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Methods for the treatment of item non-response in attitudinal scales and in large-scale

assessments under the pairwise likelihood (PL) estimation framework and under amissing

at random (MAR) mechanism are proposed. Under a full information likelihood

estimation framework andMAR, ignorability of themissing datamechanism does not lead

to biased estimates. However, this is not the case for pseudo-likelihood approaches such

as the PL. We develop and study the performance of three strategies for incorporating

missing values into confirmatory factor analysis under the PL framework, the complete-

pairs (CP), the available-cases (AC) and the doubly robust (DR) approaches. The CP and

AC require only a model for the observed data and standard errors are easy to compute.

Doubly-robust versions of the PL estimation require a predictive model for the missing

responses given the observed ones and are computationallymore demanding than theAC

and CP. A simulation study is used to compare the proposed methods. The proposed

methods are employed to analyze the UK data on numeracy and literacy collected as part

of the OECD Survey of Adult Skills.

No survey ever attains 100% response. Itemnon-response occurswhen the individual fails

to respond to some of the items and/or due to the design of a survey. An example of the
latter is adaptive testingwhere only a part of the test items is administered to a respondent,

the choice of which is determined by respondent’s answers to previous questions in the

test. Multivariate outcomes are often analysed using an exploratory or confirmatory factor

analysis typemodel. In factor analysis for categorical variables, full-information maximum

likelihood (FIML) estimation is not computationally feasible with a large number of

observed ordinal variables (Lee, Poon, & Bentler, 1990; Poon & Lee, 1987). Instead,

limited-information estimation methods have been developed. The most widely used is a

three-stage weighted least squares method, with diagonally weighted least squares
(DWLS) and unweighted least squares (ULS) as special cases (Jöreskog, 1994; Muthén,

1984). An alternative limited-information estimation method, recently proposed, is

pairwise likelihood (PL) estimation, which is the focus of this paper. PL has been found to
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be a competitive alternative toDWLS andULS for fitting confirmatory factor analysis (CFA)

models with binary/ordinal variables (De Leon, 2005; Jöreskog & Moustaki, 2001;

Katsikatsou, 2013; Katsikatsou, Moustaki, Yang-Wallentin, & Jöreskog, 2012; Liu, 2007;

Xi, 2011).
In the context of item non-response the missing at random (MAR) assumption implies

that the probability of missingness depends only on observed data (Rubin, 1976). For

models with latent variables, it is also important to distinguish between covariate-

dependent MAR (CD-MAR) (Asparouhov & Muthén, 2010), in which the probability of

missingness depends on observed covariates, and indicator-dependent MAR (ID-MAR),

in which the probability of missingness depends on the observed variables that are used

as the indicators for measuring the latent variable(s). In Rubin’s (1976) terminology,

when the parameters of the missingness mechanism and those of the substantive model
for the observed data are distinct, MAR missingness is ignorable for likelihood-based

estimation, meaning that the estimation of the substantive model can be done without

specifying a model for the probability of missingness. The result of MAR ignorability,

however, applies only to FIML and cannot be extended, in general, to limited-

information estimation methods such as three-stage weighted least squares and pairwise

likelihood which is a pseudo-likelihood method (Molenberghs, Kenward, Verbeke, &

Birhanu, 2011).

Item non-response is typically dealt with by either pairwise deletion (for each
computation involving a pair of variables, individuals missing either item in the pair are

excluded) or by listwise deletion, also known as complete-case analysis (each individual

with any missing data is excluded). These approaches deal adequately only with cases

where the data are missing completely at random. Otherwise, there remains the concern

that excluding the non-response in this way may lead to bias. For factor analysis models

with ordinal variables, Asparouhov and Muthén (2010) noted that, applying listwise or

pairwise deletion, DWLS and ULS provide unbiased estimates for the model parameters

only under CD-MAR and not under ID-MAR. Thus, in the paper, we focus on ID-MAR data
missingness under the PL estimation framework.

Within the pseudo-likelihood estimation framework, Molenberghs et al. (2011) study

the ignorability issue under MAR for incomplete clustered data and longitudinal data with

monotone missingness. They found that pairwise and listwise estimators yield biased

estimates in general under MAR. They propose instead a method that is based on inverse

probability weighting (IPW) and another method that combines both IPW and ideas from

doubly robust (DR) methods (Bang & Robins, 2005; Robins, Rotnitzky, & Zhao, 1995). In

the IPW approach, the contribution of an individual to the likelihood is weighted by the
inverse probability of their response pattern being observed (Robins & Rotnitzky, 1992;

Robins, Rotnitzky, & Zhao, 1994; Robins et al., 1995; Rotnitzky, 2009). In the DR case,

weighting is complemented by incorporating a predictive model for the missing values

given the observed values (Bang & Robins, 2005; Rotnitzky, 2009; Scharfstein, Rotnitzky,

& Robins, 1999). DR is preferred to the IPW approach because IPW is sensitive to

misspecification of the missing-data mechanism model, while DR estimators remain

consistent when either themodel for themissingnessmechanism or the predictivemodel

is correctly specified (Bang & Robins, 2005). For this reason, in this paper we do not
consider any IPW formulations of PL for CFA models. Molenberghs et al., 2011 apply the

DR approach to complete pairs (CP) and available cases (AC) separately to arrive at the

same log-likelihood function where the terms referring to the missing-data mechanism

model cancel out. Thus, the DR formulation of PL includes only the predictive terms.

Molenberghs et al., 2011 provide details of the DR approach for the special case of
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longitudinal data with drop-out and acknowledge that the implementation of DR in the

case of general missingness patterns is more complicated. Birhanu (2012) conducts a

simulation study with longitudinal binary data and reports that DR performs better than

CP, AC and IPW estimators with respect to bias and MSE. Also, AC and IPW estimators
exhibit efficiency comparable to that of FIML, while DR is found to be more efficient than

FIML. The naive CP estimator has also been studied by (He & Yi, 2011) and (Yi, Zeng, &

Cook, 2011) for models with longitudinal binary clustered data and correlated binary data

respectively, and by Fonseca and Grassetti (2010) for vector autoregressive models. In

these specific cases, the proposed CP versions are found to have acceptable performance

and are recommended.

Our goal is to developmethods for handling item non-responsewithin the PL pairwise

likelihood (PL) estimation framework in the analysis of attitudinal scales and large-scale
assessment data under an MAR missing at random mechanism. More specifically,

following the work done by Molenberghs et al. (2011), we develop the CP, AC and DR

versions of PL for CFAmodels with ordinal variables in the case of item non-responsewith

an ID-MAR missing-data mechanism and any pattern of missingness. Our main research

question is whether the general result, that CP and AC yield biased estimators, applies to

the specific framework of CFA models.

We examine the performance of CP, AC and DR in a simulation study. For

completeness we also show results from multiple imputation under the diagonally
weighted least squares method (MI-DWLS), which is the standard estimation framework

for CFA models with ordinal variables and data that are MAR. The results generalize to

exploratory factor analysis and structural equation modelling.

The rest of the paper is structured as follows. Section 2 presents the notation and the

model framework. Section 3, after briefly discussing PL estimation for CFA models with

ordinal variables and completely observed data, details the proposed methodology for

handling item non-response under ID-MAR. The aim of Section 5 though is the

performance of the proposed estimators using a simulation study, while Section 4
analyses Programme for the International Assessment of Adult Competencies (PIAAC)

data using the proposed PL methods. Section 6 discusses areas for future research and

concludes.

2. Notation and model framework

Let y¼ðy1,⋯,ypÞ0 be a p-dimensional vector of categorical (binary, ordinal) variables, and

η a q-dimensional vector of continuous latent variables. yi is assumed to be the

manifestation of an underlying continuous variable y∗i where

yi ¼a, τi,a�1<y∗i <τi,a, (1)

a is the ath response category of variable yi,a¼ 1, . . .,Ci, τi,a is the ath threshold of

variable yi, and �∞¼ τi,0<τi,1< . . .<τi,ci�1<τi,ci ¼þ∞. Let τ be the vector of all

thresholds, and y∗ be the p-dimensional vector of the underlying continuous variables.

The factor analysis model for y∗ is
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y∗ ¼Ληþ ɛ, (2)

where Λ is a p�q matrix of factor loadings, ɛ is the vector of unique error terms with

ɛ∼Np 0,Θɛð Þ, η∼Nq 0,Φð Þ, and Cov η,ɛð Þ¼ 0. The parameter vector of the model,

denoted by θ, includes the free parameters in Λ, Φ, Θɛ and τ. Based on the model,

y∗ ∼Np μ,Pð Þwhere P¼ΛΦΛ0 þΘɛ. A structural equation model (SEM) with categorical

variables consists of equations (1) and (2), and equation (3) below. The latter defines the
relationships among the latent variables, including covariates:

η¼BηþΓxþ ζ, (3)

where x is the vector of covariates, B and Γ are parameter matrices, I�B is a non-singular

matrix with I being the identity matrix, and ζ is the vector of error terms for which it is

typically assumed ζ∼Nq 0,Ψð Þ and Cov η,ζð Þ¼Cov ɛ,ζð Þ¼ 0. The main difference

between an SEM and a CFA model is that the former, through equation (3), imposes a
parametric structure on the factor covariance matrix Φ.

3. Pairwise likelihood estimation

3.1. PL for CFA with ordinal variables and completely observed data

Pairwise likelihood, a member of the family of composite likelihood methods, has been
proposed as an alternative to the standard DWLS approach for estimating CFA and SEM

with ordinal variables (De Leon, 2005; Jöreskog & Moustaki, 2001; Katsikatsou, 2013;

Katsikatsou et al., 2012; Liu, 2007).

The pairwise log-likelihood (pl) function is defined as the sum of the bivariate log-

likelihood functions. For a single observation denoted by n, it takes the form

pln θ;ynð Þ¼ ∑
p�1

i¼1

∑
p

j¼iþ1

logf yni,ynj;θ
� �

: (4)

For ordinal variables, a bivariate log-likelihood function is a multinomial one, that is,

logf yni,ynj;θ
� �

¼ ∑
ci

a¼1

∑
cj

b¼1

I yni ¼a,ynj ¼ b
� �

lnπ yni ¼a,ynj ¼ b;θ
� �

, (5)

where I yni ¼a,ynj ¼ b

� �
is an indicator variable indicating whether yni and ynj fall into

categories a and b, respectively, and π yni ¼a,ynj ¼ b;θ
� �

is the corresponding proba-

bility, which, under the CFA model defined by equations (1) and (2), is

π yni ¼a,ynj ¼ b;θ
� �

¼ R τi,aτi,a�1

R τ j,b

τ j,b�1
f y∗ni,y

∗
nj;θ

� �
dy∗nidy

∗
nj

¼Φ2 τi,a,τ j,b;ρij
� �

�Φ2 τi,a�1,τ j,b;ρij
� �

�Φ2 τi,a,τ j,b�1;ρij
� �

þ Φ2 τi,a�1,τ j,b�1;ρij
� �

,

(6)

where ρij is the polychoric correlation between y∗i and y
∗
j , andΦ2 τ1,τ2;ρð Þ is the bivariate

cumulative normal distribution with correlation ρ evaluated at the point τ1,τ2ð Þ. For a
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random sample of N observations, the pairwise log-likelihood function is

pl θ;yð Þ¼ pl θ; y1, . . .,yNð Þð Þ¼ ∑
N

n¼1

pln θ;ynð Þ: Maximizing it over θ, we obtain the PL

estimator,θ̂PL.
Based on composite likelihood theory results (Lindsay, 1988), θ̂PL is asymptotically

consistent and normally distributed. In particular, we haveffiffiffiffi
N

p
θ̂PL�θ
� �

!dN 0,G�1ðθÞð Þ, where GðθÞ is the Godambe information matrix (also

known as the sandwich information matrix),

GðθÞ¼HðθÞJ�1ðθÞHðθÞ,

with HðθÞ and JðθÞ estimated respectively by

Ĥðθ̂PLÞ¼� 1

N

∂
2

∂θ0∂θ
pl θ; y1, . . .,yNð Þð Þ

� �
θ¼θ̂PL

(7)

and

Ĵðθ̂PLÞ¼ 1

N
∑
N

n¼1

ð ∂

∂θ0
pln θ;ynð Þjθ¼θ̂PL

� �
ð ∂

∂θ0
pln θ;ynð Þjθ¼θ̂PL

� �0
: (8)

In finite samples, simulation studies indicate that the PL estimates and standard errors
have close to zerobias andmean square error, both decreasingwith increasing sample size

(Katsikatsou et al., 2012).

3.2. Proposed PL methods for CFA with ordinal variables under MAR

Let plCP θ; y1, . . .,yNð Þð Þ, plAC θ; y1, . . .,yNð Þð Þ and plDR θ; y1, . . .,yNð Þð Þ denote the complete-

pairs, available-cases and doubly robust pairwise log-likelihood functions respectively, for

a sample ofN observations. Maximizing the functions over θ, we obtain the CP estimator,
θ̂CP, the ACestimator, θ̂AC, and theDRestimator, θ̂DR, respectively. For a random sample of

observations, each log-likelihood function is equal to the sum of the N individual

contributions, the exact form of which is given below. Let ~pn and mn be the number of

items with observed values and missing values respectively, for sample unit n, where
~pnþmn ¼ p, and ~pn>0 in the case of itemnon-response. Also, let y∘

n and y
m
n denote the ~pn

-dimensional vector of observed variables and the

mn-dimensional vector of missing variables, respectively, for that unit. The contribu-

tion of observation n to plCP θ; y1, . . .,yNð Þð Þ is

plCPn θ;ynð Þ¼ ∑
~pn�1

i¼1

∑
~pn

j¼iþ1

logf y∘ni,y
∘
nj;θ

� �
, (9)

where logf y∘ni,y
∘
nj;θ

� �
is defined in (5). In the case of AC, the contribution of observation

n is
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plACn θ;ynð Þ¼ plCPn θ;ynð Þþmn ∑
~pn

i¼1

logf y∘ni;θ
� �

, (10)

where, based on the CFA model defined in Section 2,

logf yoni;θ
� �¼ ∑

ci

a¼1

I y∘ni ¼a
� �

lnπ y∘ni ¼a;θ
� �

, (11)

I y∘ni ¼a
� �

is an indicator for whether y∘ni falls into category a, and the corresponding

probability π y∘ni ¼a;θ
� �

is.

π y∘ni ¼a;θ
� �¼ Z τi,a

τi,a�1

f y∗ni;θ
� �

dy∗ni ¼ Φ1 τi,að Þ�Φ1 τi,a�1ð Þ: (12)

with Φ1 τð Þ being the univariate cumulative standard normal distribution evaluated at

point τ. Note that in equation (10) the number of missing variables for sample unit n

appears as a weight of the univariate log-likelihood functions of the observed variables.

This is derived by taking into account those pairs of variables ofwhich one is observed and
one is missing, written as logf y∘ni,y

m
nj;θ

� �
¼ logf y∘ni

� �þ logf ymnjjy∘ni;θ
� �

. In AC, by

definition, we keep only the information that is observed.

The standard errors of θ̂CP and θ̂AC are obtained from the Godambe informationmatrix

using the expressions given in equations (7) and (8),where pl is replaced by plCP and plAC,

and θ̂PL is replaced by θ̂CP and θ̂AC, respectively. Note that for likelihood-based inference,

when data are MAR, Kenward and Molenberghs (1998) have shown that the classical

expected information matrix is biased and recommend the use of the observed

information matrix.
DR requires a predictivemodel of themissing responses given the observed responses.

The contribution of observation n is defined as

plDRn θ;ynð Þ ¼ plACn θ;ynð Þþ ∑
mn�1

i¼1

∑
mn

j¼iþ1

Eðym
ni
,ym

nj
Þjy∘

n
logf ymni,y

m
nj;θ

� �h i
þ∑

~pn

i¼1

∑
mn

j¼1

Eym
nj
jyo

n
logf ymnjjy∘ni;θ

� �h i
,

(13)

where

Eðym
ni
,ym

nj
Þjy∘

n
logf ymni,y

m
nj;θ

� �h i
¼ ∑

ci

a¼1

∑
cj

b¼1

Eðym
ni
,ym

nj
Þjy∘

n
I ymni ¼a,ymnj ¼b

� �h in o
lnπ ymni ¼a,ymnj ¼b;θ
� �

¼ ∑
ci

a¼1

∑
cj

b¼1

Pr ymni ¼a,ymnj¼bjy∘
n

� �
lnπ ymni ¼a,ymnj ¼ b;θ
� �

and
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Eym
nj
jyo

n
logf ymnjjy∘ni;θ

� �h i
¼ ∑

cj

b¼1

Eym
nj
jy∘

n
I ymnj ¼ b

� �h in o
lnπ ymnj¼ bjy∘ni ¼a;θ
� �

¼∑
b

Pr ymnj¼ bjy∘
n

� �
lnπ ymnj¼ bjy∘ni ¼a;θ
� �

:

Furthermore, π ymni ¼a,ymnj ¼ b;θ
� �

is given in (6), and

π ymnj¼ bjy∘ni ¼a;θ
� �

¼
π ymnj ¼ b,y∘ni ¼a;θ
� �

π y∘ni ¼a;θð Þ :

with π y∘ni ¼a;θ
� �

defined in (12).

The probabilities Pr ymni ¼a,ymnj¼ bjy∘
n

� �
and Pr ymnj¼ bjy∘

n

� �
mayormay not depend on

the model parameter vector θ. If not, they need to be computed for each of the N sample
units and then plugged into their corresponding plDRn θ;ynð Þ. So, in this case, the DR

estimation involves two steps.

We consider three alternative models for Pr ymi ¼a,ymj ¼ bjy∘
� �

(the subscript n is

dropped since the same model applies to all sample units). The first model is the

unconstrained model, y∗ ∼Np 0,Pð Þ, where the polychoric correlation matrix P is

unconstrained. After expressing Pr ymi ¼a,ymj ¼ bjy∘
� �

as Pr ymi ¼a,ymj ¼ b,y∘
� �

=Pr y∘ð Þ,
the probabilities in the numerator and denominator are computed in the same fashion as

in (6) with the difference that the dimensions of the integrals are equal to ~pþ2 and ~p,
respectively. Wewill refer to this approach as the unconstrainedmodel exact probability

(UMEP) approach. Since the unconstrainedmodel requires enough data for all pairs of the

p variables, so that their polychoric correlations can be estimated, the UMEP cannot be

employed in designs with planned missingness, where certain pairs of items are never

administered together.

The second model we consider is the hypothesized CFA model, y∗ ∼Np 0,Pð Þ with

P¼ΛΦΛ0 þΘɛ. As in UMEP, after expressing Pr ymi ¼a,ymj ¼ bjy∘
� �

as

Pr ymi ¼a,ymj ¼ b,y∘
� �

=Pr y∘ð Þ, the latter two are computed in the same fashion as in
equation (6). We will refer to this approach as the hypothesized model exact probability

(HMEP) approach. When the hypothesized model is true, the UMEP and HMEP are

expected to give very similar results as the hypothesized model is nested in the

unconstrainedmodel. The advantage of theHMEP is that it can be applied to data collected

from designs with planned missingness.

Both the UMEP and theHMEP are computationally demanding since one integration of

dimension ~pþ2 and one of dimension ~p need to be computed. A less computationally

intensive approach is to approximate Pr ymi ¼a,ymj ¼ bjy∘
� �

with Pr ymi ¼a,ymj ¼ bjη
� �

,
where η is replaced by the regression factor scores,eη.

Following the model described in Section 2, we have that

Pr ymi ¼a,ymj ¼ bjη
� �

¼ R τi,aτi,a�1

R τi,b
τi,b�1

f y∗i ,y
∗
j jη

� �
dy∗j dy

∗
i , where

y∗i y∗j

� �0
jη∼N2 Λ½ �ij,:η, Θɛ½ �ij,ij

� �
,

Λ½ �ij,: denotes the 2�q sub-matrix of Λ that includes only the ith and jth rows and all

columns, and Θɛ½ �ij,ij is the 2�2 sub-matrix of Θɛ that includes the elements that are

simultaneously in the ith and jth rows and ith and jth columns. This approach will be

referred to as the hypothesized model approximate probability (HMAP) approach. It

Pairwise likelihood estimation with missing data 7



requires the computation of only one two-dimensional integral regardless of the sizes of p

andm. However, it relies on the assumption that the hypothesized model is true and that

Pr ymi ¼a,ymj ¼ bjη
� �

is a good approximation of Pr ymi ¼a,ymj ¼ bjy∘
� �

. Apart from the

UMEP, HMEP, and HMAP, any other model for Pr ymi ¼a,ymj ¼ bjy∘
� �

motivated by a
specific application and/or the data at hand could be employed.Here,we just consider the

obvious candidate models within the context of CFA with ordinal variables.

The univariate conditional probability Pr ymj ¼ bjy∘
� �

involved in DR can be calculated

from the bivariate conditional probabilities Pr ymi ¼a,ymj ¼ bjy∘
� �

, summing over the

response categories of ymi when at least two variables have missing values. If there is only

one variable missing, the approach adopted for Pr ymi ¼a,ymj ¼ bjy∘
� �

is applied. In

particular, after expressing Pr ymj ¼ bjy∘
� �

as Pr ymj ¼ b,y∘
� �

=Pr y∘ð Þ, we employ the

unconstrained model y∗ ∼N 0,Pð Þ in the case of UMEP or the hypothesized model in the

case of HMEP to compute Pr ymj ¼ b,yo
� �

and Pr yoð Þ in the same fashion as in (6). For the

HMAP, we approximate Pr ymj ¼ bjyo
� �

with Pr ymj ¼ bjη
� �

using the hypothesized model

and the regression factor scores.

In the UMEP and the HMEP approaches, although the estimation of θ could

theoretically be done in one step, since Pr ymi ¼a,ymj ¼ bjy∘
� �

and Pr ymj ¼ bjy∘
� �

are

functions of θ, it defeats the purpose of PL. PL is suggested as a computationally feasible

alternative to maximum likelihood estimation because it requires the computation of up

to two-dimensional integrals (written in closed form in (6) and (12)) regardless of the size

of p. Thus, in practice, all three proposed versions of DR involve two steps. At the first

step, the selected model, unconstrained or hypothesized, is fitted to the data at hand. For

fitting themodel, we recommend AC because our simulation results (reported in the next

section) show that, although AC andCPprovide very similar results for loadings and factor

correlations, AC exhibits smaller average standardized bias for thresholds than CP. Using

θ̂AC, we can estimate the probabilities Pr ymi ¼a,ymj ¼ bjy∘
� �

and Pr ymj ¼ bjy∘
� �

. In the

HMAP approach, θ̂AC is used to first estimate the regression factor scores and then

Pr ymi ¼a,ymj ¼ bjη
� �

and Pr ymj ¼ bjη
� �

can be estimated.

4. Simulation study

4.1. Set-up

We use a simulation study to examine the finite-sample performance of the proposed

pairwise likelihood estimators (CP, AC, UMEP, HMEP and HMAP), when applied to CFA

with ordinal variables and data that are ID-MAR. For completeness, we also present the
results for MI-DWLS as implemented inMplus. Ten imputed data sets are produced (in the

literature, five to ten imputed data sets are usually considered enough) and the imputation

model is the variance–covariance model (i.e., y∗ ∼Np 0,Pð Þ with unconstrained P). For

the imputation, Mplus uses a Markov chain Monte Carlo (MCMC) simulation procedure

(Rubin, 1978; Schafer, 1997) and the imputation model is estimated with the Bayesian

estimation method.

To compute the proposed PL estimators, we wrote our R routines which are

incorporated in the R package lavaan (version 0.5-23.1043 and beyond). The specific
commands with detailed explanations are given in the Supporting Information. Our
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simulation study consists of two parts; the results of part I partly inform the design of part

II.

4.2. Performance criteria

We report percentages of convergence and proper solutions for each simulation

condition, average and individual parameter relative bias, raw bias, and root mean square

error (RMSE) of factor loadings, thresholds, factor correlations and their standard errors as

well as coverage rates. When average statistics are reported for each parameter type, the

absolute values of the relative or raw bias for each individual parameter are used.

Let us denote by θ̂l,k,r the estimated parameter value of the lth parameter in the rth

replication for the kth estimation method, where r¼ 1, . . .,R, l¼ 1, . . .,L and
k¼CP,AC,UMEP,HMEP,HMAP (R is the total number of replications, L is the total

number of parameters). To study theperformance of the different estimationmethods,we

compute first the raw bias and relative bias of parameter estimates θ̂l,k, given by

RawBðl,kÞ ¼ 1

R
∑
R

r¼1

θ̂l,k,r�θl
� �

, (14)

and

RelBðl,kÞ ¼ 1

R
∑
R

r¼1

θ̂l,k,r�θl
� �

=θl�100: (15)

respectively, where θl is the true parameter value. Values of relative bias less than 10% are
considered acceptable, values of 10–20% indicate substantial bias, and values greater than

20% indicate unacceptable bias ((Forero & Maydeu-Olivares, 2009). The RMSE assesses

the combined effect of parameter bias and parameter variance and is given by

RMSEðl,kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R
∑
R

r¼1

ðθ̂l,k,r�θlÞ2
s

(16)

Since we are not interested in the performance of the individual parameters, we

average the absolute relative bias, the absolute raw bias and the root mean square error

across all parameters of the same type such as loadings, thresholds and factor correlations.

We also provide either the RawBðl,kÞ or RelBðl,kÞ for each individual parameter estimate in

the Supporting Information.

The 95% confidence interval (CI) coverage rate for the parameters of interest is

computed as the proportion of the 95% CIs that include the true parameter value across
replications, given by ∑

R

r¼1

I θ∈ θ̂l,k,r�1:96ŝeðθ̂l,k,rÞ
	 


=R, where Ið�Þ is the indicator

function, and ŝeðθ̂l,k,rÞ is the estimated standard error of θ̂l,k,r for the lth parameter at

the rth replication for method k, k = CP, AC, MI-DWLS.

Equations (14), (15) and (16) can be also applied to the estimated standard errors by

replacing θl with the standard deviation of the parameter estimates obtained from the R

replications. For UMEP, HMEP and HMAP, we first consider only the relative or raw bias

and RMSE of parameter estimates.

The simulation results for these three criteria will inform us whether we need to
undertake the complex task of deriving the standard errors of their estimated parameters.

Pairwise likelihood estimation with missing data 9



Note that the probabilities Pr ymi ¼a,ymj ¼ bjy∘
� �

and Pr ymj ¼ bjy∘
� �

included in the

objective function for the DR estimators are estimated at step 1, preceding the function’s

optimization, and the standard errors need to reflect the sampling variability of their

estimates.

4.3. Part I of the simulation study

We consider ten experimental conditions derived from five models and a small and

medium sample size of 300 and 1,000 respectively. The same ten conditions are used for

binary and ordinal variables with four categories. The five data-generating models are

summarized in Table 1 for the binary and ordinal variables, respectively. The first three

models are one-factor models with six binary or six ordinal variables each, where the first

variable, y1, is observed for all sample members. In model 1 all loadings are equal to .8
(strong discrimination); inmodel 2 the loading of y1,which determines themissingness, is

.4 and the rest of the loadings remain .8; and in model 3 the loadings of all variables are .6

(medium discrimination). In all threemodels, the factor variance is fixed to 1 to define the

unit of the factor scale. Models 4 and 5 are two-factor models where each factor is

measured by six binary or ordinal variables. The first variable of each set (i.e., y1 for factor 1

and y7 for factor 2) is always observed and determines the probability of missingness for

the remaining variables as defined in equations (17) and (18) for binary and ordinal

variables, respectively. The factor loadings for models 4 and 5 range from .4 to .9 for each
factor, with .4 being given to the loadings of y1 and y7, which determine the missingness.

In models 4 and 5, the factor variances are fixed to 1 (i.e.ϕ11 ¼ϕ22 ¼ 1, to define the units

of the factor scales), and the factor correlation, ϕ12, is .3 for model 4 and .6 for model 5. In

all five models, Θɛ is a diagonal matrix with Θɛ ¼ I�diag ΛΦΛ0ð Þ, where I is the identity

matrix. In each of the ten experimental conditions, we conduct 1,000 replications.

All binary variables have thresholds equal to .5.Missing data are generated for variables

y2, . . .,y6 using the following mechanism:

Table 1. True parameter values of factor loadings and factor correlations for the binary and ordinal

data generating models considered in part I of the simulation study

Model

η1 η2

ϕ12

y∗1 y2 y3 y4 y5 y6 y∗7 y8 y9 y10 y11 y12
λ1,1 λ2,1 λ3,1 λ4,1 λ5,1 λ6,1 λ7,1 λ8,1 λ9,1 λ10,1 λ11,1 λ12,1

1 .8 .8 .8 .8 .8 .8 – – – – – – –
2 .4 .8 .8 .8 .8 .8 – – – – – – –
3 .6 .6 .6 .6 .6 .6 – – – – – – –
4 .4 .5 .6 .7 .8 .9 .4 .5 .6 .7 .8 .9 .3

5 .4 .5 .6 .7 .8 .9 .4 .5 .6 .7 .8 .9 0.6

*Always observed.
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Pr yimis:jy1 ¼ 0ð Þ¼ expð�2Þ=ð1þexpð�2ÞÞ¼ :119,

Pr yimis:jy1 ¼ 1ð Þ¼ expðþ1Þ=ð1þexpðþ1ÞÞ¼ :731,
(17)

where i¼ 2, . . .,6 which gives about 29% missing data in each of y2, . . .,y6. All ordinal
variables have four response categories and the thresholds are set to −1.5, .5 and 1.5.

Missing data are generated for variables y2, . . .,y6 using the following mechanism:

Pr yimis:jy1 ¼ 1ð Þ¼ expð�2Þ=ð1þexpð�2ÞÞ¼ :119,

Pr yimis:jy1 ¼ 2ð Þ¼ expð�1Þ=ð1þexpð�1ÞÞ¼ :269,

Pr yimis:jy1 ¼ 3ð Þ¼ expð�1Þ=ð1þexpð�1ÞÞ¼ :269,

Pr yimis:jy1 ¼ 4ð Þ¼ expðþ1Þ=ð1þexpðþ1ÞÞ� :731,

(18)

where i¼ 2, . . .,6 which gives about 31%missing data in each of y2, . . .,y6. This procedure
generates MARmissingness (Asparouhov &Muthén, 2010). The missing-data mechanism

for variables y8, . . .,y12 is exactly the same, except that theprobabilities in (17) and (18) are

conditional on the value of y7, the variable that is always observed for this set.
A total of R = 1,000 replications were run for part I of the simulation study. However,

not all of these replications yielded a solution.Wedefine convergence/completion rates as

the percentage of replications for each condition that converged, excluding improper

solutions (i.e., estimation was completed). A solution was also defined as improper when

at least one estimated parameter was outside of expected range (i.e., error varianceswere

non-negative and factor correlations were < 1 in absolute value). The convergence and

proper solution percentages as well as the number of replications for which all methods

provide a proper solution denoted by R’ are given in Tables S1–S4. The overall
convergence rates for all methods studied in the paper are between 99.6 and 100% except

for models 2, 4 and 5 for binary data and model 4 for ordinal data and for sample size 300,
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Figure 1. Absolute relative bias (top panel) and RMSE (bottom panel) of estimated factor loadings

averaged over all variables and all factors when applicable, for all experimental conditions, N

denotes the sample size.
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which are 96.4, 98.8, 98.0 and 98.8%, respectively.Models 1–3 and all methods gave 100%

proper solutions when the sample size was 1,000 for binary data and 300 or 1,000 for

ordinal data. The same is true for models 4 and 5 for ordinal data and sample size 1,000. In

most other cases the percentage of proper solutions ranges from 80.4 to 99.6%, where
100% is achieved only for MI-DWLS under model 5, ordinal data and sample size 300. In

summary, binary data and smaller sample size exhibited larger percentages of improper

solutions. We conclude that convergence rates and proper solutions obtained by the

proposed method are satisfactory and do not raise any concerns. Non-convergent and

improper solutions were removed from the analysis.

Figure 1 shows that all methods exhibit acceptable relative bias (<10%) in the

estimated factor loadings in all conditions except for HMAP under model 3 for binary data

and N = 300. Among the proposed methods and for the binary case, HMAP exhibits the
largest bias for all models and MI-DWLS the smallest. In the ordinal case, all methods

perform similarly and show lowbias. For all proposed PLmethods, the relative bias for the

loading estimates tends to decrease as the loading value of the indicatorwhich determines

the missingness mechanism decreases (model 2 compared to models 1 and 3). Overall,

larger but still acceptable relative biases are found in the binary models. The value of the

factor correlation (model 5 compared to model 4) seems not to havemuch of an effect on

the bias of the factor loadings. The bottom panel of Figure 1 shows that the average RMSE

is smaller for the MI-DWLS for the binary case and N = 300 but similar across methods in
all other conditions and decreases with the sample size. A higher factor correlation seems

to have no impact on the average RMSE of estimated loadings.

The results from Figure 1 indicate that UMEP and HMEP do not perform clearly better

than theCP andACestimators in any of the experimental conditions. Therefore,wedonot

proceed with computing their standard errors and do not report results for them in

Figure 2.
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Figure 2. Coverage rate of 95% confidence intervals (top panel) and absolute raw bias of standard

errors (bottom panel) for estimated factor loadings averaged over all variables and all factors when

applicable, all experimental conditions, N denotes the sample size; a point, in the top panel graph,

lying within the grey horizontal dashed lines, drawn at values 0.964 and 0.936, yields a 95% CI that

includes the value 0.95.
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The top panel of Figure 2 displays the average coverage rate of 95% CIs for factor
loadings. The bold horizontal line is drawn at .95 and the thin horizontal lines are drawn at

.964 and .936, respectively. A rate lyingwithin the thin horizontal lines yields a 95%CI that

includes .95.

The proposed estimators for model 1, binary data and N = 1,000 exhibit unexpected

and poor coverage rate performance. The AC estimator also exhibits lower than expected

coverage in the binary models 1–3 forN = 300 and 1,000. For the ordinal case, all models

exhibit acceptable coverage rates in both sample sizes.

The bottompanel of Figure 2 shows that CP and AC have very similar average absolute
raw bias for the estimated standard errors of the loadings. The average bias decreaseswith

the sample size increase.

The results for the factor correlation in models 4 and 5 are presented in Figure 3. The

top left panel shows that the proposed PL estimators (except HMAP) all have acceptable

relative bias in both models, for binary and ordinal data, which decreases with a sample

size increase. The RMSE, depicted in the bottom left panel, is very similar for all methods

except for model 5, binary data andN = 300, for which all proposed methods have larger

RMSE thanMI-DWLS. It is again the case that UMEP andHMEP do not perform significantly
better than CP and AC in terms of relative bias and RMSE, and thus we omit them in the

comparisons of coverage rate and bias of standard error. The coverage rates are better for

model 4 (lower factor correlation) and better in model 5 for the larger sample size but

quite unsatisfactory for N = 300 (top right panel). Finally, the average absolute raw bias

for the standard errors is similar across the estimators under each condition (bottom right

panel).

Figure 4 displays the results for the thresholds. The CP estimator exhibits unaccept-

able relative bias and has been excluded from the top panel of the figure so as not to distort
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Figure 3. Absolute relative bias (top left panel), RMSE (bottom left panel), coverage rate of 95%

confidence intervals (top right panel), and absolute raw bias of standard errors (bottom right panel)

for estimated factor correlations for all experimental conditions (N denotes the sample size); a point,

in the top panel graph, lying within the grey horizontal dashed lines, drawn at values 0.964 and

0.936, yields a 95% CI that includes the value 0.95.
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the remaining results. However,weprovide the figurewith CP included in the Supporting

Information (Figure S5). As seen in the top panel of Figure 4, AC exhibits substantial

relative bias in the binary case but acceptable levels in the ordinal case for N = 300 and

1,000. UMEP andHMEP also exhibit acceptable and lower relative bias than AC in all cases
except for model 1 and for both sample sizes. The average RMSE, in the middle panel of

Figure 4, is nearly identical for all proposed PL methods and MI-DWLS except for AC,

which in the cases of binary data and both sample sizes is systematically larger. In both the

binary and ordinal case for N = 300, UMEP and HMEP clearly outperform CP and AC, but

we are not convinced that this is a strong argument for preferring the more complicated

DR methods even when it comes to binary data and the estimation of factor loadings and

factor correlations. The simulation results indicate that the quality of threshold estimation

does not seem to affect the quality of the estimation of loadings and factor correlation,
which are typically the parameters of interest. Therefore, we do not compute the

threshold standard errors for UMEP and HMEP and no results for them are presented in

the bottom panel of Figure 4. AC has systematically larger average absolute raw biases in

the standard errors in all conditions. An explanation could be that the information in the

univariate likelihood functions is repeated in AC’s objective function. The CP bias is not

much larger than zero in absolute value, but that of MI-DWLS is smaller in all conditions.

For all methods, the bias decreases as the sample size increases. Finally, Figures S1–S4
provide the raw bias for each model parameter (factor loadings, factor correlations and
thresholds) under all simulation conditions.
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Figure 4. Absolute relative bias (toppanel), RMSE (middle panel), and absolute rawbias of standard

errors (bottom panel) of estimated thresholds averaged over all variables and all factors when

applicable, for all experimental conditions, where N denotes the sample size.
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4.4. Part II of the simulation study

The results of part I indicate that, for loadings and factor correlation estimates, CP and AC

perform nearly the same as UMEP and HMEPwith respect to the average absolute relative

bias and RMSE, and exhibit acceptable performance in average coverage rate of 95% CIs

and in average bias of standard errors. As long as thresholds are not parameters of interest,

these findings, along with the merits of CP and AC (they require only a model for the
observed data and the estimation is done in one step), render them preferable to UMEP

and HMEP. The latter require the computation of the probabilities Pr ymi ¼a,ymj ¼ bjy∘
� �

and Pr ymj ¼ bjy∘
� �

, which is infeasible when p is large. For example, the R package

mnormt, which is used in lavaan internally for the calculations, computes up to 30-

dimensional normal probabilities. Thus, part II aims to study the performance of CP and

AC in a larger model that could be encountered in practice.

The model includes 20 ordinal indicators, y1, . . .,y20, and four factors, η1, . . .,η4, each
measured by a distinct set of five variables: ðy1, . . .,y5Þmeasure η1, ðy6, . . .,y10Þmeasure η2,
and so on. The loadings of each set of five variables are .6, .6, .6, .6, .6. The factor

correlations are set to .3, .3, .3, .6, .6, .6. All factor variances are fixed to 1. All 20 indicators

have four response categories and their threshold values are −1.25, .5 and 1.25. The

variables y1,y6,y11,y16 are always observed, and their values determine the probability of

missingness of the remaining variables measuring the same factor (i.e., y1 determines the

probability of missingness for y2, . . .,y5, y6 determines the probability of missingness for

y7, . . .,y10, etc.) following the model in (18) with one exception: the probability of

missingness conditional on the always-observed item scoring a ‘4’ is now set to .5 and the
rest remain the same as in (18). The reasoning here is to induce slightly less severe

missingness for the data compared to simulation part I. Indeed, the missing proportion is

now 27% on average for each variable (as compared to 31% previously). The sample

size is taken to be 1,000 and 50,000, and 250 replications are conducted within each

sample size. For sample size 1,000, we give the average absolute raw biases, RMSE, and

coverage rates for all parameter estimates. For sample size 50,000, we only study the

raw bias of the parameter estimates in order to get an idea of the asymptotic behaviour

of CP and AC.

Table 2. Results averaged over the same type of parameters (loadings, factor correlations,

thresholds) for all performance criteria (absolute raw bias, RMSE, coverage rate of 95% CIs) for CP,

AC, andMI-DWLS estimationmethods for the four-factormodelwith 20 variables (sample size 1,000)

Absolute raw bias RMSE Coverage rate Absolute raw bias of SE

Loadings

CP .0034 .0019 .9506 .0030

AC .0032 .0019 .9471 .0030

MI-DWLS .0019 .0020 .9373 .0053

Factor correlations

CP .0022 .0024 .9453 .4041

AC .0026 .0024 .9437 .4045

MI-DWLS .0035 .0025 .9363 .4053

Thresholds

CP .0334 .0052 .9158 .0025

AC .0188 .0044 .8569 .0132

MI-DWLS .0029 .0041 .9468 .0050
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Table 2 reports the results for sample size 1,000which are similar to those of part I. CP

and AC exhibit low raw biases for the estimates of factor loadings and factor correlations.

Compared to MI-DWLS, the CP and AC average absolute raw bias is larger for the loadings

and the thresholds but smaller for the factor correlations. The biases for the thresholds are
substantially larger. The average RMSE of loadings and factor correlations is nearly the

same for CP, AC and MI-DWLS. The average coverage rate of the 95% CIs for the loadings

and factor correlations is very close to .95 for all methods but low for the thresholds under

CP andAC. CP, AC andMI-DWLS exhibit very similar and low average absolute rawbias for

the estimated standard errors of the loadings. The estimated standard errors for the factor

correlations exhibit quite large biases with all methods.

For sample size 50,000, we compute the raw bias for each parameter estimate,
�̂θk�θ,

fork = CP andAC, and compare itwith the biaswhen the sample size is 1,000. The results
are displayed in the Figure S6 for the loadings and the factor correlations, and in Figure S7

for the thresholds. For all three methods the bias of all loading and factor correlation

estimates goes closer to zerowhen the sample size increases to 50,000. However, both CP

and AC overestimate the thresholds, with AC exhibiting systematically smaller bias than

CP.

5. A study on adult numeracy and literary in the UK

In large-scale assessments, adaptive testing has been implemented in the Organisation for

EconomicCo-operation andDevelopment (OECD) Survey of Adult Skills developedby the

PIAAC. The PIAACdata and the related documentation are publicly available on theOECD

website. Here, we analyse a part of the UK data (collected in Round 1, from 2011 to 2012).

The grouping variable we use, native versus non-native speakers, is included in the PIAAC

data (labelled as ‘NATIVESPEAKER’) and defined as ‘the respondent was considered a
native speaker if his or her first language was one of the assessment languages’ (OECD,

2016). For meaningful results and a fair comparison between native and non-native

speakers, we restrict our analysis to those respondents who took the computer-based

assessment after having successfully passed a short test on information and communi-

cation technology and reported a ‘high’ education level according to the background

demographic questions (the levels of education are low,medium and high). A respondent

who passed the core stage 1 test was administered a core stage 2 test (containing six

cognitive items).We select thosewith scores above 3 (scores range from0 to 6)whowere
routed to numeracy and literacy tests. The code to replicate the analysis is given in the

Supporting Information.

The latent variables numeracy and literacy are each measured by 18 binary variables,

but, due to the adaptive testing design, only nine are administered to a respondent. More

specifically, the 18 variables are divided into three testlets of nine questions each. The

testlets vary in difficulty, with testlet 1 being the easiest and testlet 3 the most difficult.

Testlets 1 and 2 have five common questions and testlets 2 and 3 have four common

questions, while testlets 1 and 3 have no common questions.
All three testlets have a positive probability of being administered which depends on

the respondent’s core stage 2 test score. The higher the score, the higher the probability

that the more difficult testlet will be administered (see OECD, 2016, Chapter 1). Thus,

there aremissing values for test items not having been administered and themissingness is

at random by design.
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To ensure that the missingness is at random, we excluded the respondents who

actively skipped administered questions or did not reach some of the questions because

they ran out of time. The rate of this kind of item non-response ranges from .07% to 3.7%

and the cases with at least one item skipped or not reached represent 18.5% of the initial
sample. Tables S5 and S6 provide information on all types of missingness in the data

(planned missingness, no response, not reached/not attempted) as well as the

percentages of incorrect and correct response for each item. Keeping only the

respondents for which both numeracy and literacy are measured and also eliminating

the respondents who had either no responses or not reached/not attempted entries, the

size of the analysed data is 1,170.

To estimate the correlation between numeracy and literacy, we fitted a two-factor

model as defined in (1) and (2),where,η is a two-dimensional vector andΛ is of dimension
36�2. InΛ, the first 18 loadings of the first column and the last 18 loadings of the second

column are free to be estimated, while the remaining loadings are fixed to 0. Φ is a 2�2

matrix with 1s on the main diagonal to define the scale of the latent variables, while ϕ12 is

free to be estimated. Θɛ satisfies the equation Θɛ ¼ I�diag ΛΦΛ0ð Þ. The vector τ, in this

example, includes 36 thresholds free to be estimated.

Among the proposed PL methods, we consider only the CP and the AC, and compare

them with the MI-DWLS. Although the HMEP was attempted, it was found to be

computationally infeasible. This is because for each respondent, 36 eleven-dimensional
integrals over an eleven-variate normal distribution need to be computed and this needs to

be repeated for 1,170 respondents. The use of the UMEP is not possible for PIAAC data as

there are no data at all for some pairs of indicators (testlets 1 and 3 have no common

questions). For the same reason, the variance–covariance model cannot be used as an

imputation model in MI-DWLS, and instead we use the two-factor model assumed for the

observed data. Ten imputed data sets are analysed. All threemethods are quite fast. It took

half a minute to produce the output for a single core an Intel Core i7 processor running at

2.20 GHz. Figure S8 displays the estimated parameters and their corresponding estimated
standard errors. All three methods suggest that there is a fairly high correlation between

literacy and numeracy for the subset of respondents analysed. CP and AC estimate the

factor correlation to be .82 andMI-DWLS to be .77. TheMI-DWLS estimated standard error

for the factor correlation is only slightly larger than that of CP and AC, both of which yield

almost identical standard errors. Regarding the loadings and the thresholds, CP and AC

produce almost identical estimates, while the MI-DWLS ones are slightly larger. The CP

and AC standard errors for the loadings are also nearly identical. For the thresholds, the AC

standard errors are smaller than the CP ones. TheMI-DWLS standard errors are larger than
those of CP and AC for both the loadings and thresholds.

To testwhether native andnon-native English-speakers differ in numeracy and literacy,

we carry out a two-group factor analysis. The CFA model defined in (1) and (2) can be

extended to a two-group factor analysismodel by adding a superscript g to all variables and

parameters, with g denoting the group membership. Here, let g = 1 for the native

speakers and g = 2 for the non-native speakers. Since the test items are meant to measure

the factors in exactly the same way for both groups, we assume measurement

equivalence, that is, Λð1Þ ¼Λð2Þ and τð1Þ ¼ τð2Þ. The matrices ΘðgÞ
ɛ should satisfy the

equation ΘðgÞ
ɛ ¼ diag PðgÞ �ΛΦðgÞΛ0� �

, g = 1, 2. The model for the latent variables is

modified to:
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ηð2Þ1

ηð2Þ2

 !
∼N2

αð2Þ1

αð2Þ2

 !
,

ϕð2Þ
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ϕð2Þ
21 ϕð2Þ

22

 ! !
,

where ηðgÞ1 and ηðgÞ2 denote literacy and numeracy in group g respectively, and αð2Þ1 and αð2Þ2

are the means of the factors in group 2. The means and variances of the factors in group 1

are fixed to 0 and 1, respectively, to define their scales.

For the two-group model, the CP and AC log-likelihood functions are

plCP θ; y
ð1Þ
1 , . . .y

ð1Þ
N1
,y

ð2Þ
1 , . . .y

ð2Þ
N2

� �� �
¼ ∑

2

g¼1

∑
Ng

n¼1

plCPn θ;yðgÞ
n

� �
,

plAC θ; y
ð1Þ
1 , . . .y

ð1Þ
N1
,y

ð2Þ
1 , . . .y

ð2Þ
N2

� �� �
¼ ∑

2

g¼1

∑
Ng

n¼1

plACn θ;yðgÞ
n

� �
,

where plCPn θ;yðgÞ
n

� �
and plACn θ;yðgÞ

n

� �
are defined in (9) and (10) respectively, with the

difference of adding a superscript g to the y. The sample size of native speakers is

N1 = 1,078 and that of non-native speakers is N2 = 92.

MI-DWLS in multi-group analysis is complicated. Different strategies have been

suggested in the literature (e.g., product term imputation, separate group imputation) so

that possible interactive effects between the grouping variable and the remaining

variables will be preserved during the imputation, and in this way bias in the parameter

estimates is avoided. Mplus version 7.11 does not offer the option of multiple imputation
in the case of multi-group analysis within the CFA framework with ordinal indicators. For

this, we fitted the model using only CP and AC.

Both CP and AC are fast to implement; it takes each of them 2
1

2
minutes to fit the two-

group two-factor model. The estimated loadings and thresholds (which are nearly

Table 3. CP and AC estimates and standard errors for factor means, variances and covariances as

well as p-values for factor means for the two-group, two-factor model fitted to the UK data.

Subscripts 1 and 2 denote literacy and numeracy, respectively; superscripts 1 and 2 in parentheses

denote the native speakers group and the non-native speakers group, respectively

Parameter

Estimate Standard error p-value

CP AC CP AC CP AC

ϕð1Þ
21 .799 .797 .045 .045

αð2Þ1 .805 .834 .455 .182 .077 <.001
αð2Þ2 .428 .447 .807 .445 .596 .316

ϕð2Þ
11 .447 .365 .999 .526

ϕð2Þ
22 .872 .802 1.475 1.033

ϕð2Þ
21 .609 .532 .889 .541

18 Myrsini Katsikatsou et al.



identical between the methods) and their standard errors (which are very similar for the

loadings between the methods but for the thresholds; the AC ones are systematically

smaller) are displayed in Figure S9. The estimates and standard errors for the factor

means, variances and covariances, which are the parameters of interest, are reported in
Table 3. The qualitative results are similar for both methods and need to be interpreted

with caution because the size of the non-native speakers group is very small, 92; it is less

than one-tenth of the size of the native speakers group, which is 1,078. The estimates of

the factor means indicate that non-native speakers have, on average, lower levels of

literacy and numeracy than native speakers, but the difference is rather small, less than

one standard deviation. (Note that, for all binary indicators, the correct answer is coded

with 1 and an incorrect answer with 2; since the loading estimates are positive, higher

values of the factors denote lower level of the skills they represent.) Only the mean of
literacy, αð2Þ1 , is found to be statistically significant in the case of AC only (p-value <.001).
In both CP and AC, non-native speakers exhibit smaller variances for both literacy and

numeracy and higher correlation between literacy and numeracy (approximately .98)

than native speakers.

6. Conclusions and discussion

We develop and study the performance of complete-pairs (CP), available-cases (AC) and

three variants of the doubly robust (DR) pairwise likelihood (PL) estimators for

confirmatory factor analysis (CFA) models with binary and ordinal variables and missing

at random (MAR) data. Our simulation results indicate that the general result, that CP and

AC yield biased estimators because they ignore the missing-data mechanism, does not

necessarily apply to CFA. CP andAC are found to have acceptable relative bias and close to

zero raw bias for loading and factor correlation estimates, decreasing with a sample size
increase. Overall, larger but still acceptable relative biases were found in the binary

models compared to the ordinal ones. The CP and AC coverage rates of 95% CIs for

loadings and factor correlations are satisfactory and improve with a sample size increase.

The only systematic difference between CP and AC in their performance lies in the

estimation of thresholds. AC yields threshold estimates that have unacceptable relative

bias in the case of binary data but acceptable for ordinal data, andCPhas unacceptable bias

in all cases. We also study three variants of the DR PL estimator which we term the

unconstrained model exact probability (UMEP), hypothesized model exact probability
(HMEP), and hypothesized model approximate probability (HMAP) approaches. In the

binary model HMAP often exhibits an unacceptable performance, while the performance

of UMEP and HMEP in relative and raw bias for loadings and factor correlations is nearly

identical to that of CP and AC. UMEP and HMEP outperform CP and AC only in the

estimation of thresholds. However, as long as thresholds are not parameters of interest, CP

and AC are preferred because they require only a model for the observed data, the

estimation is done in one step, and the estimation of standard errors is straightforward.

UMEP and HMEP are computationally intensive and become infeasible for a large number
of variables (e.g., beyond 30).

Both CP and AC exhibit competitive performance compared to MI-DWLS except for

the estimation of thresholds. An advantage of CP and AC over MI-DWLS is that they only

require a model for the observed data. Moreover, the extension of CP and AC to the

analysis of multi-group data is straightforward, while multiple imputation should be
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conducted with caution so that the data imputation will not distort possible interaction

effects between the grouping variable and the remaining variables.

The results of the paper are applicable to exploratory factor analysis and structural

equation modelling (SEM) with categorical variables. As the general formulation of the
model is the same, the form of the objective function of the proposed methods remains

unchanged. The CP and AC estimators can also be extended to factor analysis and SEM

withmixed variables (categorical and continuous).What is needed in addition is to specify

the bivariate log-likelihood functions for the pairs of continuous variables and the pairs of

one categorical and one continuous variable. Finally, some first simulation results indicate

that CP and ACmay perform satisfactorily within CFAmodels with missing not at random

data, which could be a topic for future research.

Finally, we should note that the estimators proposed here assume that the model
is correctly specified. Lindsay et al. (2011) and Yi and Reid (2010) mention that

composite likelihood estimators might exhibit more robustness compared to

traditional likelihood methods since they require correct model specification in the

lower order margins than in the full pattern. However, there is also more recent work

that indicates that this might not be the case in all models and, in particular, Ogden

(2016) studied the case of misspecifying the random effect distribution in generalized

mixed effect models. Factor analysis models also depend on correctly specifying the

distribution of the latent variables and therefore further investigation is needed to
address the robustness of the pairwise likelihood estimator under model misspeci-

fication and missing values.
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Supporting Information

The following supporting informationmay be found in the online edition of the article:

Figure S1. Raw bias of individual parameter estimates (factor loadings, factor

correlations and thresholds) for binary data and sample size N = 300 shown for all

proposed estimation methods across the 5 data generating models.

Figure S2. Raw bias of individual parameter estimates (factor loadings, factor

correlations and thresholds) for binary data and sample size N = 1,000 shown for all

proposed estimation methods across the 5 data generating models.
Figure S3. Raw bias of individual parameter estimates (factor loadings, factor

correlations and thresholds) for ordinal data and sample size N = 300 shown for all

proposed estimation methods across the 5 data generating models.

Figure S4. Raw bias of individual parameter estimates (factor loadings, factor

correlations and thresholds) for ordinal data and sample size N = 1,000 shown for all

proposed estimation methods across the 5 data generating models.

Figure S5. Relative absolute bias (top panel), RMSE (middle panel), and bias of

standard errors (bottom panel) of estimated thresholds with CP method included
averaged over all variables and all factors when applicable, for all experimental

conditions, where N denotes the sample size.

Figure S6. Raw bias of factor loading (parameter index 1-20) and factor correlation

estimates (parameter index 21-26) for CP and AC for the four-factor model with 20

variables and sample sizes 1,000 and 50,000.

Figure S7. Raw bias of threshold estimates (parameter index 27-86) for CP and AC for

the four-factor model with 20 variables and sample sizes 1,000 and 50,000.

Figure S8. CP, AC, and MI-DWLS parameter estimates and standard errors for the
single-group two-factor model fitted to the UK data; the vertical lines separate

parameters of different types; from left to right: loadings, factor correlation,

thresholds.

Figure S9. CP and AC loading and threshold estimates and standard errors for the two-

group two-factor model fitted to the UK data; the vertical line separates loadings in the

left panel from thresholds in the right panel

Table S1. Percentage of overall completions by simulation and proper solutions by

method and simulation, Binary data, sample size 300.
Table S2. Percentage of overall completions by simulation and proper solutions by

method and simulation, Binary data, sample size 1,000.

Table S3. Percentage of overall completions by simulation and proper solutions by

method and simulation, Ordinal data, sample size 300.

Table S4. Table Percentage of overall completions by simulation and proper solutions

by method and simulation, Ordinal data, sample size 1,000.

Table S5. Literacy items: Percentages of planned missing data, ‘no response’, ‘not

reached /not attempted’, incorrect and correct responses. Subjects with missing data
to either all literacy or all numeracy or both sets of items have been excluded.

Table S6. Numeracy items: Percentages of planned missing data, ‘no response’, ‘not

reached/not attempted’, incorrect and correct responses. Subjects with missing data

to either all literacy or all numeracy or both sets of items have been excluded.
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