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Abstract

The Step out–Step in sequencing game is a particular example of a game from
the sequencing game framework of Curiel, Perderzoli, and Tijs, where coalitions
of players in a queue may reorder themselves to improve the their overall cost,
under some restrictions. Musegaas, Borm and Quant proved, in two papers,
that a simple greedy algorithm correctly computes the valuation of a coalition,
and that the game is convex. These proofs entail rather involved case analyses;
in this note, we give short proofs of both results.
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1. Introduction

There are many natural settings where people or tasks form a queue and
incur some cost for how long they wait. Cureil, Pederzoli, and Tijs [1] took a
cooperative game theory perspective and asked the questions “how best can a
coalition of players re-arrange themselves to save costs?” and “how can these
cost savings be shared?” The main assumption is that players outside of this
coalition should be no worse off. How one interprets the notion of “no worse
off” gives rise to many different variants of sequencing games. Musegaas, Brom,
and Quant [2] introduced the Step out–Step in (SoSi) sequencing game where
coalition members cannot move ahead of non-coalition members. They provide
a greedy algorithm for computing the optimal cost savings for a coalition in
their original paper [2]. In a follow-up work, they prove that the SoSi game is
convex [3]. This has important implications for the cooperative game, e.g., that
the core is nonempty and can be efficiently computed when the characteristic
function can be computed efficiently [4]. Both of these proofs are rather lengthy,
and involve a large number of case distinctions to complete the argument.

In this paper we provide greatly simplified proofs of the convexity of SoSi
games and the correctness of the greedy algorithm. Throughout we assume
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familiarity with the basic concepts of cooperative game theory (see, e.g., [5]).
We start by formally introducing SoSi games along with other preliminaries.
The proofs follow in Section 2.

1.1. Single machine scheduling and sequencing games

Consider the very classical setting of minimizing the weighted sum of comple-
tion times, on just a single machine. We are given a setN of n players, processing
times p ∈ RN≥0, and weights w ∈ RN≥0. Given an ordering σ : N → {1, 2, . . . , n}
of the jobs, job j will complete at time cj(σ) :=

∑
k∈N :σ(k)≤σ(j) pj , and incur a

cost of Cj(σ) := wjcj(σ). The goal is to minimize the total cost
∑
j∈N Cj(σ).

The celebrated Smith’s rule [6] states that a minimum cost solution is obtained
by ordering the jobs by decreasing urgency uj := wj/pj .

In a sequencing game, this machine scheduling setting is augmented by an
initial ordering σ0 of the players. Further, a set of admissible orders available
to a coalition S, denoted by A(S, σ0), is described in some way. Then the value
of a coalition S is

v(S) := CS(σ0)− min
σ∗∈A(S,σ0)

CS(σ∗),

where CS(σ) :=
∑
i∈S Ci(σ) denotes the total cost of players in coalition S

under the given ordering. In the SoSi game, an order σ is admissible for a
coalition S if for all i /∈ S and j ∈ N with σ0(i) ≤ σ0(j), we have σ(i) ≤ σ(j).

Musegaas et al. [2] consider the following greedy algorithm for computing
v(S) (in fact, they consider a variation of this which is more complicated to
describe, but which is equivalent; see Lemma 2). Start with the order σ′ = σ0,
and consider each player i ∈ S in turn, from latest to earliest according to σ0.
When considering player i, we update σ′ by moving the player to a position
later in the ordering that yields the greatest cost savings for S (breaking ties by
choosing the earliest optimal position); if no such move yields an improvement,
then σ′ is left unchanged. After all players in S have been considered, the
algorithm returns CS(σ0)− CS(σ′) as the value of coalition S.

They prove (in two different works) the following theorems.

Theorem 1. [2] The greedy algorithm correctly computes v(S).

Theorem 2. [3] The step-out step-in sequencing game is convex.

Their proof of convexity relies on the correctness of the greedy algorithm;
ours will also. Our proof of Theorem 2, once Theorem 1 has been obtained, is
particularly short and simple.

2. Proofs

Preliminaries. We start by defining some useful notation. For any two players
j, k ∈ N let

δjk(S) := 1S(k)pjwk − 1S(j)pkwj ,
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where 1S is the indicator function for the set S. The interpretation of this is
the decrease in cost for a coalition S obtained by swapping j and k, given that
in the current order j directly precedes k. Note that if ui > uj , then δij < 0,
and δij = −δji. We also define, for P ⊂ N and j ∈ N \ P ,

δjP (S) :=
∑
k∈P

δjk(S);

if P is a contiguous sets of elements in some order, with j adjacent to and
preceding P , this is the cost decrease obtained by moving j to immediately
after P . Similarly δPj(S) := −δjP (S) is the cost decrease obtained by moving j
from immediately after P to immediately before P . We will sometimes omit the
explicit dependence on S (writing, for example, δij rather than δij(S)) when it
can cause no ambiguity.

The subgame restricted to the players T ⊂ N , whose value function we
denote by vT , is the sequencing game arising from just the players T with the
same weights and processing times, and initially ordered according to the same
relative order as σ0. For notational convenience, we define vT (S) := vT (S ∩ T )
for all S ⊆ N .

For a given coalition S and an order σ, a component refers to a maximal
subset of S that is contiguous with respect to σ; that is, an inclusion-wise
maximal set of the form {j ∈ N : σ(i) ≤ σ(j) ≤ σ(k)} ⊆ S for some i, k ∈ S.

The greedy algorithm.

Lemma 1. For any distinct j, k ∈ S with uj ≤ uk and ` ∈ N , w−1j δj` ≥ w−1k δk`.

Proof. If ` /∈ S, then w−1j δj` = −p` = w−1k δk`. If ` ∈ S, then

w−1j δj` = w` · pjwj
− p` ≥ w` · pkwk

− p` = w−1k δk`.

Let us say that two orders σ and σ′ are equivalent for a coalition S if σ′ can
be obtained from σ via a sequence of swaps of adjacent players in S with equal
urgency. Since δjk(S) = pjpk(uk − uj) = 0 for j, k ∈ S with uj = uk, it follows
that CS(σ) = CS(σ′) for equivalent orderings σ and σ′.

Lemma 2. Let σ′0 be any order obtained from σ0 by rearranging only players
within the same component of S. Let σalg and σ′alg be the orders determined by
the greedy algorithm starting from σ0 and σ′0 respectively. Then

(i) σalg and σ′alg are equivalent for coalition S.

(ii) Any two players in the same component of S respect Smith’s rule in both
σalg and σ′alg (i.e., are correctly ordered by urgency).

Proof. It suffices to show that the claim holds if σ′0 differs from σ0 by swapping
two adjacent players j, k ∈ S, with σ0(j) < σ0(k), since any valid reordering can
be obtained via a sequence of such swaps. By symmetry of σ0 and σ′0 we may
assume uj ≥ uk. Let W := {i ∈ N : σ0(k) < σ0(i)} = {i ∈ N : σ′0(j) < σ′0(i)},
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let σW be order returned by greedy algorithm for the sub-problem on W . Let
∅ = W0 (W1 ( · · · (Wr = W be all prefixes of W under σW (i.e., all distinct
sets of the form {x ∈ N : σW (x) ≤ σW (y)} for some y, along with the empty
set).

Let t∗ be such that δkWt∗ is maximized, and s∗ be such that δjWs∗ is maxi-
mized (breaking ties by choosing t∗ and s∗ as small as possible). Consider any
t > t∗, and let Q = Wt \Wt∗ . By the choice of t∗, δkQ = δkWt − δkWt∗ ≤ 0.
Thus

δjWt = δjWt∗ + δjQ

≤ δjWt∗ +
wj
wk

δkQ (by Lemma 1)

≤ δjWt∗ .

So s∗ ≤ t∗.
Since also δjk ≤ 0, it follows that when running the greedy algorithm from

σ0, j will be placed before k in the final ordering. On the other hand, starting
from σ′0, j will first be placed immediately to the right of Ws∗ , and k will be
placed to the right of j if uj > uk, or immediately to the left of j if uj = uk (since
then s∗ = t∗ and δjk = 0). That is, the orders obtained by the greedy algorithm
after j and k have been considered starting from σ0 and σ′0 are equivalent; call
these orders σ and σ′ respectively. Note that this also proves the second part
of the lemma for j and k adjacent.

It suffices to show that inserting the remaining players into σ and σ′ does
not violate equivalence. The optimal position to place any player ` into any two
equivalent orderings is the same. If there is a group P of contiguous players
with equal urgency, then ` will either placed ahead of P (if δ`P ≤ 0 or behind
P (if δ`P > 0), irrespective of the ordering of the players in P .

We now prove the second part of the lemma in generality, where j and k
are in the same component but not necessarily adjacent. Assume, relabelling if
necessary, that uj > uk (if uj = uk, there is nothing to prove). Then as already
observed, σ′alg(j) < σ′alg(k). Since σalg is equivalent to σ′alg by the first part of
the lemma, σalg(j) < σalg(k) as well.

We are now ready to prove that the greedy algorithm correctly computes
v(S).

Proof of Theorem 1. By Lemma 2, it suffices to prove the claim under the as-
sumption that each component of S is ordered in σ0 according to Smith’s rule.

Assume inductively that the claim holds for all restrictions of the instance to
a strict subset of players. If S = N , then σ0 is already optimal and the greedy
algorithm will not change it, so the claim is clear. So assume S 6= N , and let q
be the earliest player under σ0 not in S. Let P ⊂ S be the players preceding q,
and W := N \

(
P ∪ {q}

)
be all players after q.

Denote by σ the ordering at the point just before any player in P is consid-
ered, and by σalg the final ordering determined by the greedy algorithm. Also let
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∅ = W0 (W1 ( · · · (Wr = W be all the prefixes of W under σ. By Lemma 2,
the order of the players in P is maintained in σalg. This means that the cost
decrease (if any) attributable to moving player i ∈ P is max{0, γi}, where

γi := δiq + max
0≤k≤r

δiWk
.

In other words, either we don’t move i at all and there is no change, or we obtain
a cost decrease by moving i to some location after q. So

CS(σ0)− CS(σalg) = CS(σ0)− CS(σ) +
∑
i∈P

max{0, γi}. (1)

Consider now, for any fixed T ⊆ P , the instance restricted to W ∪ T . The
greedy algorithm will again first order W in exactly the same way as σ and
then insert each player in T into their optimal positions. The cost decrease
associated with player i ∈ T is then

max
0≤k≤r

δiWk
= γi − δiq.

By induction, the result of the greedy algorithm on this instance is optimal, and
so we know that

vW∪T (S) = CS(σ0)− CS(σ) +
∑
i∈T

(γi − δiq). (2)

Consider now an optimal ordering σ∗. Let T ∗ be the subset of jobs in P
that are later than q under σ∗. Let κ be the cost decrease associated with
moving players in T ∗ past players in P : so κ =

∑
j∈T∗,k∈P\T∗:σ0(j)<σ0(k)

δjk.
By assumption uj ≥ uk and hence δjk ≤ 0 for all the terms in this sum, so
κ ≤ 0. Then we have

v(S) = vW∪T
∗
(S) + δT∗q + κ

≤ CS(σ0)− CS(σ) +
∑
i∈T∗

γi by (2)

≤ CS(σ0)− CS(σalg) by (1).

Thus the cost decreased obtained by the greedy algorithm is at least v(S), and
hence equal to v(S).

Convexity. Recall that a game is called convex if its characteristic function v is
supermodular, i.e.,

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) ∀S, T ⊆ N.

A function v is modular when we have equality in the above. We will make
use of a lemma due to Lovász about supermodular functions. Recall that a set
function f is monotone if f(S) ≤ f(T ) for all S ⊆ T .
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Lemma 3. [7] Let f and g be supermodular functions, with f − g monotone.
Then max{f, g} is supermodular.

We remark that in the case f(∅) = g(∅) = 0 this lemma is trivial as it can
be easily argued that f(S) ≥ g(S) for all coalitions S. However, we will apply
this to more general supermodular functions.

The following lemma is a simple corollary.

Lemma 4. Let fk(S) = max1≤r≤k

{∑r
j=1 gj(S)

}
, where each gj(S) is mono-

tone and supermodular. Then f is supermodular.

Proof. Let hr(S) :=
∑r
j=1 gj(S) for each r. Being the sum of supermodular

functions, hr is again supermodular. Then fk(S) = max
{
fk−1(S), hk(S)

}
. By

Lemma 3 it suffices to show that hk − fk−1 is monotone. Let S ⊆ T ; then

hk(S)− fk−1(S) = min
1≤r≤k

k∑
j=r

gj(S) ≤ min
1≤r≤k

k∑
j=r

gj(T ) = hk(T )− fk−1(T ),

where the inequality follows by monotonicity of the gj ’s.

We are now ready to prove the convexity of the SoSi game.

Proof of Theorem 2. Let σi be the ordering of players when player i ∈ S is be-
ing considered during the greedy algorithm, and let fi(S) be the cost saving
obtained during this step of the greedy algorithm by moving player i to its
optimal location later in the ordering. By the correctness of the greedy algo-
rithm, we have that v(S) =

∑
i∈S fi(S). It suffices then to show that fi(S) is

supermodular for any fixed i ∈ S. Let us write x � y if σi(x) ≤ σi(y). Then
fi(S) = maxr�i

{∑
i≺j�r δij(S)

}
. For any j ∈ N , δij(S) = 1S(j)piwj − pjwi is

monotone and modular, and hence supermodular. Thus we can apply Lemma 4,
and it follows that v(S) is supermodular.
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