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Abstract

We study strategic communication when the sender’s multi-dimensional

messages are given an interpretation by the sender himself or by a proxy. In-

terpreting messages involves the provision of some data about their statistical

state-dependence. Interpretation can be selective: different kinds of data in-

terpret different sets of message components. The receiver uses this data to

decipher messages, yet he does not draw any inferences from the kind of data

he is given. In this way, strategic interpretation of messages can influence

the receiver’s understanding of their equilibrium meaning. We show that in a

two-action, two-state setting, the sender can attain his first-best payoff when

the prior on one state exceeds a threshold that decays quickly with message

dimensionality. We examine the result’s robustness to the critique that our

receiver does not attempt any inferences from selective interpretations.
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1 Introduction

In the simplest textbook model of strategic communication, originated by ?, a

“sender” privately observes a state of Nature and chooses a costless message from

some given message space. Then, a “receiver” observes the message and takes an

action that affects both parties’ payoffs. A hallmark of this conventional approach

is that messages have no intrinsic meaning; their content - namely, their statistical

relation with the underlying state - is established in Nash equilibrium of the sender-

receiver game. According to the standard steady-state interpretation of this solution

concept, the receiver has access to a “dataset” that fully reveals the statistical rela-

tion between states and messages.

In this paper we revisit the basic sender-receiver model and relax the assumption

that the receiver is fully capable of interpreting equilibrium messages. We focus on

settings in which the receiver has two available actions, y and n. In each state of

Nature, exactly one of these actions is appropriate. The prior probability of the

states for which y is the appropriate action is π < 1
2
. The receiver’s sole objective

is to select the appropriate action. This familiar setting is borrowed from ?? or

?. For most of the paper, we follow these papers by also assuming that the sender

always wants the receiver to play y (but we also examine an alternative, “zero-sum”

specification).

By default, our receiver lacks access to any data regarding the state-message

mapping, and therefore cannot decipher messages by himself. He is like a tourist in

a foreign country who does not understand its language or cultural codes. However, if

an “interpreter” handed him a “dictionary” containing data regarding the statistical

mapping from states to the sender’s messages, he would have some ability to interpret

the message he receives.

Our model makes room for the strategic supply of such dictionaries. The sender

himself - or a third party who acts as an interpreter on the sender’s behalf - chooses

a dictionary from some feasible set. He can condition the dictionary on the state and

the message. Thus, different messages may be accompanied by different dictionaries,

and the same message may be paired with different dictionaries in different states.
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Each dictionary provides credible, yet possibly selective statistical data regarding the

sender’s state-message mapping (given by the sender’s strategy). The receiver uses

this data to update his belief given the message. Crucially, our basic model assumes

that the receiver lacks any other means for extracting the meaning of messages (we

relax this assumption in Section 4). Consequently, he does not draw any inferences

from the provided dictionary itself, since this would require some data regarding the

joint distribution of messages, dictionaries and states - data the receiver does not

have.1 Consequently, the sender can manipulate the receiver’s beliefs beyond what

is feasible under rational expectations.

Strategic interpretation of messages - in the sense of providing selective statistical

data about their meaning - is pervasive in real-life situations, whether the messages

are cheap talk or hard-information disclosures. Consider an employee who wants to

exert effort only when sufficiently sure he is not about to be fired. He is summoned

to the General Manager’s office to hear about his prospects at the company. After

the meeting is over, the HR manager (who was present at the meeting) explains

that when the GM says to an employee “you have a future in the company”, this

means a 50% chance of keeping his job. This is an interpretation of the GM’s verbal

message. It is selective because it ignores other aspects of the GM’s communication,

e.g. his body language. Alternatively, the HR’s interpretation could focus on the

latter: “The GM’s handshake was feeble; this is definitely bad news”.

Another example involves a tenure case that is brought in front of a university

promotions committee. Although the candidate submits his CV, committee members

outside his discipline cannot decipher the connection between the candidate’s quality

and indicators such as the number of publications, conference lectures or supervised

students. The candidate’s department chair will offer an interpretation by providing

statistical data about researchers in comparable departments (including their sub-

sequent academic performance, which indicates their “true quality”). If the chair’s

objective is misaligned with the university committee’s, the data he provides may be

strategically selective. In a similar vein, imagine a foreign candidate for a graduate

1A similar form of bounded rationality is documented in ?, who find that in a laboratory game
of voluntary disclosure, receivers do not make correct inferences from no disclosure.
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program. The candidate submits his grade transcript, yet the admission committee

does not know the grades’ meaning. A faculty member writing a recommendation

letter on the candidate’s behalf may provide such an interpretation, by describing

the grade distribution for a selected subset of courses.

Finally, suppose the sender is a political party and the receiver is a representative

voter. The party’s message is multi-dimensional, where each component describes

public pronouncements by a different party member. A political commentator inter-

prets the party’s message in some media outlet. He does so by providing historical

data about the match between the public pronouncements of selected party organs

and the underlying reality.

These are all examples of selective interpretations where the receiver is presented

with partial statistics about the sender’s state-dependent, multi-dimensional mes-

sage. These interpretations can be strategic when the interpreter’s interests are

misaligned with the receiver’s. We analyze the sender’s choice of messages when he

takes their subsequent strategic interpretation into account. For instance, the way a

political party structures the public statements made by its members will be shaped

by its expectation of how a media outlet that is biased in its favor will interpret these

statements.

One could argue that in these examples, the statistical data the interpreter pro-

vides need not be perfectly credible or unbiased. However, because they are quan-

titative and verifiable, they are more likely to be credible than cheap-talk messages

like “you have a future in the company”. At any rate, we abstract from this consider-

ation; our analytical task is to quantify the effect of strategic provision of cheap-talk

messages and their interpretation on the sender’s ability to attain his objective, as-

suming perfect credibility of the statistical data these interpretations involve. In the

course of this paper, we will consider various kinds of partial statistics that strategic

interpretations can entail.

Preview of the analysis

We present our basic model in Section 2, where we define a dictionary as a non-empty

subset of the components of a K-dimensional message. The dictionary enables the

receiver to learn the state-dependent joint distribution of these components. We
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assume that the interpreter’s preferences fully coincide with the sender’s. For ex-

positional convenience, our formal exposition regards them as a single player who

commits to a state-dependent joint distribution over messages and dictionaries. Nei-

ther of these two assumptions is necessary for our main findings. (In our informal

description, we occasionally refer to the interpreter as a distinct agent who shares

the sender’s preferences.)

In Section 3, we present our main result, which characterizes the maximal proba-

bility of persuasion as a function of π and K. In particular, we show that the sender

can attain full persuasion, as long as π is above a cutoff π∗(K) given by a simple

formula that makes use of Sperner’s Theorem and decays quickly with K.

Our assumption that the receiver draws no inferences from the dictionary he is

given raises natural questions. First, does the dictionary itself convey information

about the underlying state? The answer is negative: The sender-optimal strat-

egy we construct has the property that the distribution over dictionaries is state-

independent. Second, would the receiver be “suspicious” of a dictionary that does

not cover all message components? We address this question in Section 4, while in-

sisting on sender strategies that induce a state-independent dictionary distribution.

In Section 4.1, we perturb the model by assuming that the sender has a lexico-

graphically secondary preference for small dictionaries. We also introduce a refine-

ment of the sender’s strategy: if the sender’s interests were aligned with the receiver’s,

he would want to play a strategy that induces the same observed distribution over

dictionaries. Thus, if the receiver had independent access to data about the distri-

bution of dictionaries, he could reconcile the observed use of selective dictionaries

with a benevolent sender. Under this refinement, we show that full persuasion is

attainable if and only if π ≥ 1/(K + 1). The sender’s strategy only interprets single

message components.

In Section 4.2, we modify the definition of dictionaries. When a dictionary D ⊆
{1, ..., K} is provided, this now means that the receiver learns the state-dependent

distribution of mD as well as the state-dependent distribution of m{1,...,K}\D. Thus,

the interpreter is forced to provide statistical data about the behavior of all message

components, though in a format that can break them into two disjoint sets. Under
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a mild assumption on how the receiver extrapolates a belief from these pieces of

data, we show that full persuasion is attainable whenever π exceeds a cutoff that

decays quickly with K. The lesson from these two variants of our basic model is that

strategic interpretation can produce effective persuasion without generating excessive

“suspicion” regarding its selectivity.

Section 5 picks up the theme of Section 4.2 and present an example that illustrates

a richer notion of dictionaries, which involves data about other slices of the joint

state-message distribution. We show how this richer specification can enhance the

sender’s ability to attain full persuasion. In Section 6 we perform partial analysis of

our basic model when the two parties have diametrically opposed preferences. We

discuss related literature in Section 7.

2 A Model

There are two players, a sender and a receiver. The sender observes a state of Nature

θ ∈ Θ = {Y,N}. The receiver does not observe the state but needs to take an action

a, which can be either “yes” (denoted y) or “no” (denoted n). Players’ payoffs take

values in {0, 1}. The receiver’s payoff is 1 if either < a = y and θ = Y > or < a = n

and θ = N >, and 0 otherwise. In contrast, the sender’s payoff is 1 if and only if

a = y, and 0 otherwise.

The players’ common prior belief over Θ assigns probability π < 1
2

to state Y .

Hence, the receiver’s ex-ante optimal action is n. However, the sender can influence

the receiver’s belief and persuade him to play y. He commits to a strategy that maps

each state to a distribution over reports, where a report is a pair (m,D) such that:

(i) m = (m1, ...,mK) ∈MK is a K-dimensional message, where K ≥ 1 and |M | ≥ 2.

In all the examples we use in the paper, M = {0, 1}.

(ii) D ∈ 2{1,...,K}\{∅} is a dictionary.

Thus, the sender’s strategy is a function σ : Θ → ∆
(
MK × 2{1,...,K}\{∅}

)
. The

commitment assumption is made for expositional simplicity; as we shall see, our

results regarding full persuasion are insensitive to it. The assumption that |Θ| = 2
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could be replaced with the weaker assumption that there is a function f : Θ→ {n, y}
such that the receiver’s payoff is 1 if and only if a = f(θ), and 0 otherwise. The

probability with which the sender plays the report (m,D) in state θ is denoted

σ(m,D | θ). With slight abuse of notation, define σ(m | θ) =
∑

D σ(m,D | θ) and

σ(D | θ) =
∑

m σ(m,D | θ). We refer to (σ(m | θ)) as the message strategy and to

(σ(D | m, θ)) as the interpretation strategy.

The role of dictionaries is to grant the receiver “partial access” to the statistical

regularities of the sender’s strategy. When the receiver observes the report (m,D),

he learns the conditional probabilities (σ(mD | θ))θ∈Θ, where mD = (mk)k∈D and

σ(mD | θ) =
∑

m′|m′D=mD

σ(m′ | θ)

That is, the receiver learns how the message components in D - and nothing but

them - are distributed conditional on the state. He cannot draw any statistical

inferences from the message components m{1,...,K}\D or the dictionary D itself. We

will revisit this assumption in the sequel. Note that in any report (m,D), D must

be a non-empty subset of {1, ..., K}; that is, the sender is obliged to provide some

interpretation of the message.

Upon receiving a report (m,D), the receiver updates his belief according to the

following expression:

P̃r(θ = Y | m,D) =
π · σ(mD | θ = Y )

π · σ(mD | θ = Y ) + (1− π) · σ(mD | θ = N)
(1)

Compare this with the correct, rational-expectations posterior probability of Y con-

ditional on (m,D):

Pr(θ = Y | m,D) =
π · σ(m,D | θ = Y )

π · σ(m,D | θ = Y ) + (1− π) · σ(m,D | θ = N)
(2)

The receiver best-replies to the subjective posterior belief given by (??), breaking

ties in favor of the sender. Equivalently, faced with a report (m,D), he computes its
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subjective likelihood ratio

ρσ(m,D) =

∑
m′|m′D=mD

σ(m′ | θ = Y )∑
m′|m′D=mD

σ(m′ | θ = N)
(3)

and chooses a = y if and only if ρσ(m,D) ≥ (1− π)/π.

The sender chooses his strategy under the assumption that the receiver best-

replies to the belief given by (??). Our main question is: What is the maximal

probability of a = y that the sender can attain?

Our model of how the receiver forms beliefs is motivated by the steady-state

view of equilibrium behavior, whereby the sender’s strategy σ describes a long-run

statistical relation between states and reports. The receiver moves once, against the

background of a large dataset consisting of many realizations of (θ,m1, ...,mK , D)

resulting from previous interactions between the sender with different identical re-

ceivers. The dataset can be visualized as a large spreadsheet, where each column

represents one of the variables θ,m1, ...,mK , D, and each row represents an obser-

vation (an independent draw from the joint distribution over states and reports).

Rational expectations correspond to having full access to this dataset. Our model

relaxes this assumption and assumes that the receiver is granted access to a subset

of columns represented by D. The receiver can only rely on the accessed data for

drawing inferences.

Example 1

To illustrate our notion of dictionaries and how the receiver reacts to them, suppose

that K = 4. Assume σ(m | Y ) is uniform over (1, 1, 1, 1) and (0, 0, 0, 0), while

σ(m | N) is uniform over (1, 1, 1, 1), (1, 0, 1, 0) and (1, 0, 0, 1).

Suppose the sender accompanies the message (1, 0, 1, 0) with the dictionary D =

{1, 3}. This dictionary provides the receiver with data about the state-dependent

distribution of (m1,m3). In particular, he learns that the pattern (1, ∗, 1, ∗) occurs

with probability 1
2

in state Y and with probability 2
3

in state N .2 Therefore,

2The notation (1, ∗, 1, ∗) stands for all messages m for which m1 = m3 = 1.
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P̃r(θ = Y | (1, 0, 1, 0), {1, 3}) =
π · 1

2

π · 1
2

+ (1− π) · 2
3

=
3π

4− π

By comparison, the rational-expectations posterior on Y given m = (1, 0, 1, 0) is zero

(independently of the dictionary that accompanies this message).

Note that the message (1, 1, 1, 1) is sent with positive probability in both states.

Suppose that in state Y the sender accompanies this message with the dictionaryD =

{1, 2, 3}. The receiver then learns that the pattern (1, 1, 1, ∗) occurs with probability
1
2

in state Y and with probability 1
3

in state N. Hence,

P̃r(θ = Y | (1, 1, 1, 1), {1, 2, 3}) =
π · 1

2

π · 1
2

+ (1− π) · 1
3

=
3π

2 + π

Suppose next that in state N the sender accompanies the message (1, 1, 1, 1) with

the dictionary D = {3}. Then

P̃r(θ = Y | (1, 1, 1, 1), {3}) =
π · 1

2

π · 1
2

+ (1− π) · 2
3

=
3π

4− π

Thus, by varying the dictionary across states, the same message induces the receiver

to hold a different belief in each state. In contrast, if the receiver had rational

expectations, then independently of the dictionary, his posterior on Y given m =

(1, 1, 1, 1) would be 3π
2+π

in both states. �

We close this section with comments on a few aspects of our model.

Multi-dimensional messages

The multi-dimensionality of messages has a few interpretations. First, different com-

ponents of m may represent different modes of communication (verbal statements,

voice intonation). When the sender is an organization, different components repre-

sent utterances by different organs (party whip, corporate executive, spokesperson).

Finally, the state itself can be multi-dimensional (this requires |Θ| > 2), such that

each message component corresponds to a different state dimension.
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Rational expectations and the full dictionary

Note that the full dictionary D = {1, ..., K} does not automatically endow the re-

ceiver with rational expectations. The reason is that rational expectations mean that

the receiver knows the sender’s entire reporting strategy, whereas the full dictionary

only enables him to learn the message strategy. However, if the interpretation strat-

egy happens to be measurable with respect to messages (i.e. σ(D | m) ≡ σ(D |
m, θ)), accompanying a message with the full dictionary will enable the receiver to

update his belief as if he had rational expectations.

The “redacted message” metaphor

Our model could be alternatively described as follows. When the sender sends a

message, he selectively “redacts” parts of that message, such that the receiver gets

to observe only the unredacted parts. The belief-formation rule (??) means that

the receiver takes into account the sender’s pre-redaction message strategy but ig-

nores the redaction strategy (and therefore draws no inference from the redacted

components).

We find this “selective redaction” description less appealing because it lacks a

concrete story for how the receiver forms correct expectations about the sender’s

message strategy but not about the redaction strategy. In contrast, our original

description of D as a representation of selective statistical data regarding the sender’s

strategy entails an explicit mechanism for this dichotomy: The receiver can only base

his beliefs on the statistical data provided to him by the sender.

More importantly, our description opens the door for other types of dictionaries

that correspond to other kinds of statistical data that the sender can transmit to

the receiver. We illustrate this idea in Sections 4.2 and 5, where we allow the sender

to provide multiple “datasets” that record different slices of the joint state-message

distribution, and show how this richer notion of dictionaries affects the sender’s

problem. These extensions of our basic model go beyond the scope of the “redaction”

metaphor.
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Who interprets the messages?

Given that we model the situation as a two-player game, a literal interpretation of

our model would be that the sender interprets his own messages. A more plausible

story is that the two-player model is a reduced form of a larger model, in which

interpretation is done by a third party whose preferences are aligned with the sender’s:

An accomplice, a spokesperson or a captured media outlet. Such third parties provide

selective data that illuminate the meaning of utterances by the agent they serve.

We could turn the interpreter into an actual third player, producing the following

timeline. The sender moves first by choosing a message m. The interpreter moves

after observing m (but not θ) and chooses D. This means that the interpretation

strategy must be measurable with respect to m. Unlike the receiver, the interpreter

has rational expectations. The conditional distribution σ over pairs (m,D) is induced

by the combination of the message and interpretation strategies, and it is restricted

to satisfy the conditional-independence property D ⊥ θ | m. The receiver moves

last, having observed the history (m,D), and he best-replies to the belief (??). If the

sender and interpreter have common interests, the situation can be reduced to our

two-player formulation, under a suitably defined solution concept for the three-player

interaction. In Section 3 we will see that there is no loss of generality in imposing

D ⊥ θ | m directly on the two-player model, lending support to this three-player

interpretation of our model.

Thus, while we will adhere to the sender-receiver formal terminology, our model

can be regarded as a description of a situation in which the sender and interpreter

are separate entities who happen to share common interests.3

3 Analysis

We begin this section by presenting the rational-expectations benchmark for our

model. In this case, which coincides with the “prosecutor” example in ?, the proba-

3In a previous version of the paper (?), we analyzed an extension in which the interpreter’s
preferences are aligned with the receiver’s with some probability; the sender does not know the
interpreter’s type when choosing his message strategy.
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bility of persuasion is maximized by the following message strategy (the dictionary

component in the reporting strategy is redundant): In state Y , the sender plays

(1, ..., 1) with probability one, whereas in state N , he plays (1, ..., 1) with probability

π/(1 − π) and (0, ..., 0) with the remaining probability. When the receiver gets the

message (0, ..., 0), he infers that θ = N for sure and takes the action n. When he

receives the message (1, ..., 1), his posterior is

Pr(θ = Y | m = (1, ..., 1)) =
π · 1

π · 1 + (1− π) · π
1−π

=
1

2

such that he is just willing to play y. Consequently, the overall probability of per-

suasion is

π + (1− π) · π

1− π
= 2π

This result crucially relies on the sender’s ability to commit to a strategy ex-ante.

Without the ability to commit, the probability of persuasion would be zero in any

Nash equilibrium.

The following example demonstrates that in contrast to the rational-expectations

benchmark, our model enables full persuasion as an equilibrium outcome.

Example 2: Full persuasion under K = 3 and K = 4

Let K = 3 and consider the following sender strategy (for convenience, we highlight

the interpreted components in each report in boldface). In each state, he mixes

uniformly over three reports:

State Y State N

m D

111 {1}
111 {2}
111 {3}

m D

100 {1}
010 {2}
001 {3}

Notice that in state Y only one message is sent, but the sender randomizes the

dictionary it is paired with. In contrast, in state N, three distinct messages are sent
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with three distinct dictionaries, where each dictionary interprets a pattern that also

appears in state Y (namely, the component with the digit 1). For each of the six

reports (m, {k}), the receiver’s posterior belief P̃r(θ = Y | m, {k}) is

π · Pr(mk = 1 | θ = Y )

π · Pr(mk = 1 | θ = Y ) + (1− π) · Pr(mk = 1 | θ = N)
=

π · 1
π · 1 + (1− π) · 1

3

=
3π

1 + 2π

The receiver weakly prefers playing y after each of these reports, as long as π ≥ 1
4
.

If K = 4, the sender is able to achieve full persuasion for even smaller prior beliefs.

He achieves this by using the following strategy, which in each state, uniformly

randomizes over six reports:

State Y State N

m D

1111 {1, 2}
1111 {1, 3}
1111 {1, 4}
1111 {2, 3}
1111 {2, 4}
1111 {3, 4}

m D

1100 {1, 2}
1010 {1, 3}
1001 {1, 4}
0110 {2, 3}
0101 {2, 4}
0011 {3, 4}

For each of these twelve reports (m, {j, k}), the receiver’s posterior belief P̃r(θ = Y |
m, {j, k}) is

π · Pr(mj = mk = 1 | θ = Y )

π · Pr(mj = mk = 1 | θ = Y ) + (1− π) · Pr(mj = mk = 1 | θ = N)
=

π · 1
π · 1 + (1− π) · 1

6

The receiver weakly prefers playing y after each of these reports, as long as π ≥ 1
7
.

This example illustrates a number of key points.

Non-rational expectations

The receiver reaches wrong beliefs as a result of the strategically chosen dictionaries.

E.g., in theK = 4 case, although the reports ((1, 1, 1, 1), {2, 3}) and ((0, 1, 1, 0), {2, 3})

13



objectively reveal the state in which they are played, the receiver draws the same

inference from both of them. The reason is that the two messages coincide on the

second and third components, highlighted by the accompanying dictionary {2, 3}.

Irrelevance of commitment

Since the sender achieves full persuasion, his strategy would also constitute an equi-

librium in the absence of commitment. The reason is that the receiver plays y after

any realized report, hence the sender has no incentive to deviate from any realization

of his mixed strategy.

More (interpretation) can be less

The receiver is clearly harmed by selective interpretation: If the sender were com-

pelled to interpret all message components, the problem would be effectively reduced

to the rational-expectations benchmark. However, this effect is not monotone. Sup-

pose that we made dictionaries even more selective by forcing them to be singletons.

Then, in the K = 4 case, the sender would only be able to attain full persuasion

when π ≥ 1
5
, using a similar strategy to the one we presented for K = 3.

Dictionary-state independence

Our model assumes that the receiver cannot draw any inferences from D. Suppose he

attempted such an inference - e.g. by acquiring data regarding the state-contingent

distribution over dictionaries. Then, he would be unable to infer the state from

D because its probability is identical in both states. One might argue that the

receiver should still be “suspicious” of selective interpretations and discount their

informational content. We devote Section 4 to this critique.

The sender’s strategy satisfies another independence property: D ⊥ θ | m. That

is, given the realized message, the dictionary that accompanies it does not provide

objective information about the state. This means that if the receiver had rational

expectations, he could afford to draw inferences from m alone. The following lemma

establishes that this property is not specific to the example.

Lemma 1 The maximal probability of persuasion can be attained by a strategy that

satisfies D ⊥ θ | m.
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Proof. Consider an arbitrary sender strategy σ. Suppose that for a given message

m there are two dictionaries D and D′, such that both reports (m,D) and (m,D′)

are played with positive probability under σ. Suppose without loss of generality that

the action induced by (m,D) is weakly more favorable to the sender (recall that

the sender’s preferences are state-independent). Consider a deviation that replaces

(m,D′) with (m,D). Since the deviation does not change the message strategy,

it does not affect the receiver’s reaction to any report (m′′, D′′) 6= (m,D); and by

increasing the probability of (m,D), it weakly increases the probability of persuasion.

It follows that without loss of generality, we can assume that under the sender’s

strategy, every realized report m is accompanied by a single dictionary Dm. In

particular, this means that D is independent of θ conditional on m.

This lemma substantiates the three-player interpretation of our model that was

described at the end of Section 2, since a distinct interpreter would only be able to

condition D on m.

Should a dictionary interpret multiple messages?

The sender’s strategy in Example 2 has a notable feature: In every report (m,D)

that is played in state N , the pattern that D highlights does not appear in any

other message that is played in N . Compare this with the report ((1, 0, 1, 0), {1, 3})
in Example 1. The dictionary {1, 3} highlights the pattern (1, ∗, 1, ∗), which also

appears in another message, (1, 1, 1, 1), that is played in state N . It turns out that

this feature of the sender’s behavior in Example 1 is weakly sub-optimal. That is,

when solving the sender’s problem, we can restrict attention to strategies that satisfy

the following property: for every persuasive report (m,D) that is played in state N ,

D highlights a pattern that does not appear in any other message sent in that state.

This property will facilitate the proof of our main result.

Fix a sender’s strategy σ. Let Bσ be the set of reports (m,D) that are played

with positive probability in θ = N and persuade the receiver. That is,

Bσ =

{
(m,D) | σ(m,D | θ = N) > 0 and ρσ(m,D) ≥ 1− π

π

}
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Proposition 1 For every sender strategy σ, there exists a strategy σ′ with the fol-

lowing properties: (i) the probability that the receiver chooses y in each state is

at least as high as under σ, and (ii) m′D 6= mD for every pair of distinct reports

(m,D), (m′, D′) ∈ Bσ′.

Our proof employs a two-stage algorithm. In the first stage, we replace “redun-

dant dictionaries”. We list the reports in Bσ according to an arbitrary ordering.

Then, starting with the report (m,D) at the top of the ordering, we identify mes-

sages m′ down the list such that m′D = mD. We then replace the dictionaries that

accompany these messages with D. Setting aside the top report and all the reports

that were subjected to this replacement, we continue in the same manner with the

remaining reports. At the end of the algorithm’s first stage, Bσ is partitioned such

that each cell consists of reports (m,D) with the same D and mD. In the second

stage, we replace “redundant messages”. We go up the list of reports and modify

messages only, such that each cell in the above partition ends up consisting of a sin-

gle report. (We may perform additional changes to the dictionaries that accompany

messages in state Y , to ensure that probability that a = y in this state does not go

down.)

Our subsequent analysis makes use of the following concept.

Definition 1 For a given a strategy σ, a message m′ is said to justify the report

(m,D) ∈ Bσ if: (i) σ(m′ | θ = Y ) > 0, and (ii) m′D = mD.

In other words, what helps persuade the receiver to choose y when he gets the

report (m,D) is that the pattern highlighted by D appears in some messages m′ that

are played with sufficient frequency in state Y .

Proposition ?? is particularly useful because it places restrictions on the family

of reports that any given message can justify. This is captured by the following

corollaries.

Corollary 1 Let (m,D), (m′, D′) ∈ Bσ. If there is a message m∗ that justifies both

(m,D) and (m′, D′), then D 6⊆ D′ and D′ 6⊆ D.
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Corollary 2 The number of reports that any message justifies is at most
(

K
bK/2c

)
.

Corollary ?? says that the set of dictionaries that appear in reports that are jus-

tified by a given message m∗ constitutes an anti-chain - i.e., no dictionary in this set

contains another. Corollary ?? then invokes Sperner’s Theorem. This fundamental

result in extremal combinatorics states that the largest anti-chain over {1, 2, . . . , K}
is the collection of all subsets of size bK/2c.

We are now ready to state the main result of this section. The result makes use

of the following notation, which will also serve us in later sections:

S =

(
K

bK/2c

)
B∗ =

{
(m,D) | mk = 1(k ∈ D) ; |D| =

⌊
K

2

⌋}
Note that |B∗| = S.

Theorem 1 The maximal probability of persuasion is min{1, π(1 + S)}. It can be

implemented by the following strategy:

σ((1, . . . , 1), D | θ = Y ) =
1

S
for every D for which |D| =

⌊
K

2

⌋
σ(m,D | θ = N) = min{ 1

S
,

π

1− π
} for every (m,D) ∈ B∗

σ((0, . . . , 0), D | θ = N) = max{0, 1

S
− π

1− π
} for every D for which |D| =

⌊
K

2

⌋
Furthermore, when π ≥ 1/(1 + S), this strategy is time-consistent and attains full

persuasion.

The strategy that implements the maximal probability of persuasion generalizes

Example 2. In state Y , the sender sends a single message, which we conveniently

select to be (1, ..., 1). Each of the components of this message can therefore be

regarded as “good news”. What happens in state N depends on the relation between

17



the prior π and the number S, which depends on K. Suppose K is even, for the

sake of the argument. If π ≥ 1/(1 + S), the sender randomizes uniformly over B∗,
which is the set of all reports in which the message consists of an equal number of

1’s (“good news”) and 0’s (“bad news”), and the dictionary interprets only the good

news. If π < 1/(1 +S), each of these reports is played with probability 1/S, and the

remaining probability is allocated to the message (0, ..., 0) - i.e. all “bad news”.

Unlike the case of the “mixed” messages in B∗, there is considerable freedom in se-

lecting the dictionaries that accompany the “pure” messages (1, ..., 1) and (0, ..., 0).

Our construction has the property that (σ(D | m = (1, ..., 1)) and (σ(D | m =

(0, ..., 0)) are both the same as the distribution over D conditional on B∗. Con-

sequently, the strategy satisfies the independence property D ⊥ θ (on top of the

property D ⊥ θ | m that was established by Lemma ??). Thus, even if the receiver

attempted to draw inferences from D, he would be unable to learn anything about

θ from the realization of D itself.

As to the question of how large dictionaries should be (discussed in the context

of Example 2), note that the sender’s optimal strategy makes use of dictionaries that

interprets exactly half of the message components.

Let us examine the receiver’s reaction to various realized reports under the

sender’s strategy. When he confronts the message (0, ..., 0), each of the dictionaries

that accompany it interprets some “bad news”, and the receiver learns that θ = N

for sure. In contrast, every other realization of (m,D) satisfies mk = 1 for all k ∈ D.

The receiver thus learns that the probability of mD conditional on θ = Y is one, while

the probability of mD conditional on θ = N is min{1/S, π/(1 − π)}. The receiver’s

subjective likelihood ratio of (m,D) is

ρσ(m,D) =
1

min{ 1
S
, π

1−π}

which is, by definition, weakly above (1− π)/π and therefore persuasive.

A receiver with rational expectations would realize that the “mixed” messages in

B∗ only occur in state N . However, our receiver can only draw inferences from mes-

sage components that the sender interprets for him. Since the sender only interprets
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persuasive patterns, he manages to convey a false sense that the mixed message is

actually good news. Moreover, as K gets large, each (m,D) ∈ B∗ identifies a distinct

pattern that becomes increasingly rare in state N while occurring with probability

one in state Y . Therefore, even when π is quite small and even if B∗ is played with

high probability in state N , the receiver will be persuaded by the reports in B∗.
When π ≥ 1/(1 + S), the sender can attain full persuasion. This means that the

sender’s strategy is time-consistent : Since the receiver plays a = y after every report,

the sender would not want to deviate from any realized report even if he could. In

other words, the assumption that the sender has commitment power is not required

in this range of parameters.

Theorem ?? assumes an unrestricted domain of feasible dictionaries. The proof

of Theorem ?? makes the result easily extendible to restricted domains.

Remark 2 Let D be the set of feasible dictionaries. Let D∗ ⊆ D be an anti-chain,

such that every D′ ⊆ D with |D′| > |D∗| is not an anti-chain. Then, the maximal

probability of persuasion is min{1, π(1 + |D∗|)}.

In particular, when the feasible set of dictionaries is the set of all singletons, the

maximal probability of persuasion is max{1, π(1 + K)}. This suggests that if the

sender were free to determine the dimensionality of the message space, he could

trivially attain full persuasion with singleton dictionaries. However, K should be

interpreted as an exogenous constraint: there is a limited set of variables about

which statistical data is available. For instance, if message components correspond

to non-verbal aspects of the sender’s communication, only few of those aspects are

typically documented (it is unlikely to have data about the sender’s pupil dilation,

blood pressure or EEG measurements). Similarly, if the sender is a political party

and message components correspond to different party members, only the messages

of a few senior members are likely to be documented.

19



4 Suspicion of Selective Interpretations

In our discussion of Theorem ??, we raised the concern that the receiver may try

to infer the state from the dictionary the sender provides. The sender strategy we

presented in the theorem’s statement addressed this concern, in the sense that it

satisfied the independence property D ⊥ θ. However, one may argue that even

this feature would not quell the receiver’s suspicion regarding the selectiveness of

the provided dictionary - i.e., some message components are not interpreted. The

receiver may view the mere neglect of message components as a signal that the state

is N (even though the state-contingent distribution over dictionaries offers no basis

for this suspicion).

While intuitive, this argument is actually unconventional. The receiver draws

a correct Bayesian inference from the message components for which he gets data.

In the absence of additional data on how dictionaries and messages are jointly dis-

tributed, there is nothing to guide the receiver on how to modify this Bayesian

posterior. Any assertion that he should ignore his available data and conclude that

the state must be N simply because he was given selective data by a strategic sender

is merely an additional assumption. By the same token, one could argue that in the

partially informative “interval equilibria” in ?, the receiver should ignore his statis-

tical knowledge of the sender’s behavior and trust nothing the sender says simply

because he is known to lie or withhold information.4

This methodological discussion notwithstanding, we now address the possibility

that receivers may be suspicious of selective interpretations by proposing two no-

tions of robustness to this suspicion. In both cases, we show that full persuasion is

attainable for a large range of parameters π,K, albeit smaller than in Theorem ??.

4If we interpret the sender’s strategy as recommending an action or communicating the interval
to which the state belongs, this is a case of witholding information. If we interpret his strategy as
some mixture over states that belong to the interval, then his message misrepresents the state with
probability one.
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4.1 Benevolent Selectiveness

Even if the sender’s interests were fully aligned with the receiver’s, it would be

reasonable for him to refrain from interpreting all message components and provide

a selective dictionary. To see why, let K = 2 and suppose that the message strategy

is as follows: m = (1, 1) with certainty in state Y , whereas m = (0, 0) and m = (1, 1)

with equal probability in state N . Because m1 and m2 are fully correlated, the small

dictionary {1} induces the same receiver beliefs as the full dictionary {1, 2}. If the

smaller dictionary is less costly to provide, a benevolent sender would use it (recall

that D must be non-empty). In this case, the receiver would not be suspicious of the

sender simply for providing a small dictionary.

To capture this idea, we modify our model by introducing an intrinsic preference

for smaller dictionaries. Specifically, we assume that the sender has lexicographic

preferences. His primary criterion is to maximize the probability that the receiver

plays y. However, if he can induce the same receiver behavior with two alternative

dictionaries D and D′ such that |D′| < |D|, he prefers D′ to D. In addition, we

impose a refinement of the set of permissible sender strategies, which is based on

a hypothetical benevolent sender. Such a sender has lexicographic preferences, too:

His primary criterion is to maximize the receiver’s payoff; his secondary criterion is

to minimize |D|. Refer to this hypothetical sender as type H; whereas the actual

sender will be referred to as type A.

Definition 2 The strategy (σ(m,D | θ)) is robust if it satisfies the following prop-

erties:

(i) D ⊥ θ and D ⊥ θ | m.

(ii) Given (σ(m | θ)), the interpretation strategy (σ(D | m)) prescribes, for each m,

lexicographically optimal dictionaries for a type-A sender.

(iii) Given (σ(m | θ)), there is an interpretation strategy (σ′(D | m)) that prescribes,

for each m, lexicographically optimal dictionaries for a type-H sender, such that

σ′(D) ≡ σ(D).

Condition (i) imposes the independence requirements we have already encoun-

21



tered in Section 3. Condition (ii) was redundant in Section 3 because we focused on

optimal sender strategies anyhow. Here, it also means that the sender always uses

the smallest dictionary that attains a given outcome.

As to condition (iii), our motivation is the following. Throughout the paper, we

have assumed that the receiver lacks any data about the distribution of D. However,

imagine now that the receiver has access to an independent dataset that enables him

to learn the marginal distribution of dictionaries. (By condition (i), this is the same

as learning the distribution of D at each state.) He can therefore see that the use of

selective dictionaries is not a fluke, but an event that occurs with positive frequency.

Condition (iii) requires further that if the dictionaries were chosen by a benevolent

sender of type H, their marginal distribution could be the same. From this point of

view, the receiver is less likely to be suspicious of selective interpretations, because

he can reconcile their observed statistical pattern with the existence of a benevolent

interpreter having a lexicographically secondary preference for small dictionaries.

In what follows, we conveniently assume that the receiver always breaks ties in

favor of a type-A sender.

Proposition 2 Full persuasion is attainable with a robust strategy if and only if

π ≥ 1/(1 +K).

Thus, requiring the sender’s strategy to be robust in the sense of Definition ??

restricts his ability to attain full persuasion, because it effectively eliminates the use

of non-singleton dictionaries. Example 2 in Section 3 illustrates a robust strategy

that achieves full persuasion for K = 3.

4.2 Full-Coverage Dictionaries

In this subsection we use a different line of attack to address the selective-interpretation

problem. Here, we assume that the sender is obliged to present statistical data about

all message components. However, he is allowed to present the data in two separate

chunks. As before, a dictionary is represented by a non-empty subset D ⊆ {1, ..., K}.
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Yet this now means that the sender provides two datasets, formalized as two col-

lections of conditional probabilities: (Pr(mD | θ)) as well as the (Pr(mDc | θ)),
where Dc = {1, ..., K}\D. We refer to this form of data provision as full-coverage

dictionaries.

How does the receiver extrapolate a belief from the two datasets? We make the

mild assumption that his subjective belief P̃r(m,D | θ) satisfies

Pr(mD | θ) · Pr(mDc | θ) ≤ P̃r(m,D | θ) ≤ max{Pr(mD | θ),Pr(mDc | θ)} (4)

The upper bound given by the R.H.S reflects an assumption that mDc is uninforma-

tive of θ given mD, or vice versa - i.e., the two parts of m are perfectly correlated

given the state. The lower bound given by the L.H.S reflects an assumption that

these two parts are independent conditional on the state.

Proposition 3 Let K > 2. Then, the sender can attain full persuasion with full-

coverage dictionaries whenever

π ≥ 4

4 + S

Thus, although the sender is forced to provide data about all message compo-

nents, his ability to present the data in two “installments” enables him to attain

full persuasion for a large range of parameters. Moreover, the strategy we construct

in the proof satisfies the familiar independence properties D ⊥ θ and D ⊥ θ | m.

Finally, the result relies on the relatively weak condition (??) on how the receiver

extrapolates a belief from the two separate datasets he receives. Note that Proposi-

tion ?? only provides a sufficient condition for full persuasion. Finding a necessary

condition is an open problem.

To illustrate the basic idea of the construction, let K = 4. In state Y , there is per-

fect correlation among all message components. The objective correlation is weaker

in state N . Specifically, only the messages (1, 1, 1, 1) and (0, 0, 0, 0) are played in Y ,

whereas all messages containing exactly two 1’s are played in N . Thus, patterns like

(∗, 1, 1, ∗) or (0, ∗, ∗, 0) are considerably more likely in Y than in N . By accompa-
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nying the message (0, 1, 1, 0) with two datasets that separately highlight these two

patterns, the sender can manipulate the receiver’s likelihood ratio.

This subsection also illustrates that the form a dictionary can affect the sender’s

ability to persuade the receiver. This reinforces a point we made in Section 2:

Our concept of “selective interpretation” is richer than what the “selective message

redaction” metaphor might suggest.

5 Richer Dictionaries

In this section we follow up on the final paragraph of the previous section. So far, we

have assumed that dictionaries provide data about the joint distribution of a collec-

tion of message components conditional on θ. However, statistical data can involve

other combinations of marginal and conditional distributions, with implications for

the sender’s ability to persuade the receiver.

Example 3

Let K = 2. Let p denote the joint distribution over (θ,m) that is induced by the

prior over θ and the sender’s strategy. There are three feasible dictionaries: D1 gives

access to the conditional distribution (p(m1 | θ)); D2 gives access to the conditional

distribution (p(m2 | θ)); and D3 gives access to the marginal distribution (p(m1)) as

well as the conditional distribution (p(m2 | θ,m1)). It does not contain data about

how m1 varies with θ.

The dictionaries D1 and D2 are familiar from Section 2; we apply the same

belief-formation rule (??) for the receiver as in Section 2. However, D3 is different

because it provides two datasets. We assume that the receiver extrapolates a belief

using the maximum entropy principle - i.e., his belief over (θ,m1,m2) maximizes

(Shannon) entropy subject to the constraint that it is consistent with the marginal

and conditional distributions he has learned. This principle has a rich tradition in

AI (dating back to ?). ? has recently applied it in a similar context of games with

players who extrapolate a belief from partial data. In the model of Section 4.2, the

principle induces the L.H.S of (??). In the present context, the receiver’s subjective
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distribution over messages conditional on the state, given D3, is P̃r(m1,m2 | θ) =

p(m1)p(m2 | θ,m1).

Consider the following sender strategy:

State Y State N

m D Pr(m,D | Y )

(1, 1) D3 ε

(0, 0) D2 1− ε

m D Pr(m,D | Y )

(1, 1) D3 α

(1, 0) D2 β

(0, 1) D1 1− α− β

We now show that for every π > 1
10

(
5−
√

5
)
, there exist α, β, ε ∈ (0, 1) such

that the sender attains full persuasion with the above strategy.

Let us calculate the receiver’s likelihood ratio for each report. Consider the report

((1, 1), D3). Our definition of the receiver’s posterior belief given the dictionary D3

implies the following likelihood ratio:

p(m1 = 1)p(m2 = 1 | θ = Y,m1 = 1)

p(m1 = 1)p(m2 = 1 | θ = N,m1 = 1)
=

1
α

α+β

=
α + β

α

Next, consider the reports ((0, 0), D2) and ((1, 0), D2). Since D2 only interprets m2,

both reports induce the same subjective likelihood ratio:

p(m2 = 0 | θ = Y )

p(m2 = 0 | θ = N)
=

1− ε
β

Finally, consider the report (0, D1). Since D1 only interprets m1, this report induces

the subjective likelihood ratio

p(m1 = 0 | θ = Y )

p(m1 = 0 | θ = N)
=

1− ε
1− α− β

In order to attain full persuasion, the three likelihood ratios must all be weakly

greater than (1 − π)/π. A straightforward calculation establishes that whenever
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π > 1
10

(
5−
√

5
)
, we can find α, β, ε that will satisfy these three inequalities. In

particular, ε will be arbitrarily small. �

Compare this finding with the result of Section 3. Given our original specification

of dictionaries, the sender can attain full persuasion if and only if π ≥ 1
3
. This is

higher than the threshold we obtained in Example 3. The general problem of optimal

persuasion under the broader definition of dictionaries as collections of marginal and

conditional distributions remains open.

6 An Adversarial Sender

In this section we revisit the basic model of Section 2 and modify the sender’s pref-

erences, such that the sender-receiver interaction becomes a zero-sum game: In state

Y (N), the sender’s payoff is 1 if the receiver plays n (y) and −1 if he plays y

(n). Rescale the receiver’s payoff function to be minus the sender’s payoff. In what

follows, we assume that the receiver always breaks ties in the sender’s favor.

Consider the rational-expectations benchmark in this case. On one hand, the

receiver can guarantee an expected payoff of at least π ·(−1)+(1−π) ·1 = 1−2π > 0

by always playing n. On the other hand, the sender can force this expected payoff

on the receiver by sending the same report in all states. Therefore, by the Minimax

Theorem, the sender’s equilibrium payoff in the rational-expectations benchmark is

exactly 2π − 1 < 0. In contrast, the following result establishes that in our model,

the sender can attain the maximal possible payoff of 1 under the same condition as

in Theorem ??, whenever K ≥ 3.

Proposition 4 Let K ≥ 3. Then, whenever π ≥ 1/(1 + S), there is a strategy for

the sender that induces a payoff of 1 with certainty.

Proof. Construct the following strategy. Let mk ∈ {0, 1} for every k. In state

Y , the sender plays m∗ = (1, 1, ..., 1) with probability one and accompanies this

message with the dictionary D = {k} for some arbitrary k. In state N , the sender

assigns probability (1 − γ)/S to every (m,D) satisfying mk = 1 for exactly bK/2c
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components k and D = {k | mk = 1}, where γ is selected to be the unique solution

of the equation
1

γ + 1
S

(1− γ)
=

1− π
π

The sender assigns the remaining probability γ to the message m∗ and accompanies

it with an arbitrary dictionary of size bK/2c. This is a feasible strategy whenever

γ ∈ [0, 1] or equivalently π ∈
[
1/(1 + S), 1

2

]
.

By construction, ρ(m,D) = (1−π)/π for every (m,D) that is played in state N ,

whereas

ρ(m∗, {k}) =
1

γ + 1
2
(1− γ)

<
1− π
π

As a result, the receiver plays y in state N and n in state Y , generating a payoff of

1 for the sender.

Thus, strategic interpretation can attain the sender’s first-best even under max-

imal conflict of interests with the receiver. As in Section 3, this means that the

commitment assumption is unnecessary.

However, the strategy we employed in the proof of this result violates two inde-

pendence properties that we emphasized in Section 3: D ⊥ θ and D ⊥ θ | m. Let us

now see how to fix this limitation when K ≥ 3 and π ≥ 1/K. As before, mk ∈ {0, 1}
for every k. Let ek denote the message m for which mk = 1 and ml = 0 for all

l 6= k. For every m, let −m denote the message m′ for which m′k = 1−mk for every

k. Now consider the following sender strategy. In state Y , he randomizes uniformly

over all (m,D) such that m = −ek and D = {k} for some k = 1, ..., K. In state N ,

he randomizes uniformly over all (m,D) for which m = ek and D = {k} for some

k = 1, ...K. It is easy to verify that ρ(m,D) ≥ (1 − π)/π for every (m,D) that is

played in N , while ρ(m,D) ≤ (1−π)/π for every (m,D) that is played in Y , as long

as π ≥ 1/K.

The following result expands the set of parameters for which the sender’s first-

best is attainable by a strategy that satisfies the two desiderata, making use of a

more elaborate strategy.
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Proposition 5 Let K = 2L for some integer L > 1. Then, there is a strategy that

satisfies D ⊥ θ | m and D ⊥ θ and attains the sender’s first-best whenever

π ≥ 1

1 +
(

L
bL/2c

)
This result provides a sufficient condition for attaining the sender’s first-best

with a strategy that satisfies the two desiderata. The following table illustrates the

strategy for K = 4 (the strategy induces the sender-optimal action in each state, as

long as π ≥ 1
3
):

State Y State N

m D Pr(m,D | Y )

0011 {1} 0.25

0011 {2} 0.25

1100 {3} 0.25

1100 {4} 0.25

m D Pr(m,D | Y )

1000 {1} 0.25

0100 {2} 0.25

0010 {3} 0.25

0001 {4} 0.25

Finding a tight necessary condition remains an open problem.

7 Related Literature

Our paper joins a small literature on strategic communication that departs from the

standard paradigm of rational expectations under a common prior. ? study a sender-

receiver model in which the receiver exhibits “correlation neglect”. Specifically, the

sender submits multiple simultaneous signals and the receiver erroneously treats

them as being conditionally independent. This belief distortion is related to the

model of Section 4.2. In that variant on our basic model, the receiver does not learn

the state-contingent correlation between mD and mDc . We allowed the receiver to

hold a variety of beliefs regarding this correlation, including the possibility that they

are conditionally independent, as in ?. The reason that unlike ?, the sender in our

model can attain full persuasion is that he can tailor the data he gives the receiver
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to the submitted message.

? consider a receiver (a statistician) who estimates a parameter based on a ran-

dom sample whose size is strategically determined by an informed sender. As in our

model, the receiver has boundedly rational expectations in the sense that he makes

no inferences from the sample size he gets. ? examine a persuasion game in which

both parties observe a signal that is drawn from a state-dependent distribution.

The receiver’s non-rational expectations are captured by the assumption that the

sender knows the signal distribution, while the receiver believes in whatever signal

distribution the sender reports. ? analyses a model of persuasion with non-common

priors, where the sender can influence the receiver’s prior belief. In particular, when

the receiver observes a message that has zero probability according to his prior, he

abandons it in favor of a new belief. We, on the other hand, maintain the com-

mon prior assumption but allow the sender to strategically determine the receiver’s

understanding of the equilibrium distribution.5

Our basic model of dictionaries and how the receiver reacts to them is closely

related to the concept of analogy-based expectations equilibrium (ABEE) due to

?. According to this concept, players form coarse beliefs that are measurable with

respect to an “analogy partition” of the possible states of the world. Our basic

notion of a dictionary D as a subset of components of multi-dimensional messages

corresponds to an analogy partition. A cell in the partition consists of all messages

m with the same mD. This version of the model can thus be viewed as an extensive

game in which the sender chooses the message as well as the receiver’s analogy

partition (from a restricted domain of feasible partitions), and the solution concept

is ABEE. (However, the variants of Sections 4.2 and 5 cannot be embedded in the

ABEE framework.) This description raises a natural question: How well can the

sender perform under an unrestricted domain of feasible analogy partitions? For the

sake of brevity, we do not analyze this question here but in a separate note (?).

? modify the Crawford-Sobel model by assuming that the receiver bundles states

5Independently of our paper, ? considers a persuasion game with one sender who sends private
messages to multiple rational receivers. The sender wishes to persuade at least m receivers in order
to attain his objective. When m = 1, the sender’s problem is essentially the same as the sender’s
problem in our model when he is restricted to singleton dictionaries.
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into analogy classes according to an interval analogy partition. They show that cer-

tain analogy partitions give rise to ABEE with partial information transmission, even

when the unique equilibrium under rational expectations is the babbling equilibrium.

? analyze cheap-talk games where the sender aggregates the receiver’s equilibrium

strategy into analogy classes. In a similar vein, ? study a cheap-talk game where the

receiver uses a coarse analogy partition. In contrast to our model, the partitions in

these papers are exogenous. Endogenous partitions arise in ?, where auction designer

controls bidders’ learning feedback regarding the distribution of past bids.

?? study persuasion when the sender is boundedly rational in the sense of having

limited ability to misrepresent the state. They show that a rational receiver can

construct intricate disclosure mechanisms that take advantage of this element of

the sender’s bounded rationality. ? and ? study cheap talk when the receiver

has uncertain ability to distinguish between distinct messages. In contrast to our

framework, receivers in these papers have rational expectations and the sender is

unable to influence their interpretative abilities.

Finally, ? introduces a general framework for static games, in which the de-

scription of players’ types includes “archival access”, defined as selective data about

correlations among the variables that constitute the state of the world. Dictionaries

in our model are a form of archival access. Indeed, our model is an example of how

to extend the formalism of ? to sequential games. Our approach to modeling the

receiver’s partial understanding of the sender’s strategy is also related to ?, where a

“problem solver” has partial understanding of the equilibrium: He observes a sum-

mary statistic of the other players’ strategies, and then best-replies to a uniform

belief over all the strategy profiles that are consistent with this statistic.

8 Conclusion

Conventional models of strategic communication focus on the role of selective trans-

mission of information. And yet, real-life communication also involves strategic in-

terpretation of information. This paper formalized this aspect as selective provision

of statistical data regarding the mapping from states to messages, under the assump-
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tion that this data is the sole basis for the receiver’s inferences. In a pure persuasion

model, we showed that strategic interpretation significantly enhances the sender’s

ability to persuade the receiver - to the point that full persuasion is sometimes pos-

sible, in sharp contrast to the standard rational-expectations benchmark.

From a broader perspective, the modeling innovation in this paper is the idea that

one player can influence another player’s understanding of equilibrium regularities,

by affecting the statistical data regarding the equilibrium distribution that the latter

player has at his disposal (his “archival access”, to use the terminology of ?) - just as

in a standard extensive-form game, one player’s information set can be determined

by prior moves of other players. Exploring this idea outside the context of strategic

communication is an interesting problem for future research.

Appendix: Proofs

Proposition ??

Let σ be an optimal sender strategy. We now change it into a new strategy that

satisfies the property in the statement of the proposition and does not lower the

probability of persuasion. We proceed in two stages.

Stage 1. Construct a partition {T1, ..., TL} of Bσ as follows. For every l = 1, 2, ...,

select an arbitrary report (ml, Dl) ∈ Bσ − ∪h<lTh, and define

Tl = {(m,D) ∈ Bσ − ∪h<lTh | mDl = ml
Dl}

Modify σ as follows. For each l = 1, ..., L and any (m,D) ∈ Tl with D 6= Dl,

shift the probability of (m,D), conditional on θ = N, to the report (m,Dl). By

the definition of Bσ, both (m,D) and (ml, Dl) persuade the receiver. Perform the

following additional modification. By the definition of Bσ, there must be a message

m that justifies (ml, Dl). That is, mDl = ml
Dl , and there is a dictionary D such

that (m,D) is played with positive probability in Y . If the receiver was persuaded

by (m,D) in the original strategy, then shift the probability of every such (m,D)
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conditional on Y to (m,Dl). By construction, mDl = ml
Dl . Therefore, (m,Dl)

persuades the receiver. And since the deviation does not affect the distribution over

messages conditional on any state, it does not change the receiver’s response to any

other realized report.

Stage 2. Start this stage by shifting the probability of any (m,DL) ∈ TL con-

ditional on θ = N to some report in TL, denoted (m̃L, DL). This effectively trans-

forms TL into a singleton {(m̃L, DL)}. By the construction of the first phase, every

(m,DL) ∈ TL satisfies mDL = m̃L
DL . Therefore, the deviation does not change the

receiver’s subjective likelihood ratio of (m̃L, DL), such that he continues to be per-

suaded by this report. Moreover, by the construction of the first stage, for every

l < L and every (m,Dl) ∈ Tl, mDl 6= m̃L
Dl . Therefore, the deviation does not affect

the receiver’s subjective likelihood ratio of (m,Dl) ∈ Tl for all l < L.

Now suppose that for some l < L, we have transformed the cells Tl+1, ..., TL

into singletons {(m̃l+1, Dl+1)}, ..., {(m̃L, DL)} in such a manner. Suppose that there

is some (m,Dl) ∈ Tl such that mDh 6= m̃h
Dh for every h > l. Rename this re-

port (m̃l, Dl), and shift the probability of any (m,Dl) conditional on N to (m̃l, Dl).

Alternatively, suppose that for every (m,Dl) ∈ Tl there is some h > l such that

mDh = m̃h
Dh . For any such (m,Dl), shift its probability conditional on N to one of

the reports (m̃h, Dh) satisfying m̃h
Dh = mDh . By the same logic as in the previous

paragraph, the deviation in these two alternative cases does not affect the receiver’s

subjective likelihood ratio of any report.

At the end of the second stage, Bσ has been effectively transformed into the

set {(m̃1, D1)}, ..., {(m̃L, DL)}, which by construction satisfies the property in the

lemma’s statement.

In the next two corollaries, we restrict attention to sender strategies σ that satisfy

Proposition ??.

Corollary ??

Assume, by contradiction, that there exist (m,D), (m′, D′) ∈ Bσ that are justified by

a message m∗ and D ⊆ D′. This means that m∗D = mD and m∗D′ = m′D′ . Therefore,
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mD∩D′ = m∗D∩D′ = m′D∩D′ . But D ∩ D′ = D, which implies that mD = m′D, in

contradiction to Proposition ??.

Corollary ??

By Corollary ??, if m∗ justifies two reports (m,D) and (m′, D′), then D and D′

do not contain one another. It follows that the set of all dictionaries that are part

of reports justified by m∗ constitutes an anti-chain - i.e. a collection of subsets of

{1, ..., K} that do not contain one another. By Sperner’s Theorem, the maximal size

of such a collection is S.

Theorem ??

To derive an upper bound on the probability of persuasion, we restrict attention to

sender strategies σ that satisfy Proposition ??. We begin with a basic observation

that simplifies notation and the construction of the sender’s strategy that maximizes

the probability of persuasion in the N event. Fix a sender’ strategy.

Observation 1 There is no loss of generality in restricting attention to strategies

with the following property: If the reports (m,D) ∈ Bσ and (m′, D′) 6∈ Bσ are both

realized with positive probability in the N state under σ, then m′D 6= mD.

Proof. Assume the contrary - i.e. m′D = mD. Suppose the sender deviates to

a strategy that replaces (m′, D′) with (m′, D) in the N state, but otherwise coin-

cides with σ. By definition of Bσ, (m′, D′) does not persuade the receiver prior to

the deviation. And since the deviation does not affect the distribution of messages

conditional on any state, it does not change the response of the receiver to any re-

port (m′′, D′′) 6= (m′, D′). Therefore, the deviation weakly raises the probability of

persuasion.

Henceforth, we will restrict attention to strategies that satisfy Observation ??.

In addition, whenever we refer to a generic report in the N state, we mean a report

in Bσ.

Lemma 2 Without loss of generality, ρσ(m,D) is the same for all (m,D) ∈ Bσ.
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Proof. Let (m,D) and (m̄, D̄) be two reports in Bσ such that ρσ(m,D) ≤ ρσ(m,D) ≤
ρσ(m̄, D̄) for each (m,D) ∈ Bσ. Assume that ρσ(m,D) < ρσ(m̄, D̄). Suppose that

the sender deviates from σ to a strategy σ̂ that shifts a weight of ε > 0 from (m,D)

to (m̄, D̄) in state N . By Proposition ??, m̄D 6= mD and mD̄ 6= m̄D̄. Therefore,

ρσ̂(m,D) =

∑
m|mD=mD

σ(m | θ = Y )∑
m|mD=mD

σ(m | θ = N)− ε
> ρσ(m,D) ≥ 1− π

π
(5)

ρσ̂(m̄, D̄) =

∑
m|mD̄=m̄D̄

σ(m | θ = Y )∑
m|mD̄=m̄D̄

σ(m | θ = N) + ε
< ρσ(m̄, D̄)

By our initial assumption, ρσ̂(m,D) < ρσ̂(m̄, D̄) for sufficiently small ε. By (??),

this implies that ρσ̂(m̄, D̄) > 1−π
π

. By Proposition ?? ρσ̂(m,D) = ρσ(m,D) for every

(m,D) ∈ Bσ−{(m,D), (m̄, D̄)}. Since the deviation does not involve reports outside

Bσ, it cannot alter the probability of persuading the receiver for messages outside of

Bσ. It follows that the deviation does not alter the probability of persuasion.

Therefore, we can assume without loss of generality that ρσ(m,D) is the same

for all (m,D) ∈ Bσ.

The remainder of the proof computes an upper bound on the probability of per-

suasion. Let σ be a sender strategy. Let MY = {m | σ(m | θ = Y ) > 0}. Denote

I = |MY |. Let C = {C1, · · · , CL} be a partition of Bσ, where each cell Cl is defined

by the (distinct) subset of messages J(l) ⊆ MY that justify every report in the

cell. Therefore, L ≤ 2I − 1. For the final piece of notation we let g(l) =| Cl | and

β(l) =
∑

(m,D)∈Cl
σ(m,D | θ = N).

Consider some (m,D) ∈ Cl ⊆ Bσ and a message m′ ∈ J(l). Since m′ justifies

(m,D), m′D = mD. By Proposition ??, there cannot be a dictionary D′ such that

(m′, D′) ∈ Bσ. It follows that for any l = 1, ..., L, the receiver’s subjective likelihood

ratio of a report (m,D) ∈ Cl ⊆ Bσ is∑
m′∈J(l) σ(m′ | θ = Y )

σ(m,D | θ = N)
≥ 1− π

π
. (6)

From lemma ?? we have ρ(m,D) = ρ(m′, D′) for every (m,D), (m′D′) ∈ Bσ. So
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in particular for every (m,D), (m′D′) ∈ Cl we have σ(m,D) = σ(m′, D′) = β(l)
g(l)

. We

can therefore rewrite inequality ?? as:∑
m′∈J(l) σ(m′ | θ = Y )

β(l)
g(l)

≥ 1− π
π

, (7)

Solving for β(l) in (??) and summing over l give us

L∑
l=1

β(l) ≤
L∑
l=1

g(l)
∑

m′∈J(l)

[
π

1− π
σ(m′ | θ = Y )

]

=
∑

m′∈M∗

[
π

1− π
σ(m′ | θ = Y )

] ∑
l∈J−1(m′)

g(l)

where the second equality follows from changing the order of summation. By defini-

tion,
∑

l∈J−1(m′) g(l) is the number of reports that are justified by m′. By Corollary

??, this number is at most S. Therefore,

L∑
l=1

β(l) ≤
∑

m′∈M∗

[
π

1− π
σ(m′ | θ = Y )

]
S (8)

=
π

1− π
S

where the final equality follows since
∑

m′∈M∗ σ(m′ | θ = Y ) = 1. Since the receiver

can at most be persuaded with probability one, the upper bound on the probability

of persuasion in the N state is

min

{
π

1− π
S, 1

}
.

Verifying that the strategy described in the statement of Theorem ?? implements

the upper bound is straightforward. This completes the proof.
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Proposition ??

Sufficiency. Use the notation ek for the binary K-vector for which mk = 1 and ml = 0

for all l 6= k. Consider the following strategy: When θ = Y , play m = (1, ..., 1) with

probability one and randomize uniformly over all D = {k}, k = 1, ..., K. When

θ = N , randomize uniformly over all reports (m,D) = (ek, {k}), k = 1, ..., K. It

is easy to see that ρ(m,D) = K for every (m,D) in the support of this strategy.

Therefore, when π ≥ 1/(1 + K), the receiver always plays a = y. Let us now verify

that the strategy is robust. First, by construction, the distribution over D is state-

independent, thus satisfying part (i) in the definition of robustness. Second, given

the message strategy, a type-H interpreter can attain his first-best with the following

interpretation strategy: When m = (1, ..., 1), he mimics the given interpretation

strategy; and when m = ek, he plays D = {k + 1 modK}, thus inducing a = n with

the smallest possible dictionary.

Necessity. Suppose that σ is a robust strategy that attains full persuasion. Let D
denote the set of all non-singleton dictionaries that are played with positive probabil-

ity under σ. The proof will proceed stepwise, after making the following preliminary

observation.

Observation 2 Fix a message strategy (σ(m | θ)) and consider two dictionaries

D,D′ such that |D| 6= |D′|. Then, for any realized m, neither sender type is indif-

ferent between D and D′.

This follows immediately from the lexicographic preferences.

Step 1: Pr(D) < 1.

Assume the contrary - i.e., no singleton dictionary is played in equilibrium. Consider

a message realization m for which Pr(θ = Y | m) < 1
2

under σ. Since π < 1
2
, there

must exist such m. By the full-persuasion assumption, any D for which σ(D | m) > 0

satisfies ρ(m,D) ≥ (1 − π)/π. By condition (ii) in the definition of robustness, it

must be the case that

ρ(m, {k}) < 1− π
π

(9)
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for every k = 1, ..., K - otherwise, the type-A sender would use a singleton dictionary

at m. It follows from (??) that a type-H interpreter would necessarily prefer to use a

singleton dictionary at m. By condition (iii) in the definition of robustness, singleton

dictionaries must be played with positive probability under σ, a contradiction. �

Step 2: Suppose |D| = 1 for some report (m,D) that is played with positive probabil-

ity under σ. Then, |D′| = 1 for every (m′, D′) that is played with positive probability

under σ, such that m′D = mD.

Assume the contrary - i.e. there exist reports (m,D) and (m′, D′) that are played

with positive probability under σ, such that |D| = 1, |D′| > 1 and m′D = mD. By

definition, ρ(m′, D) = ρ(m,D). Therefore, the realization (m′, D′) is inconsistent

with condition (ii) in the definition of robustness. �

By Observation ??, we can partition the set of equilibrium messages into two

classes: M0 is the set of messages that are accompanied by singleton dictionaries,

whereas M1 is the set of messages that are accompanied by non-singleton dictionaries.

Recall that

Pr(mD | θ) =
∑

(m′,D′)|m′D=mD

σ(m′, D′ | θ)

By Step 2, if m ∈ M0, the R.H.S summation only covers reports (m′, D′) such that

m′ ∈M0. Furthermore, by condition (i) in the definition of robustness, Pr(M0 | θ =

Y ) = Pr(M0 | θ = N) = α under σ. By Step 1, α > 0.

It follows that we can rewrite the joint distribution over (θ,m,D) that is induced

by σ as a three-stage lottery. In the first stage, before θ is realized, the classes M0

and M1 are drawn with probability α and 1−α, respectively. In the second stage, θ

is realized, where θ = Y with probability π, independently of the lottery’s first stage.

Finally, (m,D) is realized conditional on θ, with the restriction that m must belong

to the class that was realized in the first stage.

Therefore, in order for the receiver to play a = y with probability one, it must

be the case in particular that he plays a = y with probability one conditional on

the realization M0 in the first stage of the three-stage lottery. But this can only

hold if the condition for full persuasion given in Remark ?? for the case of singleton
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dictionaries. Therefore, it must be the case that π ≥ 1/(1 +K).

Proposition ??

Construct the following strategy for the sender.

Message strategy. In state Y , the sender randomizes uniformly between m = (1, ...1)

and m = (0, ..., 0). In state N , he randomizes uniformly over the set of all messages

m for which mk = 1 for exactly bK/2c values of k.

Interpretation strategy. Every m that is played in state N is accompanied by D =

{k | mk = 1}. In state Y , the sender mixes uniformly over all sets D of size bK/2c,
independently of m.

By construction, Pr(mD | θ = Y ) = Pr(mDc | θ = Y ) = 1
2

and Pr(mD | θ = N) =

Pr(mDc | θ = N) = 1/S for every (m,D) that is played. By (??), the receiver’s

likelihood ratio for any realized message m satisfies

P̃r(m,D | θ = Y )

P̃r(m,D | θ = N)
≥ Pr(mD | θ = Y ) · Pr(mDc | θ = Y )

max{Pr(mD | θ = N),Pr(mDc | θ = N)}

=
1
2
· 1

2
1
S

=
S

4

The receiver will play a = y whenever this expression is weakly above (1− π)/π.

Proposition ??

Denote S(L) =
(

L
bL/2c

)
. Construct the message strategy first. In state Y , randomize

uniformly over two messages: m1 satisfies m1
k = 1 for all k ≤ L and m1

k = 0 for

all k > L; m2 satisfies m2
k = 0 for all k ≤ L and m2

k = 1 for all k > L. In state

N , assign probability 1
2
S(L) to every message m such that mk = 1 for bL/2c values

of k ∈ {1, ..., L}, and mk = 0 for all other k. Likewise, assign probability 1
2
S(L)

to every message m such that mk = 1 for bL/2c values of k ∈ {L + 1, ..., 2L}, and

mk = 0 for all other k.

The conditional dictionary distribution is as follows. Conditional on any m that

is played in state N , let D = {k | mk = 1} with certainty. Conditional on m1, D
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is distributed uniformly over all subsets of {L + 1, ..., 2L} of size bL/2c. Finally,

conditional on m2, D is distributed uniformly over all subsets of {1, ..., L} of size

bL/2c.
It is easy to verify that this strategy satisfies the two desiderata and induces the

sender’s first-best whenever π ≥ 1/(1 + S(L)).
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