
Supplement to “Unfolding-Model-Based
Visualization: Theory, Method and Applications”

A Bi-Cluster Analysis

The applications of multidimensional scaling, including multidimensional unfolding

as a special case, are often followed by cluster analysis (e.g., Kruskal and Wish, 1978;

Borg and Groenen, 2005) for better understanding and interpretation of the data

visualization. In our context, it is often of interest to cluster the respondents and the

items, respectively. This task is known as bi-clustering or co-clustering (Hartigan,

1972; Dhillon, 2001), which is often studied statistically under the stochastic co-

blockmodel (Choi and Wolfe, 2014; Rohe et al., 2016), an extension of the widely

used stochastic blockmodel (Holland et al., 1983).

Following multidimensional unfolding, it is natural to bi-cluster the respondents

and the items based on the estimated ideal points, using the Euclidian distance as

a natural measure of dissimilarity. In particular, we use the K-means algorithm

(MacQueen, 1967) to cluster the respondents and the items into k1 and k2 clusters,

respectively, for some pre-specified numbers of clusters k1 and k2. This two-step

procedure for bi-cluster analysis is described in Algorithm A.1.

Algorithm A.1 (Two-step procedure for bi-cluster analysis)

Step 1: Apply Algorithm 1 and obtain estimates {θ̂1, ..., θ̂N , â1, ..., âJ}.

Step 2: Perform the K-means algorithm to {θ̂1, ..., θ̂N} and {â1, ..., âJ} given

k1 and k2 clusters, respectively.
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Output: The cluster membership of respondents ϑ̂i ∈ {1, ..., k1} and cluster

membership of items υ̂j ∈ {1, ..., k2} (i = 1, ..., N ; j = 1, ..., J).

We provide a connection between the multidimensional unfolding model studied in

this paper and the stochastic co-blockmodel. Consider a special case under the

multidimensional unfolding model, where there are finite possible locations for the

respondent ideal points and also for the item ideal points, independent of N and

J . We denote the possible locations for the respondent ideal points as {b∗1, ...,b∗k1}

and denote those for the item ideal points as {c∗1, ..., c∗k2}. Under this setting, there

exist k1 respondent latent classes and k2 item latent classes, regarding two respon-

dents/items as from the same latent class when they have the same location. We

denote ϑ∗i ∈ {1, ..., k1} and υ∗j ∈ {1, ..., k2} the true latent class memberships of re-

spondent i and item j, respectively. In this sense, the model becomes a stochastic

co-blockmodel, for which the distribution of Yij is only determined by the latent class

memberships of respondent i and item j and Yijs are conditionally independent given

all the latent memberships of the respondents and items. In what follows, we show

that the proportions of misclassified respondents and items converge to 0 in probabil-

ity, when both N and J grow to infinity, if the K-means algorithm in Algorithm A.1

has converged to the global optima.

Theorem A.1 Suppose A0, A3 and A4 are satisfied, and K+ ≥ K. Further sup-

pose the multidimensional unfolding model degenerates to a stochastic co-blockmodel,

satisfying θ∗i ∈ {b∗1, ...,b∗k1} and a∗j ∈ {c∗1, ..., c∗k2}. If both K-means algorithms in

Algorithm A.1 converge to the global optima, then the clustering result satisfies

min

{
max
ζ∈Bk1

∑N
i=1 1{ϑ̂i=ζ(ϑ∗i )}

N
, max
ζ∈Bk2

∑J
j=1 1{υ̂j=ζ(υ∗j )}

J

}
(A.1)

goes to 1 in probability as both N and J grow to infinity, where Bk denotes the set of

all permutations on {1, ..., k}, for k = k1, k2.
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Remark A.1 To handle “label switching indeterminacy” in clustering, in the loss

function (A.1) we find permutations that best match the true latent class memberships

and their estimates for both the respondents and the items.

B Proof of Theoretical Results

B.1 Definitions and Notations

In this appendix, we use c, C, C1, C2 to represent constants which do not depend on

N, J, the values of which may vary according to the context. With a little abuse of

notation, we use AN,J to denote the specified events, which may differ in different

proofs. For x ∈ RK , we use BK
x (C) to denote the closed ball in RK centered at x

with radius C. Unless otherwise specified, all balls in the appendix is assumed to be

closed. For a set G ⊂ RK , let int(G) denote the set of all its interior points. For a

positive integer n, we denote [n] := {1, ..., n}. We start with some notions which will

be used in the proof of theorems, propositions and lemmas.

Definition B.1 For points xi,x
′
i ∈ RK , i = 1, ..., n, we write (x1, ...,xn) ∼ (x′1, ...,x

′
n),

if there exists an isometry F ∈ AK, such that x′i = F (xi), i = 1, ..., n.

Remark B.1 It is easy to show that “∼” is an equivalence relation.

Definition B.2 (Configuration) We define an n-point configuration as an equiv-

alence class. That is, we define a configuration

[x1, ...,xn] := {(x′1, ...,x′n) : (x′1, ...,x
′
n) ∼ (x1, ...,xn)}

as the equivalence class of (x1, ...,xn).

Remark B.2 By the property of isometry mapping, it is easy to see that all the

elements in the same configuration have the same distance matrix.
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We now consider the space of all n-point configurations in RK , denoted by

Hn,K :=
{

[x1, ...,xn] : xi ∈ RK , i = 1, ..., n
}
.

For two configurations τ1 = [x1, ...,xn], τ2 = [y1, ...,yn] ∈ Hn,K , we define

d(τ1, τ2) := inf
F∈AK

√∑
1≤i≤n

‖F (xi)− yi‖2.

First, we note that d(·, ·) is a well-defined mapping from Hn,K ×Hn,K to R. That is,

for any (x′1, ...,x
′
n) ∈ [x1, ...,xn] and (y′1, ...,y

′
n) ∈ [y1, ...,yn],

inf
F∈AK

√∑
1≤i≤n

‖F (xi)− yi‖2 = inf
F∈AK

√∑
1≤i≤n

‖F (x′i)− y′i‖2.

Second, we notice that d(·, ·) is a metric on Hn,K , as summarized in Lemma B.1

below.

Lemma B.1 d(·, ·) is a metric on Hn,K .

Remark B.3 For [x1, ...,xn] ∈ Hn,K , we have [(x>1 , 0)>, ..., (x>n , 0)>] ∈ Hn,K+1 in

which sense we can say Hn,K ⊂ Hn,K+1. Thus Hn,K1 ⊂ Hn,K2 if K1 ≤ K2. For

τ1 = [x1, ...,xn] ∈ Hn,K1 , τ2 = [y1, ...,yn] ∈ Hn,K2 , the d(τ1, τ2) is defined in the same

way by seeing both τ1 and τ2 as elements in Hn,max{K1,K2}.

We further denote Pa,b,K as the set of a× b partial distance matrices for configu-

rations in RK :

Pa,b,K :=
{

(‖xi − yj‖2)a×b : [x1, ...,xa,y1, ...,yb] ∈ Ha+b,K

}
.

It is easy to check that Pa,b,K ⊂ Pa,b,K+1.
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For A1, ..., An ⊂ RK , denote [A1, ..., An] as a subset of Hn,K :

[A1, ..., An] := {[x1, ...,xn] : xi ∈ Ai, i = 1, ..., n}.

For A,B ⊂ Hn,K , the distance between A and B is defined as

d(A,B) := inf
τ1∈A,τ2∈B

d(τ1, τ2). (B.1)

We further denote

Hn,K,C := {[x1, ...,xn] ∈ Hn,K : ‖xi‖ ≤ C}

as a compact subset of Hn,K , and

Pa,b,K,C :=
{

(‖xi − yj‖2)a×b : [x1, ...,xa,y1, ...,yb] ∈ Ha+b,K,C

}
(B.2)

as a compact subset of Pa,b,K . We consider a mapping defined as following:

Φa,b,K : R(a+b)×K → Pa,b,K ,

(x1, ....,xa+b)
> 7→ D,

where D is the a × b partial distance matrix of {(x1, ...,xa), (xa+1, ...,xa+b)}. It is

not difficult to check that Φa,b,K is invariant with respect to isometry. Then, for

τ = [x1, ...,xa+b], we denote

Φa,b,K(τ) := Φa,b,K(X),

where X> = (x1, ...,xa+b).

Having introduced the notions above, we give the following lemma, which is crucial
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to the proof of Theorem 1. It essentially shows that for any partial distance matrix

D′ ∈ Pk1,k2,K+,M that approximates to another partial distance matrix D ∈ Pk1,k2,K,M ,

whose configuration τ contains a collection of anchor points, then any configuration

τ ′ of D′ will also approximate to τ.

Lemma B.2 For compact subsets B1, ...,Bk1 , C1, ..., Ck2 ⊂ BK
0 (M), let

B = [B1, ...,Bk1 , C1, ..., Ck2 ].

Suppose that for any (x1, ...,xk1+k2) ∈ B1 × · · · × Bk1 × C1 × · · · × Ck2 , {x1, ...,xk1}

and {xk1+1, ...,xk1+k2} are a collection of anchor points in RK . Then, for any εc > 0,

there exists εd > 0 such that for any τ ′ ∈ Hk1+k2,K+,M and τ ∈ B satisfying

‖Φk1,k2,K+(τ ′)− Φk1,k2,K+(τ)‖F < εd,

we have

d(τ ′, τ) < εc.

We end this section by the following lemma, which will also be used in the proof

of Theorem 1.

Lemma B.3 Suppose {b∗1, ...,b∗k1}, {c
∗
1, ..., c

∗
k2
} ⊂ BK

0 (C) are a collection of anchor

points in RK. Then, for any x ∈ BK
0 (C), the {x,b∗1, ...,b∗k1}, {c

∗
1, ..., c

∗
k2
} are also a

collection of anchor points in RK .

B.2 Proof of Theorems

Proof of Theorem 1. We first show the proof of (5). For ε which is given in

condition A3, there exist constant pε ∈ (0, 1), and balls of radius ε in RK , denoted by
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B̃1(ε), ..., B̃k1(ε), G̃1(ε), ..., G̃k2(ε), such that for N, J large enough,

∑N
l=1 1{θ∗l ∈Bb∗

i
(ε),θ̃l∈B̃i(ε)}

N
> pε, i = 1, ..., k1,∑J

l=1 1{a∗l ∈Bc∗
i

(ε),ãl∈G̃i(ε)}

J
> pε, i = 1, ..., k2.

This comes straightforwardly from condition A0 and requirement (2) of anchor points

in condition A3. Note that the centers of B̃k(ε) and G̃l(ε) may vary through N, J .

We also use B∗k(ε) and G∗l (ε) to denote Bb∗k
(ε) and Bc∗l

(ε), respectively.

We first focus on the set of person points

I1(ε) :=

k1⋃
k=1

{i ∈ [N ] : θ∗i ∈ B∗k(ε), θ̃i ∈ B̃k(ε)}

and the set of item points

I2(ε) :=

k2⋃
l=1

{j ∈ [J ] : a∗j ∈ G∗l (ε), ãj ∈ G̃l(ε)}.

Let θ+
i =

(
(θ∗i )

>,0>
)>
, a+

j =
(
(a∗j)

>,0>
)
∈ RK+ . We will show that there exists

an isometry mapping FN,J ∈ AK+ , under which FN,J(θ̃i) ≈ θ+
i and FN,J(ãj) ≈ a+

j ,

for all i ∈ I1(ε) and j ∈ I2(ε). This is formalized in the following lemma.

Lemma B.4 For N, J large enough, there exists an isometry FN,J ∈ AK+, such that

‖FN,J(x)‖ ≤ 4M, for all x ∈ BK+

0 (M),

and for all i ∈ I1(ε) and for all j ∈ I2(ε),

‖FN,J(θ̃i)− θ+
i ‖ ≤ 5ε,
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and

‖FN,J(ãj)− a+
j ‖ ≤ 5ε.

We then show that for most of the person points i /∈ I1(ε) and for most of the

item points j /∈ I2(ε), we still have FN,J(θ̃i) ≈ θ+
i and FN,J(ãj) ≈ a+

j , under the same

isometry mapping FN,J as in Lemma B.4. This is formalized in Lemma B.5 below.

Lemma B.5 For N, J large enough, there exists a constant κ > 0, such that for the

isometry mapping FN,J defined in Lemma B.4, the proportions

λ1,N,J =

∑N
i=1 1{‖FN,J (θ̃i)−θ+

i ‖>κε}

N

and

λ2,N,J =

∑J
j=1 1{‖FN,J (ãj)−a+

j ‖>κε}

J

satisfy

λk,N,J → 0, (B.3)

for k = 1, 2, as N, J grow to infinity.

Since by Lemma B.4, we have FN,J maps B
K+

0 (M) to B
K+

0 (4M), then for all θ̃i

and for all ãj,

‖FN,J(θ̃i)− θ+
i ‖ ≤ 5M

and

‖FN,J(ãj)− a+
j ‖ ≤ 5M.
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Combining this with Lemma B.5, we have

min
F∈AK+

{∑N
i=1 ‖F (θ̃i)− θ+

i ‖2

N
+

∑J
j=1 ‖F (ãj)− a+

j ‖2

J

}

≤
∑N

i=1 ‖FN,J(θ̃i)− θ+
i ‖2

N
+

∑J
j=1 ‖FN,J(ãj)− a+

j ‖2

J

≤
(
25(M)2λ1,N,J + κ2ε2

)
+
(
25(M)2λ2,N,J + κ2ε2

)
≤25(M)2(λ1,N,J + λ2,N,J) + 2κ2ε2

(B.4)

By (B.3), (5) holds. (6) holds if ε can be arbitrarily small. We complete the proof.

Proof of Theorem 2. Combining Theorem 1 and Proposition 3, we have the

result.

Proof of Theorem 3. Theorem 3 is a special case of Proposition 5. See the proof

of Proposition 5.

Proof of Theorem A.1. For simplicity of writing, we suppose K+ = K in this

proof. We only prove the result for the respondents. The proof for the items is the

same. Under the conditions of Theorem A.1, the result of Theorem 2 is satisfied and

with a slight change in the proof, we can get

max
F∈AK

∑N
i=1 ‖θ̂i − F (b∗ϑ∗i )‖

N

2

= op(1).

Consequently, there exists isometry F ∗N,J , such that

∑N
i=1 ‖θ̂i − F ∗N,J(b∗ϑ∗i )‖2

N
= op(1), (B.5)

noting that b∗ϑ∗i = θ∗i .

Lemma B.6 Under the same conditions as Theorem A.1, suppose that

∑N
i=1 ‖θ̂i − F ∗N,J(b∗ϑ∗i )‖2

N
= op(1).
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Then we have

max
ζ∈Bk1

∑N
i=1 1{ϑ∗i =ζ(ϑ̂i)}

N
= op(1).

With Lemma B.6, we complete the proof for the respondents.

B.3 Proof of Propositions

Proof of Proposition 1. It suffices to prove in the case when
∑n

i=1 xi = 0 and∑n
i=1 yi = 0. Denote D = (dij)n×n, where dij = ‖xi − xj‖2 = ‖yi − yj‖2 and let

B = (bij)n×n = −1
2
JDJ, where J = In − 1n1>n /n. Then B is inner product matrix of

both {x1, ...,xn} and {y1, ...,yn}. That is, bij = x>i xj = yiy
>
j , for 1 ≤ i, j ≤ n. We

refer readers to Critchley (1988) for the relation between inner product matrix and

distance matrix. So if we denote

P1 = (x1, ...,xn)>, P2 = (y1, ...,yn)>,

then we have

P1P
>
1 = P2P

>
2 = B.

Let

P>1 = Q1R1, P>2 = Q2R2

be the QR decomposition (see Cheney and Kincaid (2009)) of P1, P2, where Q1, Q2

are k × k orthogonal matrix and R1, R2 are k × n upper-triangular matrix with non-

negative diagonal entries. Since x>i xj = y>i yj, for 1 ≤ i, j ≤ n, it is not difficult to

check that R1 = R2. If we define O = Q2Q
>
1 , then

OP>1 = OQ1R1 = Q2Q
>
1 Q1R1 = Q2R1 = Q2R2 = P>2 ,

which means Oxi = yi, for 1 ≤ i ≤ n. We complete the proof.
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Proof of Proposition 2. We first introduce a lemma as following.

Lemma B.7 There exists a collection of anchor points {b∗1, ...,b∗k2}, {c
∗
1, ..., c

∗
k2
} ⊂

int(G), where G is the ball defined in Proposition 2.

We fix such collection of anchor points. For any ε > 0, we denote B∗k(ε), G
∗
l (ε),

for 1 ≤ k ≤ k1 and 1 ≤ l ≤ k2, as balls centered at b∗k and c∗l , respectively. For

sufficiently small ε > 0, it is easy to see that for any

b1 ∈ B∗1(ε), ...,bk1 ∈ B∗k1(ε), c1 ∈ G∗1(ε), ..., ck2 ∈ G∗k2(ε),

the {b1, ...,bk1}, {c1, ..., ck2} are a collection of anchor points in RK . Therefore, the

(1) of A3 holds. We define

βε :=
1

2
min

1≤k≤k1
1≤l≤k2

{P1B
∗
k(ε), P2G

∗
l (ε)}

and use AN,J to denote the following event

∣∣∣∣∣ 1

N

N∑
i=1

1{θ∗i∈B∗k(ε)} − P1B
∗
k(ε)

∣∣∣∣∣ ≤ βε, k = 1, ..., k1,∣∣∣∣∣ 1J
J∑
j=1

1{a∗j∈G∗l (ε)} − P2G
∗
l (ε)

∣∣∣∣∣ ≤ βε, l = 1, ..., k2,

(B.6)

where P1B
∗
k(ε), P2G

∗
l (ε) represent the probability measure of B∗k(ε), G

∗
l (ε) with respect

to P1 and P2, respectively. By Hoeffding’s inequality, we have

Pr ((B.6) holds ) ≥ 1− 2k1 exp(−1

2
Nβ2

ε )− 2k2 exp(−1

2
Jβ2

ε ). (B.7)

So we have

Pr(AN,J)→ 1
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as N, J grow. On AN,J , we have

1

N

N∑
i=1

1{θ∗i∈B∗k(ε)} ≥ βε, 1 ≤ k ≤ k1,

1

J

J∑
j=1

1{a∗j∈G∗l (ε)} ≥ βε, 1 ≤ l ≤ k2.

(B.8)

On AN,J , (B.8) holds. Then, the (2) of A3 holds almost surely.

Proof of Proposition 3. Proposition 3 is a special case of Proposition 4. See the

proof of Proposition 4.

Proof of Proposition 4. The proof of Proposition 4 is similar to Theorem 1 of

Davenport et al. (2014). We only state the main steps.

We denote D as the partial distance matrix of (θ1, ...,θN) and (a1, ..., aJ) (to

simplify the notation, we ignore the subscripts N and J for D). Since the likelihood

function depends on (θ1, ...,θN) and (a1, ..., aJ) only through their partial distance

matrix, we re-parameterize the likelihood function by D. We denote

lΩ,Y (D) = logLΩ(θ1, ...,θN , a1, ..., aJ),

where the subscripts Ω = (ωij)N×J and Y = (Yij)N×J indicate the random variables

in the likelihood function and D contains the parameters.

Let

l̄Ω,Y (D) = lΩ,Y (D)− lΩ,Y (0), (B.9)

where 0 represents an N × J matrix whose elements are all 0 and let

G =
{
D ∈ RN×J : ‖D‖∗ ≤ 4M2

√
(K+ + 2)NJ

}
. (B.10)

Lemma B.8 Under the same conditions as Proposition 4, there exist constant C1
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and C2 such that

Pr

(
sup
D∈G
|l̄Ω,Y (D)− El̄Ω,Y (D)| ≥ 4M2C1L4M2

√
K+ + 2

√
n(N + J) +NJ log(NJ)

)
≤ C2

N + J
.

Let H = {D : dij = ‖θi − aj‖2, where ‖θi‖, ‖aj‖ ≤ M, i = 1, ..., N, j = 1, ..., J}.

It is easy to check that H ⊂ G. Consequently,

Pr

(
sup
D∈H
|l̄Ω,Y (D)− El̄Ω,Y (D)| ≥ 4C1M

2L4M2

√
K+ + 2

√
n(N + J) +NJ log(NJ)

)
≤ Pr

(
sup
D∈G
|l̄Ω,Y (D)− El̄Ω,Y (D)| ≥ 4C1M

2L4M2

√
K+ + 2

√
n(N + J) +NJ log(NJ)

)
≤ C2

N + J
.

Given the above development, Proposition 4 is implied by the following lemma.

Lemma B.9 Under the same conditions as Proposition 4,

1

NJ
‖D∗N,J − D̂N,J‖2

F ≤
16

n
β4M2 sup

D∈H
|l̄Ω,Y (D)− El̄Ω,Y (D)|.

Therefore, with probability at least 1− C2/(N + J),

1

NJ
‖D∗N,J − D̂N,J‖2

F ≤ 64C1M
2L4M2β4M2

√
K+ + 2

√
N + J

n

√
1 +

NJ log(NJ)

n(N + J)
.

We complete the proof by absorbing 64
√
K+ + 2 into C1.

Proof of Proposition 5. We use AN,J to denote the event that the result in

Proposition 4 holds. By Theorem 1 and Proposition 2, on AN,J , we have

min
F∈AK+

∑N
i=1 ‖θ

+
i − F (θ̂

Ω

i )‖2

N
+

∑J
j=1 ‖a

+
j − F (âΩ

j )‖2

J
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goes to 0, as N, J grow to infinity. Since Pr(AN,J)→ 0, we complete the proof.

B.4 Proof of Lemmas

Proof of Lemma B.1. Let τ1 = [x1, ...,xn], τ2 = [y1, ...,yn], τ3 = [z1, ..., zn]. Define

d̃(τ1, τ2) := min
F∈AK

max
i
‖F (yi)− xi‖

and it is easy to check that

d̃(τ1, τ2) ≤ d(τ1, τ2) ≤
√
nd̃(τ1, τ2).

So we just need to verify that function d̃(·, ·) satisfies the triangle inequality. Let

isometries F21, F31 satisfy

d̃(τ1, τ2) = max
i
‖F21(yi)− xi‖ = ‖F21(yl)− xl‖,

d̃(τ1, τ3) = max
i
‖F31(zi)− xi‖ = ‖F31(zm)− xm‖.

Then

d̃(τ2, τ3) ≤ max
i
{‖F31(zi)− F21(yi)‖}

≤ max
i
{‖F31(zi)− xi‖+ ‖F21(yi)− xi‖}

≤ ‖F21(yl)− xl‖+ ‖F31(zm)− xm‖

= d̃(τ1, τ2) + d̃(τ1, τ3).

We complete the proof.

Proof of Lemma B.2. Otherwise there exist ε0 > 0 and sequences {τ (n)
1 }∞n=1 ⊂
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Hk1+k2,K+,M , and {τ (n)
2 }∞n=1 ⊂ B such that

∥∥∥Φk1,k2,K+(τ
(n)
1 )− Φk1,k2,K+(τ

(n)
2 )
∥∥∥
F
<

1

n

and

d(τ
(n)
1 , τ

(n)
2 ) > ε0.

Since both Hk1+k2,K+,M and B are compact, there exists a subsequence {nk}∞k=1 ⊂ N+,

such that limk→∞ τ
(nk)
1 = τ̃ ∈ Hk1+k2,K+,M and limk→∞ τ

(nk)
2 = τ0 ∈ B. The two

configurations τ̃ and τ0 have the same partial distance matrix but d(τ̃ , τ0) > ε0. This

makes a contradiction because τ0 ∈ B is the only configuration of its partial distance

matrix, by the requirement of B.

Proof of Lemma B.3. For a collection of points {x,b∗1, ...,b∗k1}, {c
∗
1, ..., c

∗
k2
}, it is

not difficult to verify that condition A2 holds. So we only need to verify A1.

To verify A1, it suffices to show that if {b1, ...,bk1}, {c1, ..., ck2} is a collection

of anchor points, then for any x ∈ BK
0 (C), [x,b1, ...,bk1 , c1, ..., ck2 ] is the unique

configuration corresponding to its (k1 + 1)× k2 partial distance matrix.

Suppose that τ = [x,b1, ...,bk1 , c1, ...ck2 ] and τ ′ = [x′,b′1, ...,b
′
k1
, c′1, ...c

′
k2

] satisfy

Φk1+1,k2,K(τ) = Φk1+1,k2,K(τ ′).

Then

Φk1,k2,K([b1, ...,bk2 , c1, ..., ck2 ]) = Φk1,k2,K([b′1, ...,b
′
k1
, c′1, ...c

′
k2

]).

Since {b1, ...,bk1}, {c1, ...ck2} are a collection of anchor points, then [b1, ...,bk1 , c1, ...ck2 ] =

[b′1, ...,b
′
k1
, c′1, ...c

′
k2

]. Without loss of generality, we suppose bl = b′l and cm = c′m.

Then, the two configurations, [x, c1, ..., ck2 ] and [x, c′1, ..., c
′
k2

], have the same complete
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distance matrix, which further leads that

[x, c1, ..., ck2 ] = [x′, c1, ..., ck2 ].

Since c1, ..., ck2 can affine span RK , it is not difficult to see that x = x′. Then, we get

τ = τ ′, and A1 has been verified.

Proof of Lemma B.4. We define

S∗N,J(ε) =
[
B∗1(ε), ..., B∗k1(ε), G

∗
1(ε), ..., G∗k2(ε)

]
⊂ Hk1+k2,K,M ,

S̃N,J(ε) =
[
B̃1(ε), ..., B̃k1(ε), G̃1(ε), ..., G̃k2(ε)

]
⊂ Hk1+k2,K+,M ,

where B∗k(ε), B̃k(ε), G
∗
l (ε), G̃l(ε) are defined in the proof of Theorem 1. Let

σN,J := d(S̃N,J(ε), S∗N,J(ε)) (B.11)

By (B.1) and triangle inequality, there exists an iosmetry FN,J ∈ AK+ , such that for

all x∗k ∈ B∗k(ε),y∗l ∈ G∗l (ε), x̃k ∈ B̃k(ε), ỹl ∈ G̃l(ε),

‖FN,J(x̃k)− x+
k ‖ ≤ 4ε+ σN,J , 1 ≤ k ≤ k1,

‖FN,J(ỹl)− y+
l ‖ ≤ 4ε+ σN,J , 1 ≤ l ≤ k2.

(B.12)

In what follows, we will show that σN,J ≤ ε for N, J large enough. We first define

γN,J = inf{‖Φk1,k2,K+(τ̃)− Φk1,k2,K+(τ ∗)‖F : τ̃ ∈ S̃N,J(ε), τ ∗ ∈ S∗N,J(ε)} (B.13)

and we have

γ2
N,J(pεN)(pεJ) ≤ ‖D̃N,J −D∗N,J‖2

F = o(NJ),

which leads to

γN,J = o(1). (B.14)
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By (B.11), there exist τ̃ ∈ S̃N,J(ε) and τ ∗ ∈ S∗N,J(ε) such that

‖Φk1,k2,K+(τ̃)− Φk1,k2,K+(τ ∗)‖F ≤ 2γN,J .

Then by (B.11), we have

σN,J = d(S̃N,J(ε), S∗N,J(ε)) ≤ d(τ ∗, τ̃). (B.15)

As shown in the beginning of proof for Theorem 1 and according to Definition 1,

the τ ∗ is the unique configuration corresponding to its k1×k2 partial distance matrix.

Since τ̃ ∈ S̃N,J(ε) ⊂ Hk1+k2,K+,M , by Lemma B.2, we know d(τ ∗, τ̃)→ 0 as N, J grow

to infinity, and thus

d(τ ∗, τ̃) < ε (B.16)

for N, J large enough.

Finally, since

B∗k(ε), G
∗
l (ε) ⊂ BK

0 (M), B̃k(ε), G̃l(ε) ⊂ B
K+

0 (M),

we have, for N, J large enough,

‖FN,J(x)‖ ≤ 4M, for x ∈ BK+

0 (M).

To see this, if there exists x ∈ BK+

0 (M) such that ‖FN,J(x)‖ > 4M, then by simple

geometry,

min
x∈BK+

0 (M)

‖FN,J(x)− x‖ > M.

According to (B.12) and (B.16), we will get

M < ‖FN,J(x̃k)− x+
k ‖ ≤ 4ε+ σN,J ≤ 5ε,
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which contradicts with the fact that ε < 1
10
M ≤ 1

10
M.

Proof of Lemma B.5. Let c̃1, ..., c̃k2 denote the centers of G̃1(ε), ...., G̃k2(ε) and

c̃+
l = (c̃>l ,0

>)> ∈ RK+
. We first give the following lemma.

Lemma B.10 For any

τ1 = [x,x1, ...,xk2 ] ∈ [BK
0 (M), G∗1(ε), ..., G∗k2(ε)],

τ2 = [y,y1, ...,yk2 ] ∈ [B
K+

0 (M), Bc̃+1
(ε), ..., Bc̃+k2

(ε)],

we have

‖x+ − y‖ ≤ cmax

d(τ1, τ2),

√√√√ k2∑
l=1

‖x+
l − yl‖2

 ,

for a constant c, which only depends on the set {c∗1, ..., c∗k2} and M.

Define

H1(ε) := {i ∈ [N ] : ‖FN,J(θ̃i)− θ+
i ‖ > 5 max(c, 1)

√
k1 + k2ε} (B.17)

and

H2(ε) := {j ∈ [J ] : ‖FN,J(ãj)− a+
j ‖ > 5 max(c, 1)

√
k1 + k2ε}, (B.18)

where c is the constant in Lemma B.10. We set the constant κ in Lemma B.5 to be

5 max(c, 1)
√
k1 + k2ε. and then we have |H1(ε)| = Nλ1,N,J , |H2(ε)| = Jλ2,N,J . Note

that I1(ε) ∩H1(ε) = ∅, I2(ε) ∩H2(ε) = ∅ for N, J large.

We choose i1, ..., ik1 ∈ I1(ε) and j1, ..., jk2 ∈ I2(ε) such that

θ∗ik ∈ B
∗
k(ε), θ̃ik ∈ B̃k(ε),

a∗jl ∈ G
∗
l (ε), ãjl ∈ G̃l(ε)

for 1 ≤ k ≤ k1 and 1 ≤ l ≤ k2. For any i ∈ H1(ε), we consider the following
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configurations

τ ∗ = [θ∗i ,θ
∗
i1
, ...,θ∗ik1

, a∗j1 , ..., a
∗
jk2

] ∈ Hk1+k2+1,K,M ,

τ̃ = [θ̃i, θ̃i1 , ..., θ̃ik1 , ãj1 , ..., ãjk2 ] ∈ Hk1+k2+1,K+,M

and

τ ∗1 = [θ∗i , a
∗
j1
, ..., a∗jk2

] ∈ [BK
0 (M), G∗1(ε), ..., G∗k2(ε)],

τ̃1 = [θ̃i, ãj1 , ..., ãjk2 ] ∈ [B
K+

0 (M), G̃1(ε), ..., G̃k2(ε)].

It is obvious that

d(τ̃ , τ ∗) ≥ d (τ̃1, τ
∗
1 ) .

By Lemma B.4, we have

√√√√ k2∑
l=1

‖FN,J(ãjl)− a∗jl‖2 ≤ 5
√
k2ε ≤ 5

√
k1 + k2ε.

Combining it with (B.17) and Lemma (B.10), we have

d(τ̃1, τ
∗
1 ) > 5

√
k1 + k2ε,

which leads to

d(τ̃ , τ ∗) > 5
√
k1 + k2ε. (B.19)

According to Lemma B.3, {θ∗i ,θ∗i1 , ...,θ
∗
ik1
}, {a∗j1 , ..., a

∗
jk2
} are a collection of an-

chor points. Let D̃,D ∈ Pk1+1,k2,K+,M be the partial distance matrix of τ̃ and τ ∗,

respectively. Combining (B.19) and Lemma B.2, there exists a constant δε > 0 such

that

‖D̃ −D‖F ≥ δε. (B.20)

For each i ∈ H1(ε), we choose i1, ..., ik1 ∈ I1(ε) to form a group {i, i1, ..., ik1} ⊂ [N ]
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such that

(θ∗i ,θ
∗
i1
, ...,θ∗ik1

) ∈ BK
0 (M)×B∗1(ε)× · · · ×B∗k1(ε)

and

(θ̃i, θ̃i1 , ..., θ̃ik1 ) ∈ BK+

0 (M)× B̃1(ε)× · · · × B̃k1(ε).

We could find at least min{λ1,N,J , pε}×N such groups which are mutually exclusive.

We could also find at least pεJ mutually exclusive groups of {j1, ..., jk2} ⊂ [J ] such

that

(a∗j1 , ..., a
∗
jk2

) ∈ G∗1(ε)× · · · ×G∗k2(ε)

and

(ãj1 , ..., ãjk2 ) ∈ G̃1(ε)× · · · × G̃k2(ε).

By (4) and (B.20), we have

min{λ1,N,J , pε}NpεJδ2
ε ≤ o(NJ).

So

min{λ1,N,J , pε} = o(1),

which means λ1,N,J → 0, as N, J grow to infinity. Similar result holds for λ2,N,J and

we do not repeat it.

Proof of Lemma B.6. Consider the K-means clustering of the person points in

Algorithm A.1. We define a loss function

L(ϑ1, ..., ϑN) =
1

N

N∑
i=1

‖θ̂i − µϑi
‖2,

as the loss function for K-means clustering, where ϑi ∈ {1, ..., k1} represents the
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cluster membership of person i and

µk =

∑N
i=1 θ̂i1{ϑi=k}∑N
i=1 1{ϑi=k}

denotes the centroid of the kth cluster. Under the conditions of Theorem A.1, the

K-means clustering converges to the global optima, which implies that

L(ϑ̂1, ..., ϑ̂N) = min
ϑi∈{1,...,k1},i=1,...,N

L(ϑ1, ..., ϑN). (B.21)

So for any isometry F ∈ AK ,

N∑
i=1

‖θ̂i − µϑ̂i
‖2 ≤

N∑
i=1

‖θ̂i − F (b∗ϑ∗i )‖2.

By triangle inequality,

(
N∑
i=1

‖µϑ̂i
− F (b∗ϑ∗i )‖2

) 1
2

≤

(
N∑
i=1

(‖µϑ̂i
− θ̂i‖2

) 1
2

+

(
N∑
i=1

‖θ̂i − F (b∗ϑ∗i )‖2

) 1
2

,

≤ 2

(
N∑
i=1

‖θ̂i − F (b∗ϑ∗i )‖2

) 1
2

.

Define d = mini 6=j ‖b∗i − b∗j‖ and for F ∈ AK , define

AF := {1 ≤ i ≤ N : ‖µϑ̂i
− F (b∗ϑ∗i )‖ < d

2
},

and denote Ac
F := {1, ..., N}/AF .
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Then ∑
i∈AF∗

N,J

1

N
= 1−

∑
i∈Ac

F∗
N,J

1

N

≥ 1− 4

d2

∑
i∈Ac

F∗
N,J

‖µϑ̂i
− F ∗N,J(b∗ϑ∗i )‖2

N

≥ 1− 4

d2

∑N
i=1 ‖µϑ̂i

− F ∗N,J(b∗ϑ∗i )‖2

N
(B.22)

≥ 1− 16

d2

∑N
i=1 ‖θ̂i − F ∗N,J(b∗ϑ∗i )‖2

N
pr→ 1

Lemma B.11 Under the same conditions as Lemma B.6, if there exists ζ1 ∈ Bk1

satisfying

‖µζ1(l) − F ∗N,J(b∗l )‖ <
d

2
,

where µl is the centroid of the lth cluster, F ∗N,J is defined in (B.5) and d is defined

above, then there exists ζ2 ∈ Bk1, such that for all i ∈ AF ∗N,J
, ϑ̂i = ζ2(ϑ∗i ).

Let ΩN,J := {ω : ∃ζ ∈ Bk1 , s.t. ‖µζ(l)(ω)− F ∗N,J(b∗l )‖ < d
2
, i = 1, ..., k1}. Notice that

ΩN,J is a subset of the whole probability space. By Lemma B.11, for any ω ∈ ΩN,J ,

there exists ζN,J ∈ Bk1 , which corresponds to ζ2 in Lemma B.11, such that

max
ζ∈Bk1

∑N
i=1 1{ϑ∗i =ζ(ϑ̂i(ω))}

N
≥
∑N

i=1 1{ϑ̂i=ζN,J (ϑ∗i )}

N
≥

∑
i∈AF∗

N,J

1

N

Lemma B.12 Under the same conditions as Lemma B.6, we have

lim
N,J→∞

Pr (ΩN,J) = 1,

where ΩN,J is defined above.

By Lemma B.12 and (B.22), we complete the proof.
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Proof of Lemma B.7. Without loss of generality, we suppose that the ball G ⊂ RK

has center at orgin. By Theorem 2.1 of Alfakih (2005), we know there exist k1, k2 ≥

K + 1 and two sets of points, {b∗1, ...,b∗k1}, {c
∗
1, ..., c

∗
k2
} ⊂ int(G), satisfying condition

A2 whose partial distance matrix D∗ has unique configuration. Furthermore, points

near b∗i , c
∗
j also have this property. Specifically, there exists ε > 0 such that for

bi ∈ BK
b∗i

(ε) ⊂ G, cj ∈ BK
c∗j

(ε) ⊂ G,

the {b1, ...,bk1}, {c1, ..., ck2} satisfy condition A2 and their partial distance matrix D

has unique configuration. Then, by Lemma B.2, condition A1 holds and {b∗1, ...,b∗k1}, {c
∗
1, ..., c

∗
k2
}

are anchor points in RK .

Proof of Lemma B.8. The proof of Lemma B.8 is similar to Lemma A.1 of

Davenport et al. (2014).

Proof of Lemma B.9. We have

0 ≤ l̄Ω,Y (D̂N,J)− l̄Ω,Y (D∗N,J) =l̄Ω,Y (D̂N,J)− El̄Ω,Y (D̂N,J) + El̄Ω,Y (D̂N,J)− El̄Ω,Y (D∗N,J)

+ El̄Ω,Y (D∗N,J)− l̄Ω,Y (D∗N,J)

≤
(
El̄Ω,Y (D̂N,J)− El̄Ω,Y (D∗N,J)

)
+ 2 sup

D∈H
|l̄Ω,Y (D)− l̄Ω,Y (D)|.

So

E
(
l̄Ω,Y (D∗N,J)− l̄Ω,Y (D̂N,J)

)
≤ 2 sup

D∈H
|l̄Ω,Y (D)− l̄Ω,Y (D)|.

Notice that

E
(
l̄Ω,Y (D∗N,J)− l̄Ω,Y (D̂N,J)

)
= E

(
lΩ,Y (D∗N,J)− lΩ,Y (D̂N,J)

)
=

n

NJ

∑
i,j

f(d∗ij) log(
f(d∗ij)

f(d̂ij)
) + (1− f(d∗ij)) log(

1− f(d∗ij)

1− f(d̂ij)
)
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For two distributions P andQ, let DKL(P‖Q) denote the Kullback-Leibler divergence

DKL(P‖Q) :=

∫
p(x) log

(
p(x)

q(x)

)
dx,

where p(x) and q(x) are the density functions for P and Q, respectively. For 0 <

p, q < 1, we use

DKL(p‖q) := p log(
p

q
) + (1− p) log(

1− p
1− q

)

to denote the Kullback-Leibler divergence between two Bernoulli distributions with

parameter p and q, respectively. For P,Q ∈ (0, 1)N×J , we define

DKL(P‖Q) :=
1

NJ

∑
i,j

DKL(Pij‖Qij).

For a partial distance matrix DN,J , denote f(DN,J) as the matrix (f(dij))N×J . So

from above, we know that

nDKL(f(D∗N,J)‖f(D̂N,J)) ≤ 2 sup
D∈H
|l̄Ω,Y (D)− l̄Ω,Y (D)|.

Still for 0 < p, q < 1, let

d2
H(p, q) := (

√
p−√q)2 + (

√
1− p−

√
1− q)2

denote the Hellinger distance between two Bernoulli distributions with parameters p

and q, respectively. For P,Q ∈ (0, 1)N×J , we define

d2
H(P‖Q) :=

1

NJ

∑
i,j

d2
H(Pij, Qij).
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It is easy to check that d2
H(p, q) ≤ DKL(p‖q). So

d2
H(f(D∗N,J), f(D̂N,J)) ≤ 2

n
sup
D∈H
|l̄Ω,Y (D)− l̄Ω,Y (D)|

By Lemma A.2 of Davenport et al. (2014), we have

1

NJ
‖D̂N,J −D∗N,J‖2

F ≤ 8β4M2d2
H(f(D∗N,J), f(D̂N,J))

≤ 16

n
β4M2 sup

D∈H
|l̄Ω,Y (D)− l̄Ω,Y (D)|.

Proof of Lemma B.10. Denote

η := max

d(τ1, τ2),

√√√√ k2∑
l=1

‖x+
l − yl‖2


and then d(τ1, τ2) ≤ η and

‖x+
l − yl‖ ≤ η, l = 1, ..., k2. (B.23)

Therefore there exist A ∈ OK+ and b ∈ RK+ such that

√√√√‖Ax+ + b− y‖2 +

k2∑
l=1

‖Ax+
l + b− yl‖2 ≤ η,

which leads that

‖Ax+ + b− y‖ ≤ η (B.24)

and

‖Ax+
l + b− yl‖ ≤ η, l = 1, ..., k2. (B.25)
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Combining (B.23) and (B.25), we get

‖Ax+
l + b− x+

l ‖ ≤ 2η, l = 1, ..., k2.

According to condition A2, x1, ...,xk2 can affine span RK . Then there exists α1, ..., αk1

satisfying
∑k2

l=1 αl = 1, such that x =
∑k2

l=1 αlxl. So we have

‖Ax+ + b− x+‖ =

∥∥∥∥∥
k2∑
l=1

αl(Ax+
l + b− x+

l )

∥∥∥∥∥ ≤ 2(

k2∑
j=1

|αj|)η.

Combining it with (B.24), we have ‖x+ − y‖ ≤ (2
k1∑
j=1

|αj| + 1)η. We complete the

proof by setting the constant c in Lemma B.10 to be

max
x∈BK

0 (M)
xl∈G∗l (ε)

inf∑
l αl=1

x=
∑

l αlxl

2

k2∑
l=1

|αl|.

Proof of Lemma B.11. For i, j ∈ AF ∗N,J
, if ϑ∗i = ϑ∗j and suppose they are

both equal to k, then ‖µϑ̂i
− F ∗N,J(b∗k)‖ < d/2 and ‖µϑ̂j

− F ∗N,J(b∗k)‖ < d/2. Given

the condition in Lemma B.11, it is easy to check that there is only one µl among

{µ1, ...,µk1} satisfying

‖µl − F ∗N,J(b∗k)‖ < d/2,

then ϑ̂i = ϑ̂j. If ϑ∗i 6= ϑ∗j , then ‖µϑ̂i
−F ∗N,J(b∗ϑ∗i )‖ < d/2 and ‖µϑ̂j

−F ∗N,J(b∗
ϑ̂j

)‖ < d/2.

So

‖µϑ̂i
− µϑ̂j

‖ ≥ ‖F ∗N,J(b∗ϑ∗i )− F ∗N,J(b∗ϑ∗j )‖ − ‖µϑ̂i
− F ∗N,J(b∗ϑ∗i )‖ − ‖µϑ̂j

− F ∗N,J(b∗
ϑ̂j

)‖

> d− d

2
− d

2
> 0,

which means ϑ̂i 6= ϑ̂j. So there exists ζ2 such that for i ∈ AF ∗N,J
, ϑ̂i = ζ2(ϑ∗i ).

26



Proof of Lemma B.12. Let

Γ
(ε′)
N,J := {ω :

∑
i∈AF∗

N,J

1

N
≥ 1− ε′},

which is a subset of the whole probability space. By (B.22), for any ε′ > 0, we have

lim
N,J→∞

Pr(Γ
(ε′)
N,J) = 1.

For any ω /∈ ΩN,J , there exists l such that ‖µm(ω)−F ∗N,J(b∗l )‖ ≥ d/2, for m = 1, ..., k1.

So for i satisfying ϑ∗i = l, we have ‖µϑ̂i
(ω) − F ∗N,J(b∗ϑ∗i )‖ ≥ d/2. According to (2) of

condition A3, for sufficiently small ε′, if N, J are sufficiently large, then ω /∈ Γ
(ε′)
N,J ,

which means Γ
(ε′)
N,J ⊂ ΩN,J . By (B.22), for sufficiently small ε′,

lim
N,J→∞

Pr(ΩN,J) ≥ lim
N,J→∞

Pr(Γ
(ε′)
N,J) = 1.

We complete the proof.

C Algorithm-based MDU: Real Data Examples

To compare the proposed method with classical algorithm-based MDU methods, we

apply ordinal MDU (Busing et al., 2005) to both real datasets analyzed in the paper.

The application is based on the implementation in R package smacof (de Leeuw and

Mair, 2009). For both examples, the latent dimension is set to two, and all the tuning

parameters are set to be the default ones. The results below show that the ordinal

MDU approach provides similar visualization results as the proposed one, especially

for the roll call voting data due to its unidimensional nature. The results for the movie

rating dataset are also similar for the two methods, but the interpretable patterns

from the ordinal MDU approach is not as clear as the proposed one.

27



−1.0 −0.5 0.0 0.5 1.0 1.5

−
2

−
1

0
1

2

movie
user

Figure C.1: Analysis of movie rating data: Simultaneous visualization of the esti-
mated movie and user points.

Figures C.1 through C.3 show the same plots as in Figures 4 through 6 in Sec-

tion 5.1, respectively, for the movie rating dataset. Figure C.1 provides the simul-

taneous visualization of the movie and user points. Similar to the plot in Figure 4

given by our method, the movies and the users tend to form two giant clusters that

only slightly overlap.

Figure C.2 is similar to Figure 5, where the two panels show the same scatter plot

for the movie points. In the left panel, the movies are stratified by the the numbers

of ratings that they received, where different stratums are marked by different colors.

In the right panel, the movies are stratified by their release time. Recall that the

patterns of popularity and release time are captured by the proposed method as

shown in Figure 5. Figure C.2 seems also to capture these patterns, but not as clear

as those in Figure 5. According to panel (a) of Figure C.2, the more popular movies

tend to be located near the origin, while the less popular movies tend to be located

away from the origin. According to panel (b) of Figure C.2, the clustering patten of

the movies can be largely explained by the three categories of release dates. From

the left to the right of the space, the points correspond to movies from the relatively
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Figure C.2: Analysis of movie rating data. Panel (a): Visualization of movie points,
with movies stratified into four equal-size categories based on the numbers of rating.
Movies with numbers of rating less than 127, 128-169, 170-229 and more than 230 are
indicated by black, red, green and blue points, respectively. Panel (b): Visualization
of movie points, with movies stratified into three categories based on their release
time. Movies released in 1997-1998, 1995-1996, and before 1995 are indicated by
green, red and black points, respectively.

older ones to the relatively more recent ones.

Figure C.3 shows the same plots as in Figure 6. Similar pattern is shown that the

shorter the average distance from a user point to the movies points, the more active

the user is. In Figure C.3, users are classified into four equal-size groups depending

on the numbers of movies they rated. These groups of users, from the most active

one to the least active one, lie from the top left to the bottom right.

Figures C.4 through C.6 show the same plots as in Figures 7 through 9 in Section

5.2, respectively, for the roll call voting dataset. Figure C.4 provides the simultaneous

visualization of senators and roll calls. Similar to the plot in Figure 7, most of the

points tend to lie on a straight line.

Figure C.5 provides a scatter plot of the senator points. Similar to Figure 8,

most of the senator points tend to locate around a straight line, with the Democrats

on one side and the Republicans on the other side. Also similar to Figure 8, the
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Figure C.3: Analysis of movie rating data: Visualization of user points, with users
classified into four equal-size categories based on the numbers of rating. Users who
rated less than 24, , 25-47, 48-103 and more than 104 movies are indicated by black,
red, green and blue points, respectively.
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Figure C.4: Analysis of senator roll call data: Simultaneous visualization of the
estimated senator and roll call ideal points.
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Figure C.5: Analysis of senator roll call data: Visualization of senator points, where
senators are classified by their party membership. Specifically, The Democrats, Re-
publicans and an independent politician are indicated by blue, red, and green, re-
spectively.

independent senator, Jim Jeffords from the state of Vermont, is mixed together with

the Democrats, while the Democrat senator, Zell Miller from the state of Georgia, is

mixed together with the Republicans.

Finally, Figure C.6 shows the unfolding results for the roll calls. The pattern

in panel (a) of Figure C.6 is similar to that of Figure 9, where from the right to

the left, the proportion of “Yeas” from the Republicans increases. Also similar to

Figure 9, although most of the roll calls lie near the x-axis, there are still quite a

few of them spreading out along the y-axis. According to panel (b) of Figure C.6

based on the cross entropy measure, the voting behavior on these roll calls tends to

be heterogeneous within both parties. This result is similar to that given in panel (b)

of Figure 9.
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Figure C.6: Analysis of senator roll call data. Panel (a): Visualization of roll call
points, where roll calls are classified by the proportion of Yeas from Republicans.
Specifically, roll calls who have the proportions less than 0.068, 0.068-0.52,0.52-0.73
and larger than 0.73 are indicated by black, red, green and blue points, respectively.
Panel (b): Box plots of min{CE

(1)
j ,CE

(2)
j }, for roll calls lying near the x-axis (|âj2| ≤

0.05) one the left and for those spreading out along the y-axis (|âj2| > 0.05) on the
right.
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