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Abstract

We show that economic models of climate change produce climate dynamics incon-
sistent with current climate science models: (i) the delay between CO2 emissions and
warming is much too long and (ii) positive carbon cycle feedbacks are mostly absent.
These inconsistencies lead to biased economic policy advice. Controlling for how the
economy is represented, different climate models result in significantly different opti-
mal CO2 emissions. A long delay between emissions and warming leads to optimal
carbon prices that are too low and attaches too much importance to the discount rate.
Similarly we find that omitting positive carbon cycle feedbacks leads to optimal carbon
prices that are too low. We conclude it is important for policy purposes to bring eco-
nomic models in line with the state of the art in climate science and we make practical
suggestions for how to do so.
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1 Introduction

Climate change is arguably the quintessential dynamic problem in economics. Carbon diox-
ide resides in the atmosphere for centuries after it is emitted, while the climate system
operates on timescales ranging from seconds to millennia. Presumably climate dynamics
must be accurately represented in economic models of climate change, if appropriate policy
prescriptions are to be made. But do economic models get climate dynamics right? To the
extent that they don’t, does it matter?

This paper aims to make two contributions. First, we highlight some key inconsistencies
between how leading economic models of climate change represent climate dynamics and
how the current generation of climate science models does. Second, we explore the economic
implications of these inconsistencies. Using the economic module of Nobel laureate William
Nordhaus’ DICE model as a consistent representation of the economy, we quantify how
different models of the climate system affect optimal CO2 prices/taxes, CO2 emissions and
temperatures.

We conduct this study in response to some recent work hinting at a systemic problem.
van Vuuren et al. (2011) have documented wide variations in the climate dynamics simulated
by a sample of economic models, without analysing the economic implications. Calel and
Stainforth (2017) and Rose et al. (2017) have come up with similar findings and also showed
that these can result in variations in estimated economic impacts of climate change. In
response to Lemoine and Rudik (2017), who argue that inertia in the climate system buys
time for optimal CO2 prices to start low and grow slowly, Mattauch et al. (2020) argue that
the Lemoine and Rudik (2017) model is out of line with the temperature impulse response
to CO2 emissions in climate science models, and that bringing it into line significantly alters
the optimal CO2 price path.1

We build on these studies in two main ways. First, we attempt a comprehensive as-
sessment of climate dynamics in a representative sample of six leading economic models of
climate change, a.k.a. integrated assessment models or IAMs, and we compare them with a
canonical set of climate science models. We include not only quantitative/numerical IAMs
like DICE, but also analytical IAMs built to yield closed-form solutions for optimal CO2

prices. Second, we demonstrate the implications of different climate dynamics for economic
policy by computing optimal paths, using the economic module of DICE to control for all
other relevant differences.

In Section 2, we elaborate on how the leading IAMs fail to conform to climate science
1Dietz and Venmans (2019) note a similar discrepancy between DICE 2013 and climate science models,

without exploring the direct implications for CO2 prices.
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models. We select six models, which we argue are representative of the climate economics
field: the three most influential quantitative IAMs (DICE, FUND and PAGE), together
with three analytical IAMs from prominent recent papers (Golosov et al., 2014; Lemoine
and Rudik, 2017; Gerlagh and Liski, 2018). We test how their climate modules respond in
two experiments, compared with a large sample of 256 counterpart climate science models.
The first test is of how fast and how far temperature rises in response to a CO2 emission
impulse. We show that the climate science models uniformly heat up very quickly to a
constant, steady-state level, whereas the climate modules of the IAMs heat up much more
slowly and do not attain a steady-state temperature within two centuries. The second test is
of how removal of atmospheric CO2 by carbon sinks (i.e. the oceans and biosphere) changes
as CO2 emissions continue. In the climate science models, carbon sinks weaken. Their ability
to remove CO2 from the atmosphere is diminished by positive feedbacks in the carbon cycle,
leading to more warming from given emissions. By contrast, we show that CO2 removal
by carbon sinks strengthens in most of the IAMs, giving a false impression of increasing
absorptive capacity.

Section 3 offers a general framework to understand the models of the carbon cycle and
warming process featured in these two experiments, both from climate science and eco-
nomics. This framework enables us to decompose the dynamic temperature response to a
CO2 emission impulse in the models into the dynamic response of (i) the atmospheric CO2

concentration and (ii) temperature. This decomposition demonstrates that the IAMs’ cli-
mate modules vary widely in how fast a CO2 emission impulse decays and how much is
removed from the atmosphere in the long run, and that the decay behaviour generally dif-
fers from the representative climate science model. In particular, most of the IAMs remove
CO2 from the atmosphere too slowly at first, which would in fact result in a fast temper-
ature response to a CO2 emission impulse, all else being equal. The second part of the
decomposition shows, however, that almost all of the IAMs exhibit too much temperature
inertia in response to elevated atmospheric CO2. Thus the very slow temperature response
to emissions in the IAMs stems from too much temperature inertia.

In Section 4, we move on to exploring the economic implications of different representa-
tions of the climate system, i.e. we turn to whether any of this matters for climate policy. We
couple various models of the climate system with a common economic module, namely that
of DICE. This is sufficient to illustrate in controlled conditions that different climate mod-
els result in significantly different optimal CO2 emissions, concentrations and temperatures,
both on emissions paths that maximise social welfare and on emissions paths that minimise
CO2 abatement costs subject to a 2◦C warming constraint (per the UN Paris Agreement on
Climate Change).
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Since the various climate models differ in multiple ways, Section 5 isolates the effects of (i)
too long a delay between emissions and warming and (ii) failing to simulate positive carbon
cycle feedbacks. On the first, we find a long delay between an emission impulse and warming
leads to optimal carbon prices that are too low. It also implies optimal carbon prices are
too sensitive to the discount rate, since the costs of global warming are erroneously placed
too far in the future. On the second, failing to simulate positive carbon cycle feedbacks also
leads to optimal carbon prices that are too low. The effect is larger when cumulative CO2

uptake and temperature are high and overall it is of comparable size to a long delay. Lastly
it is worth noting that we specifically find DICE 2016 heats up too much in the long run
and this contributes to the false impression that it is infeasible to limit warming to 2◦C as
mandated by the UN Paris Agreement.

Section 6 concludes and offers a discussion. Climate dynamics matter. Some other issues
in climate economics still matter at least as much, such as how to represent damages. But,
unlike damages, the discrepancies between IAMs and current climate science models are
easily fixed. We make recommendations on how to do so, depending on the complexity and
purpose of those models.

2 Two key tests of climate dynamics

Our first test is of how global mean surface temperature responds to an emission impulse
of 100 gigatonnes of carbon in the models. The background atmospheric CO2 concentration
is held constant at 389 parts per million (the level observed in 20102) and the equilibrium
climate sensitivity is set to 3.1◦C. This replicates a well-known experiment in climate science
(Ricke and Caldeira, 2014), which has also been recommended by the US National Academy
of Sciences as a key test of the consistency of IAMs with current understanding in climate
science (National Academies of Sciences, Engineering, and Medicine, 2017). Online Appendix
A contains further details of the experiment.

To produce this figure, we first compute the temperature impulse response in 256 reduced-
form climate science models, which we obtained from the literature.3 The set of models here
corresponds to the so-called CMIP5 ensemble, after the 5th Coupled Model Intercompari-
son Project of the World Climate Research Programme. We then combine these impulse

2https://data.giss.nasa.gov/modelforce/ghgases/Fig1A.ext.txt
3The set of 256 models is the product of all combinations of 16 carbon cycle models and 16 atmosphere-

ocean general circulation models (AOGCMs). Many of the underlying models are highly complex and run
on super-computers. However, previous research in climate science, which we build on here, shows that the
dynamics they simulate for atmospheric CO2 and global mean surface temperature can be fit with a high
degree of precision using reduced-form models (Geoffroy et al., 2013; Joos et al., 2013; Ricke and Caldeira,
2014), which enables comparisons like this one.
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responses with those of six leading IAMs, including the three most influential quantitative
IAMs by far – DICE, FUND and PAGE4 – and three leading analytical IAMs published
in recent years (Golosov et al., 2014; Gerlagh and Liski, 2018; Lemoine and Rudik, 2017).
While this sample of economic models is not exhaustive, we argue it is representative of the
field as a whole.5

Perhaps contrary to popular belief, the temperature response to a CO2 emission impulse
in climate science models is fast. Figure 1 shows this. Peaking around ten years after the
emission impulse, temperature is then permanently elevated. The response of the models
resembles a step function. Dietz and Venmans (2019) explain the underlying geophysics. In
comparison, Figure 1 also shows there is far too much delay between the injection of CO2

and the resulting peak warming in almost all the leading IAMs. The temperature response
peaks after 55 years in DICE 2013, 67 years in PAGE and 75 years in the model of Gerlagh
and Liski (GL18). In the central case studied by Lemoine and Rudik (LR17) it takes 92
years, in FUND it takes 128 years and in DICE 2016 it takes 180 years. The only model
that does not simulate a long delay is that of Golosov et al. (GHKT14), which assumes no
delay in the temperature response a priori. This turns out to be a reasonable approximation.
After peaking, temperature begins to decrease again in the IAMs, which is also contrary to
the climate science models.

This experiment involves a fairly large instantaneous emission impulse of 100GtC, which
is equivalent to about ten years of CO2 emissions from burning fossil fuels at current rates
(Le Quéré et al., 2018). One may wonder whether the conclusions we draw are robust to
the size of the emission impulse. Online Appendix A shows that they are. Qualitatively
very similar results are obtained from a much smaller emission impulse (1GtC) and a much
larger one (1000GtC). One may also wonder whether the rapid temperature impulse response
is consistent with observational data, not just a property of the climate science models
(noting these models are themselves calibrated on observations). Montamat and Stock (2020)
provide evidence that this is the case, regressing temperature on atmospheric CO2 using an
instrumental variables approach. Lastly, online Appendix A also shows that the temperature

4We include both DICE 2013 (Nordhaus, 2014) and DICE 2016 (Nordhaus, 2017), due to their divergent
behaviour, FUND 3.11 (FUND 3.10 is described in Waldhoff et al., 2014) and PAGE09 (Hope, 2013).

5As an example of their policy application, DICE, FUND and PAGE are used in the United States to
estimate the social cost of carbon – the marginal damage cost of CO2 – for the purposes of cost-benefit analysis
of federal regulations (Interagency Working Group on Social Cost of Carbon, 2013). Of the analytical IAMs,
the model of Golosov et al. has been particularly widely adopted in subsequent work, with 749 citations
according to Google Scholar as of 13 January 2021. Few quantitative or analytical IAMs beyond these
have been built to conduct cost-benefit analysis, i.e. to compute welfare-maximising emissions paths under
endogenous climate damages/impacts from rising temperatures. The term IAM is sometimes applied to a
much wider set of models, including energy models built to assess the costs of meeting pre-defined CO2
emissions budgets or targets. These models do not have climate modules, however.
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Figure 1: Dynamic temperature response of 256 climate science models (the CMIP5 en-
semble) and seven IAMs to an instantaneous 100GtC emission impulse against a constant
background atmospheric CO2 concentration of 389ppm. The temperature response of the
IAMs is much slower than the climate science models, except Golosov et al. (2014). After 200
years, the temperature response of the IAMs is often well outside the range of the climate
science models. The CMIP5 model responses are emulated/fitted by combining the Joos et
al. (2013) carbon cycle model and the Geoffroy et al. (2013) warming model.
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impulse responses of the models featured in our experiment are qualitatively very similar
when background atmospheric CO2 is rising, rather than being held constant.

In Figure 2, we present the results of our second test. We run the models under a
scenario of constant greenhouse gas emissions6 and plot how yearly uptake of CO2 by carbon
sinks changes as the stock of atmospheric CO2 increases. Again, a comparison like this was
identified by the National Academy of Sciences as a key test of IAMs (National Academies
of Sciences, Engineering, and Medicine, 2017). The representative climate science model in
this experiment is called FAIR (Millar et al., 2017). FAIR is based on the same reduced-
form model used to approximate the climate science models in Figure 1, but adds additional
carbon cycle feedbacks. We calibrate FAIR on the mean climate science model depicted in
Figure 1, and add carbon cycle feedbacks calibrated on observational data since pre-industrial
by Millar et al. (2017). Online Appendix A contains further details of this experiment.

In FAIR, yearly uptake of CO2 by carbon sinks decreases as the atmospheric CO2 concen-
tration increases. Carbon sinks become less effective at removing CO2 from the atmosphere,
because of positive feedbacks in the carbon cycle. In the absence of these feedbacks, yearly
uptake of CO2 by carbon sinks would increase with the atmospheric CO2 concentration,
simply due to Henry’s Law.7 Instead, as atmospheric CO2 rises, the oceans, like the at-
mosphere, warm up. As they do so, they keep less CO2 in solution, so more CO2 stays in
the atmosphere, further increasing temperature. CO2 reacts with seawater to form carbonic
acid, so the more CO2 the oceans absorb cumulatively, the more acidic they become, which
also limits their ability to absorb carbon (Revelle and Suess, 1957). Furthermore, climate
change is expected to reduce net uptake of CO2 by the biosphere. Most of the IAMs do
not take these feedbacks into account, however. This explains why in these models there
is an increasing relationship between atmospheric CO2 and annual CO2 removal by carbon
sinks. The exceptions are FUND and PAGE, both of which incorporate feedbacks from car-
bon sinks to atmospheric CO2/warming. In FUND but not in PAGE, these feedbacks are
sufficient to produce a decreasing overall relationship between atmospheric CO2 and CO2

removal by sinks.8

6Fixed at the 2015 level. Doing so enables us to clearly show the effect of carbon cycle feedbacks, which
would not be clear on an increasing emissions path, for reasons set out just below.

7The amount of dissolved gas in a liquid (i.e. the oceans) is proportional to its partial pressure above the
liquid (i.e. in the atmosphere).

8There are multiple feedbacks in the carbon cycle, positive and negative. Changes to the ocean circulation
could also reduce CO2 uptake (Friedlingstein et al., 2006). Potential sources of negative feedback include
increased rainfall over currently arid areas. Overall, IPCC concluded that “[b]ased on Earth System Models,
there is high confidence that the feedback between climate and the carbon cycle is positive in the 21st
century” (IPCC, 2013, p26, original emphasis). In the unlikely event of an overall negative feedback, the
slope of the relationship between annual CO2 uptake and atmospheric CO2 would be more positive. Not
included here are further positive greenhouse gas feedbacks such as permafrost thawing, which tend instead
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Figure 2: Yearly uptake of CO2 by carbon sinks as a function of atmospheric CO2 in FAIR
and seven IAMs under constant 2015 greenhouse gas emissions. Each marker represents
five years. FAIR shows yearly uptake decreases, while the IAMs have it increasing, except
FUND.
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There is reason to believe these two discrepancies between the current crop of climate
science models and the leading IAMs could matter for policy prescriptions. First, given
the centrality of discounting in climate economics (Arrow et al., 2013; Gollier, 2012; Nord-
haus, 2007; Stern, 2007), the fact that IAMs underestimate warming in the near future in
response to a CO2 emission impulse could significantly impact the welfare evaluation of emis-
sions abatement responses. According to the climate science models, CO2 emissions elevate
temperatures almost immediately. Avoiding those emissions would therefore pay an almost
immediate dividend. Second, ignoring the diminishing marginal effectiveness of carbon sinks
underestimates the climate response to CO2 emissions in the long run, which again impacts
the welfare evaluation of emissions abatement responses.

3 Models of the carbon cycle and temperature dynam-
ics

How do the models used in the previous section – both the climate science models and the
IAMs – actually work? In this section, we offer a general framework for understanding this
using impulse response functions (see e.g. Maier-Reimer and Hasselmann, 1987). The frame-
work enables us to decompose the temperature response to a CO2 emission impulse in the
models into the response of (i) the atmospheric CO2 concentration and (ii) temperature. By
describing the models in more detail, we also set the scene for our subsequent economic anal-
ysis, which is based on coupling different climate models with the DICE economic module.

Start by writing the temperature impulse response to an initial CO2 emission as plotted
in Figure 1 as:

∆Tt

∆E1
=

t∑
s=1

∆Tt

∆Fs

∆Fs

∆Ms

∆Ms

∆E1
, (1)

where Tt is the increase in global mean temperature at time t relative to pre-industrial, E is
CO2 emissions, F is radiative forcing and M is the atmospheric CO2 concentration.

The temperature impulse response at time t to a CO2 emission at time t = 1 is thus the
sum over the intervening period of the product of the CO2 concentration impulse response
to the emission, ∆Ms/∆E1, the within-period change in forcing in response to atmospheric
CO2, ∆Fs/∆Ms, and lastly the change in temperature in response to the additional forcing,
∆Tt/∆Fs. The CO2 concentration impulse response to the emission is determined by a
carbon cycle model, while the forcing and temperature response to changing atmospheric
CO2 is determined by a warming model. Let us now scrutinise these two models in turn.

to be classed as tipping points in the climate system (Lenton et al., 2008).
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The carbon cycle model

Most simple models of the carbon cycle partition the system into a series of reservoirs or
boxes, between which carbon is exchanged. The diffusion of carbon between different boxes
(e.g. the atmosphere, biosphere, and upper and lower oceans) can be modelled by a system
of difference equations of the form

mt = Amt−1 + bEt, (2)

where the vector mt contains the stocks of carbon in each of n boxes at the end of period t
and A is a matrix, whose elements describe the speed of diffusion between the boxes. The
vector b contains the shares of emissions that enter each of the boxes. As the matrix A and
the vector b are constant, (2) corresponds to a linear carbon cycle.

The atmospheric CO2 concentration Mt ≡ d′mt, where d is the vector that maps the
contents of the various boxes into the stock of atmospheric carbon. Then

Mt = d′
(

AtM0 +
t∑

s=1
At−sbEs

)
, (3)

where M0 is the initial concentration. In online Appendix B, we show how spectral decom-
position can be used to obtain the CO2 concentration impulse response function:

∆Mt

∆Es

= d′At−sb =
t∑

s=1

n∑
i=1

ψiλ
t−s
i . (4)

The λi ∈ (0, 1] are the eigenvalues of A, which we assume to be real and in decreasing order
of magnitude. These are inversely proportional to how long CO2 resides in each of the boxes.
The constants ψi > 0 represent the contribution of each box to the atmospheric carbon stock.
If a proportion of emissions stays in the atmosphere forever, λ1 = 1 for the box pertaining to
that proportion (i = 1) and the impulse response is the sum of the permanent and transitory
components,

∆Mt

∆Es

= ψ1 +
n∑

i=2
ψiλ

t−s
i . (5)

Equation (5) fully determines any linear carbon cycle model with any number of boxes,
which explains why such impulse response functions are commonly used in climate science
to represent and compare models of varying degrees of complexity.

Table 1 applies this framework to the carbon cycle models compared in the previous
section. Joos et al. (2013) is the representative climate science model, i.e. the model used
to fit the CMIP5 ensemble. While the number of boxes varies, most models are based on a
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structure in which there is a permanent box, into which roughly 1/5 to 1/6 of a CO2 emission
impulse flows, a very slowly decaying box, and one or more boxes that decay much more
quickly. However, there is significant variation in both the shares of emissions flowing into
each box and the residence time (specifically the half-life) of CO2 in each of the temporary
boxes.9 Online Appendix B contains further details of the models’ carbon cycles.

What CO2 dynamics do these different representations give rise to? Figure 3 plots the
CO2 impulse responses of the various models. The impulse size is 100GtC as in the ex-
periments above. The figure shows that the differences between the models’ structures and
parameters cause significant differences in their CO2 impulse responses. Some models such
as GL18 remove CO2 very quickly initially. Others such as PAGE remove it very slowly.
Over the first 50 years, however, most IAMs remove CO2 more slowly than the best fit
of the CMIP5 ensemble, which in itself would tend to produce a fast temperature impulse
response. After a couple of centuries, some IAMs such as LR17 remove most of the CO2

emission impulse. Others such as DICE 2016 and FUND remove relatively little. By then,
there does not appear to be a systematic bias between the IAMs and the best fit of CMIP5.
Overall, few of the IAMs resemble the best fit of CMIP5, however.

So far we have not addressed weakening carbon sinks. It is clear these are not repre-
sented by linear models, since the CO2 impulse response in Equation (4) does not depend
on cumulative absorbed carbon, or temperature. Simple non-linear models of carbon cycle
feedbacks include NICCS (Hooss et al., 2001) and FAIR (Millar et al., 2017). FAIR, which is
now widely used, simulates weakening carbon sinks by extending the four-box carbon cycle
of Joos et al. (2013). Relegating the details to online Appendix A, in essence FAIR works by
reducing the rate at which carbon is removed from the atmosphere using a scaling factor α
(i.e. replace the λi with λi/α), which is increasing in cumulative carbon uptake and temper-
ature. Figure 3 shows FAIR’s positive carbon cycle feedbacks in action: less CO2 is removed
from the atmosphere when the emission impulse is against a higher (year 2100) background
concentration of CO2.10

Radiative forcing and temperature dynamics

The relationship between atmospheric CO2 and forcing is logarithmic, since CO2 becomes
less effective at absorbing outgoing radiation at higher concentrations. The change in forcing

9The shares flowing into the three boxes of the GL18 model do not add up to one, since only 94% of box
1 pertains to the atmosphere (the rest is assumed to be absorbed immediately by the upper ocean). The
half-life of CO2 in box 2 of DICE 2016 is much larger than in earlier versions of DICE, or in the other models
shown.

10Corresponding with the year 2100 on the IPCC’s RCP4.5 scenario. RCP stands for Representative
Concentration Pathway. IPCC developed four RCP scenarios for the Fifth Assessment Report (Moss et al.,
2010).
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Figure 3: Removal of a 100GtC emission impulse (47ppm CO2) in climate science models
and seven IAMs against a constant background atmospheric CO2 concentration of 389ppm.
There are big differences between the IAMs. Few of the IAMs approximate the best fit of the
climate science model distribution. Note that FAIR removes less CO2 from the atmosphere
against a higher background concentration due to positive carbon cycle feedbacks.
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in response to atmospheric CO2 can be written as

∆Fs

∆Ms

= F2×CO2

ln 2
1
Ms

, (6)

where F2×CO2 is the radiative forcing resulting from doubling atmospheric CO2. This partly
determines the equilibrium climate sensitivity, which we hold constant across all the models
in order to isolate the effect of short- and medium-run dynamics (see online Appendix B). It
is important to bear in mind that total radiative forcing is the sum of forcing from CO2 and
from other greenhouse gases and forcing agents. Typically these other gases/forcing agents
are exogenous in the models,11 but their role is not trivial12 and must be properly accounted
for. Below we show that failing to do so in some models gives misleading results.

Just like carbon cycle models, simple warming models typically partition the system into
boxes, between which heat is exchanged (e.g. the atmosphere/upper ocean and deep ocean).
Thus we can again use spectral decomposition to obtain an analogous expression for the
temperature response to forcing:

∆Tt

∆Fs

=
t∑

s=1

2∑
i=1

ψT
i λ

T t−s
i , (7)

where ψT
i and λT

i denote respectively the shares/weights and eigenvalues of the heat boxes
(the superscript T just indicates that these apply to temperature).

Table 2 summarises the dynamics of the various warming models that map forcing into
temperature. Geoffroy et al. (2013) is the representative climate science model used to fit
the CMIP5 ensemble. Both DICE and Geoffroy et al. (2013) have two boxes representing the
temperature of the atmosphere/upper oceans and the deep oceans respectively. However,
critically DICE displays a much more sluggish response of temperature to radiative forcing
than Geoffroy et al. (2013), especially as the fast box of Geoffroy et al. has a half-life of only
3 years.

Figure 4 uses Equations (6) and (7) to plot the dynamic temperature response of the
models to a constant increase in atmospheric CO2 of 100GtC (47ppm). This is therefore the
second element of the decomposition of the temperature response to an emission impulse.
With the exception of GHKT14, all of the IAMs exhibit a more sluggish temperature response
than the best fit of the CMIP5 ensemble. The temperature response of LR17 is particularly
slow. After 200 years, temperature is higher in DICE 2013, DICE 2016 and FUND, while

11In FUND and PAGE, some of the other greenhouse gases, such as methane and nitrous oxide, are
explicitly modelled.

12The contribution to total radiative forcing of gases/drivers other than CO2 is about 25% currently
(IPCC, 2013).
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Table 2: Comparing linear temperature-forcing responses
Time step Box 1 Box 2
(years)

DICE 2016 5 9.9%; 25 years 0.2%; 150 years
DICE 2013 5 9.9%; 23 years 0.2%; 148 years
FUND 1 100%; 31 years
PAGE varies 100%; 24 years
GHKT14 10 n.a. n.a.
GL18 10 100%; 34 years
LR17 1 100%; 50 years
Geoffroy et al. (2013) / best 1 13.5%; 3 years 0.2%; 167 years
fit CMIP5 ensemble

Key: The first figure in each cell is the weight of each mode and the second figure the half-life
for each mode. PAGE models regional temperature and calculates global temperature as the area-
weighted average. GHKT14 effectively assume that temperature is driven by equilibrium climate
sensitivity according to Arrhenius’ law and do not have any lag between forcing and temperature.

LR17 and PAGE are close to the best fit of the CMIP5 ensemble at that moment. The
GHKT14 model shows an immediate, permanent increase in temperature. It over-predicts
temperature compared with the best fit of the CMIP5 ensemble.
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Figure 4: Dynamic temperature response of the best-fit climate model and seven IAMs to a
constant increase in atmospheric CO2 of 100 GtC (47ppm CO2). The IAMs respond much
more slowly to elevated CO2 than the best-fit climate model, except GHKT14.
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Going back to Figure 1, the IAMs (excluding GHKT14) warm up too slowly in response
to the emission impulse. This impulse response is obtained by convoluting atmospheric CO2

decay/removal as plotted in Figure 3 with temperature inertia as plotted in Figure 4. Thus
the analysis of this section shows that the sluggish temperature response to the emission
impulse is due to too much temperature inertia in response to elevated atmospheric CO2. If
anything, the IAMs have too little CO2 decay, but this does not compensate for the inertia.
In the best fit of the CMIP5 ensemble, temperature inertia almost exactly offsets CO2 decay.
As a result, the CMIP5 temperature response resembles a step function.

4 Economic policies with different climate models

In this and the following section, we evaluate what difference the model of the climate
system makes for economic policies. We focus on two such policies: (i) optimal emissions
that maximise social welfare and (ii) a representative policy run in the context of the United
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Nations climate framework that limits warming to 2◦C at minimum discounted abatement
cost. The latter path is sometimes described as an exercise in cost-effectiveness analysis (as
opposed to (i), which is an exercise in cost-benefit analysis) and is a core use of IAMs by
IPCC (see Clarke et al., 2014).13

To perform this evaluation, we need to make a controlled comparison, in which the models
are identical in all respects except how they represent the dynamics of the carbon cycle and
warming process. Control is achieved by using the DICE 2016 economic and welfare modules
as a common base, and coupling it with different models of the climate system (Table 3).14

We drop the FUND and PAGE models here, due to the practical difficulties of coupling these
more complex IAMs with the DICE 2016 economy. Note that temperature is only implicit
in GHKT14 and GL18, however it can be backed out using assumptions explicitly stated in
these papers.

Table 3: List and description of models used for economic evaluation
Model Description
DICE 2016 Standard DICE 2016 economy and climate
DICE-DICE 2013 DICE 2016 economy with the DICE 2013 climate module
DICE-GHKT14 DICE 2016 economy with the Golosov et al. (2014)

climate module
DICE-GL18 DICE 2016 economy with the Gerlagh and Liski (2018)

climate module
DICE-LR17 DICE 2016 economy with the Lemoine and Rudik (2017)

climate module
DICE-FAIR-Geoffroy DICE 2016 economy with the FAIR carbon cycle and

the Geoffroy et al. (2013) warming model
DICE-Joos-Geoffroy DICE 2016 economy with the Joos et al. (2013) carbon

cycle and the Geoffroy et al. (2013) warming model

Figure 5 plots welfare-maximising carbon prices, emissions and temperatures (left col-
umn) from DICE 2016, DICE-FAIR-Geoffroy (i.e. the representative or benchmark climate
science model, coupled with the DICE economy), DICE-DICE 2013, DICE-GHKT14, DICE-
GL18 and DICE-LR17. It is immediately apparent that the models differ significantly in
their welfare-maximising paths. Initial carbon prices range from $11/tCO2 in DICE-LR17
to $57 in DICE-GHKT14, with an initial carbon price of $30 in the benchmark DICE-FAIR-
Geoffroy model, and $37 in standard DICE 2016. These differences grow over time, such

13Abatement cost minimisation subject to a temperature constraint is the same as welfare maximisation
subject to a temperature constraint and ignoring climate damages.

14Readers are referred to William Nordhaus’ web resources for a comprehensive description of the
DICE 2016 economic module and, unless otherwise specified, the version we use is unchanged. See
https://sites.google.com/site/williamdnordhaus/dice-rice.
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that by 2100 the range is $77-358/tCO2.
Welfare-maximising CO2 emissions and temperatures also vary widely. Initial CO2 emis-

sions range from 33GtCO2 in DICE-GHKT14 to 40GtCO2 in DICE-LR17, while in 2100
they range from nearly zero to 50GtCO2. Optimal warming by the end of the century ranges
from just 2.0◦C in DICE-LR17 to 4.0◦C in DICE-GHKT14. Optimal warming in the bench-
mark DICE-FAIR-Geoffroy model is 3.0◦C in 2100. Notice that optimal warming in 2100 is
lowest in DICE-LR17, despite this model having the lowest carbon prices and the highest
emissions. This is directly attributable to its slow and low temperature impulse response to
CO2 emissions, as shown in Figure 1. Notice also the high initial starting temperature in
DICE-GHKT14. Temperature is only implicit in GHKT14, but can be backed out from their
assumptions about the atmospheric carbon stock and damages. Their assumption of no de-
lay between emissions and warming, coupled with a calibration that ignored the contribution
of non-CO2 greenhouse gases to warming, leads to this artefactual result.

Figure 5 also compares models on a path that limits warming to 2◦C at minimum dis-
counted abatement cost (right column). Similar to the models’ welfare-maximising paths, we
observe large differences in their 2◦C cost-minimising paths. Naturally, given the warming
constraint, the differences are particularly evident in carbon prices and emissions. Initial
carbon prices vary from $13/tCO2 in DICE-LR17 to $143 in standard DICE 2016. By mid-
century the range of carbon prices peaks at $406/tCO2 between these models. Initial CO2

emissions range from 26GtCO2 in DICE 2016 to 40GtCO2 in DICE-LR17. Limiting warming
to 2◦C is infeasible in DICE-GHKT14, for the reasons mentioned above. In order to limit
warming to 2◦C, emissions must eventually be negative in all models, but the time at which
‘net zero’ is crossed ranges from just before 2050 in DICE 2016 to just after 2100 in DICE-
LR17. Although warming is limited to 2◦C, the temperature trajectory shows significant
variation across the models, particularly in mid-century. The range is 1.2-1.8◦C in 2050,
for instance. Note these 2◦C cost-minimising paths are obtained assuming CO2 emissions
from land-use change and forestry, as well as radiative forcing from other greenhouse gases
and atmospheric agents, follow the IPCC RCP2.6 scenario, which is the only RCP scenario
consistent with the 2◦C target. We will return to this point below.

5 Warming delay, positive carbon cycle feedbacks and
further economic analysis

While Figure 5 illustrates that climate dynamics matter for economic policies, it does not
fully illuminate the role of the issues identified in Section 2, namely the excessive delay

19



Figure 5: Welfare-maximising (left) and cost-minimising (right) paths from different climate
models coupled with the DICE 2016 economy. Top row – carbon prices; middle row – CO2
emissions; bottom row – warming. The models produce very different carbon price paths,
resulting in very different CO2 emissions and temperature paths.
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between a CO2 emission impulse and warming, and the omission of positive feedbacks in the
carbon cycle. That is because the climate modules considered differ in multiple respects.
Therefore these two issues are explored further in Tables 4 and 5.

To isolate the effect of excessive delay between a CO2 emission impulse and warming,
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we construct two further artefact models, built on the DICE-Joos-Geoffroy model used to
represent the CMIP5 models in Figure 1. These two models exhibit the same long-run
temperature response to a CO2 emission impulse as DICE-Joos-Geoffroy, but reach that long-
run response at very different speeds; far too slowly in comparison with the climate science
models, more in line with the IAMs. The reason we construct these two further models
is that, even with the same equilibrium climate sensitivity, the different climate models
compared above exhibit not only different short- and medium-run temperature dynamics,
they also exhibit different long-run temperature responses (as is clear from Figure 1). The
new ‘Delay 56’ model is so called, because it exhibits a delay between the CO2 emission
impulse and peak warming that is five times longer than DICE-Joos-Geoffroy (56 years,
rather than 11.2 years). The ‘Delay 112’ model exhibits a corresponding warming delay that
is ten times longer. Online Appendix B provides further details of these new models.

Table 4 shows that on the welfare-maximising path an excessive delay leads to lower
carbon prices throughout. The 2020 carbon price falls from $27/tCO2 for the short delay
(DICE-Joos-Geoffroy) to $23 for the 56-year delay and $18 for the 112-year delay (compare
rows 2-4). These differences grow over the course of the century. By 2100, moving from a
10-year delay to a 112-year delay reduces the optimal carbon price by $75, or 38%. With
lower carbon prices naturally come higher CO2 emissions, but not higher temperatures, since
a longer delay means that it takes much longer for the warming effect of these additional
emissions to be realised. Table 5 shows that on the 2◦C cost-minimising path an excessive
delay leads to lower carbon prices in 2020 and 2050. The effect is somewhat smaller than on
the optimal path, since the temperature constraint binds and leaves less room for manoeuvre.
Lower carbon prices again result in higher emissions, but the delay means this does not
translate into higher temperatures; on the contrary.

An implication of these results is that the optimal path may be less sensitive to as-
sumptions about the discount rate than previously thought. Table 6 shows this is indeed
the case. We ran DICE-Joos-Geoffroy and the Delay 56 and 112 variants under standard
DICE assumptions about the social discount rate (a pure rate of time preference of 1.5%
and an elasticity of marginal utility of consumption of 1.45), and assuming the social plan-
ner uses lower values (PRTP=0.1%; elasticity of marginal utility of 1). We call the latter
‘public’ discounting.15 The parameter values are the same as in the Stern Review (Stern,
2007). With a representative initial growth rate of global mean consumption per capita of
2.5%, the standard DICE discount rate is 5.1% while the ‘public’ discount rate applied to
climate policy is 3.5%. Table 6 shows that the increase in the 2020 optimal carbon price

15We assume private agents keep the standard DICE parameters for investment/consumption decisions,
but that the social planner sets carbon prices using the lower rate (van der Ploeg and Rezai, 2019).

21



brought about by switching from standard to public discounting is 68% in Delay 112, but
only 50% in DICE-Joos-Geoffroy with the short delay. In 2100 the increases are 51% and
38% respectively.

To isolate how positive carbon cycle feedbacks affect model paths, we now compare DICE-
FAIR-Geoffroy and DICE-Joos-Geoffroy (rows 1 and 2). DICE-FAIR-Geoffroy includes such
feedbacks, while DICE-Joos-Geoffroy does not. These two models are otherwise identical.
Introducing the positive carbon cycle feedbacks results in a higher optimal carbon price.
In 2020, the optimal carbon price in DICE-FAIR-Geoffroy is $29.68/tCO2, $2.70 above the
optimal carbon price in DICE-Joos-Geoffroy. Hence the effect is not quantitatively large in
the short run. However, it is in the nature of the carbon cycle feedbacks that they have a
larger effect, the higher is cumulative absorbed carbon, and temperature, so we see the gap
between the models’ optimal carbon prices widening steadily until by 2100 it is $83/tCO2.
Higher optimal carbon prices result in lower emissions in DICE-FAIR-Geoffroy and this in
turn results in lower 21st-century warming.16 Reduced CO2 uptake by carbon sinks reduces
the cumulative emissions budget for limiting warming to 2◦C in DICE-FAIR-Geoffroy, so the
2◦C cost-minimising carbon price is also higher, resulting in lower emissions and, at least in
this century, lower temperatures.

We complete this section with further analysis of two issues. Firstly, Tables 4 and 5 show
that DICE 2016 yields higher carbon prices than the benchmark climate science model,
DICE-FAIR-Geoffroy (compare rows 1 and 5), particularly on a 2◦C cost-minimising path.
This leads to lower emissions in DICE 2016, yet temperatures end up being higher. Online
Appendix C provides some further analysis of what is behind the difference between stan-
dard DICE 2016 and DICE-FAIR-Geoffroy. Three factors are at play, namely differences
in (a) temperature dynamics, (b) removal of atmospheric CO2 (under constant background
atmospheric CO2) and (c) assumptions about positive carbon cycle feedbacks. In online
Appendix C, we apportion the difference between (a)-(c) and find that the main driver of
different temperatures is (a) the tendency of DICE 2016 to heat up too much in the long
run.

Secondly, previous work with DICE 2016 found it is infeasible to limit warming to 2◦C
(Nordhaus, 2017).17 Our analysis suggests this is not the case if (a) an appropriate assump-
tion is made about contributions to radiative forcing beyond energy/industrial CO2 and (b)
the climate system is appropriately responsive to CO2 emissions. In our 2◦C cost-minimising
runs, we substitute standard DICE 2016 exogenous emissions of CO2 from land-use change

16Warming is higher in DICE-FAIR-Geoffroy in the longer run, due to the carbon cycle feedbacks’ continu-
ing effect. The crossing point is 2200 (not shown). In steady state, optimal warming in DICE-FAIR-Geoffroy
is exactly 3◦C, while in DICE-Joos-Geoffroy it peaks at about 2.83◦C.

17Under the constraint of no negative emissions technology in the first several decades.
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and forestry with corresponding emissions from the IPCC’s RCP2.6 scenario18, which are
lower and more consistent with limiting warming to 2◦C. We do the same for exogenous
radiative forcing from other greenhouse gases and atmospheric agents. This explains why we
find it is feasible to limit warming to 2◦C in DICE 2016. However, Figure 5 and Table 5 show
that, while it is feasible in DICE 2016, it is still very expensive. It is much less expensive in
DICE-FAIR-Geoffroy, due to its more immediate and ultimately lower temperature impulse
response to CO2 emissions. Online Appendix C provides some further analysis of this issue
too.

6 Conclusions and discussion

We have investigated atmospheric carbon and temperature dynamics in climate models from
both climate science and economics. Closely following experimental protocols developed in
climate science, we have used reduced-form impulse response functions built to emulate the
behaviour of an ensemble of highly non-linear and large-scale Earth System models, and we
have compared these with a representative sample of IAMs from the economic literature. We
have not been concerned with fitting our reduced-form models to historical data. This would
have been a different exercise and the resulting model would be of limited relevance for the
analysis of climate policy today. A model calibrated on historical conditions and designed
to reproduce the behaviour of past climates is not a reliable model of the future climate.
One important reason why is that positive feedbacks in the uptake of atmospheric carbon,
studied in some depth in this paper, kick in more strongly when cumulative carbon uptake
and temperature are already high (e.g. Millar et al., 2017). This partly explains why climate
scientists tend to use the dynamic behaviour of Earth System models in simulation exper-
iments in contemporary and future climatic conditions as their benchmark when building
reduced-form models, not past, observed changes in atmospheric carbon and temperature.19

There is wide variation in how IAMs simulate the evolution of atmospheric carbon and
temperature, but almost all of them are unified in one feature: they show too sluggish
a temperature response to an impulse change in CO2 emissions compared with the climate
science models. This sluggish temperature response in the IAMs is primarily due to too much
temperature inertia in response to elevated atmospheric CO2, rather than CO2 decaying
too quickly (on the contrary, in most IAMs it decays too slowly). Besides the sluggish

18Specifically when combined with the SSP1 socio-economic scenario; see Moss et al. (2010).
19That being said, Millar et al. (2017) show that the FAIR model, with its flexible representation of positive

carbon cycle feedbacks, closely tracks observed global mean temperature when run with estimated historical
greenhouse gas emissions. In addition, Montamat and Stock (2020) provide supporting evidence of the fast
temperature impulse response to CO2 emissions, taking an econometric approach to observational data.
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temperature response to CO2 emissions, we have also scrutinised the treatment of carbon
sinks in the models. In climate science models, carbon sinks weaken due to positive carbon
cycle feedbacks. Most IAMs do not demonstrate this property, however.

These discrepancies can cause IAMs to yield misleading policy implications. Controlling
for the specification of the economy and welfare using the DICE 2016 economic module, we
have found IAMs’ climate modules deliver carbon prices, emissions and temperature paths
that vary widely and that differ from the benchmark model in climate science. We explored
both welfare-maximising carbon prices and carbon prices that ensure a 2◦C temperature
target is achieved at minimum discounted abatement cost. Some models deliver carbon
prices that are higher than the benchmark model, some lower. Further exploring the causes
of these differences, we found that a sluggish temperature response to CO2 emissions –
excessive delay – leads to carbon prices that are too low and that are too sensitive to the
choice of discount rate, since the costs of global warming are erroneously placed too far in
the future. We also found that failing to account for positive carbon cycle feedbacks leads
to carbon prices that are too low, especially when atmospheric CO2 is high. But even if the
temperature response to CO2 emissions is too slow and positive carbon cycle feedbacks are
omitted, carbon prices can still be too high in IAMs, as appears to be the case in DICE
2016, which has too high a long-run temperature response.

Therefore climate dynamics matter for economic policy prescriptions. We do not claim
they matter more than other causes célèbres in climate economics like the social discount
rate or the damage function, but matter they do. Moreover, in contrast to these other issues,
on which research is ongoing but seemingly far from a definitive conclusion, the discrepancies
we have identified between economic models and climate science models can easily be fixed.

We can readily identify two options. The first is to recalibrate or replace the climate
modules in IAMs. Models of the carbon cycle need to incorporate positive feedback effects,
as FAIR does (Millar et al., 2017). Models of temperature dynamics need to either be
replaced or recalibrated, so that they can reproduce the fast temperature response of Earth
System models to CO2 emissions, as the model of Geoffroy et al. (2013) does. Recall the
Geoffroy et al. model is structurally identical to the DICE climate module, so DICE would
simply need to be recalibrated. Online Appendix D provides GAMS code to implement the
FAIR-Geoffroy climate in DICE. Hänsel et al. (2020) is a very recent example of running
DICE with the FAIR-Geoffroy climate. Other simple models in climate science may do the
same job. None of these changes requires significant complication of existing IAMs.

The second option is simply to specify temperature as a linear function of cumulative
CO2 emissions (Collins et al., 2013). This is an indirect solution to the problem, because
it turns out that the step temperature impulse response function and positive carbon cycle
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feedbacks combine to produce this linear response in terms of cumulative CO2 emissions
(Dietz and Venmans, 2019).20 Appendix E demonstrates this: the CMIP5 models exhibit
an approximately linear warming response to cumulative emissions under various IPCC
emissions scenarios. The IAMs tend not to. The CMIP5 ensemble gives multi-model mean
temperature at time t as 1◦C plus 1.7◦C per trillion tons of cumulative emissions (TtC) from
2020 onwards. Warming from non-CO2 greenhouse gases needs to be added on top. The
slope coefficient of 1.7◦C/TtC is known as the Transient Climate Response to Cumulative
Carbon Emissions (TCRE).21 As well as being consistent with the climate science models for
sound physical reasons, the linear warming-cumulative CO2 relationship is also very simple
and reduces the number of state variables needed to represent the climate system, which is
advantageous for analytical models in particular.

All the models we have discussed are deterministic. But since the CMIP5 ensemble con-
tains a lot of variation, and there are climate system uncertainties beyond what the CMIP5
ensemble captures, it may be useful to derive stochastic reduced-form models of the atmo-
spheric carbon stock and temperature dynamics (e.g. van der Ploeg, 2018; Aengenheyster et
al., 2018). One could then find, for example, the carbon budget compatible with a certain
tolerance of overshooting the 2◦C target (e.g. 1/3). Miftakhova et al. (2020) use a general
emulation method for constructing low-dimensional stochastic approximations of complex
climate models. Their best model gives a simple stochastic linear exponential lag model
between temperature and cumulative CO2 emissions. Alternatively, one could follow Pretis
(2020), who builds on Kaufmann et al. (2011) and shows that energy-balance models of tem-
peratures, ocean heat content and radiative forcing including greenhouse gases are equivalent
to an econometric co-integrated system and can be estimated in discrete time. He shows
that accounting for structural breaks from volcanic eruptions indicates large parameter un-
certainties and that ignoring these breaks can lead to misleading policy implications due
to model mis-specification. The model can then be used to quantify uncertainties in the
dynamics of the atmospheric carbon stock and temperature.

20Some recent studies that have used this simple relationship to derive economically optimal climate
policies are Allen (2016), Brock and Xepapadeas (2017), van der Ploeg (2018), Manoussi et al. (2018) and
Dietz and Venmans (2019).

21The simple formula whereby warming = TCRE x cumulative emissions implies a temperature response
function to a CO2 emission impulse that is approximated by a step function with amplitude equal to the
TCRE. The temperature response function that best fits the CMIP5 ensemble in the experiment reported
in Figure 1 has a mean amplitude of 1.72◦C/TtC. This is for an equilibrium climate sensitivity of 3.1◦C.
FAIR has a mean amplitude of 1.77◦C/TtC under 2015 conditions. Equilibrium climate sensitivity is the
largest source of uncertainty about the TCRE. Matthews et al. (2009) found a 5-95% probability range of
1.0-2.1◦C/TtC, Allen et al. (2009) found 1.4-2.5◦C/TtC and Gillett et al. (2013) found 0.7-2.0◦C/TtC based
on the CMIP5 ensemble. Based on this and other evidence, IPCC adopted a ‘likely’ range of 1.0-2.1◦C/TtC
(Collins et al., 2013). Recently Nijsse et al. (2020) have suggested 1.3-2.1◦C/TtC based on the emerging
results from CMIP6, with a most likely value of 1.68◦C/TtC.
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IAMs tend to abstract from statistical and model uncertainty. We know that these
uncertainties (especially the skewed distribution of the climate sensitivity and the effect of
stochastic tipping points) can have large positive impacts on the optimal carbon price. To
model such uncertainties properly, one cannot use the simple linear relationship between
temperature and cumulative emissions, as this does not appear to hold at high temperatures
(MacDougall, 2016), whilst in stochastic analysis one is interested in extreme outcomes
even if they are quite unlikely. Future research should therefore be directed at finding
reliable stochastic representations of the inherent statistical and modelling uncertainties in
the CMIP5 ensemble and other ensembles. Only by accounting for the various forms of
uncertainty will it be possible to find climate policies that are robust and prudent.
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