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Data and methods – additional material 

1. Data 

The SPEI index is sourced from Vicente-Serrano et al. (2010) and can be accessed using the 

following URL: https://spei.csic.es/database.html 

As explained by Vicente-Serrano et al. (2010), the SPEI relies on the concept of a climatic 

water balance, which is given by precipitation minus evapotranspiration: 

 

𝐷௜ = 𝑃௜ − 𝑃𝐸𝑇௜ (1) 

 

Where 𝑃௜ represents precipitation and uses the TS v. 4.03 dataset. 𝑃𝐸𝑇௜ represents the 

potential evapotranspiration and is calculated using the FAO-56 Penman–Monteith equation. 

Finally, 𝐷௜ represents a measure of water surplus or deficit for month i.  

This variable is then aggregated at different time scales to obtain the cumulative water balance 

over a given period. Following this, the variable is then standardized using the log-logistic 

distribution.  

As with all gridded datasets, they depend on data from weather stations, which are likely to 

change over time. While it is impossible for us to know how potential changes in stations over 

time has affected the precipitation variables and whether this had any effect on the SPEI, we 

note that in Harris et al. (2020), the coverage maps for the CRU for India seem to indicate 

good coverage, especially for the time-periods of data relevant for our analysis.  

Figure S.1 plots the distribution of the kharif and rabi SPEI indices for our sample. 

Figure S.2 is constructed by using the average share of the cereal area devoted to a given 

crop.  

Figure S.3 is constructed by using the sum of district total gross cropped area in our subsample 

for each year. We then set the value in 1966 as 100.  

To construct panel (a) of Figure S.4, we use rainfall data collected by the Indian Meteorological 

Department. The rainfall data are available in gridded format at a resolution of 0.25 degrees 

by 0.25 degrees (Pai et al., 2014). District-level weather data are then obtained by taking a 

weighted average of gridded observations from grid cells that fall in each district. 

Agro-ecological classification, on the basis of whether they are arid and humid, at the district 

level, (Figure S.4, panel (b)) is constructed using data in the ICRISAT dataset that subdivides 

India into 20 agro-ecological zones, which takes into account rainfall, potential 

evapotranspiration and soil type. These data are originally sourced from the National Bureau 

of Soil Sciences and Land Utilisation Pattern, ICAR, Nagpur (Gajbhiye and Mandal, 2010). 
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The agro-climatic regions of 2000 are used for the full analyzed period. To allow for a large 

number of observations in each sub-sample, we simplify this classification by merging all arid 

and semi-arid areas together irrespective of soil type (see red and orange districts in Figure 

S.4 (b)). We also merge humid, sub-humid and perhumid areas (see districts in yellow and 

green in Figure S.4 (b)). 

 

2. Empirical approach  

Significance of thresholds 

See Table S.4 for p-values of the different threshold models and Table S.5 for the location of 

thresholds in all estimated specifications. Note that, as described in Wang (2015), the 

threshold tests are sequential. In other words, when testing for the one-threshold model the 

null hypothesis is the linear model with the alternative being the single-threshold model. When 

testing for a double-threshold model, the null hypothesis becomes the single-threshold model 

and the double-threshold model becomes the alternative. In some cases (e.g. barley in the 

kharif season), it is possible that we have a p-value above 0.1 for a single-threshold (i.e. a 

model with no threshold is preferred) and a p-value below 0.1 for a double-threshold model 

(i.e. a double-threshold model is preferred to a single-threshold model). In these cases, this 

means that we opt for the no-threshold model because we fail to reject the null of no threshold 

in the first place. Throughout our paper, we test for significance at the 10% level to determine 

the admissibility of a threshold. However, as can be seen from Tables S.4 and S.5, the 

robustness of almost all of our thresholds is illustrated by the low p-values and the relatively 

small size of the confidence intervals for most of our estimates. 

Multiple threshold variables 

One important limitation of the threshold model used in the paper is its inability to account for 

multiple threshold variables simultaneously. Given the importance of both temperature and 

rainfall, it could have made sense to estimate thresholds of rainfall conditional on temperature 

(or vice versa). However, the panel threshold model proposed in Hansen (1999) is only 

capable of handling one threshold variable. The main justification for this is that, according to 

Hansen (2000), there is no distributional theory underlying such models. As such, even if we 

were to estimate such models using, for example, regression trees, we would not be able to 

calculate the degree of confidence associated with each threshold nor would we be able to 

construct their confidence intervals. To our knowledge, there have been developments to allow 

for the incorporation of multiple threshold variables in a time series setting (Chen et al., 2012). 

However, we are not aware of such developments for non-dynamic or dynamic panel data. 
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Beyond the direct policy relevance of the SPEI index as a multi-scalar drought index, the fact 

that it combines rainfall and temperature is an important reason as to why we adopted it as 

our threshold variable. 

Estimated impacts 

To obtain the plots in Figures 2-3, we plot the estimated deviations in log yields for the 

observed range of the SPEI. In the case of one threshold, we calculate: 

 

 

𝐸𝑓𝑓𝑒𝑐𝑡 = ൜
𝑆𝑃𝐸𝐼 ∗ 𝛽ଵ 𝑖𝑓 𝑆𝑃𝐸𝐼 ≤ 𝛾 (𝑖. 𝑒.  𝑆𝑃𝐸𝐼 𝑏𝑒𝑙𝑜𝑤 𝑇1)
𝑆𝑃𝐸𝐼 ∗ 𝛽ଶ 𝑖𝑓 𝑆𝑃𝐸𝐼 > 𝛾 (𝑖. 𝑒.  𝑆𝑃𝐸𝐼 𝑎𝑏𝑜𝑣𝑒 𝑇1)

 

 

(21) 

 

To make the results more interpretable, the results are interpreted as the estimated deviation 

in ln(𝑦௜௧) for a given value of the SPEI, when compared to a SPEI=0. It should be noted that 

the actual value of predicted log yields at SPEI is not 0 (which would imply a yield in levels of 

1 for each district). Instead our effect formula in (1) estimates the SPEI-log(yield) relationship 

conditional on other estimated parameters (district-specific quadratic trends and constant). 

However, to compare the results with the bins approach, we focus only on the marginal effects. 

Since, by definition, at SPEI=0, the effect (as calculated above) is always zero. We opt for this 

approach for two reasons. First, setting the SPEI equal to zero is the most natural value to 

compare deviations against because it is the centre of the distribution. Second, our bin 

approach robustness check (see below) is also computed using ln(𝑦௜௧) as a dependent 

variable and uses the centre of the distribution as a reference category. As such, to make the 

two approaches broadly comparable, we need to calculate the effect as shown above. 

Advantages of threshold model over alternative methods 

Compared to other methods, this approach has several advantages. First, it does not impose 

a global linear relationship between the independent variable and the dependent variable as 

in the case of a linear regression. Second, it does not impose a symmetrical relationship 

around an estimated peak as in the case of a quadratic model, nor does it impose a strict 

functional form as is the norm in the case of higher-order polynomial regressions. In this sense, 

it allows for an approach that is more data-driven. 

Other models, most notably the multivariate adaptive regression splines (MARS) model, have 

also been used to identify non-linear relationships between two variables (e.g. Zipper et al., 

2016). It has an advantage over the threshold regression model in that it allows for a large 

number of thresholds. In our case, however, this is unlikely to be important, since a three-

threshold model (the maximum allowed by our statistical software) is rejected in every case. 

However, it has several important drawbacks. First, analyses carried out using the MARS 
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model do not compute a confidence interval for the location of the threshold. One advantage 

of the threshold model is that, by computing and testing the statistical significance of the 

threshold and its confidence interval, it provides useful information regarding how precisely 

the threshold is estimated and how confident we are regarding its location for a given sample. 

Second, confidence intervals are also constructed around the coefficients so that we know 

how noisy our estimates are for a given range of the threshold variable.  

Compared to the bins approach (described in more detail below), our method also has several 

advantages. First, the bins approach is more subjective that the threshold model as the results 

will depend a lot on both the choice of a base category and the coarseness of the bins. This 

means that depending on the base category we choose and how coarse the bins are, we may 

come up with different thresholds simply based on our choices of these two parameters (base 

category and extent of bin coarseness).  

Second, a key purpose of this paper is to identify the location of the SPEI at which the yield-

SPEI relationship is likely to change (i.e. “thresholds”). Doing this with bins is much more 

challenging. With very small bins, it may be very difficult to identify where the average 

relationship changes given that estimates using bins are noisier. On the other hand, if we use 

coarser bins, it becomes easier to see where the threshold might lie (as changes in impacts 

become clearer), but the range of where the threshold lies could be very large. For example, 

for rice in the kharif season we note that impacts appear to become worse in the bin located 

at -1.75 (which covers SPEI values between -1.5 and -2). Yet, what we learn from this is that 

the threshold is likely to be located somewhere between the previous bin and this bin (which 

covers the -1 to -2 range). This range may be too large to be of any practical relevance. For 

example, a threshold of -2, would imply an event that happens roughly once every 50-60 

years, whereas a threshold of -1 would imply an event that is likely to happen every 4-6 years, 

depending on the sample.  

Third, the bins approach may also be problematic when the SPEI-yield relationship changes 

somewhere in (or very close to) either the base category or close to the extremes. In our 

paper, we find some thresholds in or very close to what would typically be considered a 

“normal” range of the SPEI (-.5 to +.5). Invariably, these thresholds would be difficult to pick 

up using a bins approach, especially if we set the “normal” range of the SPEI as a base 

category. With regards to identifying thresholds at extreme values of the SPEI, the bins 

approach could also be more problematic. Near the extremes, if we use absolute rules (say 

0.25 or 0.5 increments of the SPEI) we could end up with few observations, which may then 

make it impossible to identify thresholds. If we use relative rules (e.g. 2 or 5 percentiles), we 

may end up with a more accurate, but much bigger range of the SPEI, which might be of 

limited use for policy applications. With regards to identifying thresholds at extremes, the 
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threshold model improves on the bins approach in that it can identify these thresholds. 

However, often, when thresholds are estimated close to the extremes, it will also have wider 

Cis for these cases or no Cis for the threshold location when these are located at the cut-off 

point of the trimming, which reflects the uncertainty around the threshold. 

 A final point is that, when computing total losses, the choice of a base category that includes 

0 (e.g. -0.5 and +0.5) will lead to an underestimate of total losses (see Figure 6), as many 

events are not considered. It is true that a base category could be constructed at a higher 

range of the SPEI, but until now we have not observed researchers comparing SPEI ranges 

to base categories that do not include 0. 

  

3. Robustness checks  

Sensitivity to alternative cutoff points 

One potential source of subjectivity in a threshold model is the choice of how much of the 

threshold variable is to be trimmed at the extremes. In our case, we opted for 1%, but we also 

test the sensitivity of results to alternative trimming points at 0.5%, 1.5% and 2.5%. Overall, 

as can be seen in Table S.11, our results remain broadly unaffected. 

Sensitivity of estimates to clustering and spatial correlation 

Throughout the paper we used standard errors clustered at the district level. The main reason 

for this is anchored in the fact that when large numbers of clusters are available (e.g. typically 

above 50), the asymptotic conditions for the clustering are met (Cameron and Miller, 2015). 

Below this number, there is currently no consensus on the extent to which we can trust 

clustered standard errors. To test the sensitivity of our estimates to clustering on different 

variables, we cluster the errors using the year as a clustering variable.  

We also cluster using a two-way cluster based on state and year. However, in this case, while 

we show the results in Table S.12, one of the clusters (State) falls clearly in a grey area and 

as such, of all the clustering sensitivity checks, this is the one that gives us least confidence. 

From an estimation perspective, we note that the xthreg command on Stata does not allow for 

two-way clustering of standard errors. As such, for the state-year clustering, we use the 

estimated thresholds from the threshold regression and reproduce the equation using the high-

dimensional fixed effects regression command in Stata reg2hdfe by Guimarães (2015). We 

apply this procedure using the clus_nway code by Wolfson and Kleinbaum (2020). Since this 

procedure could be problematic when the dimension of one of the clusters is small (which is 

the case for the state dimension), we also consider using a wild bootstrap (using the boottest 
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command), a method suggested in Cameron and Miller. We do not report the results of the 

wild bootstrap as they were almost identical to the results produced by the other procedures. 

To test the sensitivity of the estimates to spatial correlation, we use Conley (1999) errors using 

the stata routine procedure proposed by Hsiang (2010). Since, the spatial correlation part of 

the procedures requires a distance cutoff, we test multiple cutoffs at 50, 100, 250, 500 and 

1000 km.  

Sensitivity to alternative lags for the kharif season 

While using June-September is a common definition of the kharif season in India, it is not the 

only definition. Some researchers prefer June-October. As a result, to ensure that our results 

are not driven by the definition we use for kharif season, we construct two alternative kharif 

SPEI indices, covering June-October and June-November, respectively. As can be seen in 

Table S.13, the results remain broadly similar.  

Sensitivity to the inclusion of controls 

Our preferred specification is a reduced-form function where controls are excluded. This is 

arguably the most common type of specification in the climate literature. To test the robustness 

of our results, we estimate our results with and without a set of time-varying control variables, 

𝑋௜௧. We include rural population per hectare of cereal area, total cereal area, fertilizer used 

and proportion of land under irrigation. However, given that our method requires a balanced 

panel, we lose many districts. For example, out of 242 districts in the full sample, the inclusion 

of only four controls leads to the loss of 138 districts.  Despite this, while threshold locations 

and coefficients change a little, the main results (Table S.14) remain very similar. We do not 

report the barley estimates, however, because for this sample we are left with just eight 

districts (368 observations) and hence the estimation results are unlikely to be credible.  

Application of the bins approach 

We also check total impacts and compare these to the estimates from our threshold model 

using dummy variables to capture the effects of the SPEI on our yield variables at different 

percentiles of the index (‘bins’ approach). This robustness check adapts a commonly-used 

method to estimate weather (mostly temperature) impacts on economic outcomes (e.g. 

Schlenker and Roberts, 2009), which consists of estimating dummy variables for different 

ranges (bins) of the SPEI. Bins were constructed as follows. The 45th to 55th percentiles of 

the average seasonal SPEI values is used as the baseline. Then, dummy variables are 

constructed for values below the 1st percentile, above the 99th percentile, and for every 

second percentile between the 1st and 99th percentile which did not fall into the baseline 

category.  



8 
 

To plot the predicted deviations of the SPEI compared to the base category, we start by 

defining a set of dummy variables that are equal to one if the SPEI is within a given range and 

zero otherwise. The range is based on the percentiles of the SPEI. Specifically, we generate 

bins in the following way: 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝐷ଵ = 1  𝑖𝑓 𝑆𝑃𝐸𝐼 < 𝑝1; 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝐷ଵ௧௢ଷ = 1  𝑖𝑓 𝑝1 ≤ 𝑆𝑃𝐸𝐼 < 𝑝3 ; 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⋮
𝐷ସଷ௧௢ସହ = 1  𝑖𝑓 𝑝43 ≤ 𝑆𝑃𝐸𝐼 < 𝑝45 ; 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐷ସହ௧௢ସ଻ = 0  𝑖𝑓  𝑝45 ≤ 𝑆𝑃𝐸𝐼 < 𝑝47 
⋮

𝐷ହଷ௧௢ହହ = 0 𝑖𝑓  𝑝53 ≤ 𝑆𝑃𝐸𝐼 < 𝑝55
𝐷ହହ௧௢ହ଻ = 1  𝑖𝑓 𝑝55 ≤ 𝑆𝑃𝐸𝐼 < 𝑝57 ; 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⋮
𝐷ହହ௧௢ହ଻ = 1  𝑖𝑓 𝑝97 ≤ 𝑆𝑃𝐸𝐼 < 𝑝99 ; 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐷ଽଽ = 1  𝑖𝑓 𝑆𝑃𝐸𝐼 ≥ 𝑝99 ; 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (2) 

 

 

In other words, D1, for example, is equal to one if the SPEI falls below the first percentile and 

is equal to zero otherwise and 𝐷ଵ௧௢ଷ is equal to one if the SPEI falls between the first and third 

percentile and zero otherwise. Note, we use percentiles to ensure that each bin contains 

enough observations so that the dummy variables are estimated with a sufficient degree of 

precision. Most of our crop-specific samples have in excess of 5,000 observations, which 

means that each dummy contains at least 100 observations (above 50 in the extremes), a 

sufficient size to ensure that the coefficient is estimated with a minimum degree of accuracy. 

We also run these regressions using increments of the SPEI (based on 0.25 and 0.5 

increments, using the range [-0.5, +0.5] as a base category. 

We argue that the bins approach has several advantages as a robustness check against other 

commonly used methods (i.e. generally imposing a quadratic or cubic relationship). First, it 

does not impose an a priori shape between the SPEI and yield. Second, unlike imposing a 

quadratic trend, it allows the relationship to be asymmetrical around a given turning point. 

Third, since the bins are quite small, it also allows us to visually identify whether the “jumps” 

and thresholds identified by the threshold model seem to be reflected in the data. The 

drawback, of course, is that the range of observed SPEI values in D1 will be a lot larger than 

in the range of 𝐷ସଷ௧௢ସହ, which means we have less granularity at lower levels of the SPEI. 

Arguably, since threshold methods require a portion of the data to be trimmed at the extremes 

(we use 1%), this is not a critical issue. That said, differences in the relationship within the 1st 

percentile will not be estimated. We set the dummies for SPEI values between the 45th and 

55th percentiles as this is the base category against which we can compare the SPEI 

coefficients. As the SPEI follows a close to normal distribution, in most cases these percentiles 
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will contain the value of zero or close to zero, which make these coefficients comparable to 

the coefficients obtained by the threshold model. 

Once the dummy variables are generated, we estimate the following regression using a 

fixed-effects regression: 

𝑙𝑛(𝑦௜௧) = 𝛼௜௧  + 𝛽௜ଵ𝑑𝑖𝑠𝑡௜ ∗ 𝑡 + 𝛽௜ଶ𝑑𝑖𝑠𝑡௜ ∗ 𝑡ଶ + 𝛿ଵ𝐷ଵ + 𝛿ଵ௧௢ଷ𝐷ଵ௧௢ଷ + ⋯ + 𝛿ସଷ௧௢ସହ𝐷ସଷ௧௢ସହ +
𝛿ହହ௧௢ହ଻𝐷ହହ௧௢ହ଻ + ⋯ + 𝛿ଽ଻௧௢ଽଽ𝐷ଽ଻௧௢ଽଽ + 𝛿ଵ଴଴𝐷ଵ଴଴ + 𝜖௜௧    (3) 

 

After the regression is estimated, we simply store the set of 𝛿  coefficients and plot these. 

 

Analysing potential heterogeneity of thresholds and marginal effects by crop 

To test whether thresholds and marginal effects are similar across agro-ecological zones and 

irrigation status, we run the crop-specific threshold models by AEZ and irrigation status.  The 

results are presented in Tables S.6 to S.10. 

For AEZ, we divide each crop sample into an arid and a humid subsample (Figure S.4(b), SI 

- 1). 

To build the irrigation sub-samples, we use the share of the total cropped area for a given crop 

under irrigation. Our model requires that our sub-samples are temporally consistent (due to 

the necessity of having a balanced sample). As such, we cannot have districts switching 

across sub-samples. We therefore calculate for each district the average share grown under 

irrigated conditions for a given crop and then split the sample based on the median value. This 

ensures both temporal consistency across the sub-samples as well as a comparable number 

of observations across both sub-samples. 

Finally, it should be noted that the sum of observations in the two irrigation sub-samples may 

not always be equal to the total number of observations for a given crop. This is because for 

certain districts irrigation data are missing, implying that these districts are dropped. 

 

4. Procedures for estimating the per ha and total revenue losses 

Defining relevant counterfactuals 

Beyond the identification of thresholds, to explore the policy relevance of our threshold 

models, we compare the results from these models to those from different counterfactuals. 

We opt to focus only on negative deviations of the SPEI for this part of our analysis for several 

reasons. First, since floods tend to be more concentrated in space and time, as opposed to 

droughts, which are more of a creeping phenomenon, our index is more likely to capture 

droughts better than floods (although it does capture wet years). Second, since for most crops 
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wetter conditions are associated with higher yields (at least up to a certain point), considering 

all the events above 0 as impacts would be problematic as the revenue losses would actually 

be revenue gains. Third, although floods have been defined using SPEI or SPI thresholds, 

arbitrary definitions tend to be used most often for droughts. As such, we opt to focus on the 

negative range of the SPEI to illustrate our main points about the importance of data-driven, 

objective thresholds tied to an outcome of interest. 

For the per ha losses, since these are evaluated at the location of the threshold, we are 

constrained by specifications that are linear and return different impacts for SPEI values of T1 

and T1-0.1. Here, we use two counterfactuals, namely a log-linear specification and a non-

linear specification (quadratic). As we are interested in estimating the losses for the negative 

range, we imposed a quadratic relationship with a threshold at a SPEI value of 0.  

We do not use other non-linear models (e.g. bins) for the per ha effect since the bins may be 

larger than 0.1 which means that the effect at T1 and at T-0.1 would be in the same bin and 

thus would not vary. 

However, the main point this paper wants to make, rather than which non-linear specification 

is best, relates to the use of arbitrary thresholds. To illustrate this, in addition to the log-linear 

and quadratic counterfactuals, for the total costs, we add four additional counterfactuals, some 

of which were/are actively used in policy and/or research. The four additional counterfactuals 

are as follows: 

1) A 20% negative deviation from long-term average rainfall during June-September. This 

was the definition for a drought at the district level that was used in India. We note that, 

for this counterfactual, the comparison is limited to the 1966-2009 period as we do not 

have the rainfall data for 2010-2011. 

2) A threshold arbitrarily set at SPEI=-1 using a log-linear specification – A SPEI of -1 is 

often considered the trigger for a dry event. 

3) A threshold arbitrarily set at SPEI=-1 using the quadratic specification. 

4) The bins approach using the percentiles method as explained above. 

Defining prices to monetize the yield losses 

First, we acknowledge that there is no perfect price for valuing yield losses over a period 

spanning almost 50 years. We opt to use 2005 national prices in USD because 2005 is a 

relatively recent year in which relatively few districts were affected by drought, so national 

prices were less likely to be affected by drought. A fixed year ensures that revenue losses are 

comparable over time and districts. Two alternatives were considered and discarded for the 

following reasons: 
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1. Farm-gate prices – these have the advantage of allowing for district-year specific 

prices. However, there are at least three potential drawbacks. First, these prices were 

likely to have been affected by drought in the first place. Second, this would have 

raised the issue of using real prices and it was not clear whether inflation at the district-

level (or even food inflation) would have been an accurate deflator. Third, drought-

induced revenue losses would depend a lot more on whether drought occurred (if it 

hits districts with a higher price elasticity, the cost would be higher).  

2. International commodity prices or prices in neighbouring countries – these are not 

adopted, also for three reasons. First, it is not entirely clear that using international 

prices would free us from the impact of drought on prices. The only difference is that 

these prices would most likely have been affected by droughts in large producers 

rather than in India (e.g. Vietnam, Thailand in the case of rice). Second, the 

commodities sold in international markets are not the same as the commodities sold 

by farmers. For instance, in the case of rice, the rice sold in the international market is 

already milled and differs depending on type. Applying a constant conversion factor 

and estimating marketing margins is not necessarily a good idea. Finally, we do not 

want our revenue loss estimates to be overly affected by sudden changes in 

international prices. For example, in 1986 and 1987 (a particularly bad year in terms 

of droughts in India), international prices for cereals seem to have decreased 

substantially. According to the WB pink sheet data, there were decreases ranging from 

20-43% compared to 1985 for all cereals except rice (not covered in 1985) and millet 

(not included in the dataset). Using this option would have masked the very high costs 

of the 1986 and 1987 droughts. 

Procedures for estimating the per ha revenue losses  

In terms of the procedure, the calculation of the per ha revenue loss is illustrated for a one 

threshold case against a log-linear model (the process is almost identical for other 

counterfactuals. Specifically, we only need to change step 6 and estimate the different 

counterfactual). We carry out the following steps for each crop sample: 

1. After estimating the threshold model, we create a temporary SPEI variable equal to T1 

for the full sample. 

2. We use the threshold model to calculate the predicted yield at SPEI=T1 using the 

command levpredict on Stata. Note that we cannot simply take the exponent of the 

predicted ln(y_it) because this would result in a bias. 

3. We then create another temporary SPEI variable equal to T1-0.1 and calculate the 

predicted value at SPEI=T1-0.01 using the command levpredict on Stata. 
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4. We take the difference in the predicted values obtained in steps 2 and 3, which gives 

us the expected yield difference for a 0.01 change in the SPEI value at the threshold. 

5. We then multiply the value obtained in step 4 by the 2005 price per tonne of the cereal 

we are investigating. Note that to generate the price variable, we use a weighted 

average of district-level prices where weights are defined by cropped area. Since the 

prices are expressed in Rupees per quintal (100 kilograms), we first convert the loss 

into USD by dividing it by the annual exchange rate (44.1 Rupees per USD) from the 

World Bank WDI database. After, we multiply the USD/per quintal price by 10 to get 

the USD per tonne price.  

6. To compute the “no threshold” counterfactual, we start by estimating a fixed effects 

model where we assume that SPEI is linearly related to ln y (the no threshold 

counterfactual): 

ln(𝑦௜௧) = 𝛼௜௧  + 𝛽௜ଵ𝑑𝑖𝑠𝑡௜ ∗ 𝑡 + 𝛽௜ଶ𝑑𝑖𝑠𝑡௜ ∗ 𝑡ଶ + 𝛿𝑆𝑃𝐸𝐼௜௧ + ϵ୧୲ 

7. We calculate the predicted yield at SPEI=T1 using the regression estimated in step 6. 

8. We calculate the predicted value at SPEI=T1-0.11 using the model in step 6. 

9. We take the difference between the values in steps 7 and 8 and multiply the difference 

by the price per tonne. 

We then repeat this procedure for each crop to get the results in Figure 4. 

 

Procedure to estimate total revenue losses 

The procedure to calculate the total revenue loss bears some similarities with the marginal 

loss per hectare procedure. However, there are two key differences. Whereas in the marginal 

cost per ha calculation we impose the location where the effect is estimated, in the total cost 

calculation, we use observed SPEI values. Secondly, we calculate the costs associated with 

all events that have SPEI values below zero (i.e. we exclude events above zero for the reasons 

explained above) and compare these to an SPEI value of 0. The key rationale for this is that 

because drought is normally defined as a negative departure from normal, it would be hard to 

justify any point above zero. Also, it is the most natural SPEI value with which to make a 

comparison of results. 

More concretely, to obtain total revenue losses, we start by carrying out the following steps for 

each crop separately (steps below illustrate the procedure for the log-linear case. For other 

counterfactuals, we simply need to change the estimated equation in step 7): 

1. Using the levpredict command, we use the threshold model to predict the predicted 

yield at the observed SPEI value.  
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2. We create a temporary SPEI variable equal to zero for the full sample and compute 

the predicted value at SPEI =0 levpredict command. This is essentially the 

counterfactual value. 

3. To generate the predicted loss per hectare, we take the difference between the 

values obtained in steps 1 and 2.  

4. We then multiply the result obtained in step 3 by total cultivated hectares.  

5. We multiply the results obtained in 4 by the 2005 price for that specific subsample. 

This gives us the total losses per district predicted by the threshold model for a given 

year. 

6. We then add the results obtained in 5 for all districts in a given year. This gives us 

the total losses for a given year under the threshold model. 

7. To compute the “no threshold” counterfactual, we start by estimating a fixed effects 

model where we assume that SPEI is linearly related to ln y (the no threshold 

counterfactual): 

ln(𝑦௜௧) = 𝛼௜௧  + 𝛽௜ଵ𝑑𝑖𝑠𝑡௜ ∗ 𝑡 + 𝛽௜ଶ𝑑𝑖𝑠𝑡௜ ∗ 𝑡ଶ + 𝛿𝑆𝑃𝐸𝐼௜௧ + ϵ୧୲ 

8. We repeat steps 1-7 using the linear model. 

9. We take the difference between the losses predicted by the threshold model vs. the 

linear model, which generates an estimate of the size of the threshold effect. 

After carrying out steps 1-9 for each crop in each season, we aggregate the revenue losses 

across all crops and seasons. After doing this we calculate the average difference in revenue 

lost between the threshold and each counterfactual to obtain Figure 6. We then aggregate the 

total revenue losses for all crops and seasons by sub-period (1966-1970; 1971-1975, 1976-

1980, 1981-1985, 1986-1990, 1991-1995, 1996-2000, 2001-2005, and 2006-20114) for each 

counterfactual to generate Figures 5(a), 5(b), and Figures S.11 and S.12. 

  

                                                           
4 In the case of rainfall, as explained before, we can only carry out this exercise up to 2009, since we did not 
have access to the dataset for 2010 and 2011. 
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Figures and Tables 

 

Figure S.1. SPEI distribution over the kharif and rabi seasons 
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Figure S.2. Area planted by crop  

Panels (a)-(f) show the proportion of gross cropped area devoted to each of the six crops 
used in the analysis. For districts with no data, these areas are shown as white polygons. 
District boundaries refer to those in 1966. 
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Figure S.3. Total cultivated area by crop 

The total cultivated area is indexed at 100 for the year 1966. 
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Figure S.4. India rainfall and AEZ classification 

Panel (a) shows district-level average rainfall for the 1957-2009 period. Panel (b) maps the 
agro-ecological zones. For both, only districts for which we have data are plotted. Districts 
for which we have no data are shaded in white. 
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Figure S.5. Plots of dummies (percentiles) vs. threshold regressions (rice, maize, 
sorghum and millet) 

 



20 
 

 

Figure S.6. Plots of dummies (percentiles) vs. threshold regressions (wheat and 
barley) 
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Figure S.7. Plots of dummies (0.5 increments) vs. threshold regressions (rice, 
sorghum, maize and millet)  
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Figure S.8. Plots of dummies (0.5 increments) vs. threshold regressions (wheat and 
barley)  
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Figure S.9. Plots of dummies (0.25 increments) vs. threshold regressions (rice, 
sorghum, maize and millet)  
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Figure S.10. Plots of dummies (0.25 increments) vs. threshold regressions (wheat and 
barley)  
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Figure S.11. Estimated revenue loss for all crops per sub-period vs. continuous 
counterfactuals 

 

Note: Total costs per sub-period are estimated by summing the predicted yields given the observed 
SPEI value vs. predicted yields at SPEI equal 0 for each crop for which a threshold is found. The 
difference implied by the threshold is estimated by comparing the implied yields under the threshold 
model given observed SPEI values against the implied yields given observed SPEI values using 
alternative counterfactuals. The comparison across counterfactuals is obtained by dividing the 
average difference between the threshold model and a given counterfactual  by the average predicted 
revenue loss using the threshold model. Panel (a) compares the threshold model with the log-linear 
model and panel (b) imposes an arbitrary threshold at SPEI=-1 for the log-linear model. Panels (c and 
d) impose a quadratic specification for the negative range of the SPEI (with and without a pre-
determined threshold). 
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Figure S.12. Comparison across all counterfactuals and estimated revenue loss for all crops 
per sub-period vs. discrete counterfactuals 

Note: Total costs per sub-period are estimated by summing the predicted yields given the observed 
SPEI value vs. predicted yields at SPEI equal 0 for each crop for which a threshold is found. The 
difference implied by the threshold is estimated by comparing the implied yields under the threshold 
model given observed SPEI values against the implied yields given observed SPEI values using 
alternative counterfactuals. The comparison across counterfactuals is obtained by dividing the 
average difference between the threshold model and a given counterfactual by the average predicted 
revenue loss using the threshold model. Panel (a) shows the differences between counterfactuals. 
Panel (b) compares the threshold model against a simple dummy variable where the pre-determined 
rainfall threshold is located at 20% negative deviation from rainfall. Panels (g) and (h) compare the 
threshold model to the bins model (percentiles and increments.
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Table S.1. Summary statistics 

Note: N refers to the total number of observations. S. D. refers to the standard deviation. Min. 
and Max. refer to the minimum and maximum values. Rural population density is calculated 
as the total rural population divided by the gross cropped area. Fertilizer intensity is obtained 
by dividing total fertilizer used by gross cropped area. The mean kharif 4-month SPEI is the 
SPEI with 4-month lag in September. The rabi SPEI is the SPEI with a 6-month lag in March. 
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Table S.2. Unit root tests 

Notes: This table presents the results of the unit-root tests for the dependent variable of 
every sub-sample. LLC is the Levin-Liu-Chu panel unit root test and IPS is the Im-Pesaran-
Chin panel unit root test. In both cases, the null of all panels having a unit root is rejected at 
the 1% level. 
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Table S.3. Summary of coefficients (all specifications)   

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. 
Numbers in bold denote the estimated threshold values of the SPEI. T1 and T2 denote 
thresholds 1 and 2, respectively. Numbers in italics represent the predicted effect of a 0.01 
increase in the SPEI value. For example, for a coefficient of 0.185 means that, for a given 
event in the rice sample for a value of the SPEI below -1.348, a 0.1 decrease in the index 
leads to a fall in yield of 2.032 percent. The abbreviations p. and rp. below the value of the 
identified threshold represent the percentile of the distribution and the associated return 
period. N refers to the number of observations. The number of districts can be obtained by 
dividing N by 46. 

 

 

  



30 
 

 

Table S.4. P-value for selection of the threshold model 

Note: Blank cells indicate that the threshold test did not reject the null of no threshold. NA 
means that the threshold model was not estimated. 
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Table S.5. Threshold location and confidence intervals 

 

Note: Blank cells indicate that the threshold test did not reject the null of no threshold. NA 
means that the threshold model was not estimated. 
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Table S.6. Summary of coefficients for rice sub-samples 

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. For 
the irrigation sub-sample, the used cut-off was 70.1% of irrigated rice 
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Table S.7. Summary of coefficients for millet sub-samples 

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. For 
the irrigation sub-sample, the used cut-off was 2.4% of irrigated millet 

 

 

Table S.8. Summary of coefficients for maize sub-samples 

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. For 
the irrigation sub-sample, the used cut-off was 6.4% of irrigated wheat 
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Table S.9. Summary of coefficients for sorghum sub-samples 

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. For 
the irrigation sub-sample, the used cut-off was 1% of irrigated sorghum 
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Table S.10. Summary of coefficients for wheat sub-samples 

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. For 
the irrigation sub-sample, the used cut-off was 86.06% of irrigated wheat 
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Table S.11. Sensitivity to trimming cut-off point 
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Table S.12. Coefficients – Robustness to SEs 

Note: The column labelled main refers to our preferred specification with clustered standard 
errors at the district level. The columns cluster year and cluster state-year refer to the 
robustness checks where the standard errors were clustered at the year and two-way state-
year clustering. All other columns refer to the coefficients when the regressions are estimated 
with Conley (1999) standard errors, allowing for correlation at different spatial scales. 
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Table S.13. Different lag specifications – kharif season 

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. For each subsample, the first column (“4 (main)”) 
represents the SPEI index with a 4-month    lag at September. Columns “5” and “6” denote the SPEI index with a 5- and 6-month lag, covering 
the periods between June-October and June-November, respectively.
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Table S.14. Summary of coefficients including controls 

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. 
Numbers in bold denote the estimated threshold values of the SPEI. T1 and T2 denote 
threshold 1 and 2, respectively. Numbers in italics represent the predicted effect of a 0.1 
increase in the SPEI value. 

 

 

 

 

  


