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Abstract

A central question in high-dimensional mediation analysis is to infer the significance
of individual mediators. The main challenge is that the total number of potential
paths that go through any mediator is super-exponential in the number of mediators.
Most existing mediation inference solutions either explicitly impose that the mediators
are conditionally independent given the exposure, or ignore any potential directed
paths among the mediators. In this article, we propose a novel hypothesis testing
procedure to evaluate individual mediation effects, while taking into account potential
interactions among the mediators. Our proposal thus fills a crucial gap, and greatly
extends the scope of existing mediation tests. Our key idea is to construct the test
statistic using the logic of Boolean matrices, which enables us to establish the proper
limiting distribution under the null hypothesis. We further employ screening, data
splitting, and decorrelated estimation to reduce the bias and increase the power of
the test. We show that our test can control both the size and false discovery rate
asymptotically, and the power of the test approaches one, while allowing the number
of mediators to diverge to infinity with the sample size. We demonstrate the efficacy
of the method through simulations and a neuroimaging study of Alzheimer’s disease.
A Python implementation of the proposed procedure is available at https://github.
com/callmespring/LOGAN.

Keywords: Boolean matrix; Directed acyclic graph; Gaussian graphical model; High-dimensional
inference; Mediation analysis; Neuroimaging analysis.
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1 Introduction

Mediation analysis is an important tool in scientific studies. It seeks to identify and explain

the mechanism, or pathway, that underlies an observed relationship between an exposure

and an outcome variable, through the inclusion of an intermediary variable, known as a

mediator. It decomposes the effect of exposure on the outcome into a direct effect and an

indirect effect, the latter of which is often of primary interest and has important intervention

consequences (Pearl, 2001). Mediation analysis was first proposed with a single mediator in

social science (Baron and Kenny, 1986). In recent years, it is receiving increasing attention,

and has been extended to the settings of multivariate and high-dimensional mediators.

It is now widely used in a large variety of scientific applications, including psychology

(MacKinnon and Fairchild, 2009), genomics (Huang and Pan, 2016), genetic epidemiology

(Huang, 2018), and neuroscience (Zhao and Luo, 2016).

In mediation analysis with high-dimensional mediators, a fundamental but challeng-

ing question is how to infer the significance of individual mediators. The main difficulty

is the sheer number of possible paths that go through all combinations of the mediators.

Consequently, the total number of potential paths that go through any mediator is super-

exponential in the number of mediators, rendering almost any existing testing procedure in-

effective. To circumvent this issue, most existing mediation inference solutions either explic-

itly impose that the mediators are conditionally independent given the exposure, or simply

ignore any potential directed paths among the mediators. Such simplifications substantially

reduce the complexity of the hypotheses to test. Adopting this conditional independence

assumption, Boca et al. (2014) proposed a permutation test with family-wise error control,

while Zhang et al. (2016) proposed a screening-and-testing assisted approach. Huang and

Pan (2016) proposed a transformation model and assumed conditional independence for the

transformed mediators. Sampson et al. (2018) and Djordjilović et al. (2019) directly tested

whether each mediator is independent of the exposure or conditionally independent of the

outcome given the exposure, ignoring mediator-by-mediator interactions, while controlling

for family-wise error rate or false discovery rate in multiple testing. Whereas these tests

have been demonstrated effective in numerous applications, they all ignored potential paths

and interactions among the mediators. Even though this strategy may be plausible in some

applications, it may not hold true in others. For instance, in our brain imaging mediation
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analysis study in Section 7, different brain regions are conceived to influence each other.

In genetics studies, different genes are expected to interact with each other (Chakrabortty

et al., 2018). Actually, such examples are often the rule rather than the exception. There-

fore, it is of great importance to develop a mediation testing method that takes directed

paths and interactions among the mediators into consideration.

Recently, Chakrabortty et al. (2018) made an important step forward for inference of

mediation effects while allowing mediator interactions. They formulated the structure of

the exposure, the potential mediators, and the outcome as a directed acyclic graph (DAG).

They defined the individual mediation effect of a given mediator as the summation of all

the effects of the exposure on the outcome that can be attributed to that mediator. They

then established the corresponding confidence interval for their interventional calculus type

estimator of the mediation effect. However, the effects along different paths may cancel each

other, resulting in a zero individual mediation effect in the summation. Rather than taking

average and cancelling out the total effect, we argue this type of mediator is important and

should be identified by the inferential test too. See Section 2.2 for more discussion.

There have also been some recent proposals of penalized sparse estimation of mediation

effects (Zhao and Luo, 2016; Nandy et al., 2017). In addition, there is a large body of

literature studying penalized estimation of directed acyclic graph given observational data

(see, e.g., van de Geer and Bühlmann, 2013; Zheng et al., 2018; Yuan et al., 2019, and the

references therein). However, estimation is an ultimately different problem from inference.

Although both can in effect identify important mediators or links, estimation does not

produce an explicit quantification of statistical significance, and does not explicitly control

the false discovery. As such, we are targeting a completely different problem than those

estimation approaches. More recently, Li et al. (2019) developed a constrained likelihood

ratio test to infer individual links or some given directed paths of a DAG. Nevertheless,

their hypotheses are very different from our problem of inferring significant mediators.

In this article, we propose a novel hypothesis testing procedure to evaluate individual

mediation effects, which takes into account directed paths among the mediators and is

equipped with statistical guarantees. A key ingredient of our proposal is to construct the

test statistic using the logic of Boolean matrices, which allows us to establish the proper

limiting distribution under the null hypothesis. In comparison, the asymptotic properties

of the test statistic built on the usual matrix operations are extremely challenging to es-
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tablish. In addition, the Boolean matrix-based test statistic can be naturally coupled with

a screening procedure. This helps scale down the number of potential paths to a moderate

level, and in turn reduces the variance of the test statistic, and enhances the power of the

test considerably. Furthermore, we use a data splitting strategy to ensure a valid type-I

error rate control for our test under minimal conditions on the screening. We employ some

state-of-the-art estimator of DAG (Zheng et al., 2018) to form an initial estimator of the

directed paths. We also devise a decorrelated estimator to reduce potential bias induced

by high-dimensional mediators. Consequently, it ensures the resulting estimator is
√
n-

consistent and asymptotically normal. We then employ a multiplier bootstrap method to

obtain accurate critical values. Finally, we couple our test for the significance of an indi-

vidual mediator with a multiple testing procedure (Djordjilović et al., 2019) to control the

false discovery rate (FDR) of simultaneous testing of multivariate mediators.

Our contributions are multi-fold. Scientifically, rigorous inference of mediation effects

is a vital and long-standing problem. But nearly all existing solutions ignore potential

interactions among the mediators. Our proposal thus fills a crucial gap, extends the scope

of existing tests, and offers a useful inferential tool to a wide range of scientific applications.

Methodologically, our proposal integrates the logic of Boolean matrices, DAG estimation,

screening, data splitting, and decorrelated estimation to reduce the bias and increase the

power of the test. It is ultimately different from the test of Chakrabortty et al. (2018), which

defined the mediation effect through averaging, required the DAG selection consistency,

focused on dealing with the equivalence class of DAG estimators, and did not consider

multiple testing. By contrast, our method targets a different, and in our opinion, a more

general definition of mediation effect, does not require the DAG selection consistency, and

mostly focuses on the single DAG situation. We discuss the extension of the test to the

equivalence class situation in Section 8. We also compare our test with that of Chakrabortty

et al. (2018) numerically, and show our method is empirically more powerful while achieving

a valid type-I error control. Theoretically, we systematically study the asymptotic properties

of our test, while allowing the number of mediators to diverge to infinity with the sample

size. We show that our test can control both the size and FDR asymptotically, and the

power of the test approaches one. As a by-product, we derive an oracle inequality for the

estimated DAG by the method of Zheng et al. (2018), which is needed to establish the

consistency of our test, but is not available in Zheng et al. (2018).
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The rest of the article is organized as follows. We define our hypotheses in Section 2, and

develop the test statistics based on the logic of Boolean matrices in Section 3. We propose

the testing procedures in Section 4, and investigate the asymptotic properties in Section 5.

We present the simulations in Section 6, and a neuroimaging application in Section 7. We

conclude the paper in Section 8, and relegate all proofs to the supplementary appendix.

2 Hypotheses

In this section, we first present the Gaussian graphical model, based on which we formulate

our mediation testing problem. We then formally develop the hypotheses we aim to test,

and compare with the alternative formulation in Chakrabortty et al. (2018).

2.1 Gaussian graphical model

Consider an exposure variable E, a set of potential mediators M = (M1, . . . ,Md)
>, and an

outcome variable Y . Let X = (E,M>, Y )> collect all the variables, and assume X follows

the linear structural equation model,

X − µ0 = W0(X − µ0) + ε, (1)

where µ0 = E(X), W0 is the (d+2)×(d+2) coefficient matrix, and ε = (ε0, ε1, . . . , εd+1)> is

the mean-zero vector of errors. The matrix W0 specifies the directional relationships among

the variables in X, which can be encoded by a directed graph. Let Xj denote the (j + 1)th

element of X, j = 0, . . . , d+ 1. For i, j ∈ {0, 1, . . . , d+ 1}, if Xi is a direct cause of Xj, then

an arrow is drawn from Xi to Xj, i.e, Xi → Xj, and W0,j,i 6= 0. In this case, Xi is called a

parent of Xj, and Xj a child of Xi. For an integer k ≥ 1, a k-step directed path between Xi

and Xj is a sequence of distinct nodes from Xi to Xj: Xi → Xi1 → . . .→ Xik−1
→ Xj, for

some {ik}1≤l<k. In this case, Xi is called an ancestor of Xj, and Xj a descendant of Xi. For

model (1) and the associated directed graph, we impose a set of conditions. Specifically,

(A1) The directed graph is acyclic; i.e., no variable is an ancestor of itself.

(A2) No potential mediator Mi is a direct cause of the exposure E, and the outcome Y is

not a direct cause of neither the exposure E nor any mediator Mi, i = 1, . . . , d.

(A3) The errors εi, i = 0, 1, . . . , d + 1, are jointly normally distributed and independent.
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In addition, the error variances σ2
i = Var(εi), i = 0, . . . , d + 1, are constant; i.e.,

σ2
0 = σ2

1 = . . . = σ2
d = σ2

d+1 = σ2
∗ for some constant σ∗ > 0.

These model assumptions are generally mild, and are often imposed in the DAG and medi-

ation analysis literature. Specifically, Condition (A1) implies that W0 is a lower-triangular

matrix, up to a permutation of the rows and columns. Condition (A2) implies that the

first row of W0 and the last column of W0 are both zero vectors. Condition (A3) basically

specifies that X follows a Gaussian graphical model. By Gram-Schmidt orthogonalization,

any Gaussian DAG model can always be represented by (1) with independent errors. In

addition, the constant variance condition in (A3) ensures that, under the Gaussian graphical

model (1), W0 is identifiable (Peters and Bühlmann, 2014, Theorem 1). This avoids the

situation of the equivalence class of DAG, and a similar condition has been adopted in Yuan

et al. (2019) as well. We note that it is possible to relax (A3) by requiring σ2
1 = . . . = σ2

d;

i.e., excluding the variance requirement on the exposure and the outcome. We discuss this

relaxation in more details in Section .2 of the appendix. Moreover, we also discuss the

extension of our method to the unequal variance case in Section 8.

2.2 Mediation effects and hypotheses

For a directed path ζ : E → Mi1 → . . . → Mik → Y for some {it}1≤t≤k ⊆ {1, . . . , d}, we

define the total effect of E on Y attributed to this path as,

ωζ = W0,i1,0

(
k−1∏
t=0

W0,it+1,it

)
W0,d+1,ik , (2)

where W0,i,j is the (i, j)th entry of W0. If such a path does not exist, we have ωζ = 0. This

definition of total effect ωζ plays a central role in our definition of mediation effect.

Based on (2), we formally state our hypotheses regarding the significance of an individual

mediator Mq, for an integer q = 1, . . . , d,

H0(q) : ωζ = 0, for all ζ that passes through Mq, versus

H1(q) : ωζ 6= 0, for some ζ that passes through Mq.
(3)

When the alternative hypothesis in (3) holds, we call Mq a significant mediator.

We observe that, the hypotheses in (3) can be reformulated as the following equivalent

pair of hypotheses. That is, for any integer j = 1, . . . , d+ 1, let ACT(j,W0) denote the set
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of true ancestors of Xj; i.e., i ∈ ACT(j,W0) if and only if Xi is an ancestor of Xj. Then

the pair of hypotheses (3) is equivalent to the following pair of hypotheses,

H0(q) : 0 /∈ ACT(q,W0) or q /∈ ACT(d+ 1,W0), versus

H1(q) : 0 ∈ ACT(q,W0) and q ∈ ACT(d+ 1,W0).
(4)

Next, we consider a pair of hypotheses that lead to (4). For any q1 = 0, . . . , d, q2 =

1, . . . , d+ 1, we consider the following pair of hypotheses,

H0(q1, q2) : q1 /∈ ACT(q2,W0), versus H1(q1, q2) : q1 ∈ ACT(q2,W0). (5)

We observe that, the null hypothesis H0(q) in (4) can be decomposed into a union of the

two null hypotheses H0(0, q) and H0(q, d + 1) that are defined in (5). Suppose p(q1, q2)

is a valid p-value for H0(q1, q2) in (5). According to the union-intersection principle,

max
{
p(0, q), p(q, d + 1)

}
is a valid p-value for testing H0(q) in (4). Therefore, we aim

at (5) in the subsequent development of our testing procedure.

We have defined a significant mediator through (3). There is an alternative definition

employed by Chakrabortty et al. (2018). Specifically, they considered the hypotheses,

H∗0 (q) :
∑

ωζ = 0, versus H∗1 (q) :
∑

ωζ 6= 0, (6)

where the summation is taken for all ζ that pass through Mq. Chakrabortty et al. (2018)

called Mq a significant mediator when the alternative hypothesis in (6) holds. We, however,

prefer our definition of a significant mediator that is built on (3) instead of (6). This is

because the effects along the path ζ may cancel out with each other, resulting in a zero

sum, even though there are significant positive and negative mediation effects along ζ. As

an illustration, we devise a simple example as shown in Figure 1(a). For the mediator M2,

two paths, E →M2 → Y and E →M2 →M3 → Y , both pass through M2. The aggregated

total effect following (6) is
∑

ζ ωζ = 1 × {−1 + (−1) × (−1)} = 0. Similarly, we can show

the aggregated total effect of M3 is zero as well. However, both M2 and M3 have positive

and negative mediation effects, and should be viewed as significant mediators.

We conclude this section by computing the explicit number of potential paths that go

through any mediator Mq. For an integer k = 2, 3, . . . , d + 1, the total number of k-step

potential paths that go through Mq, by the combinatorial theory, is Nk(q) =
(
d−1
k−2

)
(k − 1)!.

Then the total number of potential paths that go through Mq is N(q) =
∑d+1

k=2 Nk(q) ≥
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(a) (b)

Figure 1: Left panel: a DAG with five nodes, where node 0 is the exposure variable, node 4 is
the outcome variable, and nodes 1 to 3 are the mediators. Right panel: a DAG with three nodes.

Nd+1(q) = d!. As a result, it is highly nontrivial to test the significance of an individual

mediator if we take into account all the potential paths among the mediators.

3 Test Statistics

In this section, we first consider a potential test statistic built on the power of an estimator

of the coefficient matrix W0 in model (1), and discuss its limitation. We then present our

main idea, the logic of Boolean matrices, and the test statistic built on it.

3.1 Power of matrices

Matrices and vectors in this paper start the index from zero. For any matrix A, let |A|
denote the matrix of the same dimension whose (i, j)th entry is |Ai,j|. We first connect the

null hypothesis H0(q1, q2) in (5) with the coefficient matrix W0 in model (1). Recall that

H0(q1, q2) means Xq1 is not an ancestor of Xq2 . We have the next lemma.

Lemma 1. The null H0(q1, q2) holds if and only if (|W0|k)q2,q1 = 0 for any k = 1, . . . , d.

We sketch the proof of this lemma here, which is to facilitate our understanding of the

problem. The key observation is that, the (q2, q1)th entry of |W0|k is the sum of the absolute

values of the total effects along all k-step paths from Xq1 to Xq2 . For instance, for k = 2,

(|W0|2)q2,q1 =
d+1∑
j=0

|W0,j,q1||W0,q2,j| =
d∑
j=1

|W0,j,q1||W0,q2,j|,

where the last equality is due to that the first row and last column of W0 are zero vectors

because of Condition (A2). If there exists a two-step path from Xq1 to Xq2 , by definition,
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W0,j,q1 6= 0 and W0,q2,j 6= 0 for some j = 1, . . . , d, which is equivalent to (|W0|2)q2,q1 6= 0.

Similarly, there exists a k-step path from X0 to Mq if and only if (|W0|k)q2,q1 6= 0.

Let Ŵ be some consistent estimator for W0. In view of Lemma 1, it is natural to con-

struct a test statistic based on {(|Ŵ |k)q2,q1}1≤k≤d. The major difficulty with this potential

test statistic, however, is that it is unclear whether (|Ŵ |k)q2,q1 has a well tabulated limiting

distribution under H0(q1, q2). To better illustrate this, we first consider the case when k = 2.

We have (|Ŵ |2)q2,q1 =
∑d

j=1 |Ŵj,q1||Ŵq2,j|. Under H0(q1, q2) and the acyclic constraint (A1),

for any j, either W0,j,q1 or W0,q2,j equals zero. Suppose each Ŵq1,q2 is root-n consistent to

W0,q1,q2 , and the mediator dimension d is fixed. Then we can show
√
n(|Ŵ |2)q2,q1 is asymp-

totically equivalent to
∑

1≤j≤d
√
n
(
|Ŵj,q1 −W0,j,q1 ||W0,q2,j|+ |W0,j,q1||Ŵq2,j −W0,q2,j|

)
. The

limiting distribution, however, is not well-studied even in the fixed-d scenario. When k is

large, or when the mediator dimension d diverges with the sample size n, the derivation

of the asymptotic property of (|Ŵ |k)q2,q1 becomes more complicated due to the addition

and multiplication operations involved in (|Ŵ |k)q2,q1 . Therefore, the test statistic based on

|Ŵ |k may not be suitable for our purpose of testing significant mediators.

3.2 Logic of Boolean matrices

To overcome the difficulty regarding |Ŵ |k, and motivated by the logic of Boolean matrices,

we define a new matrix multiplication operator and a new matrix addition operator to

replace the usual matrix multiplication and addition operations. Specifically, for any two

real-valued matrices A1 = {a1,i,j}ij ∈ Rq1×q2 ,A2 = {a2,i,j}ij ∈ Rq2×q3 , we define A1⊗A2 to

be a q1 × q3 matrix whose (i, j)th entry equals maxk∈{1,...,q2}min(a1,i,k, a2,k,j). That is, we

replace the multiplication operation in the usual matrix multiplication with the minimum

operator, and replace the addition operation with the maximum operator. When A1, A2

are binary matrices, the minimum and maximum operators are equivalent to the logic

operators “and” and “or” in Boolean algebra. The defined “⊗” operator is then equivalent

to the Boolean matrix multiplication operator. Moreover, for any two real-valued matrices

A1 = {a1,i,j}ij,A2 = {a2,i,j}ij ∈ Rq1×q2 , we define A1 ⊕A2 to be a q1 × q2 matrix whose

(i, j)th entry equals max(a1,i,j, a2,i,j). When A1,A2 are binary matrices, the defined “⊕”

operator is equivalent to the Boolean matrix addition operator.

Given the new definition of the multiplication and addition operators, we define |W |(k)
0 =
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|W0|(k−1)⊗|W0| in a recursive fashion, for any k ≥ 1. Next, we connect the null hypothesis

H0(q1, q2) in (5) with the newly defined |W0|(k). Its proof is given in the appendix.

Lemma 2. The null H0(q1, q2) holds if and only if (|W0|(k))q2,q1 = 0 for any k = 1, . . . , d.

Aggregating |W0|(k) for all k-step paths, k = 1, . . . , d, leads to the following definition,

W ∗
0 = |W0| ⊕ |W0|(2) ⊕ . . .⊕ |W0|(d).

We next define two matrices B0 and B∗0 that are the binary versions of W0 and W ∗
0 ,

(B0)i,j =

{
1, if W0,i,j 6= 0,
0, otherwise,

and B∗0 = B0 ⊕B(2)
0 ⊕ . . .⊕B

(d)
0 .

Then Lemma 2 immediately implies the next result.

Corollary 1. The null H0(q1, q2) holds if and only if (W ∗
0 )q2,q1 = 0 and (B∗0)q2,q1 = 0.

Corollary 1 suggests some natural test statistic for our hypotheses. Again, let Ŵ be

some consistent estimator for W0, and let Ŵ ∗ = |Ŵ | ⊕ |Ŵ |2 ⊕ . . . ⊕ |Ŵ |d. We further

define a thresholded binary version B̂(c) and B̂∗(c), for a given thresholding value c, as,

{B̂(c)}i,j =

{
1, if |Ŵi,j| > c,
0, otherwise,

and B̂∗(c) = B̂(c)⊕ B̂(2)(c)⊕ . . .⊕ B̂(d)(c). (7)

In view of Corollary 1, we expect Ŵ ∗
q2,q1

to be small under H0(q1, q2), and we reject H0(q1, q2)

when (Ŵ ∗)q2,q1 > c for some thresholding value c, or equivalently, when {B̂∗(c)}q2,q1 = 1.

We then build a test statistic based on Ŵ ∗.

Unlike the usual power of the matrix |Ŵ |k, the limiting distribution of Ŵ ∗ based on

the logic of Boolean matrices is more tractable. Specifically, under the null hypothesis

H0(q1, q2), for any potential path Xq1 → Xj1 → . . .→ Xjk → Xq2 , such that

Ŵj1,q1 6= 0, min
t∈{1,...,k−1}

|Ŵjt+1,jt| 6= 0, and Ŵq2,jk 6= 0, (8)

there exist some distinct integers `1, `2 ∈ {q1, j1, . . . , jk, q2} as functions of
(
q1, {jt}1≤t≤k, q2

)
,

such that W0,`2,`1 = 0. It then follows that,

√
n(Ŵ ∗)q2,q1 ≤ max

k∈{1,...,d}
1≤j1,...,jk≤d+2

√
n |Ŵ`2,`1| = max

k∈{1,...,d}
0≤j1,...,jk≤d+1

√
n |Ŵ`2,`1 −W0,`2,`1|

≤ max
k∈{1,...,d}

0≤j1,...,jk≤d+1

max
0≤t≤k

j0=q1,jk+1=q2

√
n |Ŵjt+1,jt −W0,jt+1,jt|,

(9)
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where the first maximum is taken over all such k and (j1, . . . , jk) that satisfy (8). When

the nonzero entries of
√
n(Ŵ −W0) are asymptotically normal, the right-hand-side of (9)

converges in distribution to a maximum of some normal random variables in absolute values.

Its αth upper quantile can be consistently estimated via multiplier bootstrap. This forms

the basis of our proposed testing procedure.

On the other hand, the test outlined above has some limitations. One is that this test

can be conservative when W0 is highly sparse but Ŵ is not. Another limitation is that it

requires the support of Ŵ to be fixed. When this fixed support condition does not hold, it

would lead to an inflated type-I error rate. To address these limitations, we next develop

a testing procedure that couples such a test with screening and data sample splitting to

enhance its power as well as to ensure its validity.

4 Testing Procedure

In this section, we first present our full testing procedure for inference of an individual

mediator. We next describe in detail some major steps of this testing procedure. Finally,

we present a multiple testing procedure for simultaneous inference of multivariate mediators

with a proper FDR control. Given that our test is constructed based on the LOGic of

booleAN matrices, we refer our testing method as LOGAN.

4.1 The complete algorithm

Let X1, . . . ,Xn denote n i.i.d. copies of X, generated according to model (1). Step 1

of our testing procedure is to randomly divide the observed data into two equal halves

{Xi}i∈I1 ∪ {Xi}i∈I2 , where I` is the set of indices of subsamples, ` = 1, 2. The purpose of

data splitting is to ensure our test achieves a valid type-I error rate under minimal conditions

when coupled with a screening step. In recent years, data splitting has been commonly used

in high-dimensional estimation and inference (e.g., Chernozhukov et al., 2018; Newey and

Robins, 2018; Barber and Candés, 2019; Romano and DiCiccio, 2019). One issue with data

splitting is the potential loss of power due to the usage of only a fraction of data. There

have been studies showing that data splitting may improve the power in some cases (Rubin

et al., 2006; Romano and DiCiccio, 2019). In our setting, we construct two test statistics

based on both halves of data, then combine them to derive the final decision rule. We show
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the test constructed this way achieves a good power both asymptotically and numerically.

Moreover, one may follow the idea of Meinshausen et al. (2009) to carry out the binary split

more than once, then combine the p-values from all splits. This strategy also helps mitigate

the randomness the single data splitting introduces. In the regression setting, Meinshausen

et al. (2009) showed empirically that this multi-split strategy improves the power than a

single-split. We develop a multi-split version of our test in Section .1 of the appendix,

and show its improvement in power numerically. We also note that, one may employ the

multi-split strategy of Romano and DiCiccio (2019, Section 4.2.1) for power improvement.

Meanwhile, these improvements all come with a price of increased computational costs.

Step 2 is to compute an initial estimator W̃ (`) for W0, given each half of the data

{Xi}i∈I` , ` = 1, 2. Several methods can be used here, e.g., Zheng et al. (2018); Yuan et al.

(2019). We only require W̃ (`) to be consistent to W0. This requirement is considerably

weaker than requiring W̃ (`) to be selection consistent; i.e., I(W̃ (l)
i,j = 0) = I(W0,i,j = 0) for

any i, j = 0, . . . , d+ 1, where I(·) is the indicator function. See Section 4.2 for more details.

Step 3 is to compute the binary matrix B̂(`) for B0, given the initial estimator W̃ (`),

using (7) with c = 0. This step is straightforward, and the main purpose is to allow the

subsequent decorrelated estimation step to focus only on those nonzero elements in B̂(`).

It thus acts as a screening step, and in effect reduces the number of potential paths to

a moderate level. As a benefit, it reduces the variance of the Boolean matrix-based test

statistic, and increases the power of the test. See Section 4.3 for more details.

Step 4 is to compute a decorrelated estimator Ŵ (`) using a cross-fitting procedure. We

use one set of samples I` to obtain the initial estimator W̃ (`) and the binary version B̂(`) to

screen out the zero entries, then use the other set of samples Ic` to compute the entries of the

decorrelated estimator Ŵ (`). This decorrelated estimation step is to reduce the bias of W̃ (`)

under the setting of high-dimensional mediators. Moreover, it guarantees the entry of Ŵ (`),

Ŵ
(`)
j1,j2

, is
√
n-consistent and asymptotically normal. It adopts the debiasing idea that is

commonly used for statistical inference of low-dimensional parameters in high-dimensional

models (Zhang and Zhang, 2014; Ning and Liu, 2017). See Section 4.3 for more details.

Step 5 is to use a bootstrap-based procedure to compute the critical values. Let Ŵ ∗(`) =

|Ŵ (`)| ⊕ |Ŵ (`)|(2) ⊕ . . .⊕ |Ŵ (`)|(d). Similar to (9), we have√
|Ic` |(Ŵ

∗(`))q2,q1 ≤ max
k∈{1,...,d}

0≤j1,...,jk≤d+1

max
0≤t≤k

j0=q1,jk+1=q2

√
|Ic` | |Ŵ

(`)
jt+1,jt

−W (`)
0,jt+1,jt

|.
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Algorithm 1 Testing procedure for inference of an individual mediator.

Input: The data X1, . . . ,Xn, 1 ≤ q ≤ d, and the significance level 0 < α < 1.

Step 1. Randomly divide {1, 2, . . . , n} into two disjoint subsets I1 ∪ I2 of equal sizes.

Step 2. Compute an initial estimator W̃ (`) for W0, given {Xi}i∈I` , ` = 1, 2.

Step 3. Compute the binary estimator B̂(`) for B0, given W̃ (`), ` = 1, 2, which is to be
used for screening and also ancestor estimation in the next step.

Step 4. Compute the decorrelated estimator Ŵ (`) for W0, given W̃ (`), B̂(`) and
{Xi}i∈I` , ` = 1, 2.

(4a) Estimate the ancestors of Mq, for q = 1, . . . , d + 1, by ACT(q, W̃ (`)) =
{

1 ≤

j ≤ d : {B̂∗(`)}q,j 6= 0
}

, where B̂∗(`) = |B̂(`)| ⊕ |B̂(`)|(2) ⊕ . . .⊕ |B̂(`)|(d).

(4b) Update the jth row of W̃ (`), for 1 ≤ j ≤ d, by fitting a penalized regression with
{Xi,j}i∈I` being the response and {Xi,k}i∈I`,W̃ (`)

j,k 6=0
being the predictors. Denote

the updated estimator as W
(`)

.

(4c) Compute the decorrelated estimator Ŵ
(`)
j1,j2

, for any (j1, j2) such that B̂
(`)
j1,j2
6= 0,

given {Xi}i∈Ic` , ACT(j1, W̃
(`)), B̂(`), and W

(`)
.

Step 5. Compute the critical values using the bootstrap procedure, given Ŵ (`), B̂(`),
and {Xi}i∈I` , ` = 1, 2.

(5a) Compute the critical value ĉ(`)(0, q) of max(i,j)∈S(0,q,B̂(`))

√
|Ic` ||Ŵ

(`)
i,j −W

(`)
0,i,j| un-

der the significance level α/2, ` = 1, 2.

(5b) Compute the critical value ĉ(`)(q, d+1) of max(i,j)∈S(q,d+1,B̂(`))

√
|Ic` ||Ŵ

(`)
i,j −W

(`)
0,i,j|

under the significance level α/2, ` = 1, 2.

Output: Decision.

(6a) Reject H0(0, q) if B̂
∗(`)
q,0 {n−1/2ĉ(0, q)} = 1. Denote this decision by D(`)(0, q).

(6b) Reject H0(q, d + 1) if B̂
∗(`)
d+1,q{n−1/2ĉ(q, d + 1)} = 1. Denote this decision by

D(`)(q, d+ 1).

(6c) Reject H0(q) if both D(`)(0, q) and D(`)(q, d+ 1) reject, for at least one ` = 1, 2.

When Ŵ
(`)
jt+1,jt

is nonzero, the mediators jt and jt+1 satisfy that jt ∈ ACT(q2, B̂
(`)), jt+1 ∈

ACT(q2, B̂
(`))∪{q2}, q1 ∈ ACT(jt, B̂

(`))∪{jt}, q1 ∈ ACT(jt+1, B̂
(`)) and B̂

(`)
jt+1,jt

= 1. Then,√
|Ic` |(Ŵ

∗(`))q1,q2 ≤ max
(i,j)∈S(q1,q2,B̂(`))

√
|Ic` | |Ŵ

(`)
i,j −W0,i,j|, (10)

where S(q1, q2, B̂
(`)) =

{
(i, j) : j ∈ ACT(q2, B̂

(`)), i ∈ ACT(q2, B̂
(`))∪{q2}, q1 ∈ ACT(j, B̂(`)),

or j = q1, q1 ∈ ACT(i, B̂(`)), {B̂(`)}i,j 6= 0
}

. Here S(q1, q2, B̂
(`)) denotes the set of indices
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such that {Ŵ ∗(`)}q1,q2 depends on Ŵ (`) only through its entries in S(q1, q2, B̂
(`)). Then,

based on (10), we use bootstrap to obtain the critical values of

max
(j1,j2)∈S(0,q,B̂(`))

√
|Ic` | |Ŵ

(`)
j1,j2
−W (`)

0,j1,j2
| and max

(j1,j2)∈S(q,d+1,B̂(`))

√
|Ic` | |Ŵ

(`)
j1,j2
−W (`)

0,j1,j2
|,

under the significance level α/2. Denote the two critical values by ĉ(`)(0, q) and ĉ(`)(q, d+1),

respectively. See Section 4.4 for more details.

Once obtaining the critical values, we reject H0(0, q) if B̂
∗(`)
q,0

{
|Ic` |−1/2ĉ(`)(0, q)

}
= 1,

and reject H0(q, d+ 1) if B̂
∗(`)
d+1,q

{
|Ic` |−1/2ĉ(`)(q, d+ 1)

}
= 1. We reject the null H0(q) when

H0(0, q) and H0(q, d + 1) are both rejected. Note that, for each half of the data ` = 1, 2,

we have made a decision D(`) regarding H0(q). Finally, we reject H0(q) when either D(1) or

D(2) decides to reject. By Bonferroni’s inequality, this yields a valid α-level test.

We summarize the full testing procedure in Algorithm 1.

4.2 Initial DAG estimation

There are multiple estimation methods available to produce an initial estimator for W0,

for instance, Zheng et al. (2018) and Yuan et al. (2019). We employ the method of

Zheng et al. (2018) in our implementation. Specifically, we seek minW∈R(d+2)×(d+2) L(W ) +

λ|I`|
∑

i,j |Wi,j|, subject to G(W ) ∈ DAGs, where L(W ) =
∑

i∈I` ‖X̃i −WX̃i‖2
2, λ > 0

is a regularization parameter, G denotes the graph induced by W , X̃i = Xi − µ̂ is the

centered covariate, µ̂ =
∑n

i=1Xi/n, and |I`| is the number of data samples in the data

split I`. This optimization problem is challenging to solve due to the fact that the search

space of DAGs scales super-exponentially with the dimension d. To resolve this issue, Zheng

et al. (2018) proposed a novel characterization of the acyclic constraint, by showing that

the DAG constraint can be represented by trace{exp(W ◦W )} = d + 2, where ◦ denotes

the Hadamard product, exp(A) is the matrix exponential of A, and trace(A) is the trace

of A. Then the problem becomes

min
W∈R(d+2)×(d+2)

L(W ) + λ|I`|
∑
i,j

|Wi,j|, subject to trace{exp(W ◦W )} = d+ 2. (11)

Let W̃ (`) denote the minimizer of (11). Zheng et al. (2018) proposed an efficient augmented

Lagrangian based algorithm to solve (11). After obtaining W̃ (`), we set the elements in its

first row and last column to zero, following Condition (A2).
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We make some remarks. First, the optimization in (11) is nonconvex, and there is no

guarantee that the algorithm of Zheng et al. (2018) can find the global minimizer. As

such, W̃ (`) may not satisfy the acyclicity condition, although a global minimizer does. To

meet the acyclicity constraint, Zheng et al. (2018) employed an additional thresholding step

to truncate all the elements in the numerical solution to (11) whose absolute values are

smaller than some threshold value c0 to zero. We follow their implementation and adopt

the same thresholding value c0 = 10−3. Second, to achieve the theoretical guarantees of

our proposed test, we only require the estimator W̃ (`) to be a consistent estimator of W0,

which is much weaker than the requirement of the test of Chakrabortty et al. (2018) that

the DAG estimator has to be selection consistent. In Section 5.2, we show that the global

solution of (11) satisfies this consistency requirement (see Proposition 1). Meanwhile, as

long as c0 �
√
n−1 log n, we can show Proposition 1 holds for the thresholded solution of

(11) as well.

4.3 Screening and debiasing

Given the initial estimator W̃ (`), we next compute the binary estimator B̂(`) for B0 using

(7) with c = 0. We then use the nonzero entries of B̂(`) to determine the support of the

decorrelated estimator Ŵ (`) in the subsequent step of decorrelated estimation. As such,

it serves as a screening step, and allows us to reduce the number of potential paths to a

moderate level. As shown in (10), the decorrelated estimator (Ŵ ∗(`))q1,q2 depends on Ŵ (`)

only through its entries in S(q1, q2, B̂
(`)). Consequently, the screening through B̂(`) reduces

the variance of (Ŵ ∗(`))q1,q2 , which in turn leads to an increased power for our test.

Next, we employ the decorrelated estimation idea of Ning and Liu (2017) to compute

a decorrelated estimator Ŵ (`) to reduce the bias of the initial estimator W̃ (`) obtained

from (11). Because of the presence of the regularization term in (11) for high-dimensional

mediators, the initial estimator W̃ (`) may suffer from a large bias and does not have a

tractable limiting distribution. To address this issue, we refit W0,j1,j2 for any (j1, j2) such

that B̂
(`)
j1,j2

6= 0, by constructing an estimating equation based on a decorrelated score

function. This effectively alleviates the bias, and the resulting decorrelated estimator Ŵ
(`)
j1,j2

is both
√
n-consistent and asymptotically normal.
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More specifically, after some calculations, we have that,

E

(
Xj1 −

∑
j 6=j2

W0,j1,jXj

)(
Xj2 − E

[
Xj2|{Xj}j∈ACT(j2,W0)

] )
= W0,j1,j2E

{
Xj2

(
Xj2 − E

[
Xj2|{Xj}j∈ACT(j2,W0)

] )}
,

(12)

which is the estimating equation to construct our decorrelated estimator Ŵ0,j1,j2 . Toward

that end, we need to estimate E
[
Xj2|{Xj}j∈ACT(j2,W0)

]
and {W0,j1,j : j 6= j2}.

To estimate E
[
Xj2|{Xj}j∈ACT(j2,W0)

]
, we first estimate the set of ancestors of the j2th

node ACT(j2,W0) by ACT(j2, W̃
(`)) =

{
1 ≤ j ≤ d : (W̃ ∗(`))j2,j 6= 0

}
, for j2 = 1, . . . , d+ 1,

where W̃ ∗(`) = |W̃ (`)| ⊕ |W̃ (`)|(2) ⊕ . . .⊕ |W̃ (`)|(d). We also note that, when estimating the

ancestors, we always include the exposure variable E = X0 in the set of ancestors, and always

include all mediators when estimating the ancestors of the outcome variable Y = Xd+1.

Next, we approximate E
[
Xj2|{Xj}j∈ACT(j2,W̃ (`))

]
using a linear regression model, where the

regression coefficients are estimated by,

β̂
(`)
j1,j2

= arg min
β:βj2=0

supp(β)∈ACT(j1,W̃ (`))


1

|Ic` |
∑
i∈Ic`

(
X̃i,j2 − β>X̃i

)2

+
∑
k:k 6=j2,

k∈ACT(j1,W̃ (`))

pλ(|βk|)

 , (13)

where supp(β) denotes the support of β ∈ Rd+2, and the regression fitting is done based on

the complement set of samples Ic` . We choose the MCP (Zhang, 2010) penalty function and

tune the penalty parameter by the Bayesian information criterion in our implementation.

Alternatively, we can use LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001) or Dantzig

selector (Candes and Tao, 2007) in (13). It is crucial to note that, the resulting estimator

is
√
n-consistent regardless of whether the linear model approximation holds or not.

To estimate {W0,j1,j : j 6= j2}, we employ a refined version of the initial estimator W̃ (`).

That is, we update the jth row of W̃ (`), j = 1, . . . , d, by fitting a penalized regression

with {Xi,j}i∈I` being the response and {Xi,k}i∈I`,W̃ (`)
j,k 6=0

being the predictors. We again

use the MCP penalty. Denote the resulting refined estimator by W
(`)

. The purpose of

this refitting is to improve the estimation efficiency of the initial estimator W̃ (`). In our

numerical experiments, we find W
(`)

usually converges faster than W̃ (`) to the truth.

Built on the above estimators and the estimating equation (12), we debias W̃
(`)
j1,j2

using
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the other half of the data {Xi}i∈Ic` , for any entry such that B̂
(`)
j1,j2
6= 0, by

Ŵ
(`)
j1,j2

=

∑
i∈Ic`

(
X̃i,j2 − β̂

(`)>
j1,j2
X̃i

)(
X̃i,j1 −

∑
j 6=j2

X̃i,jW
(`)

j1,j

)
∑
i∈Ic`

X̃i,j2

(
X̃i,j2 − β̂

(`)>
j1,j2
X̃i

) . (14)

We remark that, we have used the cross-fitting strategy in both the estimation of β̂
(`)
j1,j2

in (13), and in the decorrelated estimation of Ŵ
(`)
j1,j2

in (14). This strategy guarantees each

entry of the decorrelated estimator Ŵ (`) is asymptotically normal, regardless of whether

the initial estimator W̃ (`) is selection consistent or not.

4.4 Bootstrap for critical values

We next develop a multiplier bootstrap method to obtain the critical values, and summarize

this procedure in Algorithm 2. Our goal is to approximate the limiting distribution of

Ŝ(`) = max(j1,j2)∈S(q1,q2,B̂(`))

√
|Ic` ||Ŵ

(`)
j1,j2
−W0,j1,j2| on the right-hand-side of (10).

We first observe that
√
|Ic` |(Ŵ

(`)
j1,j2
−W0,j1,j2) is asymptotically equivalent to

η
(`)
j1,j2

=

√
|Ic` |

∑
i∈Ic`

{
X̃i,j2 − β̂(`)>(j1, j2)X̃i

}
εi,j1∑

i∈Ic`

X̃i,j2

{
X̃i,j2 − β̂(`)>(j1, j2)X̃i

} . (15)

Correspondingly, Ŝ(`) = max(j1,j2)∈S(q1,q2,B̂(`)) |η
(`)
j1,j2
| + op(1), for any q1 ∈ {0, 1 . . . , d} and

q2 ∈ {1, . . . , d + 1}. Conditioning on
{
Xi,j : i ∈ Ic` , j ∈ ACT(j1, W̃

(`))
}

, η
(`)
j1,j2

corresponds

to a sum of independent mean zero random variables, and is asymptotically normal. A

rigorous proof is given in Step 1 of the proof of Theorem 1 in the appendix. This implies

that
√
|Ic` |(Ŵ

(`)
j1,j2
− W0,j1,j2) is asymptotically normal. Therefore, Ŝ(`) is to converge in

distribution to a maximum of normal random variables in absolute values. Its quantile can

be consistently estimated by a multiplier bootstrap method (Chernozhukov et al., 2013a).

More specifically, one can generate the bootstrap samples by replacing the residual term

σ−1
∗ (X̃i,j1 −

∑
j X̃i,jW̃

(`)
i,j ) in (14) with i.i.d. standard normal noise {ei,j : 1 ≤ i ≤ n, 0 ≤ j ≤
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Algorithm 2 Bootstrap procedure to obtain the critical values.

Input: The data
{
Xi : i ∈ I(c)

`

}
, the significance level α, the variance estimator σ̂2

∗, the

number of bootstrap samples m, the estimator β̂(`)(j1, j2) from (13), and the set

S(q1, q2, B̂
(`)).

Step 1. Generate i.i.d. standard normal random variables
{
e

(b)
i,j

}
i,j

, b = 1, 2, . . . ,m.

Step 2. Compute η
(`,b)∗
j1,j2

according to (16), with ei,j1 replaced by e
(b)
i,j1

, and

T (`,b)(q1, q2) = max
(j1,j2)∈S(q1,q2,B̂(`))

|η(`,b)∗
j1,j2
|, b = 1, 2, . . . ,m.

Output: The empirical upper αth quantile of {T (`,b)(q1, q2) : b = 1, . . . ,m}.

d+ 1} that are independent of the data. That is, we approximate η
(`)
j1,j2

in (15) by

η
∗(`)
j1,j2

=

√
|Ic` |

∑
i∈Ic`

{
X̃i,j2 − β̂(`)>(j1, j2)X̃i

}
ei,j1 σ̂∗∑

i∈Ic`

X̃i,j2

{
X̃i,j2 − β̂(`)>(j1, j2)X̃i

} , (16)

where σ̂∗ is some consistent estimator of σ∗. We propose to estimate σ2
∗ by σ̂2

∗ = {n(d +

2)}−1
∑

`∈{1,2}
∑

i∈Ic`

∑d+1
j=0 |X̃i,j−W

(`)>
j X̃i|22, where W

(`)

j denotes the jth row of W
(`)

. This

estimation utilizes sample splitting again, which alleviates potential bias of the variance

estimator resulting from the high correlations between the noises and the mediators in

the high-dimensional setting (Fan and Lv, 2008). Lemma 4 in Section .4 of the appendix

shows that σ̂2
∗ is indeed consistent. Then the limiting distribution of Ŝ(`) can be well

approximated by the conditional distribution of the bootstrap samples given the data. A

formal justification is given in Step 3 of the proof of Theorem 1 in the appendix.

4.5 False discovery rate control

We next present a multiple testing procedure for simultaneous inference of multivariate

mediators with a proper FDR control. We present the full procedure in Algorithm 3, which

consists of four steps. We next detail each step. Let N be the set of unimportant mediators

and H be the set of our selected mediators. The FDR is defined as the expected proportion

of falsely selected mediators, i.e., FDR(H) = E {|N ∪H|/max(1, |H|)}.
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Algorithm 3 Multiple testing procedure for inference of multivariate mediators.

Input: The significance level α, and the thresholding values 0 < c(1), c(2) < 1.

Step 1. Compute the p-values of testing the null hypothesis H0(q1, q2) for q1 =
0, . . . , d, q2 = 1, . . . , d+ 1 using (17) for each half of the data, ` = 1, 2.

Step 2. Screening based on the pairwise minimum p-values, p̂
(`)
min(q) =

min
{
p̂(`)(0, q), p̂(`)(q, d + 1)

}
. Let H(`)

0 = {1 ≤ q ≤ d : p̂
(`)
min(q) ≤ c(`)} de-

note the set of the initially selected mediators, ` = 1, 2.

Step 3. Order by the pairwise maximum p-values, p̂
(`)
max(q) = max

{
p̂(`)(0, q), p̂(`)(q, d +

1)
}

, for those mediators in H(`)
0 , as p̂

(`)
(1) ≤ p̂

(`)
(2) ≤ . . . ≤ p̂

(`)

(|H(`)
0 |)

.

Step 4. Select h(`) mediators in H(`)
0 with the smallest p-values. Let H(`) denote the set

of selected mediators, ` = 1, 2.

Output: H = H(1) ∪H(2).

First, we compute the p-value of testing H0(q1, q2), q1 = 0, . . . , d, q2 = 1, . . . , d + 1, for

each half of the data. Specifically, we compute the decorrelated estimator Ŵ (`) in Step 4 of

Algorithm 1, and Ŵ ∗(`) = |Ŵ (`)|⊕|Ŵ (`)|(2)⊕ . . .⊕|Ŵ (`)|(d). We next compute T (`,b)(q1, q2),

b = 1, . . . ,m, in Step 2 of Algorithm 2. Then the p-value of testing H0(q1, q2) in (5) is

p̂(`)(q1, q2) =
1

m

m∑
b=1

I
{
T (`,b)(q1, q2) ≥

√
Ic` (Ŵ

∗(`))q2,q1

}
. (17)

The p-values of testing H0(0, q) and H0(q, d+ 1) are p̂(`)(0, q) and p̂(`)(q, d+ 1), respectively.

Next, we adopt and extend the ScreenMin procedure proposed by Djordjilović et al.

(2019) to our setting. We begin by computing the pairwise minimum p-values, p̂
(`)
min(q) =

min
{
p̂(`)(0, q), p̂(`)(q, d+ 1)

}
. We then screen and select those mediators whose correspond-

ing p̂
(`)
min(q) is smaller than a thresholding value c(`), which is determined adaptively by

c(`) = max
{
c ∈ (α/d, . . . , α/2, α) : c|H(`)

0 (c)| ≤ α
}

, and H(`)
0 (c) denotes the set of pre-

screened mediators when the threshold value is c. Djordjilović et al. (2019) showed such a

thresholding value approximately maximizes the power to reject false union hypotheses. It

also works well in our numerical studies. Denote the resulting set of important mediators

by the ScreenMin procedure as H(`)
0 .

Next, we compute the pairwise maximum p-value, which is also the p-value of testing the

significance of an individual mediator H0(q) in our setting, p̂
(`)
max(q) = max

{
p̂(`)(0, q), p̂(`)(q, d

+1)
}

. We order the mediators in H(`)
0 according to p̂

(`)
max(q).
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Finally, we apply the procedure of Benjamini and Yekutieli (2001a) to the ordered me-

diators, and select h(`) mediators with the smallest p-values, where h(`) = max
[
i : p̂

(`)
(i) ≤

(iα)/{2|H(`)
0 |
∑|H(`)

0 |
j=1 j−1}

]
. Letting H(`) denote the selected mediators for each half of the

data, ` = 1, 2, respectively, we set the final set of selected mediators as H = H(1) ∪H(2).

5 Theory

In this section, we first establish the consistency of our test for each individual mediator, by

deriving the asymptotic size and power. We then show that the multiple testing procedure

achieves a valid FDR control. Finally, as a by-product, we derive an oracle inequality for

the estimator W̃ (`) computed from (11) using the method of Zheng et al. (2018).

5.1 Consistency and FDR control

We first present a main regularity condition (A4), while we defer two additional regularity

conditions (A5) and (A6) to Section .3 of the appendix in the interest of space.

(A4) With probability approaching one, ACT(j, W̃ (`)) contains all parents of j, for any

j = 0, . . . , d+ 1, ` = 1, 2.

This condition requires an appropriate identification of the graph, in that ACT(j, W̃ (`))

contains all parents of j. It serves as a basis for the asymptotic properties of the proposed

test. We make some remarks. First, this condition is weaker than requiring W̃
(`)
j , the jth

column of W̃ (`), to satisfy the sure screening property; i.e, PA(j) ⊆ supp(W̃
(`)
j ), where

PA(j) denotes the parents of node j. To better illustrate this, consider the DAG example

in Figure 1(b). For node j = 3, the sure screening property of W̃
(`)
3 requires W0,3,1 and

W0,3,2 to satisfy certain minimum-signal-strength conditions; see, e.g., Fan and Lv (2008).

In comparison, we require {1, 2} ∈ ACT(3, W̃ (`)) with probability approaching one. This

requires either {W0,3,1,W0,3,2}, or {W0,2,1,W0,3,2}, to satisfy certain minimum-signal-strength

conditions. In that sense, our test is “doubly robust”. In Proposition 1, we show (A4) is

satisfied when the initial estimator is obtained using (11) of Zheng et al. (2018). Second, we

remark that, when (A4) is not satisfied, the bias in the ancestor identification step is to affect

the subsequent testing procedure. This phenomenon is similar to post-selection inference

in linear regressions, where direct inference may fail when the variable selection step does
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not satisfy the sure screening or selection consistency property (Meinshausen et al., 2009;

Shi et al., 2019; Zhu et al., 2020). In the linear regression setting, debiasing is an effective

remedy to address the issue. However, the usual debiasing strategy may not be directly

applicable in our setting; see Section .3 of the appendix for more discussion. We leave this

post-selection inference problem as future research.

We next establish the validity of our test for a single mediator in Theorem 1, and its

local power property in Theorem 2. Combining the two theorems yields its consistency.

Theorem 1. Suppose (A1) to (A5) hold. Suppose d = O(nκ1) for some constant κ1 > 0, and

‖W0‖2 is bounded. Then for a significance level 0 < α < 1, and any mediator q = 1, . . . , d,

the proposed test in Algorithm 1 satisfies that

Pr
{
H0(q) is rejected | H0(q) holds

}
≤ α + o(1).

Next, for any directed path ζ: E → Mi1 → . . .→ Mik → Y , define ω∗ζ as the minimum

signal strength along this path,

ω∗ζ = min

{
|W0,i1,0|, min

j∈{1,...,k−1}
|W0,ij+1,ij |, |W0,d+1,ik |

}
.

Under the alternative hypothesis H1(q), there exists at least one path ζ that passes through

Mq such that ω∗ζ > 0. We next establish the local power property of our test.

Theorem 2. Suppose the conditions in Theorem 1 hold. Suppose maxj∈{0,1,...,d+1} ‖W̃ (`)
j −

W0,j‖2 = Op(n
−1/2
√

log n), where W̃
(`)
j is the jth row of W̃j. Suppose there exists one path

ζ: E → Mi1 → . . .→ Mik → Y that passes through Mq such that ω∗ζ � n−1/2
√

log n under

H1(q). Then the proposed test in Algorithm 1 satisfies that,

Pr
{
H0(q) is rejected | H1(q) holds

}
→ 1, as n→∞.

Note that we require ω∗ζ � n−1/2
√

log n for some ζ in Theorem 2. Consequently, our test

is consistent against some local alternatives that are
√
n-consistent to the null up to some

logarithmic term. Let s0 = maxj |supp(W0,j)| denotes the maximum sparsity size where

W0,j stands for the jth row of W0. In Proposition 1, we show that maxj∈{0,...,d+1} ‖W̃ (`)
j −

Wj‖2 = Op(n
−1/2
√

log n) when the maximum sparsity size s0 is bounded.

Next, we show that our multiple testing procedure achieves a valid FDR control. Note

that we use a union-intersection principle to construct the p-value for H0(q). The key idea
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of the ScreenMin procedure of Djordjilović et al. (2019) lies in exploiting the independence

between the two p-values p̂(`)(0, q) and p̂(`)(q, d + 1). In our setting, these p-values are

actually asymptotically independent. We thus have the following result.

Theorem 3. Suppose the conditions in Theorem 1 hold. Then the set of selected mediators

H in Algorithm 3 satisfies that FDR(H) ≤ α + o(1).

5.2 Oracle inequality for the initial DAG estimator

As a by-product, we establish the oracle inequality for the estimator of Zheng et al. (2018).

We first introduce the oracle estimator. For a given ordering π = {π0, π1, . . . , πd+1}, consider

the estimator W̃ (`)(π) =
{
W̃

(`)
0 (π), W̃

(`)
1 (π), . . . , W̃

(`)
d+1(π)

}>
where

W̃ (`)
πj

(π) = arg min
β:supp(β)∈{π0,π1,...,πj−1}

∑
i∈I`

(Xi,πj − β>Xi)
2 + λ|I`|‖β‖1,

for j ∈ {0, 1, . . . , d+ 1}. That is, W̃ (`)(π) is computed as if the ordering of π were known.

Let Π∗ denote the set of all true orderings, while a more rigorous definition is given in

Section .3 of the supplementary appendix. Then the oracle estimator W̃
(`)
πj (π∗), for some

π∗ ∈ Π∗, is computed as if the true ordering π∗ were known. With a proper choice of λ, it

follows from the oracle inequality for LASSO (Bickel et al., 2009) that,

max
j∈{0,...,d+1}

‖W̃ (`)
j (π∗)−W0,j‖2 ≤ O(1)n−1/2

√
s0 log n.

The next proposition establishes the convergence rate of W̃ (`) obtained from (11).

Proposition 1. Suppose (A1), (A2), (A3) and (A6) hold. Suppose d = O(nκ1) for some

constant κ1 < 1, ‖W0‖2 is bounded, and λ = κ2n
−1/2
√

log n for some sufficiently large

constant κ2 > 0. Then with probability tending to 1, the initial estimator W̃ (`) obtained

from (11) satisfies that,

W̃ (`) = W̃ (`)(π∗) for some π∗ ∈ Π∗, and max
j∈{0,...,d+1}

‖W̃ (`)
j −W0,j‖2 ≤ O(1)n−1/2

√
s0 log n.

Proposition 1 shows that the convergence rate of W̃ (`) is the same as that of the oracle

estimator. Moreover, the true ordering π∗ can be inferred from W̃ (`). If we produce the

initial estimator from (11), it further implies that (A4) holds. We again make some remarks.
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First, in this proposition, we require the dimension d to grow at a slower rate than n. We

note that this condition is not needed in Theorems 1-3. Moreover, we can further relax this

requirement on d by imposing some sparsity conditions on W̃ (`) and the population limit

of W̃ (`)(π); see the final remark of the proof of Proposition 1 in the appendix. Second, this

proposition is for the global minimizer of (11). Of course, as we have commented, there is

no guarantee that the algorithm of Zheng et al. (2018) can find the global minimizer. This

is a universal problem for almost all nonconvex optimizations. Nevertheless, Zhong et al.

(2014, Theorem 1) showed that the actually minimizer to (11), which is obtained through

the proximal quasi-Newton method, converges to the local minimizer of the augmented

Lagrange problem, while Zheng et al. (2018, Table 1) showed that numerically the difference

between the actual minimizer and the global minimizer is much smaller than that between

the global minimizer and the ground truth. As such, we expect Proposition 1 to hold for the

actually minimizer as well. Meanwhile, we acknowledge that this local minimizer problem

is challenging and is warranted for future research.

6 Simulations

We simulate the data following model (1). We set µ0 to a vector of ones, and σ2
∗ = 1.

We generate the adjacency matrix W0 as follows: We begin with a zero matrix, then re-

place every entry W0,j1,j2 in the lower off-diagonals by the product of two random variables

R
(1)
j1,j2

R
(2)
j1,j2

. Here R
(1)
j1,j2
∼ Bernoulli(p1), if j2 = 0, or j1 = d+ 1, and R

(1)
j1,j2
∼ Bernoulli(p2),

otherwise, and R
(2)
j1,j2

is uniformly distributed on [−2,−0.5] ∪ [0.5, 2]. All these variables

are independently generated. We consider three scenarios of the total number of me-

diators d, with varying binary probabilities p1, p2, each under two sample sizes n; i.e.,

(d, p1, p2) = (50, 0.05, 0.15) with n = 100, 200, (d, p1, p2) = (100, 0.03, 0.1) with n = 250, 500,

and (d, p1, p2) = (150, 0.02, 0.05) with n = 250, 500. Table 2 in Section .10 of the appendix

reports the corresponding mediators with nonzero mediation effects, and their associated

δ(q), where δ(q) = (W ∗
0 )d+1,q(W

∗
0 )q,0, and W ∗

0 is constructed based on W0, q = 1, . . . , d.

By Lemma 2, δ(q) measures the size of the mediation effect. When δ(q) = 0, H0(q) holds;

otherwise, H1(q) holds. A larger δ(q) indicates a stronger mediation effect. The percentage

of nonzero mediators for the three scenarios is 0.12, 0.09 and 0.06, respectively.

We first evaluate the empirical performance of our test for a single mediator in Algorithm
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Figure 2: Empirical rejection rate and ROC curve of the proposed test, LOGAN, and the test
of Chakrabortty et al. (2018), MIDA, when d = 50. The upper panels: n = 100, and the bottom
panels: n = 200. The left panels: under H0, the middles panels: under H1, where the horizontal
axis is the mediator index, and the right panels: the average ROC curve.

1. We also compare it with that of Chakrabortty et al. (2018), which they named as

Mediation Interventional calculus when the DAG is Absent (MIDA). We use the same

initial estimator as ours for MIDA. We construct the 100(1 − α)% confidence interval for

the total effect of each mediator, following the procedure as described in Chakrabortty et al.

(2018). We reject the null hypothesis if zero is not covered by the confidence interval.

We evaluate each testing method by the empirical rejection rate, in percentage, out of 500

data replications at the significance level α = 5%. This rate reflects the size of the test when

the null hypothesis holds, and reflects the power otherwise. We also compute the average

receiver operating characteristic (ROC) curves, aggregated over 500 replications, when the

significance level α varies. Figure 2 reports the results when d = 50. The results for d = 100

and d = 150 show a similar qualitative pattern, and are reported in Section .10 of the

appendix. We make a few observations. First, our test achieves a valid size under the null

hypothesis. The empirical rejection rate is close to or below the nominal level for most cases.

When the sample size n is small, our test has a few inflated type-I errors. As n increases,

all the rejection rates are below the nominal level. By contrast, the test of Chakrabortty

et al. (2018) still has a good number of inflated type-I errors even when n is large. Such
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Figure 3: False discover rate and true positive rate of the proposed method and the Benjamini-
Yekutieli procedure when d = 50. The horizontal axis corresponds to the significance level α. The
left two panels: n = 100, and the right two panels: n = 200.

inflated errors may be due to the fact that MIDA relies on the selection consistency of the

estimated DAG, which may not hold under the finite samples. Second, our test consistently

achieves a larger empirical power over MIDA under the alternative hypothesis. This may

be due to that the effects calculated by MIDA along different paths may cancel each other,

leading to a decreased power. Combined with the results on the empirical size, the power

of our test is not gained at the cost of the inflated Type-I errors. Moreover, the empirical

power of our test increases along with the sample size, demonstrating the consistency of

the test. Finally, we observe that the ROC curve of our test lies above that of MIDA in all

settings as α varies, which clearly demonstrates the advantage of our test over MIDA.

We next evaluate the empirical performance of our multiple testing procedure in Algo-

rithm 3. We also compare it with the standard Benjamini-Yekutieli (BY) procedure. For

the latter, in Step 2 of Algorithm 3, instead of applying ScreenMin to determine the set

H(`)
0 , one simply sets H(`)

0 = {1, 2, . . . , d}, i.e., the set of all mediators. We evaluate each

testing procedure by the false discovery rate (FDR) and the true positive rate (TPR), over

500 data replications. Figure 3 reports the results under the varying significance level α

from 0 to 0.4 when d = 50. The results for d = 100 and d = 150 are similar, and are

reported in Section .10 of the appendix. It is seen that both methods achieve a valid false

discovery control, in that the FDRs are all below the nominal level. However, our method

is more powerful than BY, as reflected by a larger TPR in all cases.
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7 Application

In this section, we illustrate our testing method with an application to a neuroimaging study

of Alzheimer’s disease (AD). AD is an irreversible neurodegenerative disorder, and is char-

acterized by progressive impairment of cognitive and memory functions. It is the leading

form of dementia, and the sixth leading cause of death in the U.S (Alzheimer’s Association,

2020). The data we analyze is part of the ongoing Berkeley Aging Cohort Study. It consists

of 698 participants aging between 55.3 and 94.1 years old. For each participant, the well

established PACC composite score was recorded, which combines tests that assess episodic

memory, timed executive function, and global cognition (Donohue et al., 2014). More-

over, for each participant, a 1.5T structural magnetic resonance imaging (MRI) scan and a

positron emission tomography (PET) scan using 18-F florbetaben tracer were acquired. All

imaging data were preprocessed following the established protocols. Particularly, for MRI,

all T1 images were bias-corrected, segmented, then warped and normalized to a common

template space. Then the volumes were examined quantitatively by a cortical surface-based

analysis and turned into cortical thickness measures. Cortical thickness is an important

biomarker that reflects AD severity. We employ the FreeSurfer brain atlas and summa-

rize each MRI image by a 68-dimensional vector, whose entries measure cortical thickness

of 68 brain regions of interest. For PET, native-space images were realigned and coregis-

tered to each participant’s MRI scan, and centiloid analysis was performed to transform

the standardized uptake value ratio to centiloid units. The PET scan provides a measure of

deposition of amyloid-beta, a hallmark pathological protein of AD that is commonly found

in the brains of AD and elderly subjecs. The total amount of amyloid-beta deposition was

extracted from PET for each subject. There are well validated methods for thresholding

the subjects based on the total deposition as amyloid positive and amyloid negative groups,

which are known to behave differently in AD progression (Landau et al., 2013). For our

data, 309 subjects were classified as amyloid positive, and 389 as amyloid negative. Since

age is a well known risk factor for AD, in our study, we aim to understand how age me-

diates cortical thickness of different brain regions then the PACC score. We carry out the

mediation analysis for the amyloid positive and amyloid negative groups separately.

We apply the proposed multiple testing procedure in Algorithm 3 to this data, with

age as the exposure, the cortical thickness of 68 brain regions as the potential mediators,
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and the PACC score as the outcome. We set the FDR level at 10%. For the amyloid

positive group, we find one significant mediator, and for the amyloid negative group, we

found six significant mediators. Table 1 reports the results. These findings agree well

with the neuroscience literature. In particular, the entorhinal cortex functions as a hub

in a widespread network for memory, navigation and the perception of time. It is found

implicated in the early stages of AD, and is one of the most heavily damaged cortices in AD

(van Hoesen et al., 1991). The precuneus is involved with episodic memory, visuospatial

processing, reflections upon self, and aspects of consciousness, and is found to be an AD-

signature region (Bakkour et al., 2013). Moreover, the superior temporal gyrus is involved in

auditory processing, and also has been implicated as a critical structure in social cognition.

The superior frontal gyrus is involved in self-awareness, and the inferior parietal lobule is

involved in the perception of emotions. Numerous studies have found involvement of these

brain regions in the development of AD (Du et al., 2007; Bakkour et al., 2013).

8 Discussion

In this article, we have primarily focused on the case when there is only a single DAG

associated with our model. Now, we briefly discuss the extension to the case when there is

an equivalence class of DAGs. Specifically, when the error variances σ2
i , i = 0, . . . , d + 1,

in (A3) are not all equal, there exist an equivalence class of DAGs, denoted by G, that

could generate the same joint distribution of the variables. Such a class can be uniquely

represented by a completed partially directed acyclic graph. For each DAG G ∈ G, we

define ωζ(G) as the total effect of E on Y attributed to a given path ζ following (2). Then,

our hypotheses of interest become,

H0(q) : ωζ(G) = 0, for all ζ that passes through Mq and all G ∈ G versus

H1(q) : ωζ(G) 6= 0, for some ζ that passes through Mq and some G ∈ G.
(18)

Table 1: Identified significant mediators for the amyloid positive and amyloid negative groups.

Amyloid positive group Amyloid negative group
r-entorhinal l-entorhinal l-precuneus l-superiortemporal

r-inferiorparietal r-superiorfrontal r-superiortemporal
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To test (18), we begin by estimating the equivalence class G based on each half of the

dataset. This can be done by applying the structural learning algorithm such as Chickering

(2003). Let Ĝ denote the resulting estimator. For each Ĝ ∈ Ĝ, we employ the procedure in

Section 4 to construct a test statistic. We then take the supremum of these test statistics

over all Ĝ, and obtain its critical value via bootstrap.

Finally, we comment that our proposed testing procedures can be extended to more sce-

narios, e.g., when there are sequentially ordered multiple sets of mediators, or when there

are multiple exposure variables. We can also speed up the computation of the Boolean ma-

trices using some transition closure algorithm (Chakradhar et al., 1993) when the dimension

of the DAG is large. We leave those pursuits as our future research.
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Appendix

We first outline a multi-split version of our test. We then introduce a DAG learning proce-

dure under a weaker constant variance condition. We next present some additional regular-

ity conditions, followed by two supporting lemmas, then the proofs of the main theoretical

results in the paper. Finally, we present some additional numerical results.

We employ the following notation. For any sequence {an : n ≥ 1}, an = O(1) means

|an| ≤ C for some constant C > 0, and an = o(1) means limn an = o(1). For a sequence

of random variables {Zn : n ≥ 1}, Zn = Op(1) means, for any sufficiently small ε > 0,

there exists some constant M > 0 such that Pr(|Zn| ≤ M) ≥ 1− ε, and Zn = op(1) means

{Zn : n ≥ 1} converges in probability to zero. Without loss of generality, we assume µ0 = 0.

To simplify the presentation, we only consider the case where µ̂ = 0 and hence X̃i = Xi

for i = 1, . . . , n. In the case where µ̂ 6= 0, the theories can be similarly proved.
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.1 A multi-split version of the test

We first develop a version of our individual mediator test based on multiple binary splits.

This helps improve the power when the sample size is limited, and also helps mitigate the

randomization arising from a single binary split. The main idea is to apply the single-split

method in Algorithm 1 multiple times, then combine the p-values from all splits. Specifically,

we carry out the binary split S times. For the sth binary split, we divide {1, . . . , n} into

two disjoint subsets Is,1 ∪ Is,2 of equal sizes. We then apply Algorithm 1 to compute the

p-values for H0(0, q) and H0(q, d+1) for each half of the data. Denote the obtained p-values

by p̂(s,1)(0, q), p̂(s,1)(q, d + 1), p̂(s,2)(0, q) and p̂(s,2)(q, d + 1), respectively. We next combine

these p-values following the idea of Meinshausen et al. (2009), by defining

p̂(0, q) = min
(

1, qγ
[{
γ−1p̂(s,`)(0, q), s = 1, . . . , S, ` = 1, 2

}] )
,

p̂(q, d+ 1) = min
(

1, qγ
[
{γ−1p̂(s,`)(q, d+ 1), s = 1, . . . , S, ` = 1, 2}

] )
,

where γ is some constant between 0 and 1, and qγ is the empirical γ-quantile. In our

simulations, we have experimented with a range of values of γ between 0.1 and 0.2, and the

results are similar, and thus we set γ = 0.15 in our implementation. The corresponding p-

value forH0(q) is given by max{p̂(0, q), p̂(q, d+1)}, following the union-intersection principle.

We apply this multi-split method to the simulation examples in Section 6, and compare

with the single-split method. Figure 4 shows the empirical rejection rates of the two meth-

ods. It is seen that the multi-split method in general improves over the single-split method,

by achieving smaller type-I errors and larger powers.

.2 Learning DAG under a weaker constant variance condition

We note that the constant variance condition in (A3) can be relaxed as follows.

(A3∗) The errors εi, i = 0, 1, . . . , d + 1, are jointly normally distributed and independent.

In addition, the error variances σ2
i = Var(εi), i = 1, . . . , d, are constant; i.e., σ2

1 =

· · · = σ2
d = σ2

∗ for some constant σ∗ > 0.

In other words, the constant variance requirement does not have to be imposed on the

exposure and outcome variables. Under this weaker requirement, we first need to ensure

W0 remains identifiable, since Peters and Bühlmann (2014, Theorem 1) is no longer directly

applicable. In addition, we need to modify the initial estimator of W0 accordingly.
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Figure 4: Empirical rejection rate of the single-split (LOGAN-SS) and the multi-split (LOGAN-
MS) method. The upper panels: (d, n) = (50, 100), the middle panels: (d, n) = (100, 250), and
the bottom panels: (d, n) = (150, 250). The left panels: under H0, the middle panels: under H1,
where the horizontal axis is the mediator index, and the right panels: the average ROC curve.

The next lemma shows that W0 remains identifiable under (A3∗).

Lemma 3. Suppose (A1), (A2) and (A3∗) hold. Then W0 is identifiable from the joint

distribution function of X.

Proof : By (A2), we decompose W0 as,

W0 =

 0 0>d 0
W0,1 W1,1 0d
W0,2 W>

1,2 0

 , (19)

where W0,2 ∈ R, W0,1,W1,2 ∈ Rd, W1,1 ∈ Rd×d, and the matrix W1,1 is acyclic under (A1).

We first note that W0,2 and W1,2 correspond to the regression coefficients of (E,M )>

on Y . Under the given model, the covariance matrix of (E,M>) is non-degenerated. As
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such, W0,2 and W1,2 are uniquely determined by the distribution function of X.

We next show that W1,1 is also uniquely determined by the distribution function of X.

For each j = 1, . . . , d, let M̃j denote the population residual adjusted by the exposure, i.e.,

M̃j = (Mj − µ0,j) − corr(Mj, E)(E − µ0,0). It follows that the set of residuals M̃ satisfy

that M̃ = W1,1M̃ + (ε1, . . . , εd)
>. By (A1), W1,1 is acyclic. As such, M̃ forms a structural

linear equation with the coefficient matrix W1,1. Under (A3*), all the residuals have the

constant variance. It then follows from Theorem 1 of Peters and Bühlmann (2014) that

W1,1 is identifiable.

Finally, we note that W0,1 satisfies W0,1 = cov(E,M −W1,1M )/Var(E). It follows

from the identifiability of W1,1 that W0,1 is identifiable as well.

This completes the proof. �

We next outline a modified initial DAG estimation procedure under the new constant

variance condition (A3∗). Similar to Proposition 1, we can show that this new estimator

satisfies the oracle inequality as well.

Following the decomposition of W0 in (19), we first estimate W0,2 and W1,2 using pe-

nalized regressions of (E,M )> on Y such as MCP, LASSO, SCAD, and Dantzig selector.

Denote the corresponding estimators as W̃
(`)
0,2 and W̃

(`)
1,2 .

We next estimateW1,1, by first regressingMi on Ei, i = 1, . . . , n, to obtain the estimated

residual
̂̃
M i, then employing the method of Zheng et al. (2018) to solve

W̃
(`)
1,1 = arg min

W∈Rd×d

∑
i∈I`

‖̂̃M i −W
̂̃
M i‖2

2 + λ|I`|
∑
i,j

|Wi,j| subject to trace{exp(W ◦W )} = d.

After obtaining W̃
(`)
1,1 , we set W̃

(`)
0,1 = W̃

(`)
1,1 ĉov(M , E)V̂ar

−1
(E), where ĉov(M , E) is the

sampling covariance estimator of M , and V̂ar(E) is the sampling variance estimator of E.

Finally, we put together W̃
(`)
0,1 , W̃

(`)
1,1 , W̃

(`)
0,2 and W̃

(`)
1,2 according to (19) to form the

modified initial estimator W̃ (`) for W0.
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Figure 5: An illustrative DAG with four nodes, where both (0, 1, 2, 3) and (0, 2, 1, 3) correspond
to the true orderings.

.3 Additional regularity conditions

We introduce two additional regularity conditions for the theoretical guarantees of the pro-

posed test. We begin with some notation. Define the limit of the estimator β̂(`)(j1, j2)

β
(`)
0 (j1, j2) = arg min

β:βj2=0,supp(β)∈ACT(j1,W̃ (`))

E
(
Xj2 − β>Xi

)2
.

Any permutation π = (π0, π1, . . . , πd, πd+1)> of {0, 1, . . . , d, d + 1} determines an order of

the mediators {Mj}1≤j≤d. Define

Wπj(π) = arg min
β:supp(β)∈{π0,π1,...,πj−1,πj}

E
(
Mπj − β>M

)2
, for j = 1, . . . , d.

Let W (π) = {W0(π),W1(π), . . . ,Wd+1(π)}>. It corresponds to the coefficient matrix

obtained by doing a Gram-Schmidt orthogonalization, starting with Xπ0 , and finishing

by projecting Xπd+1
on Xπ0 , Xπ1 , . . . , Xπd . Let Ω(π) be a diagonal matrix where the di-

agonal elements ω2
0(π), ω2

1(π), . . . , ω2
d+1(π) correspond to the error variances, Var{X0 −

X>W0(π)},Var{X1 −X>W1(π)}, . . . ,Var{Xd+1 −X>Wd+1(π)}, respectively. Let Π∗ de-

note the set consisting of all true orderings π∗ such that W (π∗) = W0. Note that π∗ may

not be unique. As an illustration, consider the DAG in Figure 5, where both (0, 1, 2, 3) and

(0, 2, 1, 3) correspond to the true orderings of the four nodes.

We impose the following additional regularity conditions. In particular, (A5) is required

to establish the consistency and FDR control of the proposed test, while (A6) is to establish

the oracle inequality for the initial estimator.

(A5) There exist some constants κ3, κ4, κ5, κ6 > 0, with κ4+κ5 > 1/2, such that, ‖β̂(`)(j1, j2)−
β

(`)
0 (j1, j2)‖2 ≤ κ3n

−κ4 , ‖W (`)

j1
−W0,j1‖2 ≤ κ3n

−κ5 and ‖β̂(`)(j1, j2) − β(`)
0 (j1, j2)‖1 ≤

κ3n
−κ6 , ‖W (`)

j1
−W0,j1‖1 ≤ κ3n

−κ6 , for any 0 ≤ j1, j2 ≤ d+ 1, ` = 1, 2.
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(A6) There exists a constant ω > 0 such that for all π /∈ Π∗, 1
d

∑d+1
j=0

{
ω2
j (π)− σ2

∗
}2
> ω.

Condition (A5) is mild. This is because, when (A4) holds and β
(`)
0 is estimated via the

MCP, LASSO, SCAD, or Dantzig selector, we have maxj1,j2,` ‖β̂(`)(j1, j2)− β(`)
0 (j1, j2)‖2 ≤

O(1)n−1/2
√
s∗ log n and maxj1,j2,` ‖β̂(`)(j1, j2) − β(`)

0 (j1, j2)‖1 ≤ O(1)n−1/2s∗
√

log n, with

probability approaching one, where s∗ = maxj1,j2,` |M(`)(j1, j2)| denotes the maximum spar-

sity size, M(`)(j1, j2) = supp
{
β

(`)
0 (j1, j2)

}
, and O(1) denotes some positive constant. Sim-

ilarly, we have maxj,` ‖W
(`)

j −W0,j‖2 ≤ O(1)n−1/2
√
s0 log n and maxj,` ‖W

(`)

j −W0,j‖1 ≤
O(1)n−1/2s0

√
log n, with probability approaching one. Therefore, Condition (A5) holds as

long as s0, s
∗ = O(nκ7) for some κ7 < 1/2.

Condition (A6) is referred to as the “omega-min” condition in van de Geer and Bühlmann

(2013). It essentially guarantees that the true ordering of the mediators can be consistently

estimated, which is needed to establish the oracle inequality for the estimator from (11) of

Zheng et al. (2018). When the number of mediators d is fixed and the error variances are

equal as in (A3), this condition automatically holds.

Finally, we make some remark on why the usual debiasing strategy may not be directly

applicable to relax the regularity condition (A4) in Section 5.1 of the paper. Specifically, if

(A4) does not hold and the true ordering cannot not be recovered, then no matter whether

we debias the estimated coefficient matrix or not, the resulting estimator for W0 may not

be consistent. We illustrate with a simple example. Consider a DAG with two variables,

where X1 = ε1, X2 = aX1 + ε2 for some a 6= 0, and ε1 and ε2 are independent mean-zero

random errors. Then the corresponding coefficient matrix is

W0 =

(
0 0
a 0

)
.

Meanwhile, we note that the linear structure equation can be rewritten as X2 = ε∗2 and

X1 = a(a2 + 1)−1X2 + ε∗1, for some mean-zero random errors ε∗1 and ε∗2. In addition, with

some calculation, we have that

ε∗2 = aε1 + ε2,

ε∗1 =
1

a2 + 1
ε1 −

a

a2 + 1
ε2,
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and thus ε∗1 and ε∗2 are independent. Then the corresponding coefficient matrixW ∗
0 becomes(

0 a(a2 + 1)−1

0 0

)
.

If the ordering is not correctly specified and (A4) does not hold, then debiasing or not, the

second element on the first row will be close to a(a2 + 1)−1, rather than the true value 0. As

such, the debiased estimator is not consistent when (A4) is violated. This simple example

reflects the challenge of post-selection inference in our setting.

.4 Supporting lemmas

Next, we present two supporting lemmas. Lemma 4 establishes the convergence rate of the

variance estimator σ̂2
∗, whereas Lemma 5 is needed for the limiting distribution.

Lemma 4. Suppose (A5) holds, and ‖W0‖2 is bounded. Then |σ̂2
∗−σ2

∗| = O(n−κ7) for some

constant κ7 satisfying 0 < κ7 ≤ min(2κ5, 1/2), with probability tending to 1.

Proof : It suffices to show that, for ` = 1, 2 and any κ7 satisfying that κ7 ≤ 2κ5, κ7 < 1/2,

1

(d+ 2)|Ic` |

d+1∑
j=0

∑
i∈Ic`

|Xi,j −W
(`)>
j Xi|22 − σ2

∗ = O(n−κ7), (20)

with probability tending to 1. In turn, it suffices to show that,

Pr

∣∣∣∣ 1

(d+ 2)|Ic` |
∑
i∈Ic`

d+1∑
j=0

|Xi,j −W
(`)>
j Xi|22 − σ2

∗

∣∣∣∣ > 2κ2
3n
−κ7

∣∣∣∣W (`)

 = op(1). (21)

This is because, if (21) holds, by bounded convergence theorem, we have

Pr

∣∣∣∣ 1

(d+ 2)|Ic` |
∑
i∈Ic`

d+1∑
j=0

|Xi,j −W
(`)>
j Xi|22 − σ2

∗

∣∣∣∣ > 2κ2
3n
−κ7

 = o(1),

which in turn yields (20).
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For the conditional mean of the left-hand-side of (20) given {Xi : i ∈ I`},

1

(d+ 2)
E

(
d+1∑
j=0

|Xj −W
(`)>
j X|22 |W

(`)

)
− σ2

∗

=
1

(d+ 2)

d+1∑
j=0

E‖Xj −W>
0,jX‖2

2 − σ2
∗ +

1

(d+ 2)
‖W0 −W

(`)‖2
2

=
1

(d+ 2)
‖W0 −W

(`)‖2
2 =

1

(d+ 2)

d+1∑
j=0

‖W0,j −W
(`)

j ‖2
2 ≤ κ2

3n
−2κ5 ≤ κ2

3n
−κ7 ,

where the first equality is due to the fact that EX = 0 and the second-to-last inequality is

due to Condition (A5). The event defined in (21) occurs only when∣∣∣∣ 1

(d+ 2)|Ic` |
∑
i∈Ic`

d+1∑
j=0

|Xi,j −W
(`)>
j Xi|22 −

1

(d+ 2)
E

(
d+1∑
j=0

|Xj −W
(`)>
j X|22 |W

(`)

)∣∣∣∣ > κ2
3n
−κ7 .

Thus, to prove (21), it suffices to show that

Pr

(∣∣∣∣ 1

(d+ 2)|Ic` |
∑
i∈Ic`

d+1∑
j=0

|Xi,j −W
(`)>
j Xi|22 −

1

(d+ 2)
E

(
d+1∑
j=0

|Xj −W
(`)>
j X|22 |W

(`)

)∣∣∣∣
> κ2

3n
−κ7 |W (`)

)
= op(1).

By Chebyshev’s inequality, this probability is bounded from above by

n2κ7−1

2κ4
3(d+ 2)2

Var

(
d+1∑
j=0

|Xj −W
(`)>
j X|2 |W (`)

)
≤ n2κ7−1

κ4
3(d+ 2)2

E

{d+1∑
j=0

‖Xj −W
(`)>
j X|22

}2 ∣∣∣∣W (`)

 .

Since κ7 < 1/2, it suffices to show that, with probability approaching one,

1

(d+ 2)2
E

{d+1∑
j=0

|Xj −W
(`)>
j X|22

}2 ∣∣∣∣W (`)

 = O(1), (22)

By Cauchy-Schwarz inequality, the left-hand-side of (22) is bounded from above by
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1

d+ 2

d+1∑
j=0

E
{
|Xj −W

(`)>
j X|4 |W (`)

}
≤

16

d+ 2

d+1∑
j=0

(
E
{
|Xj|4 |W

(`)
}

+ E
{
|W (`)>

j X|4 |W (`)
})

.

(23)

For any random variable Z and any constant κ > 0, by Taylor’s theorem, we have

E

{
exp

(
Z2

κ2

)}
=

+∞∑
k=0

E
(
Z2k
)

κ2kk!
.

It follows that E{Z4/(2κ4)} ≤ E{exp(Z2/κ2)} − 1. Let ‖Z‖ψp denote its Orlicz norm, i.e.,

‖Z‖ψp = inf

[
C > 0 : E

{
exp

(
|Z|p

|C|p
≤ 2

)}]
.

By definition, we have E{Z4/(2‖Z‖4
ψ2

)} ≤ 1, and henceforth, E(Z4) ≤ 2‖Z‖4
ψ2

.

Under our model assumptions, the covariance matrix Σ0 = cov(X) is given by σ2
∗(Id+2−

W0)−1{(Id+2−W0)−1}>, where Id+2 is a (d+2)×(d+2) identity matrix. For any a ∈ Rd+2,

by Cauchy-Schwarz inequality,

a>Σ−1
0 a ≤ κ∗‖a>(Id+2 −W0)‖2

2 ≤ κ∗‖a‖2
2‖Id+2 −W0‖2

2 ≤ 2κ∗‖a‖2
2

(
‖Id+2‖2

2 + ‖W0‖2
2

)
,

for some constant κ∗ > 0. Since ‖W0‖2 is bounded, it implies that the maximum eigenvalues

of Σ−1
0 is bounded. Thus, the minimum eigenvalue of Σ0 is bounded away from zero. Also,

note that (Id+2−W0)−1 = Id+2+W0. Following similar arguments, the maximum eigenvalue

of Σ0 is bounded as well. Since X is jointly normal with bounded λmax(Σ0), we have, for

some constant κ > 0 and any vector a ∈ Rd+2,

‖a>X‖ψ2 ≤ κ‖a‖2. (24)

It then follows from (24) that conditional on W
(`)

,

E
(
|Xj|4

)
≤ 2‖Xj‖4

ψ2
≤ 2κ4, and E

(
|W (`)>

j X|4
)
≤ 2‖W (`)>

j X‖4
ψ2
≤ 2κ4‖W (`)

j ‖4
2,

for any j = 1, . . . , d. It follows from (23) that conditional on W
(`)

,

1

(d+ 2)

d∑
j=1

E
(
|Xj −W

(`)>
j X|4

)
≤ 32κ4

d+ 2

d+1∑
j=0

(
1 + ‖W (`)

j ‖4
2

)
≤ 32κ4

(
1 + max

j
‖W (`)

j ‖4
2

)
.
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By (A5), we have maxj ‖W
(`)

j ‖2 ≤ maxj ‖W0,j‖2 + maxj ‖W0,j −W
(`)

j ‖2 ≤ maxj ‖W0,j‖2 +

κ3n
−κ5 . Since ‖W0‖2 is bounded, we have ‖e>j W0‖2 = O(1), and hence ‖W0,j‖2 = O(1),

where ej denotes a (d + 2)-dimensional vector with the jth element equal to one and the

rest equal to zero. It follows that
∑d+1

j=0 E
{
|Xj −W

(`)>
j X|4/(d+ 2)

∣∣∣W (`)
}

= O(1), with

probability approaching one. Then (22) is proven. This completes the proof. �

Lemma 5. Suppose (A1), (A4) hold. Then ACT(j, W̃ (`)) contains no descendants of j.

Proof : Suppose there exists some j′ ∈ ACT(j, W̃ (`)), such that j′ is a descendant of j. By

definition, there exists a directed path from Xj to Xj′ : Xj → Xi1 → . . . XiK → Xj′ . By

Condition (A4), we have j ∈ ACT(i1, W̃
(`)), ik ∈ ACT(ik+1, W̃

(`)), for k = 1, . . . , K − 1

and iK ∈ ACT(j′, W̃ (`)). This, together with j′ ∈ ACT(j, W̃ (`)), implies that there exists a

directed path from Xj to Xj on the DAG generated by W̃ (`). Then the acyclic constraint

of W̃ (`) is violated. This completes the proof. �

.5 Proof of Lemma 2

To prove Lemma 2, it suffices to show that

(|W0|(k))q2,q1 = max
0≤j1,...,jk−1≤d+1

min

(
|W0,j1,q1|, min

l∈{1,...,k−2}
|W0,jl+1,jl |, |W0,q2,jk−1

|
)
. (25)

Lemma 2 can then be similarly proven as Lemma 1. We use induction to prove (25) for

any q1 = 0, . . . , d, and q2 = 1, . . . , d + 1. When k = 2, by the definition of ⊗, we have

(|W0|(2))q2,q1 = max0≤j≤d+1 min(|W0,j,q1|, |W0,q2,j|). Thus, (25) holds with k = 2.

Suppose (25) holds with k = t for some t ≥ 2, i.e,

(|W0|(t))q2,q1 = max
0≤j1,...,jt−1≤d+1

min

(
|W0,j1,q1|, min

l∈{1,...,t−2}
|W0,jl+1,jl |, |W0,q2,jt−1|

)
. (26)

Therefore,

(|W0|(t+1))q2,q1 = (|W0|(t) ◦ |W0|)q2,q1 = max
j∈{0,...,d+1}

min{(|W0|(t))j,q1 , |W0,q2,j|}

= max
j∈{0,...,d+1}

min

{
max

0≤j1,...,jt−1≤d+1
min

(
|W0,j1,q1|, min

l∈{1,...,t−2}
|W0,jl+1,jl |, |W0,j,jt−1 |

)
, |W0,q2,j|

}
= max

j∈{0,...,d+1}
max

0≤j1,...,jt−1≤d+1
min

(
|W0,j1,q1|, min

l∈{1,...,t−2}
|W0,jl+1,jl |, |W0,j,jt−1|, |W0,q2,j|

)
= max

0≤j1,...,jt−1,jt≤d+1
min

(
|W0,j1,q1|, min

l∈{1,...,t−1}
|W0,jl+1,jl |, |W0,q2,jt|

)
.
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Thus, (26) holds with k = t+ 1. This completes the proof of Lemma 2. �

.6 Proof of Theorem 1

Outline of the proof : Our goal is to prove

Pr

{
max

(j1,j2)∈S(q1,q2,B̂(`))

√
|Ic` ||Ŵ

(`)
i,j −W0,i,j| > ĉ(`)(q1, q2)

}
=
α

2
+ o(1), (27)

for any q1 = 0, . . . , d, q2 = 1, . . . , d+ 1 and ` = 1, 2. Then the validity of our test follows by

the union-intersection principle. We begin with an outline of our proof, which relies on the

high-dimensional central limit theorem that was recently developed by Chernozhukov et al.

(2013b) and Chernozhukov et al. (2014). We divide the proof into three steps.

In Step 1, we show that,

max
(j1,j2)∈S(q1,q2,B̂(`))

∣∣∣∣√|Ic` |(Ŵ (`)
j1,j2
−W0,j1,j2

)
− η(`)

0,j1,j2

∣∣∣∣ = op(log−1/2 n), (28)

where

η
(`)
0,j1,j2

=

|Ic` |−1/2
∑
i∈Ic`

{
Xi,j2 − β

(`)>
0 (j1, j2)Xi

}
εi,j1

E
[
Xj1

{
Xj2 − β

(`)>
0 (j1, j2)X

} ∣∣ W̃ (`)
] . (29)

This further implies that

max
(j1,j2)∈S(q1,q2,B̂(`))

√
|Ic` ||Ŵ

(`)
j1,j2
−W0,j1,j2|︸ ︷︷ ︸

Ŝ(`)

= max
(j1,j2)∈S(q1,q2,B̂(`))

|η(`)
0,j1,j2

|︸ ︷︷ ︸
S
(`)
0

+ op(log−1/2 n). (30)

LetM(`)(j1, j2) denote the support of β
(`)
0 (j1, j2). By definition, for any j ∈M(`)(j1, j2), we

have j, j2 ∈ ACT(j1, W̃
(`)). Since W̃ (1) and W̃ (2) satisfy the acyclic constraint in (A1), by

Lemma 5, neither j nor j2 is a descendant of j1. As a result, Xj1 is conditionally independent

of Xj2 and Xj given its parents. As such, the numerator of η
(`)
0,j1,j2

forms a sum of i.i.d. mean

zero random variables.

In Step 2, we show that,

sup
z∈R

∣∣∣Pr
(
S

(`)
0 ≤ z|W̃ (`)

)
− Pr

(
‖N(0, V0)‖∞ ≤ z|W̃ (`)

)∣∣∣ = o(1), (31)

where V0 is a matrix involving the covariance of η
(`)
0,j1,j2

in (29) and is defined in Step 2.
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In Step 3, we show that, for some constant κ∗ > 0,

‖V0 − V̂ ‖∞,∞ = Op(n
−κ∗), (32)

where ‖·‖∞,∞ denotes the elementwise max-norm, and V̂ is a matrix involving the covariance

of η
∗(`)
j1,j2

in (16) of the paper, and is defined later in Step 3.

Following (31) and bounded convergence theorem, we have that,

sup
z∈R

∣∣∣Pr
(
S

(`)
0 ≤ z

)
− Pr (‖N(0, V0)‖∞ ≤ z)

∣∣∣ = o(1).

This, together with (30), yields that

Pr
(
Ŝ(`) ≤ z

)
≥ Pr

(
‖N(0, V0)‖∞ ≤ z − ε log−1/2 n

)
− o(1),

Pr
(
Ŝ(`) ≤ z

)
≤ Pr

(
‖N(0, V0)‖∞ ≤ z + ε log−1/2 n

)
+ o(1),

(33)

for any sufficiently small ε > 0, where the little-o term is uniform in z. Using similar

arguments for (33) and also Lemma 3.1 of Chernozhukov et al. (2015), we have by (32)

Pr
(
Ŝ(`) ≤ z

)
≥ Pr

(
‖N(0, V̂ )‖∞ ≤ z − 2ε log−1/2 n|V̂

)
− o(1),

Pr
(
Ŝ(`) ≤ z

)
≤ Pr

(
‖N(0, V̂ )‖∞ ≤ z + 2ε log−1/2 n|V̂

)
+ o(1),

for any sufficiently small ε > 0. Set z = ĉ(`)(q1, q2). Since the little-o term is uniform in

z ∈ R, we have

Pr
{
Ŝ(`) ≤ ĉ(`)(q1, q2)

}
≥ Pr

{
‖N(0, V̂ )‖∞ ≤ ĉ(`)(q1, q2)− 2ε log−1/2 n|V̂

}
− o(1),

Pr
{
Ŝ(`) ≤ ĉ(`)(q1, q2)

}
≤ Pr

{
‖N(0, V̂ )‖∞ ≤ ĉ(`)(q1, q2) + 2ε log−1/2 n|V̂

}
+ o(1).

(34)

We show in Step 2 that all diagonal elements in V0 are well bounded away from zero.

Henceforth, with probability approaching 1, all diagonal elements in V̂ are well bounded

away from zero as well. It follows from Theorem 1 of Chernozhukov et al. (2017) that

Pr
{
‖N(0, V̂ )‖∞ ≤ ĉ(`)(q1, q2) + 2ε log−1/2 n|V̂

}
− Pr

{
‖N(0, V̂ )‖∞ ≤ ĉ(`)(q1, q2)

−2ε log−1/2 n|V̂
}
≤ O(1)ε log1/2 d log−1/2 n,

where O(1) denotes some positive constant. Under the given conditions, we have log d =

O(log n). The right-hand-side is bounded by κε for some constant κ > 0. This, together
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with (34), yields that∣∣∣Pr
{
Ŝ(`) ≤ ĉ(`)(q1, q2)

}
− Pr

{
‖N(0, V̂ )‖∞ ≤ ĉ(`)(q1, q2)|V̂

}∣∣∣ ≤ κε+ o(1).

Since ε can be made arbitrarily small, (27) follows, which completes the proof of Theorem

1. Next, we give detailed proofs for each step.

Step 1: The proof of this step relies on the arguments developed to establish the limiting

distribution of the debiased LASSO (van de Geer et al., 2014) and the decorrelated score

statistic (Ning and Liu, 2017). We aim to establish the upper bound for max(j1,j2)∈S(q1,q2,B̂(`))

|
√
|Ic` |(Ŵj1,j2−W0,j1,j2)−η

(`)
j1,j2
|, and for max(j1,j2)∈S(q1,q2,B̂(`)) |η

(`)
j1,j2
−η(`)

0,j1,j2
|. Together, these

two upper bounds would lead to (28).

To obtain the first upper bound, we have that,

max
(j1,j2)∈S(q1,q2,B̂(`))

∣∣∣∣√|Ic` |(Ŵj1,j2 −W0,j1,j2

)
− η(`)

j1,j2

∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣∣∣
|Ic` |−1/2

∑
i∈Ic`

{
Xi,j2 − β̂(`)>(j1, j2)Xi

}{∑
j 6=j2

Xi,j(W
(`)

j1,j
−W0,j1,j)

}
|Ic` |−1

∑
i∈Ic`

Xi,j2

{
Xi,j2 − β̂(`)>(j1, j2)Xi

}
∣∣∣∣∣∣∣∣∣∣∣

=
I1(j1, j2, `)

I2(j1, j2, `)
.

We next bound I1(j1, j2, `) and I2(j1, j2, `), respectively.

For I1(j1, j2, `), we have that, I1(j1, j2, `) ≤ I1,1(j1, j2, `) + I1,2(j1, j2, `), where

I1,1(j1, j2, `) =

∣∣∣∣|Ic` |−1/2
∑
i∈Ic`

{
β

(`)>
0 (j1, j2)Xi − β̂(`)>(j1, j2)Xi

}{∑
j 6=j2

Xi,j(W
(`)

j1,j
−W0,j1,j)

}∣∣∣∣,
I1,2(j1, j2, `) =

∣∣∣∣|Ic` |−1/2
∑
i∈Ic`

{
Xi,j1 − β

(`)>
0 (j1, j2)Xi

}{∑
j 6=j2

Xi,j(W
(`)

j1,j
−W0,j1,j)

}∣∣∣∣.
For I1,1(j1, j2), by Cauchy-Schwarz inequality, it can be upper bounded by

|Ic` |1/2‖β̂(`)(j1, j2)− β`0(j1, j2)‖2‖W
(`)

j1
−W0,j1‖2‖Σ0‖2

+ |Ic` |1/2‖β̂(`)(j1, j2)− β`0(j1, j2)‖1‖W
(`)

j1
−W0,j1‖1

∥∥∥Ic` |−1
∑
i∈Ic`

XiX
>
i −Σ0

∥∥∥
∞,∞

,

where ‖ · ‖∞,∞ denotes the elementwise maximum norm in absolute value. In the proof of

Lemma 4, we have shown that ‖Σ0‖2 is bounded. By Condition (A5), the first line is upper
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bounded by O(1)
√
nn−(κ4+κ5) where O(1) denotes some positive constant.

In addition, using similar arguments as in Equation (A.70) of Shi et al. (2020), we have∥∥∥|Ic` |−1
∑
i∈Ic`

XiX
>
i −Σ0

∥∥∥
∞,∞

= O(n−1/2
√

log d),

with probability approaching 1. This together with the condition on the number of media-

tors d and Condition (A5) implies that the second line is O(n−κ6
√

log n), with probability

approaching 1. Consequently,

max
j1,j2,`

I1,1(j1, j2, `) ≤ O(1)nmax(1/2−(κ4+κ5),−κ6)
√

log n, (35)

where O(1) denotes some positive constant.

For I1,2(j1, j2), note that W0,j1,j 6= 0 only when j is a parent of j1. By (A4), we have

W0,j1,j 6= 0 only when j ∈ ACT(j1, W̃
(`)). It follows that,∑

j 6=j2

Xi,j

(
W

(`)

j1,j
−W0,j1,j

)
=

∑
j 6=j2,j∈ACT(j1,W̃ (`))

Xi,j

(
W

(`)

j1,j
−W0,j1,j

)
.

By the definition of β
(`)
0 (j1, j2), we have E

[{
Xj2 −X>β

(`)
0 (j1, j2)

}
Xj|W̃ (`),W

(`)
]

= 0 for

any j ∈ ACT(j1, W̃
(`)) − {j2}. Note that W̃ (`) and W

(`)
are constructed by samples in

{Xi,j}i∈I` . It follows that E
{
ϕ

(`)
i (j1, j2)|W̃ (`),W

(`)
}

= 0 for any i ∈ I`, where

ϕ
(`)
i (j1, j2) =

{
Xi,j2 −X>i β

(`)
0 (j1, j2)

} ∑
j 6=j2,j∈ACT(j1,W̃ (`))

Xi,j(W
(`)

j1,j
−W0,j1,j)

 .

By the definition of the Orlicz norm and Cauchy-Schwarz inequality, we have

‖ϕ(`)
i (j1, j2)‖

ψ1|W̃ (`),W
(`) = ‖ϕ(`)

i (j1, j2)‖2

ψ2|W̃ (`),W
(`)

≤ 1

2τ
‖Xi,j2 −X>i β

(`)
0 (j1, j2)‖2

ψ2|W̃ (`),W
(`) +

τ

2
‖X>i (W

(`)

j1
−W0,j1)‖2

ψ2|W̃ (`),W
(`) ,

(36)

where ‖ · ‖
ψp|W̃ (`),W

(`) denotes the Orlicz norm conditional on W̃ (`) and W
(`)

. Since j2 does

not belong to the support of β
(`)
0 (j1, j2), we have by (24) that

‖Xi,j2 −X>i β
(`)
0 (j1, j2)‖

ψ2|W̃ (`),W
(`) ≤ c0

{
1 + ‖β(`)

0 (j1, j2)‖2

}
.

Using similar arguments in Lemma A.1 of Shi et al. (2020), we have maxj1,j2,` ‖β
(`)
0 (j1, j2)‖2 =
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O(1). Henceforth, maxi,j1,j2,` ‖Xi,j2−X>i β
(`)
0 (j1, j2)‖

ψ2|W̃ (`),W
(`) = O(1). Similarly, we have,

max
i,j1,j2,`

‖X>i (W
(`)

j1
−W0,j1)‖ψ2|W̃ (`),W

(`) ≤ c0 max
j1
‖W (`)

j1
−W0,j1‖2 ≤ c0κ3n

−κ5 ,

by Condition (A5). Setting τ = n−κ5 , it follows from (36) that

max
i,`
‖ϕ(`)

i (j1, j2)‖
ψ1|W̃ (`),W

(`) = O(n−κ5), (37)

by (A4) and (A5). It follows from Lemma G.3 of Shi et al. (2018) that

Pr

∣∣∣∣∑
i∈Ic`

ϕ
(`)
i (j1, j2)

∣∣∣∣ > t|max
j
‖W (`)

j −W0,j‖2 ≤ κ3n
−κ5 , W̃ (`)

 ≤ 2 exp

{
−κmin

(
t2

n1−2κ5
,

t

n−κ5

)}
,

for some constant κ > 0. By Bonferroni’s inequality, we have that,

Pr

max
j1,j2,`

∣∣∣∣∑
i∈Ic`

ϕ
(`)
i (j1, j2)

∣∣∣∣ > t|max
j
‖W (`)

j −W0,j‖2 ≤ κ3n
−κ5 , W̃ (`)


≤ 4(d+ 2)2 exp

{
−cmin

(
t2

n1−2κ5
,

t

n−κ5

)}
≤ 4 exp

{
−cmin

(
t2

n1−2κ5
,

t

n−κ5

)
+ 2 log(d+ 2)

}
.

Setting t = 3κ1c
−1n1/2−κ5

√
log n, for a sufficiently large n, we have that,

4 exp

{
−cmin

(
t2

n1−2κ5
,

t

n−κ5

)
+ 2 log(d+ 2)

}
= 4 exp {−3κ1 log n+ 2 log(d+ 2)}

=
4(d+ 2)2

n3κ1
= O(n−κ1) = o(1).

Therefore, conditional on the events in (A4) and (A5), we have that, with probability

approaching one, maxj1,j2,` |
∑

i∈Ic`
ϕ

(`)
i (j1, j2)| = O(n1/2−κ5

√
log n), or equivalently,

max
j1,j2,`

I1,2(j1, j2, `) = O(n−κ5
√

log n). (38)

Combining (35) and (38) together yields, for some constant κ > 0,

max
j1,j2,`

I1(j1, j2, `) = O(n−κ), (39)

For I2(j1, j2, `), we first define

I∗2 (j1, j2, `) = |Ic` |−1
∑
i∈Ic`

{
Xi,j2 − β

(`)>
0 (j1, j2)Xi

}
Xi,j2 ,

I∗∗2 (j1, j2, `) = E
{
I∗2 (j1, j2, `)|W̃ (`)

}
= E

[{
Xi,j2 − β

(`)>
0 (j1, j2)Xi

}2

| W̃ (`)

]
.
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Following the proof of Corollaries 4.1 and 4.2 of Ning and Liu (2017), we have that,

|I2(j1, j2, `)− I∗2 (j1, j2, `)| ≤ |Ic` |−1

∣∣∣∣∑
i∈Ic`

Xi,j2{β
(`)
0 (j1, j2)− β̂(`)(j1, j2)}>Xi

∣∣∣∣
≤ ‖β(`)

0 (j1, j2)− β̂(`)(j1, j2)‖1

 2

n

∥∥∥∑
i∈Ic`

Xi,j2Xi − |Ic` |EXj2X
∥∥∥
∞


+ ‖β(`)

0 (j1, j2)− β̂(`)(j1, j2)‖2λmax(Σ0) = O(n−κ4) +O(n−κ6−1/2
√

log n), (40)

where the big-O term is uniform in (j1, j2, `). In addition, note that

E|Ic` |−1
∑
i∈Ic`

[
Xi,j2

{
Xi,j2 − β

(`)>
0 (j1, j2)Xi

}
|W̃ (`)

]
= E

[
Xj2

{
Xj2 − β

(`)>
0 (j1, j2)X

}
|W̃ (`)

]
= E

[{
Xj2 − β

(`)>
0 (j1, j2)X

}2

|W̃ (`)

]
≥ ‖{1,β(`)>

0 (j1, j2)}‖2
2λmin(Σ0) ≥ λmin(Σ0).

Since the minimum eigenvalue of Σ0 is bounded away from zero, we have

min
j1,j2,`

I∗∗2 (j1, j2, `) = min
j1,j2,`

E
{
I∗2 (j1, j2, `)|W̃ (`)

}
≥ 2ε, (41)

for some ε > 0. Similar to (38), we have,

max
1,j2,`

∥∥∥∑
i∈Ic`

{Xi,j2 − β
(`)>
0 (j1, j2)Xi}Xi,j2 − |Ic` |I∗∗2 (j1, j2, `)

∥∥∥
∞

= O(
√
n log n). (42)

This together with (41) yields,

min
j1,j2,`

I∗2 (j1, j2, `) = min
j1,j2,`

|Ic` |−1
∑
i∈Ic`

{Xi,j2 − β
(`)>
0 (j1, j2)Xi}Xi,j2 ≥ 2ε.

Combining this together with (40), we have,

min
j1,j2,`

I2(j1, j2, `) ≥ min
j1,j2,`

|Ic` |−1
∑
i∈Ic`

{
Xi,j2 − β

(`)>
0 (j1, j2)Xi

}
Xi,j2

+ |Ic` |−1
∑
i∈Ic`

Xi,j2

{
β

(`)
0 (j1, j2)− β̂(`)(j1, j2)

}>
Xi

 ≥ ε.

(43)

Combining (39) and (43) together yields,

max
(j1,j2)∈S(q1,q2,B̂(`))

|
√
|Ic` |(Ŵj1,j2 −W0,j1,j2)− η

(`)
j1,j2
| ≤ O(1)n−κ, (44)
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for some constant κ > 0. This gives the first desired upper bound.

To obtain the second upper bound, we have that,

max
(j1,j2)∈S(q1,q2,B̂(`))

|η(`)
j1,j2
− η(`)

0,j1,j2
| ≤ max

(j1,j2)∈S(q1,q2,B̂(`))

|Ic` |−1/2|
∑

i∈Ic`
{β̂(`)(j1, j2)− β(`)

0 (j1, j2)}>Xiεi,j1|
I2(j1, j2, `)

+ max
(j1,j2)∈S(q1,q2,B̂(`))

|I2(j1, j2, `)− I∗∗2 (j1, j2, `)||Ic` |−1/2|
∑

i∈Ic`
{β̂(`)(j1, j2)− β(`)

0 (j1, j2)}>Xiεi,j1|
I2(j1, j2, `)I∗∗2 (j1, j2, `)

.

By (40), (41), (42) and (43), we have,

max
(j1,j2)∈S(q1,q2,B̂(`))

|η(`)
j1,j2
− η(`)

0,j1,j2
|

≤ 2

ε
max

(j1,j2)∈S(q1,q2,B̂(`))

∣∣∣|Ic` |−1/2
∑
i∈Ic`

{β̂(`)(j1, j2)− β(`)>
0 (j1, j2)}>Xiεi,j1

∣∣∣. (45)

Note that the supports of β̂(`)(j1, j2) and β
(`)>
0 (j1, j2) belong to ACT(j1, W̃

(`)). Since εi,j1

is independent of {Xi,j : j ∈ ACT(j1, W̃
(`))} conditional on W̃ (`), we have,

max
(j1,j2)∈S(q1,q2,B̂(`))

∣∣∣|Ic` |−1/2
∑
i∈Ic`

{β̂(`)(j1, j2)− β(`)>
0 (j1, j2)}>Xiεi,j1

∣∣∣
≤ max

(j1,j2)∈S(q1,q2,B̂(`))
‖β̂(`)(j1, j2)− β(`)>

0 (j1, j2)‖1 max
j∈ACT(j1,B̂(`))

∣∣∣|Ic` |−1/2
∑
i∈Ic`

Xi,jεi,j1

∣∣∣.
By (A4), εi,j1 is conditionally independent of Xj for any j ∈ ACT(j1, W̃

(`)). Similar to

(38), by Bernstein’s inequality, we have that,

max
(j1,j2)∈S(q1,q2,B̂(`))

max
j∈ACT(j1,W̃ (`))

∣∣∣|Ic` |−1/2
∑
i∈Ic`

Xi,jεi,j1

∣∣∣ = O(
√

log n).

It follows from Condition (A5) that,

max
(j1,j2)∈S(q1,q2,B̂(`))

∣∣∣|Ic` |−1/2
∑
i∈Ic`

{β̂(`)(j1, j2)− β(`)>
0 (j1, j2)}>Xiεi,j1

∣∣∣ = O(n−κ),

for some constant κ > 0. In view of (45), we obtain the second desired upper bound,

max
(j1,j2)∈S(q1,q2,B̂(`))

|η(`)
j1,j2
− η(`)

0,j1,j2
| = O(n−κ), (46)

for some constant κ > 0.

Finally, combining (44) and (46) together yields (28). This completes Step 1.
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Step 2: Recall that, each εi,j1 is uncorrelated with Xi,j2 − β
(`)>
0 (j1, j2)Xi. Since both εi,j1

and Xi,j2 − β
(`)>
0 (j1, j2)Xi are normally distributed given W̃ (`), they are independent as

well. As a result, we have,

Var
[{
Xi,j2 − β

(`)>
0 (j1, j2)Xi

}
εi,j1|W̃ (`)

]
= σ2

∗E

[{
Xi,j2 − β

(`)>
0 (j1, j2)Xi

}2

| W̃ (`)

]
,

for 1 ≤ j1 ≤ d+ 1. Recall that I∗∗2 (j1, j2, `) = E

[{
Xi,j2 − β

(`)>
0 (j1, j2)Xi

}2

| W̃ (`)

]
. Then,

we have for 1 ≤ j1 ≤ d+ 1 that

Var
(
η

(`)
0,j1,j2

|W̃ (`)
)

=
1

{I∗∗2 (j1, j2, `)}2
Var

[{
Xi,j2 − β

(`)>
0 (j1, j2)Xi

}
εi,j1 | W̃ (`)

]
=

1

σ2
∗E

[{
Xi,j2 − β

(`)>
0 (j1, j2)Xi

}2

| W̃ (`)

] . (47)

Since j2 /∈M(`)(j1, j2), we have

λmin(Σ0)
∥∥{1,β(`)>

0 (j1, j2)}>
∥∥2

2
≤ E

[{
Xi,j2 − β

(`)>
0 (j1, j2)Xi

}2

| W̃ (`)

]
≤ λmax(Σ0)

∥∥(1,β
(`)>
0 (j1, j2))>

∥∥2

2
.

Following the proof of Lemma A.1 of Shi et al. (2020), we have maxj1,j2,` ‖β
(`)
0 (j1, j2)‖2 =

O(1). Since λmin(Σ0) and λmax(Σ0) are uniformly bounded away from zero and infinity,

there exists some constant κ ≥ 1 such that, for any j1, j2,

κ−1 ≤ E[{Xi,j2 − β
(`)>
0 (j1, j2)Xi}2|W̃ (`)] ≤ κ. (48)

It follows from (47) that, for any j1, j2,

κ−1 ≤ Var(η
(`)
0,j1,j2

|W̃ (`)) ≤ κ. (49)

We index all pairs of indices (j1, j2) in S(q1, q2, B̂
(`)) by {j1(0), j2(0)}, {j1(1), j2(1)}, . . . ,

{j1(L − 1), j2(L − 1)}, where L = |S(q1, q2, B̂
(`))|. Next, define a covariance matrix

V0 ∈ RL×L, such that its (l1, l2)th entry is the covariance of η
(`)
0,j1(l1),j2(l1) and η

(`)
0,j1(l2),j2(l2)

conditional on W̃ (`). By (49), the diagonal elements of V0 are uniformly bounded away

from zero and infinity. We also comment that η
(`)
j1,j2

defined in (15) in Section 4.4 of the

paper can be viewed as a more intuitive version of η
(`)
0,j1,j2

defined in (29).

When L is finite, by the classical Lindeberg-Feller central limit theorem and Condition
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(A4), we have (31) holds. When L diverges, we have L ≤ d2 that grows at an polynomial or-

der of n. By (49), we have minj1,j2,` Var
(
η

(`)
0,j1,j2

|W̃ (`)
)

is uniformly bounded away from zero.

Moreover, following similar arguments in proving (37), we have maxj1,j2,` ‖η
(`)
0,j1,j2

‖ψ1|W̃ (`) =

O(1). Then, by Corollary 2.1 of Chernozhukov et al. (2013b), (31) holds as well. This

completes Step 2.

Step 3: Define a covariance matrix V̂ ∈ RL×L, such that its (l1, l2)th entry is the covariance

of η
∗(`)
j1(l1),j2(l1) and η

∗(`)
j1(l2),j2(l2) conditional on the data. To bound ‖V̂ − V0‖∞,∞ in (32), it

suffices to bound

max
(j1,j2),(j3,j4)

∈S(q1,q2,B̂(`))

∣∣∣cov
[
η
∗(`)
j1,j2

, η
∗(`)
j3,j4
|{Xi,j}1≤i≤n,0≤j≤d+1

]
− cov

[
η

(`)
0,j1,j2

, η
(`)
0,j3,j4

|{Xi,j}i∈Ic` ,0≤j≤d+1

]∣∣∣ .
Recall in Section 4.4, when j1 6= j3, we have cov(η

∗(`)
j1,j2

, η
∗(`)
j3,j4
|{Xi,j}1≤i≤n,0≤j≤d+1) = 0. Simi-

larly, cov(η
(`)
0,j1,j2

, η
(`)
0,j3,j4

|{Xi,j}i∈Ic` ,0≤j≤d+1) = 0 when j1 6= j3. As a result, we have

‖V̂ − V0‖∞,∞ = max
(j1,j2),(j1,j3)

∈S(q1,q2,B̂(`))

∣∣∣cov
[
η
∗(`)
j1,j2

, η
∗(`)
j1,j3
|{Xi,j}1≤i≤n,0≤j≤d+1

]
−cov

[
η

(`)
0,j1,j2

, η
(`)
0,j1,j3

|{Xi,j}i∈Ic` ,0≤j≤d+1

]∣∣∣ .
After some calculations, we have, for 1 ≤ j1 ≤ d+ 1,

cov
[
η

(`)
0,j1,j2

, η
(`)
0,j1,j3

|{Xi,j}i∈Ic` ,0≤j≤d+1

]
=

E
[∏

k∈{j2,j3}

{
Xk − β(`)>

0 (j1, k)X0

}
|W̃ (`)

]
σ2
∗

I∗∗2 (j1, j2, `)I∗∗2 (j1, j3, `)
,

cov
[
η
∗(`)
j1,j2

, η
∗(`)
j1,j3
|{Xi,j}1≤i≤n,0≤j≤d+1

]
=
|Ic` |−1

∑
i∈Ic`

∏
k∈{j2,j3}

[{
Xi,k − β̂(`)>(j1, k)Xi

}]
σ̂2
∗

I2(j1, j2, `)I2(j1, j3, `)
.

It follows that

‖V̂ − V0‖∞,∞ = max
(j1,j2),(j1,j3)

∈S(q1,q2,B̂(`))

I3,1(j1, j2, j3, `) + max
(j1,j2),(j1,j3)

∈S(q1,q2,B̂(`))

I3,2(j1, j2, j3, `)

+ max
(j1,j2),(j1,j3)

∈S(q1,q2,B̂(`))

I3,3(j1, j2, j3, `),
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where

I3,1(j1, j2, j3, `) =

∣∣∣E [∏k∈{j2,j3}

{
Xk − β(`)>

0 (j1, k)X0

}
| W̃ (`)

]∣∣∣
I∗∗2 (j1, j2, `)I∗∗2 (j1, j3, `)

|σ̂2
∗ − σ2

∗|,

I3,2(j1, j2, j3, `) =
σ̂2
∗

I∗∗2 (j1, j2, `)I∗∗2 (j1, j3, `)

∣∣∣∣∣∣ 1

|Ic` |
∑
i∈Ic`

∏
k∈{j2,j3}

[{
Xi,k − β̂(`)>(j1, k)Xi

}]

− E
∏

k∈{j2,j3}

[{
Xk − β(`)>

0 (j1, k)X0

}]∣∣∣∣∣∣ ,
I3,3(j1, j2, j3, `) =

∣∣∣∣∣∣ 1

|Ic` |
∑
i∈Ic`

∏
k∈{j2,j3}

[{
Xi,k − β̂(`)>(j1, k)Xi

}]
σ̂2
∗

∣∣∣∣∣∣
×|I

∗∗
2 (j1, j2, `)I

∗∗
2 (j1, j3, `)− I2(j1, j2, `)I2(j1, j3, `)|

I∗∗2 (j1, j2, `)I∗∗2 (j1, j3, `)I2(j1, j2, `)I2(j1, j3, `)
.

We next bound maxj1,j2,j3,` I3,q(j1, j2, j3, `), q = 1, 2, 3, respectively.

For maxj1,j2,j3,` I3,1(j1, j2, j3, `), by Cauchy-Schwarz inequality, we have

max
j1,j2,j3,`

∣∣∣∣∣∣E
 ∏
k∈{j2,j3}

{
Xk − β(`)>

0 (j1, k)X0

}
| W̃ (`)

∣∣∣∣∣∣
≤ max

j1,j2,j3,`

∏
k∈{j2,j3}

E

[{
Xk − β(`)>

0 (j1, k)X0

}2

| W̃ (`)

]
.

By (48), we have,

max
j1,j2,j3,`

∣∣∣∣∣∣E
 ∏
k∈{j2,j3}

{
Xk − β(`)>

0 (j1, k)X0

}
| W̃ (`)

∣∣∣∣∣∣ = O(1). (50)

Combining (50) with (41) and Lemma 4 yields,

max
j1,j2,j3,`

I3,1(j1, j2, j3, `) = O(n−κ7). (51)
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For maxj1,j2,j3,` I3,2(j1, j2, j3, `), by Lemma 4, we have σ̂2
∗ = O(1). Define

I∗3 (j1, j2, j3, `) =

∣∣∣∣∣∣ 1

|Ic` |
∑
i∈Ic`

∏
k∈{j2,j3}

[{
Xi,k − β̂(`)>(j1, k)Xi

}]

− E

 ∏
k∈{j2,j3}

{
Xk − β(`)>

0 (j1, k)X0

}
| W̃ (`)

∣∣∣∣∣∣ .
I∗∗3 (j1, j2, j3) =

∣∣∣∣∣∣ 1

|Ic` |
∑
i∈Ic`

 ∏
k∈{j2,j3}

{
Xi,k − β̂(`)>(j1, k)Xi

}

−
∏

k∈{j2,j3}

{
Xi,k − β(`)>

0 (j1, k)Xi

}∣∣∣∣∣∣ .
Similar to (38), we have,

max
j1,j2,j3,`

∣∣∣∣∣∣ 1

|Ic` |
∑
i∈Ic`

∏
k∈{j2,j3}

{
Xi,k − β>0 (j1, k)Xi

}
− E

 ∏
k∈{j2,j3}

{
Xk − β(`)>

0 (j1, k)X0

}
| W̃ (`)

∣∣∣∣∣∣
= O(n−1/2

√
log n),

Next, maxj1,j2,j3,` I
∗∗
3 (j1, j2, j3, `) ≤ I4,1(j1, j2, j3, `)+ I4,2(j1, j2, j3, `)+ I4,3(j1, j2, j3, `), where

I4,1(j1, j2, j3, `) =

∣∣∣∣ 1

|Ic` |
∑
i∈Ic`

{
β

(`)
0 (j1, j2)− β̂(`)(j1, j2)

}>
Xi

{
Xi,j3 − β

(`)>
0 (j1, j3)Xi

} ∣∣∣∣,
I4,2(j1, j2, j3, `) =

∣∣∣∣ 1

|Ic` |
∑
i∈Ic`

{
β

(`)
0 (j1, j3)− β̂(`)(j1, j3)

}>
Xi

{
Xi,j2 − β

(`)>
0 (j1, j2)Xi

} ∣∣∣∣,
I4,3(j1, j2, j3, `) =

∣∣∣∣ 1

|Ic` |
∑
i∈Ic`

{
β

(`)
0 (j1, j2)− β̂(`)(j1, j2)

}>
XiX

>
i

{
β

(`)
0 (j1, j2)− β̂(`)(j1, j2)

} ∣∣∣∣.
Using similar arguments in proving (35) and (40), we have

max
j1,j2,j3,`

I4,1(j1, j2, j3, `) = O(n−κ5),

max
j1,j2,j3,`

I4,2(j1, j2, j3, `) = O(n−κ5),

max
j1,j2,j3,`

I4,3(j1, j2, j3, `) = O(n−2κ5).

Therefore, we have, for some constant κ > 0,
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max
j1,j2,j3,`

I∗2 (j1, j2, j3, `) = O(n−κ). (52)

It then follows from (41) that, for some constant κ > 0,

max
j1,j2,j3,`

I2(j1, j2, j3, `) = O(n−κ). (53)

For maxj1,j2,j3,` I3,3(j1, j2, j3, `), combining (52) with (50), we have,∣∣∣∣∣∣ 1

|Ic` |
∑
i∈Ic`

∏
k∈{j2,j3}

[
{Xi,k − β̂(`)>(j1, k)Xi}

]∣∣∣∣∣∣ = O(1). (54)

Using similar arguments in bounding maxj1,j2,` |I2(j1, j2, `)− I∗∗2 (j1, j2, `)| in Step 2, we get

max
j1,j2,j3,`

|I∗∗2 (j1, j2, `)I
∗∗
2 (j1, j3, `)− I2(j1, j2, `)I2(j1, j3, `)| = O(n−κ),

for some constant κ > 0. Combining this together with (54), (41), (43) and that σ̂2
∗ = O(1),

we have, for some constant κ > 0,

max
j1,j2,j3,`

I3,3(j1, j2, j3, `) = O(n−κ). (55)

Combining (51), (53) and (55) together yields the bound for ‖V̂ − V0‖∞,∞ in (32). This

completes Step 3. �

.7 Proof of Theorem 2

Recall the proposed bootstrap procedure repeatedly generate random variables fromN(0, V̂ ),

and the critical value ĉ(`)(q1, q2) is the upper (α/2)th quantile of ‖N(0, V̂ )‖∞. That is,

Pr
(
‖N(0, V̂ )‖∞ ≤ ĉ(`)(q1, q2)|V̂

)
=
α

2
. (56)

We have shown in the proof of Theorem 1 that the diagonal elements of V̂ are uniformly

bounded by some constant κ > 0. It follows from Bonferroni’s inequality that

Pr
(
‖N(0, V̂ )‖∞ > t

√
κ log n

)
≤ (d+ 2) max

j∈{0,...,d+1}
Pr
(
|N(0, V̂j,j)| > t

√
κ log n

)
≤ (d+ 2)

{
1− Φ

(
t
√

log n
)}

,
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where V̂j,j is the (j, j)th entry of V̂ . For t ≥ 1 and n ≥ 3, we have t
√

log n ≥ 1, and hence

1− Φ
(
t
√

log n
)

=
1√
2π

∫ +∞

t
√

logn

exp

(
−x

2

2

)
dx ≤

∫ +∞

t
√

logn

x exp

(
−x

2

2

)
dx

= exp

(
−t

2 log n

2

)
= n−t

2/2.

Setting t = 2
√
κ1 + 1, it follows from the condition d = O(nκ1) that,

Pr
(
‖N(0, V̂ )‖∞ >

√
2(κ1 + 1)c log n

)
= O(d/nκ1+1) = o(1).

In view of (56), we obtain ĉ(`)(q1, q2) ≤
√

2(κ1 + 1)c log n.

According to our test procedure, we reject the null if
√
n(Ŵ ∗(`))q,0 > ĉ(0, q) and

√
n(Ŵ ∗(`))d+1,q > ĉ(q, d + 1), for some ` = 1, 2, where Ŵ ∗(`) = |Ŵ (`)| ⊕ |Ŵ (`)|(2) ⊕ . . . ⊕
|Ŵ (`)|(d). To prove Theorem 2, it suffices to show

Pr(
√
n(Ŵ ∗(`))q,0 ≥

√
2(κ1 + 1)c log n)→ 1,

Pr(
√
n(Ŵ ∗(`))d+1,q ≥

√
2(κ1 + 1)c log n)→ 1,

(57)

under the alternative hypothesis H1. We next prove (57).

Under the given conditions of the theorem, there exists a path, X0 → Xi1 → . . . →
Xik → Xq, such that |W0,0,i1|, |W0,i1,i2 |, . . . , |W0,ik−1,ik |, |W0,ik,q| � n−1/2

√
log n. Under the

given conditions, we have with probability tending to 1 that,

max

(
|Ŵ (`)

0,i1
−W0,0,i1|, max

1≤j≤k−1
|Ŵ (`)

ij ,ij+1
−W0,ij ,ij+1

|, |Ŵ (`)
ik,q
−W0,ik,q|

)
= O(n−1/2

√
log n).

It follows that

min

(
|Ŵ (`)

0,i1
|, min

1≤j≤k−1
|Ŵ (`)

ij ,ij+1
|, |Ŵ (`)

ik,q
|
)
� n−1/2

√
log n. (58)

By definition, we have that,

√
n(Ŵ ∗(`))q,0 ≥

√
nmin

(
|Ŵ (`)

0,i1
|, min

1≤j≤k−1
|Ŵ (`)

ij ,ij+1
|, |Ŵ (`)

ik,q
|
)
.

It follows from (58) that
√
n(Ŵ ∗(`))q,0 �

√
log n under Condition (A5). Therefore, Pr

(√
n(Ŵ ∗(`))q,0 ≥

√
2(κ1 + 1)c log n

)
→

1, which proves the first result in (57). Similarly, we can prove the second result in (57)

that Pr
(√

n(Ŵ ∗(`))d+1,q ≥
√

2(κ1 + 1)c log n
)
→ 1. This completes the proof of Theorem

50



2. �

.8 Proof of Theorem 3

First, we show that the p-values p̂(`)(0, q) and p̂(`)(q, d + 1) are asymptotically indepen-

dent. Let ACT(q) and DES(q) denote the set of ancestors and descendants of Xq, respec-

tively. By Condition (A4), the two test statistics
√
Ic` (Ŵ ∗(`))q,0 and

√
Ic` (Ŵ ∗(`))d+1,q are

constructed based on the set of estimators
{
Ŵ

(`)
j1,j2

: j1 ∈ ACT(q) ∪ {q}, j2 ∈ ACT(q)
}

and{
Ŵ

(`)
j1,j2

: j1 ∈ DES(q), j2 ∈ DES(q) ∪ {q}
}

, respectively. These two sets of estimators are

asymptotically independent conditional on {Xi}i∈I` . To better illustrate this, note that for

any (j1, j2, j3, j4) such that j1 ∈ ACT(q)∪{q}, j2 ∈ ACT(q), j3 ∈ DES(q), j4 ∈ DES(q)∪{q},
we have j1 6= j3. As discussed in Section 4.4,

√
n(Ŵ

(`)
j1,j2
−W0,j1,j2) and

√
n(Ŵ

(`)
j3,j4
−W0,j3,j4)

are asymptotically uncorrelated. Since the two variables are jointly normal, they are

asymptotically independent as well. As a result, the two test statistics
√
Ic` (Ŵ ∗(`))q,0 and√

Ic` (Ŵ ∗(`))d+1,q are asymptotically independent, and so are their corresponding p-values.

Next, a closer look at the proof of Theorem 1 shows that the type-I error rates can be

uniformly controlled across different mediators. That is,

max
`∈{1,2}

max
q∈{1,...,d}

Pr
{
p̂(`)

max(q) ≤ α | H0(q) holds
}
≤ α + o(1), (59)

for any given significance level 0 < α < 1. Following the proof of Theorem 1 in Djordjilović

et al. (2019), and by (59), we can show that,

max
`∈{1,2}

max
q∈{1,...,d}

Pr
{
p̂(`)

max(q) ≤ α | H0(q) holds, p̂
(`)
min(q) ≤ c(`)

}
≤ α + o(1), (60)

for any significance level α and the critical value c(`) > 0.

Then, similar to Theorem 1.3 of Benjamini and Yekutieli (2001b), and by (60), we have

that FDR(H(`)) is guaranteed at level α/2. Recall H = H(1) ∪ H(2) is the final set of our

selected mediators, and N is the set of unimportant mediators. It follows that,

FDR(H) = E

(
|N ∪ H|

max(1,H)

)
≤
∑

`∈{1,2}

E

(
|N ∪ H(`)|
max(1,H)

)
≤
∑

`∈{1,2}

E

(
|N ∪ H(`)|

max(1,H(`))

)
=

∑
`∈{1,2}

FDR(H(`)) = α + o(1).

This completes the proof of Theorem 3. �
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.9 Proof of Proposition 1

Outline of the proof : We choose λ = κ
√

log n/n for some sufficiently large constant

κ > 0. We divide the proof into three steps. In Step 1, we establish the uniform convergence

rate of ‖W̃ (`)
j (π) −Wj(π)‖2. Due to the acyclic constraint, W̃ (`) = W̃ (`)(π) for some

ordering π. In Step 2, we show that

min
π/∈Π0

(∑
i∈I`

‖Xi − W̃ (`)(π)Xi‖2 +
d+1∑
j=0

|I`|λ‖W̃ (`)
j (π)‖1

)

> max
π∈Π0

(∑
i∈I`

‖Xi −W (π)Xi‖2 +
d+1∑
j=0

|I`|λ‖Wj(π)‖1

)
.

(61)

By definition, this implies that W̃ (`) = W̃ (`)(π∗) for some true ordering π∗ ∈ Π∗. This

proves the first assertion of Proposition 1. In the third step, we derive the convergence rate

of W̃ (`), and completes the second assertion of Proposition 1.

Step 1: For any π, i, j, let εi,j(π) = Xi,j −X>i Wj(π) denote the residual. By definition,

d+1∑
j=0

∑
i∈I`

|Xi,j −X>i W̃
(`)
j (π)|2 + λ|I`|

d+1∑
j=0

‖W̃ (`)
j (π)‖1 (62)

≤
d+1∑
j=0

∑
i∈I`

|Xi,j −X>i Wj(π)|2 + λ|I`|
d+1∑
j=0

‖Wj(π)‖1 =
d+1∑
j=0

∑
i∈I`

|εi,j(π)|2 + λ|I`|
d+1∑
j=0

‖Wj(π)‖1.

Note that∑
i∈I`

|Xi,j −X>i W̃
(`)
j (π)|2 =

∑
i∈I`

|εi,j(π) +X>i Wj(π)−X>i W̃
(`)
j (π)|2

=
∑
i∈I`

|εi,j(π)|2 + 2
∑
i∈I`

εi,j(π)
{
X>i Wj(π)−X>i W̃

(`)
j (π)

}
+
∑
i∈I`

[
X>i

{
Wj(π)− W̃ (`)

j (π)
}]2

.

Let sj(π) and s̃
(`)
j (π) denote the number of nonzero elements in Wj(π) and W̃

(`)
j (π), re-

spectively. By Theorem 7.1 of van de Geer and Bühlmann (2013), we have,

d+1∑
j=0

∑
i∈I`

2
∣∣∣εi,j(π)X>i

{
Wj(π)− W̃ (`)

j (π)
}∣∣∣− δ d+1∑

j=0

∑
i∈I`

∣∣∣X>i {Wj(π)− W̃ (`)
j (π)

}∣∣∣2

≤
d+1∑
j=0

κ
{
sj(π) + s̃

(`)
j (π)

}
log n

δ
,

(63)
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for some constant κ > 0, any δ > 0, and any order π. Under the event defined in (63),

∑
i∈I`

∣∣∣Xi,j −X>i W̃
(`)
j (π)

∣∣∣2 ≥ d+1∑
j=0

∑
i∈I`

|εi,j(π)|2

+ (1− δ)
∑
i∈I`

d+1∑
j=0

[
X>i

{
Wj(π)− W̃ (`)

j (π)
}]2

−
d+1∑
j=0

κ
{
sj(π) + s̃

(`)
j (π)

}
log n

δ
.

(64)

Setting δ = 1/2, together with (62), we have,

1

2

∑
i∈I`

d+1∑
j=0

[
X>i

{
Wj(π)− W̃ (`)

j (π)
}]2

+ λ|I`|
d+1∑
j=0

∥∥W̃ (`)
j (π)

∥∥
1

≤
d+1∑
j=0

2κ
{
sj(π) + s̃

(`)
j (π)

}
log n+ λ|I`|

d+1∑
j=0

∥∥Wj(π)
∥∥

1
.

Using similar arguments in bounding maxj1,j2,` IN,1(j1, j2, `) in Step 1 of the proof of Theorem

1, we can show there exists constants κ∗ ≤ λmin(Σ0) ≤ λmax(Σ0) ≤ 1/κ∗ such that

κ∗|I`|
d+1∑
j=0

∥∥Wj(π)− W̃ (`)
j (π)

∥∥2

2
≤ 1

2

∑
i∈I`

d+1∑
j=0

[
X>i

{
Wj(π)− W̃ (`)

j (π)
}]2

≤ 1

κ∗
|I`|

d+1∑
j=0

∥∥Wj(π)− W̃ (`)
j (π)

∥∥2

2
,

(65)

for any order π. It then follows that, for any order π,

κ∗
d+1∑
j=0

∥∥Wj(π)− W̃ (`)
j (π)

∥∥2

2
+ λ

d+1∑
j=0

∥∥W̃ (`)
j (π)

∥∥
1
≤

d+1∑
j=0

4c

n

{
sj(π) + s̃

(`)
j (π)

}
log n

+ λ

d+1∑
j=0

‖Wj(π)‖1.

(66)

Next, define the (d+ 2)-dimensional vector,

µ(π) =
{
W̃

(`)>
0 (π)−W (`)>

0 (π), W̃
(`)>
1 (π)−W (`)>

1 (π), . . . , W̃
(`)>
d+1 (π)−W (`)>

d+1 (π)
}>

.

Let M(π) denote the support of µ(π). Our goal is to bound ‖µ(π)‖2 =
∑d+1

j=0 ‖W̃
(`)
j (π)−

Wj(π)‖2
2. We next consider two cases.

First, when ‖µ(π)‖2 ≤
∑d+1

j=0 4c
{
sj(π) + s̃

(`)
j (π)

}
log n/(nκ∗), it is already bounded.

Second, when ‖µ(π)‖2 >
∑d+1

j=0 4c
{
sj(π) + s̃

(`)
j (π)

}
log n/(nκ∗), we aim to obtain a
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larger upper bound. Specifically, under the event defined in (66), we have, for all π,

d+1∑
j=0

∥∥W̃ (`)
j (π)

∥∥
1
≤

d+1∑
j=0

∥∥Wj(π)
∥∥

1
.

It follows that, for all π,

‖µ(π)M(π)‖1 ≤ ‖µ(π)Mc(π)‖1, (67)

where µ(π)M(π) and µ(π)Mc(π) denote the sub-vector formed by the elements inM(π) and

Mc(π), respectively. Then, under the event defined in (67), and by the definition of s0,

d+1∑
j=0

∥∥Wj(π)
∥∥

1
−

d+1∑
j=0

∥∥W̃ (`)
j (π)

∥∥
1
≤ ‖µ(π)M(π)‖1 + ‖µ(π)Mc(π)‖1 ≤ 2‖µ(π)M(π)‖1

≤ 2
√
|M(π)|‖µ(π)M(π)‖2 ≤ 2

√
s0(d+ 2)‖µ(π)M(π)‖2.

By (66), we have that, for all π,

κ∗‖µ(π)‖2
2 ≤

d+1∑
j=0

4c

n

{
sj(π) + s̃

(`)
j (π)

}
log n+ 2λ

√
s0(d+ 2)‖µ(π)M(π)‖2,

κ∗‖µ(π)M(π)‖2
2 ≤

d+1∑
j=0

4c

n

{
sj(π) + s̃

(`)
j (π)

}
log n+ 2λ

√
s0(d+ 2)‖µ(π)M(π)‖2.

It then follows that, for all π and some positive constant O(1),

‖µ(π)M(π)‖2 ≤ O(1)

λ√s0(d+ 2) +

√√√√d+1∑
j=0

4c

n

{
sj(π) + s̃

(`)
j (π)

}
log n

 .

Under the event defined in (67), and by Equations (A5), (A6) in Zhou (2009), we have,

‖µ(π)‖2 ≤ O(1)

λ√s0(d+ 2) +

√√√√d+1∑
j=0

4c

n
{sj(π) + s̃

(`)
j (π)} log n

 , (68)

for all π.

Therefore, in both cases, we show that ‖µ(π)‖2 is uniformly bounded for all π. This

completes Step 1.

Step 2: Under the events defined in (65) and (68), we have that, for all π,∑
i∈I`

d+1∑
j=0

[
X>i

{
Wj(π)− W̃ (`)

j (π)
}]2

≤ O(1)d2 log n.
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Combining this together with (64) yields that, for all π,

∑
i∈I`

∣∣∣Xi,j −X>i W̃
(`)
j (π)

∣∣∣2 ≥ d+1∑
j=0

∑
i∈I`

|εi,j(π)|2 +O(1)d2 log n. (69)

Under the omega-min condition in (A6), using similar arguments in the proof of Lemma 7.8

of van de Geer and Bühlmann (2013), we have,

min
π/∈Π0

d+1∑
j=0

∑
i∈I`

|εi,j(π)|2 ≥ max
π∈Π0

d+1∑
j=0

∑
i∈I`

|εi,j(π)|2 + κ(d+ 2)n,

for some constant κ > 0. Under the event defined in (69), we have,

min
π/∈Π0

{∑
i∈I`

‖Xi − W̃ (`)(π)Xi‖2 +
d+1∑
j=0

|I`|λ
∥∥W̃ (`)

j (π)
∥∥

1

}
≥ min

π/∈Π0

∑
i∈I`

∥∥Xi − W̃ (`)(π)Xi

∥∥2

≥ max
π∈Π0

d+1∑
j=0

∑
i∈I`

|εi,j(π)|2 + κ(d+ 2)n−O(1)d2 log n.

Under the Condition ‖W0‖2 = O(1) for any π ∈ Π∗, we have ‖Wj(π)‖2 = ‖W0,j‖2 = O(1).

As a result,

max
π∈Π0

d+1∑
j=0

λ|I`|‖Wj(π)‖1 =
d+1∑
j=0

λ|I`|‖W0,j‖1 ≤
√
d+ 2

d+1∑
j=0

|I`|λ‖W0,j‖2 = O
(
d3/2n1/2

√
log n

)
.

It follows that,

min
π/∈Π0

(∑
i∈I`

‖Xi − W̃ (`)(π)Xi‖2 +
d+1∑
j=0

|I`|λ‖W̃ (`)
j (π)‖1

)

≥ max
π∈Π0

d+1∑
j=0

(∑
i∈I`

|εi,j(π)|2 +
d+1∑
j=0

|I`|λ‖Wj(π)‖1

)
+ κ(d+ 2)n−O(1)d2 log n−O

(
d3/2n1/2

√
log n

)
,

where the last line is strictly positive. As a result, we obtain (61). This completes Step 2.

Step 3: Built on the results obtained in Step 2, we have π̂ ∈ Π0, where π̂ is the estimated

ordering. To complete the proof, it suffices to show that maxπ∈Π0 maxj∈{0,...,d+1} ‖W̃ (`)
j −

W0,j‖2 = O
(
n−1/2

√
s0 log n

)
. Since the number of elements in Π∗ is bounded by O(nκ

∗
) for
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some κ∗ > 0, by Bernstein’s inequality and Bonferroni’s inequality, we have that,

max
π∈Π0

max
k∈{0,1,...,j−1}

|
∑
i∈I`

εi,j(π)Xi,πk | = O
(
n1/2

√
log n

)
.

The explicit convergence rate of maxπ∈Π0 maxj∈{0,...,d+1} ‖W̃ (`)
j −W0,j‖2 can then be similarly

derived following Theorem 3.1 of Zhou (2009). This completes Step 3.

Remark: Finally, we discuss the possibility of relaxing the condition d = o(n), by imposing

some sparsity conditions on W̃ (`)(π), and the population limit of W̃ (`)(π), i.e., W0(π). In

this case, the condition d � n can be relaxed to d = O(nκ1), for some constant κ1 > 0.

Since we do not require κ1 < 1, the dimension d can grow at a much faster rate than n.

Specifically, suppose the number of nonzero elements in each column of W̃ (`)(π) and

W0(π) satisfies that maxj,π[max{sj(π), s̃
(`)
j (π)}] = O(nκ∗), for some constant 0 < κ∗ < 1.

It follows from (64) and (68) that

∑
i∈I`

∣∣∣Xi,j −X>i W̃
(`)
j (π)

∣∣∣2 ≥ d+1∑
j=0

∑
i∈I`

|εi,j(π)|2 + (1− δ)
∑
i∈I`

d+1∑
j=0

[
X>i

{
Wj(π)− W̃ (`)

j (π)
}]2

−
d+1∑
j=0

O(1)nκ∗ log n

δ
,

‖µ(π)‖2 ≤ O(1)
(
λ
√
dnκ∗/2 +

√
dnκ∗/2−1/2

√
log n

)
,

for all π, where O(1) denotes some positive constant. Therefore, we have

∑
i∈I`

∣∣∣Xi,j −X>i W̃
(`)
j (π)

∣∣∣2 ≥ d+1∑
j=0

∑
i∈I`

|εi,j(π)|2 +O(1)dnκ∗ log n,

for all π. The rest of the proof follows using similar arguments as in Steps 2 and 3. �

.10 Additional numerical results

First, we provide more details about the simulation setup. Table 2 reports the corre-

sponding mediators with nonzero mediation effects, and their associated δ(q), where δ(q) =

(W ∗
0 )d+1,q(W

∗
0 )q,0, W ∗

0 is constructed based on W0, q = 1, . . . , d. Meanwhile, Figure 6

shows an example of the adjacent matrix when d = 100.

Next, we report the simulation results for testing of a single mediator. Figures 2 and 8

show the results for d = 100 and d = 150, respectively, which complement the results for
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Scenario A: (d, p1, p2) = (50, 0.05, 0.15), n = 100, 200

q 10 12 20 28 30 41
δ(q) 1.06 1.03 0.63 1.08 0.64 1.31

Scenario B: (d, p1, p2) = (100, 0.025, 0.075), n = 250, 500

q 5 14 17 20 30 71 80 82 89
δ(q) 0.99 0.33 0.92 0.85 0.85 1.37 0.72 0.72 0.72

Scenario C: (d, p1, p2) = (150, 0.02, 0.05), n = 250, 500

q 19 23 51 52 54 56 60 81 92 93
δ(q) 1.24 0.93 1.71 1.28 1.90 1.90 0.94 0.88 0.88 1.02

Table 2: Mediators with nonzero mediation effects, q = 1, . . . , d.

d = 50 reported in Section 6 of the paper. We observe a similar qualitative pattern that our

proposed test achieves a valid size under the null hypothesis, and achieves a larger empirical

power under the alternative hypothesis.

Next, we report the simulation results for multiple testing. Figure 9 show the results

for d = 100 and d = 150, respectively, which complement the results for d = 50 reported

in Section 6 of the paper. We again observe a similar qualitative pattern that both our

test and the standard Benjamini-Yekutieli (BY) procedure achieve a valid false discovery

control, whereas our method is more powerful than BY.

Finally, we evaluate the constant variance condition for the real data example. Following

a similar idea of Li et al. (2019), we compute and plot the residuals Xi,j−W̃ (`)Xi, for i ∈ Ic` ,
j ∈ {0, . . . , d+ 1}, ` = 1, 2. Figure 10 shows the boxplots of such residuals for the amyloid

Figure 6: The example adjacent matrix with d = 100.
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Figure 7: Empirical rejection rate and ROC curve of the proposed test, LOGAN, and the test
of Chakrabortty et al. (2018), MIDA, when d = 100. The upper panels: n = 250, and the bottom
panels: n = 500. The left panels: under H0, the middles panels: under H1, where the horizontal
axis is the mediator index, and the right panels: the average ROC curve.

Figure 8: Empirical rejection rate and ROC curve of the proposed test, LOGAN, and the test
of Chakrabortty et al. (2018), MIDA, when d = 150. The upper panels: n = 250, and the bottom
panels: n = 500. The left panels: under H0, the middles panels: under H1, where the horizontal
axis is the mediator index, and the right panels: the average ROC curve.
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Figure 9: False discover rate and true positive rate of the proposed method and the Benjamini-
Yekutieli procedure. The horizontal axis corresponds to the significance level α. The upper panels:
d = 100, and the bottom panels: d = 150. The left two panels: n = 250, and the right two panels:
n = 500.

negative and amyloid positive groups, respectively. It is seen that the lengths of boxes and

whiskers are similar across different variables, suggesting no strong evidence against the

constant variance condition.
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Figure 10: Residual plots for model diagnosis. The top panel: the amyloid negative group, and
the bottom panel: the amyloid positive group.
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