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Data and methods — additional material
1. Data

The SPEI index is sourced from Vicente-Serrano et al. (2010) and can be accessed using the

following URL.: https://spei.csic.es/database.html

As explained by Vicente-Serrano et al. (2010), the SPEI relies on the concept of a climatic

water balance, which is given by precipitation minus evapotranspiration:

Di:Pi—PETi (1)

Where P; represents precipitation and uses the TS v. 4.03 dataset. PET; represents the
potential evapotranspiration and is calculated using the FAO-56 Penman—Monteith equation.

Finally, D; represents a measure of water surplus or deficit for month i.

This variable is then aggregated at different time scales to obtain the cumulative water balance
over a given period. Following this, the variable is then standardized using the log-logistic

distribution.

As with all gridded datasets, they depend on data from weather stations, which are likely to
change over time. While it is impossible for us to know how potential changes in stations over
time has affected the precipitation variables and whether this had any effect on the SPEI, we
note that in Harris et al. (2020), the coverage maps for the CRU for India seem to indicate

good coverage, especially for the time-periods of data relevant for our analysis.
Figure S.1 plots the distribution of the kharif and rabi SPEI indices for our sample.

Figure S.2 is constructed by using the average share of the cereal area devoted to a given

crop.

Figure S.3 is constructed by using the sum of district total gross cropped area in our subsample

for each year. We then set the value in 1966 as 100.

To construct panel (a) of Figure S.4, we use rainfall data collected by the Indian Meteorological
Department. The rainfall data are available in gridded format at a resolution of 0.25 degrees
by 0.25 degrees (Pai et al., 2014). District-level weather data are then obtained by taking a

weighted average of gridded observations from grid cells that fall in each district.

Agro-ecological classification, on the basis of whether they are arid and humid, at the district
level, (Figure S.4, panel (b)) is constructed using data in the ICRISAT dataset that subdivides
India into 20 agro-ecological zones, which takes into account rainfall, potential
evapotranspiration and soil type. These data are originally sourced from the National Bureau
of Soil Sciences and Land Utilisation Pattern, ICAR, Nagpur (Gajbhiye and Mandal, 2010).
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The agro-climatic regions of 2000 are used for the full analyzed period. To allow for a large
number of observations in each sub-sample, we simplify this classification by merging all arid
and semi-arid areas together irrespective of soil type (see red and orange districts in Figure
S.4 (b)). We also merge humid, sub-humid and perhumid areas (see districts in yellow and

green in Figure S.4 (b)).

2. Empirical approach

Significance of thresholds

See Table S.4 for p-values of the different threshold models and Table S.5 for the location of
thresholds in all estimated specifications. Note that, as described in Wang (2015), the
threshold tests are sequential. In other words, when testing for the one-threshold model the
null hypothesis is the linear model with the alternative being the single-threshold model. When
testing for a double-threshold model, the null hypothesis becomes the single-threshold model
and the double-threshold model becomes the alternative. In some cases (e.g. barley in the
kharif season), it is possible that we have a p-value above 0.1 for a single-threshold (i.e. a
model with no threshold is preferred) and a p-value below 0.1 for a double-threshold model
(i.e. a double-threshold model is preferred to a single-threshold model). In these cases, this
means that we opt for the no-threshold model because we fail to reject the null of no threshold
in the first place. Throughout our paper, we test for significance at the 10% level to determine
the admissibility of a threshold. However, as can be seen from Tables S.4 and S.5, the
robustness of almost all of our thresholds is illustrated by the low p-values and the relatively

small size of the confidence intervals for most of our estimates.
Multiple threshold variables

One important limitation of the threshold model used in the paper is its inability to account for
multiple threshold variables simultaneously. Given the importance of both temperature and
rainfall, it could have made sense to estimate thresholds of rainfall conditional on temperature
(or vice versa). However, the panel threshold model proposed in Hansen (1999) is only
capable of handling one threshold variable. The main justification for this is that, according to
Hansen (2000), there is no distributional theory underlying such models. As such, even if we
were to estimate such models using, for example, regression trees, we would not be able to
calculate the degree of confidence associated with each threshold nor would we be able to
construct their confidence intervals. To our knowledge, there have been developments to allow
for the incorporation of multiple threshold variables in a time series setting (Chen et al., 2012).

However, we are not aware of such developments for non-dynamic or dynamic panel data.



Beyond the direct policy relevance of the SPEI index as a multi-scalar drought index, the fact
that it combines rainfall and temperature is an important reason as to why we adopted it as

our threshold variable.
Estimated impacts

To obtain the plots in Figures 2-3, we plot the estimated deviations in log yields for the

observed range of the SPEI. In the case of one threshold, we calculate:

E L= {SPEI * B, if SPEI <y (i.e. SPEI belowT1) (24)
fTect =\spEr« B, if SPEI >y (i.e. SPEI above T1)

To make the results more interpretable, the results are interpreted as the estimated deviation
in In(y;¢) for a given value of the SPEI, when compared to a SPEI=0. It should be noted that
the actual value of predicted log yields at SPEI is not 0 (which would imply a yield in levels of
1 for each district). Instead our effect formula in (1) estimates the SPEI-log(yield) relationship
conditional on other estimated parameters (district-specific quadratic trends and constant).
However, to compare the results with the bins approach, we focus only on the marginal effects.
Since, by definition, at SPEI=0, the effect (as calculated above) is always zero. We opt for this
approach for two reasons. First, setting the SPEI equal to zero is the most natural value to
compare deviations against because it is the centre of the distribution. Second, our bin
approach robustness check (see below) is also computed using In(y;;) as a dependent
variable and uses the centre of the distribution as a reference category. As such, to make the

two approaches broadly comparable, we need to calculate the effect as shown above.
Advantages of threshold model over alternative methods

Compared to other methods, this approach has several advantages. First, it does not impose
a global linear relationship between the independent variable and the dependent variable as
in the case of a linear regression. Second, it does not impose a symmetrical relationship
around an estimated peak as in the case of a quadratic model, nor does it impose a strict
functional form as is the norm in the case of higher-order polynomial regressions. In this sense,

it allows for an approach that is more data-driven.

Other models, most notably the multivariate adaptive regression splines (MARS) model, have
also been used to identify non-linear relationships between two variables (e.g. Zipper et al.,
2016). It has an advantage over the threshold regression model in that it allows for a large
number of thresholds. In our case, however, this is unlikely to be important, since a three-
threshold model (the maximum allowed by our statistical software) is rejected in every case.

However, it has several important drawbacks. First, analyses carried out using the MARS



model do not compute a confidence interval for the location of the threshold. One advantage
of the threshold model is that, by computing and testing the statistical significance of the
threshold and its confidence interval, it provides useful information regarding how precisely
the threshold is estimated and how confident we are regarding its location for a given sample.
Second, confidence intervals are also constructed around the coefficients so that we know

how noisy our estimates are for a given range of the threshold variable.

Compared to the bins approach (described in more detail below), our method also has several
advantages. First, the bins approach is more subjective that the threshold model as the results
will depend a lot on both the choice of a base category and the coarseness of the bins. This
means that depending on the base category we choose and how coarse the bins are, we may
come up with different thresholds simply based on our choices of these two parameters (base

category and extent of bin coarseness).

Second, a key purpose of this paper is to identify the location of the SPEI at which the yield-
SPEI relationship is likely to change (i.e. “thresholds”). Doing this with bins is much more
challenging. With very small bins, it may be very difficult to identify where the average
relationship changes given that estimates using bins are noisier. On the other hand, if we use
coarser bins, it becomes easier to see where the threshold might lie (as changes in impacts
become clearer), but the range of where the threshold lies could be very large. For example,
for rice in the kharif season we note that impacts appear to become worse in the bin located
at -1.75 (which covers SPEI values between -1.5 and -2). Yet, what we learn from this is that
the threshold is likely to be located somewhere between the previous bin and this bin (which
covers the -1 to -2 range). This range may be too large to be of any practical relevance. For
example, a threshold of -2, would imply an event that happens roughly once every 50-60
years, whereas a threshold of -1 would imply an event that is likely to happen every 4-6 years,

depending on the sample.

Third, the bins approach may also be problematic when the SPEI-yield relationship changes
somewhere in (or very close to) either the base category or close to the extremes. In our
paper, we find some thresholds in or very close to what would typically be considered a
“normal” range of the SPEI (-.5 to +.5). Invariably, these thresholds would be difficult to pick
up using a bins approach, especially if we set the “normal” range of the SPEI as a base
category. With regards to identifying thresholds at extreme values of the SPEI, the bins
approach could also be more problematic. Near the extremes, if we use absolute rules (say
0.25 or 0.5 increments of the SPEI) we could end up with few observations, which may then
make it impossible to identify thresholds. If we use relative rules (e.g. 2 or 5 percentiles), we
may end up with a more accurate, but much bigger range of the SPEI, which might be of

limited use for policy applications. With regards to identifying thresholds at extremes, the
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threshold model improves on the bins approach in that it can identify these thresholds.
However, often, when thresholds are estimated close to the extremes, it will also have wider
Cis for these cases or no Cis for the threshold location when these are located at the cut-off

point of the trimming, which reflects the uncertainty around the threshold.

A final point is that, when computing total losses, the choice of a base category that includes
0 (e.g. -0.5 and +0.5) will lead to an underestimate of total losses (see Figure 6), as many
events are not considered. It is true that a base category could be constructed at a higher
range of the SPEI, but until now we have not observed researchers comparing SPEI ranges

to base categories that do not include 0.

3. Robustness checks

Sensitivity to alternative cutoff points

One potential source of subjectivity in a threshold model is the choice of how much of the
threshold variable is to be trimmed at the extremes. In our case, we opted for 1%, but we also
test the sensitivity of results to alternative trimming points at 0.5%, 1.5% and 2.5%. Overall,

as can be seen in Table S.11, our results remain broadly unaffected.
Sensitivity of estimates to clustering and spatial correlation

Throughout the paper we used standard errors clustered at the district level. The main reason
for this is anchored in the fact that when large numbers of clusters are available (e.g. typically
above 50), the asymptotic conditions for the clustering are met (Cameron and Miller, 2015).
Below this number, there is currently no consensus on the extent to which we can trust
clustered standard errors. To test the sensitivity of our estimates to clustering on different

variables, we cluster the errors using the year as a clustering variable.

We also cluster using a two-way cluster based on state and year. However, in this case, while
we show the results in Table S.12, one of the clusters (State) falls clearly in a grey area and
as such, of all the clustering sensitivity checks, this is the one that gives us least confidence.
From an estimation perspective, we note that the xthreg command on Stata does not allow for
two-way clustering of standard errors. As such, for the state-year clustering, we use the
estimated thresholds from the threshold regression and reproduce the equation using the high-
dimensional fixed effects regression command in Stata reg2hdfe by Guimaraes (2015). We
apply this procedure using the clus_nway code by Wolfson and Kleinbaum (2020). Since this
procedure could be problematic when the dimension of one of the clusters is small (which is

the case for the state dimension), we also consider using a wild bootstrap (using the boottest



command), a method suggested in Cameron and Miller. We do not report the results of the

wild bootstrap as they were almost identical to the results produced by the other procedures.

To test the sensitivity of the estimates to spatial correlation, we use Conley (1999) errors using
the stata routine procedure proposed by Hsiang (2010). Since, the spatial correlation part of
the procedures requires a distance cutoff, we test multiple cutoffs at 50, 100, 250, 500 and
1000 km.

Sensitivity to alternative lags for the kharif season

While using June-September is a common definition of the kharif season in India, it is not the
only definition. Some researchers prefer June-October. As a result, to ensure that our results
are not driven by the definition we use for kharif season, we construct two alternative kharif
SPEI indices, covering June-October and June-November, respectively. As can be seen in

Table S.13, the results remain broadly similar.
Sensitivity to the inclusion of controls

Our preferred specification is a reduced-form function where controls are excluded. This is
arguably the most common type of specification in the climate literature. To test the robustness
of our results, we estimate our results with and without a set of time-varying control variables,
X;:. We include rural population per hectare of cereal area, total cereal area, fertilizer used
and proportion of land under irrigation. However, given that our method requires a balanced
panel, we lose many districts. For example, out of 242 districts in the full sample, the inclusion
of only four controls leads to the loss of 138 districts. Despite this, while threshold locations
and coefficients change a little, the main results (Table S.14) remain very similar. We do not
report the barley estimates, however, because for this sample we are left with just eight

districts (368 observations) and hence the estimation results are unlikely to be credible.
Application of the bins approach

We also check total impacts and compare these to the estimates from our threshold model
using dummy variables to capture the effects of the SPEI on our yield variables at different
percentiles of the index (‘bins’ approach). This robustness check adapts a commonly-used
method to estimate weather (mostly temperature) impacts on economic outcomes (e.g.
Schlenker and Roberts, 2009), which consists of estimating dummy variables for different
ranges (bins) of the SPEI. Bins were constructed as follows. The 45th to 55th percentiles of
the average seasonal SPEI values is used as the baseline. Then, dummy variables are
constructed for values below the 1st percentile, above the 99th percentile, and for every
second percentile between the 1st and 99th percentile which did not fall into the baseline

category.



To plot the predicted deviations of the SPEI compared to the base category, we start by
defining a set of dummy variables that are equal to one if the SPEI is within a given range and
zero otherwise. The range is based on the percentiles of the SPEI. Specifically, we generate
bins in the following way:

Dy =1 if SPEI < p1;0 otherwise
Dito3 =1 if p1 < SPEI < p3;0otherwise

Dy3ztoas = 1 if p43 < SPEI < p45;0 otherwise
Dystoar = 0 if p45 < SPEI < p47

Ds3t055 = 0 if p53 < SPEI < p55
Dssios7 = 1 if p55 < SPEI < p57 ;0 otherwise

Dsstos7 =1 if p97 < SPEI <p99;0 otherwise
Dgg =1 if SPEI = p99 ;0 otherwise

In other words, D1, for example, is equal to one if the SPEI falls below the first percentile and
is equal to zero otherwise and D;;,3 is equal to one if the SPEI falls between the first and third
percentile and zero otherwise. Note, we use percentiles to ensure that each bin contains
enough observations so that the dummy variables are estimated with a sufficient degree of
precision. Most of our crop-specific samples have in excess of 5,000 observations, which
means that each dummy contains at least 100 observations (above 50 in the extremes), a
sufficient size to ensure that the coefficient is estimated with a minimum degree of accuracy.
We also run these regressions using increments of the SPEI (based on 0.25 and 0.5

increments, using the range [-0.5, +0.5] as a base category.

We argue that the bins approach has several advantages as a robustness check against other
commonly used methods (i.e. generally imposing a quadratic or cubic relationship). First, it
does not impose an a priori shape between the SPEI and yield. Second, unlike imposing a
guadratic trend, it allows the relationship to be asymmetrical around a given turning point.
Third, since the bins are quite small, it also allows us to visually identify whether the “jumps”
and thresholds identified by the threshold model seem to be reflected in the data. The
drawback, of course, is that the range of observed SPEI values in D; will be a lot larger than
in the range of D,3:0,45, Which means we have less granularity at lower levels of the SPEI.
Arguably, since threshold methods require a portion of the data to be trimmed at the extremes
(we use 1%), this is not a critical issue. That said, differences in the relationship within the 1%
percentile will not be estimated. We set the dummies for SPEI values between the 45" and
55t percentiles as this is the base category against which we can compare the SPEI

coefficients. As the SPEI follows a close to normal distribution, in most cases these percentiles



will contain the value of zero or close to zero, which make these coefficients comparable to

the coefficients obtained by the threshold model.

Once the dummy variables are generated, we estimate the following regression using a
fixed-effects regression:

In(yi) = a;e + Pudist; xt + ipdist; * t* + 8, D1 + 81¢03D1103 + ** + S43t045Da3t0a5 +
8s5t057D55t057 T *** + 897t099D97t099 + 6100D100 + €1t (3)

After the regression is estimated, we simply store the set of § coefficients and plot these.

Analysing potential heterogeneity of thresholds and marginal effects by crop
To test whether thresholds and marginal effects are similar across agro-ecological zones and
irrigation status, we run the crop-specific threshold models by AEZ and irrigation status. The

results are presented in Tables S.6 to S.10.

For AEZ, we divide each crop sample into an arid and a humid subsample (Figure S.4(b), SI
- 1).

To build the irrigation sub-samples, we use the share of the total cropped area for a given crop
under irrigation. Our model requires that our sub-samples are temporally consistent (due to
the necessity of having a balanced sample). As such, we cannot have districts switching
across sub-samples. We therefore calculate for each district the average share grown under
irrigated conditions for a given crop and then split the sample based on the median value. This
ensures both temporal consistency across the sub-samples as well as a comparable number

of observations across both sub-samples.

Finally, it should be noted that the sum of observations in the two irrigation sub-samples may
not always be equal to the total number of observations for a given crop. This is because for

certain districts irrigation data are missing, implying that these districts are dropped.

4. Procedures for estimating the per ha and total revenue losses

Defining relevant counterfactuals

Beyond the identification of thresholds, to explore the policy relevance of our threshold

models, we compare the results from these models to those from different counterfactuals.

We opt to focus only on negative deviations of the SPEI for this part of our analysis for several
reasons. First, since floods tend to be more concentrated in space and time, as opposed to
droughts, which are more of a creeping phenomenon, our index is more likely to capture

droughts better than floods (although it does capture wet years). Second, since for most crops



wetter conditions are associated with higher yields (at least up to a certain point), considering
all the events above 0 as impacts would be problematic as the revenue losses would actually
be revenue gains. Third, although floods have been defined using SPEI or SPI thresholds,
arbitrary definitions tend to be used most often for droughts. As such, we opt to focus on the
negative range of the SPEI to illustrate our main points about the importance of data-driven,

objective thresholds tied to an outcome of interest.

For the per ha losses, since these are evaluated at the location of the threshold, we are
constrained by specifications that are linear and return different impacts for SPEI values of T1
and T1-0.1. Here, we use two counterfactuals, namely a log-linear specification and a non-
linear specification (quadratic). As we are interested in estimating the losses for the negative

range, we imposed a quadratic relationship with a threshold at a SPEI value of 0.

We do not use other non-linear models (e.g. bins) for the per ha effect since the bins may be
larger than 0.1 which means that the effect at T1 and at T-0.1 would be in the same bin and

thus would not vary.

However, the main point this paper wants to make, rather than which non-linear specification
is best, relates to the use of arbitrary thresholds. To illustrate this, in addition to the log-linear
and quadratic counterfactuals, for the total costs, we add four additional counterfactuals, some
of which were/are actively used in policy and/or research. The four additional counterfactuals

are as follows:

1) A 20% negative deviation from long-term average rainfall during June-September. This
was the definition for a drought at the district level that was used in India. We note that,
for this counterfactual, the comparison is limited to the 1966-2009 period as we do not
have the rainfall data for 2010-2011.

2) A threshold arbitrarily set at SPEI=-1 using a log-linear specification — A SPEI of -1 is

often considered the trigger for a dry event.
3) A threshold arbitrarily set at SPEI=-1 using the quadratic specification.
4) The bins approach using the percentiles method as explained above.
Defining prices to monetize the yield losses

First, we acknowledge that there is no perfect price for valuing yield losses over a period
spanning almost 50 years. We opt to use 2005 national prices in USD because 2005 is a
relatively recent year in which relatively few districts were affected by drought, so national
prices were less likely to be affected by drought. A fixed year ensures that revenue losses are
comparable over time and districts. Two alternatives were considered and discarded for the

following reasons:
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1.

Farm-gate prices — these have the advantage of allowing for district-year specific
prices. However, there are at least three potential drawbacks. First, these prices were
likely to have been affected by drought in the first place. Second, this would have
raised the issue of using real prices and it was not clear whether inflation at the district-
level (or even food inflation) would have been an accurate deflator. Third, drought-
induced revenue losses would depend a lot more on whether drought occurred (if it

hits districts with a higher price elasticity, the cost would be higher).

International commodity prices or prices in neighbouring countries — these are not
adopted, also for three reasons. First, it is not entirely clear that using international
prices would free us from the impact of drought on prices. The only difference is that
these prices would most likely have been affected by droughts in large producers
rather than in India (e.g. Vietnam, Thailand in the case of rice). Second, the
commodities sold in international markets are not the same as the commaodities sold
by farmers. For instance, in the case of rice, the rice sold in the international market is
already milled and differs depending on type. Applying a constant conversion factor
and estimating marketing margins is not necessarily a good idea. Finally, we do not
want our revenue loss estimates to be overly affected by sudden changes in
international prices. For example, in 1986 and 1987 (a particularly bad year in terms
of droughts in India), international prices for cereals seem to have decreased
substantially. According to the WB pink sheet data, there were decreases ranging from
20-43% compared to 1985 for all cereals except rice (not covered in 1985) and millet
(not included in the dataset). Using this option would have masked the very high costs
of the 1986 and 1987 droughts.

Procedures for estimating the per ha revenue losses

In terms of the procedure, the calculation of the per ha revenue loss is illustrated for a one

threshold case against a log-linear model (the process is almost identical for other

counterfactuals. Specifically, we only need to change step 6 and estimate the different

counterfactual). We carry out the following steps for each crop sample:

1.

After estimating the threshold model, we create a temporary SPEI variable equal to T1
for the full sample.

We use the threshold model to calculate the predicted yield at SPEI=T1 using the
command levpredict on Stata. Note that we cannot simply take the exponent of the
predicted In(y_it) because this would result in a bias.

We then create another temporary SPEI variable equal to T1-0.1 and calculate the

predicted value at SPEI=T1-0.01 using the command levpredict on Stata.
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4. We take the difference in the predicted values obtained in steps 2 and 3, which gives
us the expected yield difference for a 0.01 change in the SPEI value at the threshold.

5. We then multiply the value obtained in step 4 by the 2005 price per tonne of the cereal
we are investigating. Note that to generate the price variable, we use a weighted
average of district-level prices where weights are defined by cropped area. Since the
prices are expressed in Rupees per quintal (100 kilograms), we first convert the loss
into USD by dividing it by the annual exchange rate (44.1 Rupees per USD) from the
World Bank WDI database. After, we multiply the USD/per quintal price by 10 to get
the USD per tonne price.

6. To compute the “no threshold” counterfactual, we start by estimating a fixed effects
model where we assume that SPEI is linearly related to In y (the no threshold
counterfactual):

ln(yit) = djt + ﬁildisti *t + ,Bizdisti * tz + 6SPE1w + €it

We calculate the predicted yield at SPEI=T1 using the regression estimated in step 6.
We calculate the predicted value at SPEI=T1-0.11 using the model in step 6.
We take the difference between the values in steps 7 and 8 and multiply the difference

by the price per tonne.

We then repeat this procedure for each crop to get the results in Figure 4.

Procedure to estimate total revenue losses

The procedure to calculate the total revenue loss bears some similarities with the marginal
loss per hectare procedure. However, there are two key differences. Whereas in the marginal
cost per ha calculation we impose the location where the effect is estimated, in the total cost
calculation, we use observed SPEI values. Secondly, we calculate the costs associated with
all events that have SPEI values below zero (i.e. we exclude events above zero for the reasons
explained above) and compare these to an SPEI value of 0. The key rationale for this is that
because drought is normally defined as a negative departure from normal, it would be hard to
justify any point above zero. Also, it is the most natural SPEI value with which to make a

comparison of results.

More concretely, to obtain total revenue losses, we start by carrying out the following steps for
each crop separately (steps below illustrate the procedure for the log-linear case. For other

counterfactuals, we simply need to change the estimated equation in step 7):

1. Using the levpredict command, we use the threshold model to predict the predicted

yield at the observed SPEI value.
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2. We create a temporary SPEI variable equal to zero for the full sample and compute
the predicted value at SPEI =0 levpredict command. This is essentially the
counterfactual value.

3. To generate the predicted loss per hectare, we take the difference between the
values obtained in steps 1 and 2.

We then multiply the result obtained in step 3 by total cultivated hectares.

We multiply the results obtained in 4 by the 2005 price for that specific subsample.
This gives us the total losses per district predicted by the threshold model for a given
year.

6. We then add the results obtained in 5 for all districts in a given year. This gives us
the total losses for a given year under the threshold model.

7. To compute the “no threshold” counterfactual, we start by estimating a fixed effects
model where we assume that SPEI is linearly related to In y (the no threshold
counterfactual):

ln(yl-t) =aj + ﬁildiSti *t + ﬁizdiSti * tz + 6SPEILt + €i¢

We repeat steps 1-7 using the linear model.
We take the difference between the losses predicted by the threshold model vs. the

linear model, which generates an estimate of the size of the threshold effect.

After carrying out steps 1-9 for each crop in each season, we aggregate the revenue losses
across all crops and seasons. After doing this we calculate the average difference in revenue
lost between the threshold and each counterfactual to obtain Figure 6. We then aggregate the
total revenue losses for all crops and seasons by sub-period (1966-1970; 1971-1975, 1976-
1980, 1981-1985, 1986-1990, 1991-1995, 1996-2000, 2001-2005, and 2006-2011*) for each
counterfactual to generate Figures 5(a), 5(b), and Figures S.11 and S.12.

41n the case of rainfall, as explained before, we can only carry out this exercise up to 2009, since we did not
have access to the dataset for 2010 and 2011.
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{a) Rice (b) Wheat (e) Maize

(b} Barley (e} Sorghum (1) Millet

Figure S.2. Area planted by crop

Panels (a)-(f) show the proportion of gross cropped area devoted to each of the six crops
used in the analysis. For districts with no data, these areas are shown as white polygons.
District boundaries refer to those in 1966.
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Figure S.3. Total cultivated area by crop

The total cultivated area is indexed at 100 for the year 1966.
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(i) Average rainfall (b) Agro-ecological region

Figure S.4. India rainfall and AEZ classification

Panel (a) shows district-level average rainfall for the 1957-2009 period. Panel (b) maps the
agro-ecological zones. For both, only districts for which we have data are plotted. Districts
for which we have no data are shaded in white.
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Figure S.12. Comparison across all counterfactuals and estimated revenue loss for all crops

per sub-period vs. discrete counterfactuals

Note: Total costs per sub-period are estimated by summing the predicted yields given the observed
SPEI value vs. predicted yields at SPEI equal 0 for each crop for which a threshold is found. The
difference implied by the threshold is estimated by comparing the implied yields under the threshold
model given observed SPEI values against the implied yields given observed SPEI values using
alternative counterfactuals. The comparison across counterfactuals is obtained by dividing the
average difference between the threshold model and a given counterfactual by the average predicted
revenue loss using the threshold model. Panel (a) shows the differences between counterfactuals.
Panel (b) compares the threshold model against a simple dummy variable where the pre-determined
rainfall threshold is located at 20% negative deviation from rainfall. Panels (g) and (h) compare the
threshold model to the bins model (percentiles and increments.
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Variable N Mean S5.D Min.,  Max.
Yield
Cereal vield (t/ha) 11132 1.511 0.843 0.006 5.422
Barley vield (t/ha) 5436 1488 0.730 0.108  6.000
Maize vield (t/ha) 10055 1.485 (0.992 0.006  11.120
Millet vield (t/'ha) 0302 0.826 0.462 0.000  4.000
Rice vield (t/ha) 11132 112989 142.289 0.000 1125.700
Sorghum vield (t/ ha) 9464 0.781 0. 446 0.001  9.836
Wheat vield (t/ha) 9732 1.719 (.928 0.071 6.129
Area
Cereal Area (1,000,000 ha) 11132 0.326 0.184 0.000  1.334
Barlev (% of total district area 11009 0.016 0.037 0.000  0.320
Maize (% of total district area) 11132 0.069 0.118 0.000  0.838
Millet (% of total district area) 11132 0.146 (0.228 0.000  1.000
Rice (% of total district arca) 11132 0.343 0.333 0.000  1.000
Sorghum (% of total district area) 11020 0.165 0.231 0.000  0.929
Wheat (% of total district area) 11131 0.262 0.255 0.000  0.976
Inputs and SPEI
Proportion of net irrigated area 11125 0.372 0.273 0.000  1.530
Rural population density 10937 3.273 1.796 0.396  13.864
Fertiliser (t/ha) 10937 62544 63.963  0.000  614.493
Iharif SPEI (4-month) 11132 -0.066 1.000 -2.686  3.452
Rabi SPEL (6-month) 11132 -0.045  0.983 -2.673 2.515

Table S.1. Summary statistics

Note: N refers to the total number of observations. S. D. refers to the standard deviation. Min.
and Max. refer to the minimum and maximum values. Rural population density is calculated
as the total rural population divided by the gross cropped area. Fertilizer intensity is obtained
by dividing total fertilizer used by gross cropped area. The mean kharif 4-month SPEI is the
SPEI with 4-month lag in September. The rabi SPEI is the SPEI with a 6-month lag in March.
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Variable N districts Time periods LLC adjusted t-statistics LLC p-value IPS t-statistic IPS p-value

Barley

In barley yield T8 16 -6.064 0.000 -3.631 0.000
Maize

In maize yield 141 46 -21.769 0.000 -22.889 0.000
Millet

In millet yield 136 46 -21.553 0.000 -20.040 0.000

Rice
In rice yield 206 46 -21.028 0.000 -23.038 0.000
Sorghum

In sorghum yield 114 46 -25.274 0.000 -26.02 0.000
Wheat

In wheat yield 181 46 -12.963 0.000 -7.490 0.000

Table S.2. Unit root tests

Notes: This table presents the results of the unit-root tests for the dependent variable of
every sub-sample. LLC is the Levin-Liu-Chu panel unit root test and IPS is the Im-Pesaran-
Chin panel unit root test. In both cases, the null of all panels having a unit root is rejected at
the 1% level.
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Kharif Thresholds

Sample 3 T1 g T2 g
Barley (N=23588)
Ay for 01 1 in SPEI
Maize (N=6486) 0.156%%% -1,746 0.065%%% -0.358 -0.080%%=
Ay for 01 Tin SPEI 1.688 [p. 3.9; rp. 25.6] 0.672 [p. 43.2; rp. 23| -0.769
Millet (\ 6256) 0.254%*% .1.724 0.1357** 0.689 1. 005
Ay for 01 Tin SPEI 2 892 [p. 4.2; rp. 23.7] 1.677 [p. T4.3; rp. 1.3] 0.050
Rice (N=9476) 0.1857%% -1.348 0.125**% 0.339 0. 0427%%
Ay for 01 Tin SPEI 2.052 [p. 10.7; tp. 9.3] 1.851 [p. 63.9; rp. 1.6] 0.429
Sorghum (N=5244) 0.228%%% -1.702 0.153%%% -0.2056 -0.068%%=
Ay for 0.1 1in SPEI 2 561 |[p. 425; rp. 23.6] 1.653 [p. 46.4; rp. 2.2] -0.657
Wheat (N=8326)
Ay for 01 T in SPEI

Rabi - Thresholds
Barley (N=3588) 0,0417%% -0,674 0,095*** 0.600 -0.004
Ay for 01 1in SPEI 0419 [p 32.3; rp. 3.1] 0.997 [p 74.7; rp. 1.3 -0.040
Rice (N=9476) 0.033%%% 0.890 0.0197*%
Ay for 01 1in SPET 1.544 |p 80.7; rp. 1.2] 0,192 0.0010

Sorghum (N=5244)
Ay for 0.1 T in SPEI
Wheat (N=8326)
Ay for 0.1 1 in SPEI

Table S.3. Summary of coefficients (all specifications)

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively.
Numbers in bold denote the estimated threshold values of the SPEI. T1 and T2 denote
thresholds 1 and 2, respectively. Numbers in italics represent the predicted effect of a 0.01
increase in the SPEI value. For example, for a coefficient of 0.185 means that, for a given
event in the rice sample for a value of the SPEI below -1.348, a 0.1 decrease in the index
leads to a fall in yield of 2.032 percent. The abbreviations p. and rp. below the value of the
identified threshold represent the percentile of the distribution and the associated return
period. N refers to the number of observations. The number of districts can be obtained by

dividing N by 46.
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Rice

Kh -Full Kh- Low-irrig Kh - High irrig Kh -Arid Kh- Humid Ra-Full Ra- Low-irrig Ra - High irrig Ra - Arid Ra - Humid
Single 0 0 0 0 0.002 0.01 0.45 0517 0.007 0.006
Double 0 0.244 0.144 0 0.006 0.497 0.415 0.312 0.146 0.972
Triple  0.938 0.553 0.33 0.431 0.854 0.318 0.522 0.578 0.329 0.388
Wheat
Kh -Full Kh - Low-irrig  Kh - High irrig Kh -Arid  Kh- Haomid Ra-Full Ra - Low-irrig Ra - High irrig Ra - Arid Ra - Humid
Single 013 0.151 0.297 0.38 0.429 0.184 0.006 0.625 0.893 0.001
Double 0.114 0.456 0.004 0.001 0.002 0.352 0.668 0.001 0.438 0.947
Triple  0.895 0.799 0.082 0.687 0.684 0.713 0.852 0.968 0.969 0.656
Sorghum
Kh -Full Kh - Low-irrig  Kh - High irrig Kh -Arid Kh- Humid Ra-Full Ra- Low-irrig Ra - High irrig Ra - Arid Ra - Humid
Single 0 0 0 0 0.002 0.833 0.939 0.028 0.375 0.423
Double 0.002 0.583 0.105 0 0.363 0.11 0.268 0.009 0.94 0
Triple  0.474 0.636 0.297 0.499 0.834 0.859 0.847 0.868 0.617 0.898
Millet
Kh -Full Kh - Low-irrig  Kh - High irrig Kh -Arid Kh- Humid Ra-Full Ra - Low-irrig Ra - High rrig Ra - Arid Ra - Humid
Single 0 0 0 0 0.085 NA NA NA NA NA
Double 0 0 0.007 0 0.142 NA NA NA NA NA
Triple  0.743 0.733 0.8 0.878 0.553 NA NA NA NA NA
Maize
Kh -Full Kh- Low-irrig Kh - High irrig Kh -Arid Kh- Humid Ha-Full Ha - Low-irrig Ha - High irrig Ha - Arid Ha - Humid
Single 0 0 0 0 0 NA NA NA NA NA
Double 0 0.01 0 0 0 NA NA NA NA NA
Triple  0.738 0.889 0.536 0.368 0.778 NA NA NA NA NA
Barley
Kh -Full Kh - Low-irrig  Kh - High irrig Kh -Arid Kh- Humid Ra-Full Ra- Low-irrig Ra - High irrig Ra - Arid Ra - Humid
Single  0.722 NA NA NA NA 0.002 NA NA NA NA
Double 0.044 NA NA NA NA 0.042 NA NA NA NA
Triple  0.989 NA NA NA NA 0.852 NA NA NA NA

Table S.4. P-value for selection of the threshold model

Note: Blank cells indicate that the threshold test did not reject the null of no threshold. NA
means that the threshold model was not estimated.
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Rice

Kl -Full Kh - Lowd Kh - High irrig  Kh -Arid Kh - Humid Ra -Full Ra - Low-rrig Ra - Arid Ra - Humid
T -l.ME 0.383 -1.561 -1.759 -1.797 (1,890 0.873 -1.873
[-1.375, -1.334] [0.119; 0.580)  |L.580, 1534]  [-1.790; -1.723] |-1.846, -1.769] |0.192,0.909] |0.668, 0.883] [-1.900.-1.837]
72 0.339 0.344 -1.322
[0.136,0.347] [-0.022, 0.352] |-1.348 -1.768]
Wheat
Il -Full Kh - Lowdrrig  Kh - High irrig Kh -Arid Kh - Humid Ra-Full Ra - Low-rrig Ra- High irrig Ra - Anid Ra - Humid
T 15350 1.635
|1481, 1.577] [1.553, 1.669]
Sorghum
Kl -Full Kh - Lowdrrig  Kh - High irrig  Kh -Arid Kh - Humid Ra-Full Ra - Lowdrrig  Ra - High Ra - Arid Ra - Humid
71 -1.702 L2t 1518 LA -0.730 0580
[1.800,-1.683)  [-1.026, -1.00d] |L562,-1.618]  [-1.826, -1.010] [-0.815, -0.727] |0.553, 0.586]
72 0205 -0.205 1108
|-0.300,-0.106| |-0.276, 1.103| [1.024, 1.117]
Mitlet
[Ch -FI[:' IJL L L[l“'—}l'l':g Fql = }Lg]l ;I]"‘g IJI —,Jll'::(l IJI = HllTI\Ed Ra —FU!E Rﬁ = Ln\('—‘,]]';;!, Rﬂ = H':}J Ri\ ; :\1;(1 Rﬂ 2 H|l]ll.5(l
To-LT2 -1.730 -1.443 -1.730 0.725 NA NA NA NA NA
[1.765,-0.702)  |-L.767, -1.713] |1.605, -1.430] [-1.776,-1.709] [-0.305, 0.733] NA NA NA NA NA
vy 0680 0.723 0602 0687 NA NA NA NA NA
[0.654,0.699)  [0.664, 0.731]  |0.6L7, 0.600)  [0.647, 0.700]
Maiza
Kl -Full Kh - Lowdrrig  Kh - High irrig  Kh -Arid Kh - Humid Ra-Full Ra - Lowdrrig  Ra- High Ra - Arid Ra - Humid
71 -1.746 1,743 -1.972 <176 -0,357 NA NA NA NA NA
[r7o-1721] 1,786, -1.722] | [-1.791, -1.7H] [-0.387, -0.347) NA NA NA NA NA
Y2 0358 0,350 -0.015 0553 0.835 NA NA NA NA NA
[-0.307, 0.347| [-0.467, -0.353] |-0.045, 0.007) [0.453, 0.562]  [0.601, 0.838]
Barley
Kl -Full Kh - Lowd Kh - High irrig  Kh -Arid Kh - Humid Ra -Full Ra - [ow-rrig Ra - Arid Ra - Humid
T NA NA NA NA -0.674 NA NA NA
NA NA NA NA |-0.818,-0.665] NA NA NA
T2 NA NA NA NA 0.600 NA NA NA

[0.582,0,609]

Table S.5. Threshold location and confidence intervals

Note: Blank cells indicate that the threshold test did not reject the null of no threshold. NA
means that the threshold model was not estimated.
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Kharif Thresholds

Sample 3 Tl B T2 B

Rice - Full sample [N=9476) 0,185%%* -1.348 0.125%%* 0,339 0,042%%%

Ay for 0.1 1 in SPEI 2,032 [p 10.7; rp. 9.3] 1.551 [p. 63.9: rp. 1.6] 0.429

Rice - Low irrigation (N=3496) 0.195%%* 0.583 0.076%%*

Ay for 0.1 1 in SPEI 2,158 [p. 7T1.9 rp. 1.4] 0.790

Rice - High irrigation (N=3496) 0.125%%* -1.561 0.034%%*

Ay for 0.1 1 in SPEI 2,399 [p. 6.2, rp. 16.0] 0.546

Rice - Arid (N=3060) (.33 *#= -1.759 0.172%** 0,344 0.035%**

Ay for 0.1 1 in SPEI 3924 [p. 1.6; rp. 36.6] 1.877 [p. 55.7; rp. 1.20] 0.356

Rice - Humid [N—4416] 0.064%** -1.797 0.137%*%% -1.322 0.067%%*

A yfor 0.1 1 in SPEI 0.066 [p 2.7, rp. 37.4] 0.147 [p. 10.1; rp. 9.9]  0.069
Rabi - Thresholds

Rice -Full sample [ N—9476) 0.053%%* 0.890 0.019%%*

Ay for 0.1 1 in SPEI 0.544 [p80.7; rp. 1.2] 0.192

Rice - Low irrigation (N-23496]
Ay for 0.1 1 in SPEI
Rice - High irrigation (N—3496)
Ay for 0.1 1 in SPEI

Rice - Arid (N=3060) 0.062%%= 0.873 0.006
Ay for 0.1 1 in SPEI 0.640 [p. 80.2; rp. 1.2] 0.060
Rice - Humid f\ 4415:] 0.002%%* -1.873 0.033%%*
Ay for 0.1 1 in SPEI 0.964 [p. 1.5 rp. 67.3] 0.536

Table S.6. Summary of coefficients for rice sub-samples

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. For
the irrigation sub-sample, the used cut-off was 70.1% of irrigated rice
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Kharif Thresholds

Sample B T1 B T2 B
Millet - Full sample (N=6256) 0. 254%%* -1.724 0.155*** 0.689 0.005
Ay for 0.1 1in SPEI 2 892 [p. 4.2; rp. 23.7] 1677 [p. 743; rp. 1.3] 0.050
Millet - Low irrigation (N=3128) 0.269%%# -1.730 0.160%* 0.723 0.003
Ay for 0.1 1 in SPEI 2.087  |p 41;1p. 242 1735  [p. 75.3 rp. 1.3 0.080
Millet - High irrigation (N=23128) 0,221 *** -1.443 0.135%* 0.692 0.006
Ay for 0.1 1in SPEIL 2,478 [p. 85; rp. 11.8] 1.445 [p. 744; rp. 1.3] 0.060
Millet - Arid (N=4646) 0,365%%% -1.730 0, 183%** 0.687 0,002
Ay for 0.1 T in SPEI 4. 405 [p: 4.2; rp. 23.3] 2.008 [p. T0.7; rp. 1.4] 0.020
Millet - Humid (\ 161 GJ 0.073%*%* 0.725 0.001

Ay for 0.1 1in SPEI 0757 [p. 73.7; rp. 1.4] 0.010

Table S.7. Summary of coefficients for millet sub-samples

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. For
the irrigation sub-sample, the used cut-off was 2.4% of irrigated millet

Kharif Thresholds

Sample a3 T1 i} T2 a8

Maize - Full sample (N—6486) 0.156%#** -1.746 0.065%** -0.358 -0.080%**
Ay for 0.1 1 in SPEI 1.688 [p. 3.9, rp. 25.6] 0.672 |[p. 43.2; rp. 2.3] -0.769
Maize - Low irrigation (N—2622) 0.121%%* -1.743 0.032% -0.359 -0.097%**
Ay for 0.1 1 in SPEI 1.286 [p. 3.9; rp. 25.6] 0.325 [p. 43.2; rp. 2.3 -0.924
Maize - High irrigation (N—2668) 0.238%** -1.972 0.094%*# -0.915 -0.062%%
Ay for 0.1 T in SPEI 2.687 [p. 1.8 rp. 34.7] 0.956 [p. 24.1; rp. 4.1 0.640
Maize - Arid (N=3128) 0.314*#** -1.764 0.126%** 0.553 -0.099%**
Ay for 0.1 7 in SPEI 3.689 [p. 4.3; rp. 21.6] 1.343 [p. 701 rp. 1.4 -0.943
Maize - Humid (N—=3358) 0.022** -0.357 -0.204%* 0.825 -0.031%**
Ay for 0.1 1 in SPEI 0.228 [p. 41.8; rp. 2.4] -1.845 [p. 79.4; rp. 1.3] -0.497

Table S.8. Summary of coefficients for maize sub-samples

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. For
the irrigation sub-sample, the used cut-off was 6.4% of irrigated wheat
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Kharif Thresholds

Sample e} T1 B T2 A
Sorghum - Full sample (N—5244) 0.228%%* -1,702 0.153%**  -0.205 -0.068%%F
Ay for 001 1 in SPEI 2,561 |p. 4.25; rp. 23.5] 1.653 [p. 46.4; rp. '2.2| -6 57
Sorghum - Low irrigation (N=1932) 0,191%** -1.021 -0.087%**

Ay for 0.1 1 in SPEI 2.105 [p- 19.3; tp. 5.2] -0.833

Sorghum - High irrigation (N=1886) 0.170%** -1,518 0.002

Ay for 0.1 1 in SPEI 1.853 [p. 6.7 rp. 148] 0.020

Sorghum - Arid (N—4048) 0.308%#* 1,775 0.178%%*  .0,205 -0.066%%F
Ay for 0.1 1 in SPEI 3.607 [p. 1.7, tp. 51.1] 1.9/8 [p. 40.7; 1p. 2.4] -0.639
Sorghum - Humid (N—1196) 0.070#** .0,739 -0, 068F**

Ay for 0.1 T in SPEI 0.925 [p. 27.2; rp. 3.7] -0.657

Rabi - Thresholds

Sorghum - Full sample (N=5244)

Ay for 0.1 1 in SPEI

Sorghum - Low irrigation (N—=1932)

Ay for 0.1 1 in SPEL

Sorghum - High irrigation (N=1886) 0,013 0,580 -0,105%** 1,108129 0,019
Ay for 0.1 1 in SPEI 131 [p. 727 tp. 1.4 -0.997 |p. 86.6; rp. 1.2] 0,192
Sorghum - Arid (N—4048)

Ay for 0.1 T in SPEI

Sorghum - Humid (N=1196)

Ay for 0,1 T in SPEI

Table S.9. Summary of coefficients for sorghum sub-samples

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. For
the irrigation sub-sample, the used cut-off was 1% of irrigated sorghum
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Kharif Thresholds
Sample 3 T1 3 T2 B

Wheat - Full sample (N=8326)
Ay for 0l 1in SPEI

Wheat - Low irrigation (N=3036)
Ay for 01 1in SPEI

Wheat - High irrigation (N=2990)
Ay for 01 1in SPEI

Wheat - Arid (N=5152)

Ay for 01 1in SPEI

Wheat - Humid (N=3174)

Ay for 0.1 1 in SPEI

Rabi - Thresholds

Wheat - Full sample (N=8326)
Ay for 0.1 1 in SPEI

Wheat - Low irrigation (N=3036) 0.024%F% 1.550 -0.034**
Ay for 01 1 in SPEI 0.243 [p. 93.9; rp. 11| -0.534

Wheat - High irrigation (N=2990)

Ay for 01 1in SPEI

Wheat - Arid (N=5152)

Ay for 01 1in SPEI

Wheat - Humid (N=3174) 0.009* 1.635 -0.042%%F
Ay for 01 1in SPEI 0,090 [p. 95.0; rp. 1.1] -0.411

Table S.10. Summary of coefficients for wheat sub-samples

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. For
the irrigation sub-sample, the used cut-off was 86.06% of irrigated wheat
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1% (main) 0.80% L50% 2.00% 1% (main) 0.50% Li0% 2.00%
Kharif - Hice Ral: - Rice
T hreshold test pevalue
Single (L0000 om0 o0 0000 0010 00300 0020 000
Dembde (00000 g 0o 00 0497 03200 04510 0400
Triple (L5958 0200 099 0830 0318 0,500 02800 0350
T hre shold location amd Confidence intervals
] =135 1349 -G -1.3008 0890 0880 087G (88T
Fa (1,339 03 053483 0341
Fharif - Wheat Halz - Wheat
Threshold test prvalue
Snele (0130 01T 0150 0130 0184 0,250 0160 0,150
Deombde (00110 00040 0560 0,290 0352 00600 A7 0550
Triple (L3235 070 080 055 0715 0,730 0900 0910
T hre shold location amd Confidence intervals
T
T
Khanf - Barley [ali - Barley
Threshold test prvalue
Sngle 0722 020 069 0680 0002 0000 0oLn 00
Deomblde 0044 0250 003 07850 0042 0030 0o0L0 0010
Triple (1589 0060 Lo 0380 0852 0.770 0930 0850
T hre shold location amd Confidence intervals
M -06T4 -0GE1 GRS -G8
Yo (1,600 0656 0611 0.E0
Kharif - Sorghum Rale - Sorghum
T hreshold test prvalue
Sngle  0.000 o0 000 000 0533 0870 0E00 050
Dembde (0002 0010 o000 0000 0110 0,120 0090 0080
Triple 00474 0280 04X (0380 0859 0810 0890 0820
T hre shold location amd Confidence intervals
e -Lma2 -LGE0 1603 -1605
Yz -0.2005 S0.208  -0.203 0,280
Kharif - Maize Iharif - Millet
T hreshold test prvalue
Single  0.000 000 o000 0000 0000 L0000 0000 0000
Deomble 0067 00 00 0000 0000 0000 0000 0.0
Triple 0612 050 0580 04590 0,745 0,790 0710 0,750
T hre shold location amd Confidence intervals
T -[1.358 0362 0362 0362 -1.TH LT3 -1.T38 -1T38
¥ -LT46G L7300 -1.733 -1.TH 06GE9 0687 0689 (0637

Table S.11. Sensitivity to trimming cut-off point
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Main

Cluster year

Cluster State vear

Conley 50km

Conley 100km

Conley 250km

Conley 500km

Conley 1000km

Kharif - Rice (T1: -1.348; T2 0.330)

#<T1 0. 1B5*** [ 1R5*** (. 185 %** 0.185%** 0.1 5% ** 0.1 85%** 0.185%** 0.185%**
T1<G<T2 0.125%%*% [.125%** 0.125%%* 0.125%%* 0.125%** 0.125%** 0.125%** 0.125%**
3T 2 0.042%** 0 042%* 0.042%¥%* 0.042%%* 0.042% %+ (.042%*++ 00424+ 0.042%**
Kharifl - Maize (T1: -1.746; T2: -0.358)
A<T1 0. 156%** 0. 156%** 0.156%+* 0.156%** 0.156%** 0.156%** 0.156%** 0.156%**
T1<B<T2 0.065*** 0.065** 0.065%* 0.065%** 0.065*** (. 0G5 +* 0.065** 0.063%*
#>T2 S0L080FHE 0 080 -0.080%* -0.080F*H -0.080**E -0.080F*F -0.0F0FE -0.080%F*
Kharif - Millet (T1: -1.724; T2: 0.689)
A<T1 0.254%%%. ) I54K*H 0.254 %+ 0.254 %** 0.254%** 0.254%%* 0.254%*% 0.254% %%
T1<f<T2 D.155*** D.155*** D 155%+* 0. 155%** 0.155%** (1.1 55%** 0.155%** 0.155%**
3>T2 0.005 0.003 0.005 0.005 0.005 (0. 005 0.003 0.005
Kharif - Sorghum (T1: -1.702; T2: -0.203)
B<T1 0.228%*% [ 228%** 0.228 %44 0,228 %K 0.228% %4 0.228%*% 0.2284*x 0.228%*¥
T1<G<T2 0.153***% [.153*** 0.153%* 0.153%** 0.153%** 0.153*** 0.153%** 0.153%**
B=T2 SDOGEFFE 0 DGR -0, 068+ -0.0GE*** -0.0GEHHE IR -0.0GE*FHHE S0.0GR*HHE
Kharif - Wheat (T1: NA; T2 NA)
8<T1 0.051%% a1 *et 0,051 %+ 0.051*** 0.051%** 0051+ 0.051%* 0.051%*+
Kharif - Barley (T1: NA; T2 NA)
3<T1 0042 %% ) ng2we* 0.042%* 0.042%%* (0.042%** (1. 0424+ 0.042%** 0.042% %%
Rabi - Rice (T1: 0.800; T2: NA)
B<T1 0.053* % 0 p53*e* 0.053%*% 0053 *** NGRS (.053*++ 0053+ 0.053%+*
Tl 4=T2 0.019** 0019 0.019 0.009%** 0.019*%* 0.019 0.019 0.019
Rabi - Sorghum (T1: NA; T2 NA)
3<T1 0.031%% 0,031 0.031 0.031%%* 0.031%+* 0.031%* 0.031* 0.031%
Rabi - Wheat (T1: NA; T2: NA)
1-T1 0.015% % noo1a* 0.013 0.015%** 0015 ** (.01t 0.015** n.015%*
Rabi - Barley (T1: -0.674; T2: -0.600)
B<T1 0.041%%% 0 N41%* 0.041 %%+ 0.041 *#** 0.041%** 0.041%%% .04 %% 0.041%+F
T1<4-T2 0.005%%%  [.007*** 0.0o7*x* 0.007#** 0.007*** (.007*** 0.007*** 0.097%**
3-T2 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004

Table S.12. Coefficients — Robustness to SEs

Note: The column labelled main refers to our preferred specification with clustered standard
errors at the district level. The columns cluster year and cluster state-year refer to the
robustness checks where the standard errors were clustered at the year and two-way state-
year clustering. All other columns refer to the coefficients when the regressions are estimated
with Conley (1999) standard errors, allowing for correlation at different spatial scales.
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Fire Barley Mukze Miklet Sorglom Wheat
Number of SPEI lags
| || & i | |main| o (i I [mmin|] @ i | [mgin] o i | |main|] o i | [main| O i
Threslold test p-value
Sing I i i i n.722 018 067 0000 1 1] i i 1} i i 1} .13 i o2
Dowhie 1] 1 il nokt N 1 0037 1 1 1] 1 1} 0,002 I 1} 0.11 0.925 016
Tripdv 11138 nal .64 1L.1E0 nug 08y vEl12 I8} 0.il 0.745 nav .42 .47 .64 .Gl 080G 0.G4 0.7
Threshold oestion
T -1 48 -1.347 -1 NA NA NA D38 -0, 246 -0.250 -T2 -1.711 -1.714 -l.mz2 -1.8a0 - 1141 NA -1.318 0302
Yo 11,530 .17 =000 NA NA NA -1L.TIG -1.734 -1.731 1 GEa 1.G0G 1.0BT R 1 0Tl 0.7 NA NA NA
Estanated voeflicient s
3Tl O1RG#*% [ 2]15%#% D DG*#% O.106%** [ 1Ga*** [ IG3**®  [.OGL*FE (. 200%** 0.0G3FHE [ DagEer [ ORUFEE [ G FEE ODOTE**% QOGTHEE
10016 | |0.016 | |0.016 | [H.025] 10.025) (0024 |0.031 |0 030 |n 032 0025 .03 | 0.0 22 10,007 | 00,006 |
Tle@=T2 0. 12a%*% 0.100*** 0. 164%** DOGE**F  pOao**s  Q0oG**E O 1G6%%F 0 1G1#%% D ITR#*% (1 153%%% 0 IT7%F% [DOTR*%* DOGEEE% Ipapses
||].||]3_| ||].||'|f.i.| ||].||1H.| 100135 [0.0ld] |0015] |18 (LR LN [LLEIR B mn2 (.0 | |n.018| 0,00 | 0,006 |
9 N042%EF Oz #Ed oo+ s OE0FEE ORI EEE QURTEEY u0n THE] [T SUOGREEE  _poasn*FEr oo Opa¥EE
joans| o jio,nnG | 0,007 ool ol ool ool oot o1 ool e o013

Table S.13. Different lag specifications — kharif season

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. For each subsample, the first column (“4 (main)”)

represents the SPEI index with a 4-month

the periods between June-October and June-November, respectively.
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Kharif Thresholds

Sample 3 X v} 1:2 g
Maize (N=2208) 0.125*** -.1.752 0.017* 1.431 -0.068%***
A y for 0.01 1 in SPEI 1.351 B.171 -0.657
Millet (N=2162) 0.286*** -2.063 0.132*** 0.444 -0.001
A y for 0.01 1 in SPEI 5.511 Lol -0.010
Rice (N=4324) 0.300%*% -2.,004 0.139*** -1.305 0.066***
A vy for 0.01 1+ in SPEI 5.499 1.491 (.682
Sorghum (N=2300) 0.300%** -1.895 0.131%** .0.255 -0.073%**
A y for 0.01 1 in SPEI 2.561 1.653 -0.657
Wheat (N=3404) 0.100%** -1.524 0.053***

Rabi - Thresholds
Sample B Ll 6] T2 g
Rice 0.068*** -1.586 0.183*** -1.445 0.019**+*
A vy for 0.01 1 in SPEI 0.704 2.008 0.192
Sorghum 0.073*** .0.822 0.013
A yfor 0.01 1 in SPEI 0.757 0.1581
Wheat 0.027*** _1.637 -0.026*
A y for 0.01 1 in SPEI 0.2%§ -0.257

Table S.14. Summary of coefficients including controls

Note: *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively.
Numbers in bold denote the estimated threshold values of the SPEI. T1 and T2 denote

threshold 1 and 2, respectively. Numbers in italics represent the predicted effect of a 0.1
increase in the SPEI value.
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