. Our results thus need to
be interpreted as indicating the effectiveness
in the contexts in which the NPI was imple-
mented in our data (10). For example, in a
country with a comparatively old population,
the effectiveness of closing schools and uni-
versities would likely have been on the lower
end of our prediction interval. Expert judg-
ment should thus be used to adjust our esti-
mates to local circumstances. (ii) Rt may have
been reduced by unobserved NPIs or volun-
tary behavior changes such as mask-wearing.
To investigate whether the effect of these po-
tential confounders could be falsely attributed
to the observed NPIs, we performed several
additional analyses and found that our results
are stable to a range of unobserved factors
(fig. S9). However, this sensitivity check can-
not provide certainty, and investigating the
role of unobserved factors is an important
topic to explore further. (iii) Our results can-
not be used without qualification to predict
the effect of lifting NPIs. For example, closing
schools and universities in conjunction seems
to have greatly reduced transmission, but this
does not mean that reopening them will nec-
essarily cause infections to soar. Educational
institutions can implement safety measures,
such as reduced class sizes, as they reopen.
However, the nearly 40,000 confirmed cases
associated with universities in the United
Kingdom since they reopened in September
2020 show that educational institutions may
still play a large role in transmission, despite
safetymeasures (30). (iv)We do not have data
on some promising interventions, such as test-
ing, tracing, and case isolation. These inter-
ventions could become an important part of a
cost-effective epidemic response (31), but we
did not include them because it is difficult to
obtain comprehensive data on their imple-
mentation. In addition, although the data are
more readily available, it is difficult to estimate
the effect of mask-wearing in public spaces
because therewas limited public life as a result
of other NPIs. We discuss further limitations
in supplementary text section E.
Although our work focused on estimating the

impact of NPIs on the reproduction number Rt,
the ultimate goal of governments may be to
reduce the incidence, prevalence, and excess
mortality of COVID-19. For this, controlling
Rt is essential, but the contribution of NPIs
toward these goals may also be mediated by
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Fig. 4. Median NPI effectiveness across the sensitivity analyses. (A) Median NPI effectiveness
(reduction in Rt) when varying different components of the model or the data in 206 experimental conditions.
Results are displayed as violin plots, using kernel density estimation to create the distributions. Inside
the violins, the box plots show median and interquartile range. The vertical lines mark 0, 17.5, and 35%
(see text). (B to E) Categorized sensitivity analyses. (B) Sensitivity to model structure. Using only cases or
only deaths as observations (two experimental conditions; fig. S7); varying the model structure (three
conditions; fig. S8, left). (C) Sensitivity to data and preprocessing. Leaving out countries from the dataset
(42 conditions; figs. S5 and S21); varying the threshold below which cases and deaths are masked (eight
conditions; fig. S13); sensitivity to correcting for undocumented cases and to country-level differences in case
ascertainment (two conditions; fig. S6). (D) Sensitivity to epidemiological parameters. Jointly varying the
means of the priors over the means of the generation interval, the infection-to-case-confirmation delay, and
the infection-to-death delay (125 conditions; fig. S10); varying the prior over R0 (four conditions; fig. S11);
varying the prior over NPI effect parameters (three conditions; fig. S11); varying the prior over the degree to
which NPI effects vary across countries (three conditions; fig. S12). (E) Sensitivity to unobserved factors
influencing Rt. Excluding observed NPIs one at a time (eight conditions; fig. S9); controlling for additional
NPIs from a different dataset (six conditions; fig. S9).
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other factors, such as their duration and timing
(32), periodicity and adherence (33, 34), and
successful containment (35). While each of
these factors addresses transmission within
individual countries, it can be crucial to also
synchronize NPIs between countries, given
that cases can be imported (36).
Many governments around the world seek

to keep Rt below 1 while minimizing the
social and economic costs of their interven-
tions. Our work offers insights into which
areas of public life are most in need of virus
containment measures so that activities can
continue as the pandemic develops; however,
our estimates should not be taken as the final
word on NPI effectiveness.

Materials and methods
Dataset

We analyzed the effects of NPIs (Table 1) in
41 countries (37) (Fig. 1). We recorded NPI
implementations when the measures were
implemented nationally or in most regions
of a country (affecting at least three-fourths
of the population). We recorded only manda-

tory restrictions, not recommendations. Sup-
plementary text section G details how edge
cases in the data collection were handled. For
each country, the window of analysis starts
on 22 January and ends either after the first
lifting of an NPI or on 30May 2020, whichever
came first. The reason to end the analysis after
the first major reopening (38) was to avoid a
distribution shift. For example, when schools
reopened, it was often with safety measures,
such as smaller class sizes and distancing rules.
It is therefore expected that contact patterns in
schools will have been different before school
closure comparedwith after reopening.Model-
ing this difference explicitly is left for future
work. Data on confirmed COVID-19 cases and
deaths were taken from the Johns Hopkins
CSSE COVID-19 Dataset (13). The data used
in this study, including sources, are available
online (14).

Data collection

We collected data on the start and end dates
of NPI implementations, from the start of the
pandemic until 30 May 2020. Before collect-

ing the data, we experimented with several
public NPI datasets, finding that they were
not complete enough for our modeling and
contained incorrect dates (39). By focusing
on a smaller set of countries and NPIs than
these datasets, we were able to enforce strong
quality controls: We used independent double
entry and manually compared our data with
public datasets for cross-checking.
First, two authors independently researched

each country and entered the NPI data into
separate spreadsheets. The researchers manu-
ally researched the dates using internet
searches: There was no automatic component
in the data-gathering process. The average
time spent researching each country was
1.5 hours per researcher. Next, the researchers
independently compared their entries against
two public datasets, the Epidemic Forecasting
Global NPI (EFGNPI) Database (40) and the
OxfordCOVID-19GovernmentResponseTracker
(41), and, if there were conflicts, visited all pri-
mary sources to resolve the conflicts. After that,
each country andNPIwas again independently
entered by one to three paid contractors, who
were provided with a detailed description of
the NPIs and asked to include primary sources
with their data. A researcher then resolved any
conflicts between this data and one (but not
both) of the spreadsheets. Finally, the two inde-
pendent spreadsheets were combined and all
conflicts resolved by a researcher. The final
dataset contains primary sources (govern-
ment websites and/or media articles) for
each entry.

Data preprocessing

When the case count is small, a large fraction
of casesmay be imported from other countries
and the testing regime may change rapidly.
To prevent this from biasing our model, we
neglected case numbers before a country had
reached 100 confirmed cases and fatality num-
bers before a country had reached 10 deaths.
We included these thresholds in our sensitivity
analysis (fig. S13).

Brief model description

In this section, we give a short summary of the
model (Fig. 5). The detailed model description
is given in supplementary text section A.
Briefly, our model uses case and death data
from each country to “backward” infer the
number of new infections at each point in
time, which is itself used to infer the reproduc-
tion numbers. NPI effects are then estimated
by relating the daily reproduction numbers to
the active NPIs, across all days and countries.
This relatively simple, data-driven approach
allowed us to sidestep assumptions about con-
tact patterns and intensity, infectiousness of
different age groups, and so forth that are
typically required in modeling studies. Code
is available online (14).
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Fig. 5. Model overview. Unshaded, white nodes are observed. From bottom to top: The mean effect
parameter of NPI i is ai, and the country-specific effect parameter is ai,c. On each day t, a country’s daily
reproduction number Rt,c depends on the country’s basic reproduction number R0,c and the active NPIs.
The active NPIs are encoded by xi,t,c, which is 1 if NPI i is active in country c at time t, and 0 otherwise. Rt,c is
transformed into the daily growth rate gt,c using the generation interval parameters and subsequently is used
to compute the new infections NðCÞ

t;c and NðDÞ
t;c that will subsequently become confirmed cases and deaths,

respectively. Finally, the expected numbers of daily confirmed cases yðCÞt;c and deaths yðDÞt;c are computed using

discrete convolutions of Nð:Þ
t;c with the relevant delay distributions. Our model uses both case and death

data; it splits all nodes above the daily growth rate gt,c into separate branches for deaths and confirmed
cases. We account for uncertainty in the generation interval, infection-to–case confirmation delay, and the
infection-to-death delay by placing priors over the parameters of these distributions.
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Our model builds on the semimechanistic
Bayesian hierarchical model of Flaxman et al.
(1), with several additions. First, we allow our
model to observe both case and death data.
This increases the amount of data from which
we can extract NPI effects, reduces distinct
biases in case and death reporting, and re-
duces the bias from including only countries
with many deaths. Second, since epidemiolog-
ical parameters are only known with uncer-
tainty, we place priors over them, following
recent recommended practice (42). Third, as
we do not aim to infer the total number of
COVID-19 infections, we can avoid assuming
a specific infection fatality rate (IFR) or ascer-
tainment rate (rate of testing). Fourth, we
allow the effects of all NPIs to vary across
countries, reflecting differences in NPI im-
plementation and adherence.
We now describe the model by going

through Fig. 5 from bottom to top. The growth
of the epidemic is determined by the time- and
country-specific reproduction number Rt,c,
which depends on (i) the (unobserved) basic
reproduction number in country c, R0,c, and
(ii) the active NPIs at time t. R0,c accounts for
all time-invariant factors that affect transmis-
sion in country c, such as differences in demo-
graphics, population density, culture, and health
systems (43).
Following Flaxman et al. and others (1, 6, 8),

each NPI is assumed to independently affect
Rt,c as a multiplicative factor

Rt;c ¼ R0;c

YI
i¼1

expð�ai;cxi;t;cÞ

where xi,t,c = 1 indicates that NPI i is active in
country c on day t (xi,t,c = 0 otherwise), I is the
number of NPIs, and ai,c is the effect param-
eter for NPI i in country c. The multiplicative
effect encodes the plausible assumption that
NPIs have a smaller absolute effect whenRt,c is
already low.
We assume that the effect of each NPI on

Rt,c is stable across time but can vary across
countries to some degree. Concretely, the ef-
fect parameter of intervention i in country c is
defined as ai,c = ai + zi,c, where ai represents
the mean effect parameter, and zi;ceNð0; s2i Þ.
The variance si

2 corresponds to the degree of
cross-country variation in the effectiveness
of NPI i and is inferred from the data. This
partial pooling of NPI effect parameters min-
imizes bias from country-specific sources
while also reflecting that NPI effectiveness
is likely different across countries. We define
the effectiveness of NPI i as the percentage
reduction in Rt associated with NPI i across
countries. This effectiveness, displayed in Figs.
2 to 4, is computed as 1 – exp(–(ai + zi)), where
again zieNð0; s2i Þ and si

2 is drawn from its
posterior. We place an asymmetric Laplace
prior on ai that allows for both positive and

negative effects but places 80% of its proba-
bility mass on positive effects, reflecting that
NPIs are more likely to reduce Rt,c than to
increase it.
In the early phase of an epidemic, the num-

ber of new daily infections grows exponen-
tially. During exponential growth, there is a
one-to-one correspondence between the daily
growth rate and Rt,c (44). The correspondence
depends on the generation interval (the time
between successive infections in a chain of
transmission), which we assume to have a
gamma distribution. The prior on the mean
generation interval has a mean of 5.06 days,
derived from a meta-analysis (45).
We model the daily new infection count

separately for confirmed cases and deaths,
representing those infections that are sub-
sequently reported and those that are sub-
sequently fatal. However, both infection
numbers are assumed to grow at the same
daily rate in expectation, allowing the use of
both data sources to estimate each ai. The
infection numbers translate into reported
confirmed cases and deaths after a delay. The
delay is the sum of two independent distri-
butions, assumed to be equal across countries:
the incubation period and the delay from
onset of symptoms to confirmation. We put
priors over the means of both distributions,
resulting in a prior over the mean infection-
to-confirmation delay with amean of 10.92 days
(45) (see supplementary text section A.3). Sim-
ilarly, the infection-to-death delay is the sum of
the incubation period and the delay from onset
of symptoms to death, and the prior over its
mean has amean of 21.8 days (45). Finally, as in
related models (1, 6), both the reported cases
and deaths follow a negative binomial output
distribution with separate inferred dispersion
parameters for cases and deaths.
Using aMarkov chainMonte Carlo (MCMC)

sampling algorithm (46), this model infers
posterior distributions of each NPI’s effec-
tiveness while accounting for cross-country
variations in effectiveness, reporting, and fatal-
ity rates aswell as uncertainty in the generation
interval and delay distributions. To analyze the
extent to which modeling assumptions affect
the results, our sensitivity analysis included
all epidemiological parameters, prior distri-
butions, and many of the structural assump-
tions introduced above. MCMC convergence
statistics are shown in fig. S19.
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