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Volatility, Valuation Ratios, and Bubbles: An
Empirical Measure of Market Sentiment

CAN GAO and IAN W. R. MARTIN

ABSTRACT

We define a sentiment indicator based on option prices, valuation ratios, and interest
rates. The indicator can be interpreted as a lower bound on the expected growth in
fundamentals that a rational investor would have to perceive to be happy to hold the
market. The bound was unusually high in the late 1990s, reflecting dividend growth
expectations that in our view were unreasonably optimistic. Our approach exploits
two key ingredients. First, we derive a new valuation ratio decomposition that is
related to the Campbell–Shiller loglinearization but that resembles the Gordon
growth model more closely and has certain other advantages. Second, we introduce a
volatility index that provides a lower bound on the market’s expected log return.

IN THIS PAPER, WE INTRODUCE A MARKET sentiment indicator that exploits
two contrasting views of market predictability. One of our aims is to find a
useful way of measuring the “bubbliness” of the market. If valuation ratios—
think P/D—are high, then one starts to worry. But valuation ratios can be
high for good reasons if interest rates are low, or if risk premia are low (and
are widely understood to be low), or both.

A vast literature studies the extent to which signals based on valuation ra-
tios are able to forecast market returns and/or measures of dividend growth.
Early papers include Keim and Stambaugh (1986), Campbell and Shiller
(1988), and Fama and French (1988). More recently, Martin (2017) argues
that implied volatility indexes based on option prices can serve as forecasts of
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expected excess returns, and notes that the two classes of predictor variables
made opposing forecasts in the late 1990s, with valuation ratios pointing to
low long-run returns and option prices pointing to high short-run returns.

We play the two views of the world off against one other. Consider the classic
Gordon growth model, which relates the market’s dividend yield to its expected
return minus expected dividend growth: D/P = E(R − G). Roughly speaking,
the idea behind the paper is to use option prices to measure ER, and then to
calculate the expected growth in fundamentals implicit in market valuations—
our sentiment measure—as the difference between the option price index and
dividend yield, EG = ER − E(R − G).

Putting this idea into practice is not as easy as it might seem, however. The
Gordon growth model relies on the assumptions that expected returns and
expected dividend growth are constant over time. The loglinearized identity
of Campbell and Shiller (1988) generalizes the Gordon growth model to the
empirically relevant case in which these quantities are time-varying. Their
identity relates the price-dividend ratio of an asset to its expected future log
dividend growth and expected log returns. It is often characterized as indi-
cating that high valuation ratios signal high expected dividend growth or low
expected returns (or both).

But expected returns are not the same as expected log returns. We show
that high valuations—and low expected log returns—may be consistent with
high expected simple returns if log returns are highly volatile, right-skewed,
or fat-tailed. Plausibly, all of these conditions were satisfied in the late 1990s.
As they are all potential explanations for the rise in valuation ratios at that
time, we will need to be careful about the distinction between log returns and
simple returns.

Furthermore, we show that while the Campbell–Shiller identity is highly
accurate on average, the linearization is most problematic when the price-
dividend ratio is far above its long-run mean. At such times—the late 1990s
being a leading example—a researcher who uses the Campbell–Shiller loglin-
earization will conclude that long-run expected returns are even lower, and/or
long-run expected dividend growth is even higher, than is actually the case.
Thus, the linearization may “cry bubble” too soon.

We propose a new linearization that does not have this feature, but that
also relates a measure of dividend yield to expected log returns and dividend
growth. Our approach exploits a measure of dividend yield yt = log(1 + Dt/Pt )
that has the advantage of being in “natural” units, unlike the quantity dpt =
log Dt/Pt that features in the Campbell–Shiller approach. As a further bonus,
the resulting identity bears an even closer resemblance to the traditional Gor-
don growth model—which it generalizes to allow for time-varying expected re-
turns and dividend growth—than does the Campbell–Shiller loglinearization.

The second ingredient of our paper is a lower bound on expected log returns
that plays the role of ER in the loose description above. The lower bound re-
lies on an assumption on the form of the stochastic discount factor (SDF). This
assumption, the modified negative correlation condition, is satisfied, for exam-
ple, if one takes the perspective of an unconstrained agent who maximizes
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expected utility over next-period wealth, who chooses to invest his or her
wealth fully in the market, and whose relative risk aversion is at least one.
An attractive feature of this approach is that it allows the investor in question
to coexist with other agents who may or may not be rational. Under the mod-
ified negative correlation condition, our lower bound on expected log returns
can be computed directly from index option prices so is, broadly speaking, a
measure of implied volatility.

The paper is organized as follows. Section I outlines our framework. Sec-
tion II discusses the link between valuation ratios, returns, and dividend
growth: it analyzes the properties of the Campbell–Shiller loglinearization, in-
troduces our alternative loglinearization, and studies the predictive relation-
ship between dividend yields and future log returns and log dividend growth.
Section III derives the lower bound on expected returns. Section IV combines
the preceding sections to introduce the sentiment indicator. Section V docu-
ments that our measure is a leading indicator of detrended volume and of a
long-term earnings growth forecast index constructed by Nagel and Xu (2019),
and explores its relationship with various other measures of financial condi-
tions. Section VI concludes.

I. Framework

Our approach has two ingredients. The first is the predictive relationship
between valuation ratios, returns, and fundamentals that has been explored
in the vast predictability literature starting from Keim and Stambaugh (1986),
Campbell and Shiller (1988), and Fama and French (1988), among others. We
introduce a novel loglinearization

Et (rt+1 − gt+1) = 1
1 − ρ

yt − ρ

1 − ρ
Etyt+1, (1)

where rt+1 is the log return on the market, gt+1 is log dividend growth, yt is the
market dividend yield, and ρ ≈ 0.97 is a loglinearization constant. If, say, the
dividend yield follows an AR(1) process,1 then equation (1) implies that

Et (rt+1 − gt+1) = a0 + a1yt (2)

for some constants a0 and a1. (We derive these and related results in Sec-
tion II.)

The second ingredient exploits the information in option prices via a strategy
introduced by Martin (2017). We assume that the inequality

covt
(
Mt+1Rt+1, log Rt+1

) ≤ 0 (3)

holds; as this is closely related to the negative correlation condition (NCC) of
Martin (2017), we refer to it as the modified negative correlation condition

1 Our approach could easily accommodate, say, a vector autoregression for yt ; the key is that one
has an empirical procedure that generates a sensible measure of Etyt+1 to be used in (1). Below,
we also consider the case in which yt follows an AR(2) or AR(3).
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(mNCC). Here Mt+1 denotes an SDF that prices payoffs delivered at time t + 1
from the perspective of time t, and Rt+1 is the gross return on the market.

If one thinks from the perspective of an investor whose beliefs and risk pref-
erences are consistent with (2) (or with the alternatives mentioned in footnote
1) and (3), then the mNCC holds if this investor—whom we refer to as a rep-
resentative investor—maximizes utility Etu(Wt+1), with relative risk aversion
−Wu′′(W )/u′(W ) (which need not be constant) at least one, and chooses to in-
vest his or her wealth fully in the market. This setup allows for the possibility
that other investors are irrational and/or face trading constraints; we empha-
size, however, that our representative investor is assumed to be unconstrained,
and, in particular, to be able to trade in option markets, so that he or she is
marginal for option prices. We therefore rule out extreme forms of market seg-
mentation by assumption. (A representative investor in this sense is sufficient,
but not necessary, for the mNCC to hold. We discuss more general conditions
under which the mNCC holds in Section III.)

In Section III, we show that this representative investor’s beliefs must re-
spect the following lower bound on the expected log return on the market,
which can be computed directly from option prices:

Etrt+1 − r f,t+1 ≥ 1
Pt

{∫ Ft

0

putt (K )
K

dK +
∫ ∞

Ft

callt (K )
K

dK

}
. (4)

Starting from the decomposition

Etgt+1 = r f,t+1 − Et (rt+1 − gt+1) + Et
(
rt+1 − r f,t+1

)
, (5)

we have a lower bound on the representative investor’s expected dividend
growth,

Etgt+1 ≥ r f,t+1 − (a0 + a1yt ) + 1
Pt

{∫ Ft

0

putt (K )
K

dK +
∫ ∞

Ft

callt (K )
K

dK

}
,

from (2), (4), and (5).
To implement this inequality, we replace the population coefficients a0 and

a1 by their sample counterparts â0 and â1, which we estimate by OLS.2 We end
up with the sentiment indicator

Bt = r f,t+1 − (â0 + â1yt ) + 1
Pt

[∫ Ft

0

putt (K )
K

dK +
∫ ∞

Ft

callt (K )
K

dK

]
.

The indicator is high, indicating the possible presence of a bubble, if there is
a combination of high interest rates, a high market valuation ratio (i.e., low
dividend yield), and high option prices.

2 We discuss the issue of estimation uncertainty in Section IV.B.1.



Volatility, Valuation Ratios, and Bubbles 5

II. Fundamentals

We seek to exploit the information in valuation ratios, following Campbell
and Shiller (1988). Denoting by Pt+1, Dt+1, and Rt+1 the level, dividend, and
gross return of the market, respectively, we have

Rt+1 = Dt+1 + Pt+1

Pt
. (6)

It follows from (6) that

rt+1 − gt+1 = pdt+1 − pdt + log
(
1 + edpt+1

)
, (7)

where dpt+1 = dt+1 − pt+1 = log Dt+1 − log Pt+1, pdt+1 = pt+1 − dt+1, and gt+1 =
dt+1 − dt . Campbell and Shiller (1988) linearize the final term in (7) to derive
a decomposition of the (log) price-dividend ratio,

pdt = k
1 − ρ

+
∞∑

i=0

ρiEt (gt+1+i − rt+1+i), (8)

where the constants k and ρ are determined by

ρ = μ

1 + μ
and

k
1 − ρ

= (1 + μ) log(1 + μ) − μ logμ, where μ = epd.

We follow the convention in the literature in writing approximations such as
(8) with equals signs. (A number of our results below are in fact exact. We em-
phasize these as they occur.) We also assume throughout the paper that there
are no rational bubbles, as is standard in the literature. Thus, for example, in
deriving (8), we are assuming that limT→∞ ρTEt pdT = 0.

The approximation (8) is often loosely summarized by saying that high val-
uation ratios signal high expected dividend growth or low expected returns (or
both). But expected log returns are not the same as expected returns:3 we have

Etrt+1+i = log EtRt+1+i − 1
2

vartrt+1+i −
∞∑

n=3

κ (n)
t (rt+1+i)

n!
,

where κ (n)
t (rt+1+i) is the nth conditional cumulant of the log return. (If returns

are conditionally lognormal, then the higher cumulants κ (n)
t (rt+1+i) are zero for

n ≥ 3.) Thus, high valuations—and low expected log returns—may be consis-
tent with high expected arithmetic returns if log returns are highly volatile,
right-skewed, or fat-tailed. Plausibly, all of these conditions were satisfied in
the late 1990s. As they are all potential explanations for the rise in valuation

3 And expected log dividend growth is not the same as expected dividend growth. This distinc-
tion is less important, however, as the log dividend growth series is less volatile than the log
return series.
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ratios at that time,4 we will need to be careful about the distinction between
log returns and simple returns.

Furthermore, the Campbell–Shiller first-order approximation is least accu-
rate when the valuation ratio is far from its mean, as we now show.

RESULT 1 (Campbell–Shiller revisited): The log price-dividend ratio pdt obeys
the following exact decomposition:

pdt = k
1 − ρ

+
∞∑

i=0

ρi(gt+1+i − rt+1+i) + 1
2

∞∑
i=0

ρiψt+1+i(1 − ψt+1+i)
(

pdt+1+i − pd
)2
,

(9)
where the constants k and ρ are defined as above, and the quantities ψt+1+i lie
between ρ and 1/(1 + edpt+1+i ).

Equation (9) becomes a second-order Taylor approximation if ψt is assumed
equal to ρ for all t,

pdt = k
1 − ρ

+
∞∑

i=0

ρi(gt+1+i − rt+1+i) + ρ(1 − ρ)
2

∞∑
i=0

ρi
(

pdt+1+i − pd
)2
, (10)

and reduces to the Campbell–Shiller loglinearization (8) if the final term on the
right-hand side of (9) is neglected entirely.

Proof: Taylor’s theorem, with the Lagrange form of the remainder, states that
for any sufficiently well-behaved function f , and for x ∈ R and a ∈ R,

f (x) = f (a) + (x − a) f ′(a) + 1
2

(x − a)2 f ′′(ξ ), for some ξ between a and x. (11)

We apply this result with f (x) = log(1 + ex), x = dpt+1, and a = dp = Edpt
equal to the mean log dividend yield. Equation (11) becomes

log
(
1 + edpt+1

)
= k + (1 − ρ)dpt+1 + 1

2
ψt+1(1 − ψt+1)

(
dpt+1 − dp

)2
,

where ψt+1 = 1/(1 + eξ ) must lie between 1/(1 + edp) = ρ and 1/(1 + edpt+1 ).
Substituting into expression (7), we have the exact relationship

rt+1 − gt+1 = k − pdt + ρpdt+1 + 1
2
ψt+1(1 − ψt+1)

(
pdt+1 − pd

)2
,

which can be solved forward to give (9). The approximation (10) follows. �

Result 1 expresses the price-dividend ratio in terms of future log dividend
growth and future log returns—as in the Campbell–Shiller approximation—
plus a convexity correction.

4 See, for example, Pastor and Veronesi (2003, 2006).
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This convexity correction is small on average. Take the unconditional expec-
tation of second-order approximation (10),

Epdt = k
1 − ρ

+ E(gt − rt )
1 − ρ

+ ρ

2
varpdt,

assuming that pdt , rt , and gt are stationary so that their unconditional means
and variances are well defined. Using CRSP data from 1947 to 2019, the
sample average of pdt is 3.469 (so that ρ is 0.969) and the sample standard
deviation is 0.434. Thus the unconditional average convexity correction
ρ

2 varpdt is about 0.0913, that is, about 2.63% of the size of Epdt .
The convexity correction can sometimes be large, however. We have

pdt = k
1 − ρ

+
∞∑

i=0

ρiEt (gt+1+i − rt+1+i) + ρ(1 − ρ)
2

∞∑
i=0

ρiEt

(
pdt+1+i − pd

)2
,

and the final term may be quantitatively important if the valuation ratio is far
from its mean and persistent, so that it is expected to remain far from its mean
for a significant length of time.

For the sake of argument, suppose that the log price-dividend ratio fol-
lows an AR(1), pdt+1 − pd = φ(pdt − pd) + εt+1, where vartεt+1 = σ 2 so that
varpdt = σ 2/(1 − φ2), and set σ = 0.167 and φ = 0.923 to match the sample
standard deviation and autocorrelation in CRSP data from 1947 to 2019. The
above expression becomes

pdt = k
1 − ρ

+
∞∑

i=0

ρiEt (gt+1+i − rt+1+i) + ρ(1 − ρ)φ2

2(1 − ρφ2)

[(
pdt − pd

)2
+ σ 2

(1 − ρ)φ2

]
︸ ︷︷ ︸

convexity correction

.

At its peak during the boom of the late 1990s, pdt was 2.2 standard devia-
tions above its mean. The convexity term then equals 0.145: this is the amount
by which a researcher using the Campbell–Shiller approximation would over-
state

∑∞
i=0 ρ

iEt (gt+1+i − rt+1+i). With ρ = 0.969, this is equivalent to overstat-
ing Etgt+1+i − rt+1+i by 14.5 percentage points for one year, 3.1 percentage
points for five years, or 1.0 percentage points for 20 years.5

The Campbell–Shiller approximation does not apply if dpt follows a random
walk (i.e., Etdpt+1 = dpt). But in that case, we can linearize (7) around the

5 The numbers are more dramatic if we use the long sample from 1871 to 2015 available on
Robert Shiller’s website. We find ρ = 0.960, σ = 0.136, and φ = 0.942 in the long sample, so that
the convexity correction is 0.0596 when pdt is at its mean and 0.253 at the peak (which is 3.2
standard deviations above the mean). This last number corresponds to overstating Etgt+1+i −
rt+1+i by 25.3 percentage points for one year, 5.5 percentage points for five years, 1.8 percentage
points for 20 years, or 1.0 percentage points forever.
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conditional mean Etdpt+1 to find6

Et (rt+1 − gt+1) = log
(
1 + edpt

)
= log

(
1 + Dt

Pt

)
. (12)

Motivated by this fact,7 we define yt = log(1 + Dt/Pt ). An appealing prop-
erty of this definition—and one that dpt does not possess—is that yt = log(1 +
Dt/Pt ) ≈ Dt/Pt . We can then rewrite the definition of the log return (7) as the
(exact) relationship

rt+1 − gt+1 = yt + log
(
1 − e−yt

) − log
(
1 − e−yt+1

)
. (13)

In these terms, equation (12) states that

yt = Et (rt+1 − gt+1), (14)

which is valid, as a first-order approximation, if dpt (or yt) follows a ran-
dom walk.

Alternatively, if yt is stationary (as is almost always assumed in the litera-
ture), we have the following result. We write unconditional means as y = Eyt ,
r = Ert , and g = Egt .

RESULT 2 (The Gordon growth model, generalized): Suppose that yt is station-
ary. Then we have the loglinearization

yt = (1 − ρ)
∞∑

i=0

ρi(rt+1+i − gt+1+i), (15)

where8 ρ = e−y. As there is no constant in (15), and as (1 − ρ)
∑∞

i=0 ρ
i = 1, this

is a variant of the Gordon growth model: y is a weighted average of future r − g.
To second order, we have the approximation

yt = (1 − ρ)
∞∑

i=0

ρi(rt+1+i − gt+1+i) − 1
2

ρ

1 − ρ

∞∑
i=0

ρi
[
(yt+1+i − y)2 − (yt+i − y)2

]
.

(16)

We also have the exact relationship

y = r − g, (17)

which does not rely on any approximation.

6 Campbell (2008, 2018) derives the same result via a different route, but makes further as-
sumptions (namely, that the driving shocks are homoskedastic and conditionally Normal) that we
do not require.

7 Further motivation is provided by Martin (2013), who shows that this measure of dividend
yield emerges naturally in i.i.d. models with power utility or Epstein-Zin (1989) preferences.

8 This differs slightly from the definition of ρ in Result 1, although they are extremely close
in practice.
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Proof: Using Taylor’s theorem to second order in equation (13), we have the
second-order approximation

rt+1 − gt+1 = 1
1 − ρ

yt − ρ

1 − ρ
yt+1 + 1

2
ρ

(1 − ρ)2

[
(yt+1 − y)2 − (yt − y)2],

which can be rewritten

yt = (1 − ρ)(rt+1 − gt+1) + ρyt+1 − 1
2

ρ

1 − ρ

[
(yt+1 − ȳ)2 − (yt − ȳ)2]

and then solved forward, giving (15) and (16). Equation (17) follows by tak-
ing expectations of the identity (13) and noting that E log(1 − e−yt ) = E log(1 −
e−yt+1 ) by stationarity of yt . �

We note in passing that equation (17) implies that the inequality r > g, which
is discussed extensively by Piketty (2014), holds in any model in which y > 0.
Piketty (2015) writes that “the inequality r > g holds true in the steady-state
equilibrium of the most common economic models, including representative-
agent models where each individual owns an equal share of the capital stock.”
Our result shows that the inequality applies much more generally. It does not
rely on equilibrium logic and is not in itself particularly interesting or signifi-
cant.

Given our focus on bubbles, we are particularly interested in the accuracy of
these loglinearizations9 at times when valuation ratios are unusually high or,
equivalently, when dpt and yt are unusually low. This motivates the following
definition and result.

DEFINITION 1: We say that yt is far from its mean (at time t) if

Et

[
(yt+1+i − y)2

]
≤ (yt − y)2 for all i ≥ 0. (18)

Example: If yt follows an AR(1), then a direct calculation shows that yt is far
from its mean if and only if it is at least one standard deviation from its mean.

RESULT 3 (Signing the approximation errors): We can sign the approximation
error in the Campbell–Shiller loglinearization (8):

dpt < − k
1 − ρ

+
∞∑

i=0

ρiEt (rt+1+i − gt+1+i). (19)

9 In a different direction, motivation for doing so is provided by Pohl, Schmedders, and Wilms
(2018), who show that loglinearizations can induce quantitatively important approximation errors
in long-run risk models.
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The first-order approximation (15) is exact on average, that is,

Eyt = (1 − ρ)
∞∑

i=0

ρiE(rt+1+i − gt+1+i) (20)

holds exactly, without any approximation. But if yt is far from its mean, then
(up to a second-order approximation)

yt ≥ (1 − ρ)
∞∑

i=0

ρiEt (rt+1+i − gt+1+i). (21)

Proof: The inequality (19) follows immediately from (9), and equation (20) fol-
lows directly from equation (17). To establish the inequality (21), rewrite

∞∑
i=0

ρi
[
(yt+1+i − y)2 − (yt+i − y)2

]
= −(yt − y)2 + (1 − ρ)

∞∑
i=0

ρi(yt+1+i − y)2

= (1 − ρ)
∞∑

i=0

ρi
[
(yt+1+i − y)2 − (yt − y)2

]
.

(22)

The inequality then follows from (16), (18), and (22). �

Dividend yields, whether measured by dpt or yt , were unusually low around
the turn of the millennium, indicating some combination of low future returns
and high future dividend growth. Result 3 shows that an econometrician who
uses the Campbell–Shiller approximation (8) at such a time—that is, who
treats the inequality (19) as an equality—will overstate how low future re-
turns, or how high future dividend growth, must be, and therefore may be too
quick to conclude that the market is “bubbly.” In contrast, an econometrician
who uses the approximation (15) will understate how low future returns, or
how high future dividend growth, must be. Thus yt is a conservative diagnostic
for bubbles.

To place more structure on the relationship between valuation ratios, r, and
g, we need to make an assumption about the evolution of dpt and yt over time.
For now we rely on an AR(1) assumption to keep things simple; in Appendix A,
we report corresponding results assuming AR(2) or AR(3) processes.

The Campbell–Shiller approximation over one period states that rt+1 −
gt+1 = k + dpt − ρ dpt+1. If dpt follows an AR(1) with autocorrelation φ, then
Etdpt+1 − dp = φ(dpt − dp), so

Et (rt+1 − gt+1) = c + (1 − ρφ)dpt, (23)

where we have absorbed constant terms into c.
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Table I
Full-Sample Regressions for S&P 500, Annual Data, Cash

Reinvestment, 1947 to 2019

RHSt LHSt+1 â0 s.e. â1 s.e. R2

rt+1 − gt+1 –0.073 [0.048] 3.541 [1.302] 8.33%
yt rt+1 –0.023 [0.048] 3.820 [1.194] 11.13%

−gt+1 –0.050 [0.027] –0.279 [0.802] 0.29%

rt+1 − gt+1 0.430 [0.144] 0.111 [0.041] 8.23%
dpt rt+1 0.511 [0.136] 0.117 [0.040] 10.58%

−gt+1 –0.081 [0.084] –0.006 [0.024] 0.16%

Conversely, the first-order approximation underlying Result 2 implies that

Et (rt+1 − gt+1) = 1
1 − ρ

yt − ρ

1 − ρ
Etyt+1. (24)

If yt follows an AR(1) with autocorrelation φy, then this reduces to

Et (rt+1 − gt+1) = c + 1 − ρφy

1 − ρ
yt, (25)

where again we absorb constants into the intercept c. In view of (17), this can
be written without an intercept as

Et (rt+1 − gt+1) − (r − g) = 1 − ρφy

1 − ρ
(yt − y),

so that the deviation of yt from its long-run mean is proportional to the devi-
ation of conditionally expected rt+1 − gt+1 from its long-run mean. A further
advantage of yt over dpt is that the expression (25) is also meaningful if yt
follows a random walk: in this case, the coefficient on yt equals one and the
intercept is zero, by equation (14).

Equations (23) and (25) motivate regressions of realized rt+1 − gt+1 onto dpt
and a constant, or onto yt and a constant. The results are shown in Table I,
where we also report the results of regressing rt+1 and −gt+1 separately onto
yt and dpt . We use end-of-year observations of the price level and accumulated
dividends of the S&P 500 index from CRSP.10 The table reports regression

10 We calculate the monthly dividend by multiplying the difference between monthly cum-
dividend and ex-dividend returns by the lagged ex-dividend price: Dt = (Rcum,t − Rex,t )Pt−1. As
we aggregate the dividends paid out over the year, to address seasonality issues, we reinvest divi-
dends month-by-month until the end of the year, using the CRSP 30-day T-bill rate as our risk-free
rate. In Tables III and IV, we report similar results with dividends reinvested at the cum-dividend
market return rather than at a risk-free rate; if anything, these results are somewhat more favor-
able to our yt variable than to dpt .
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Table II
Predictive Regressions for S&P 500, Annual Data, Cash

Reinvestment, 1926 to 2019

RHSt LHSt+1 â0 s.e. â1 s.e. R2

rt+1 − gt+1 –0.145 [0.053] 5.120 [1.492] 13.40%
yt rt+1 0.028 [0.051] 1.775 [1.361] 2.26%

−gt+1 –0.173 [0.050] 3.345 [1.490] 16.29%

rt+1 − gt+1 0.557 [0.185] 0.152 [0.052] 9.54%
dpt rt+1 0.330 [0.154] 0.070 [0.045] 2.86%

−gt+1 0.227 [0.161] 0.082 [0.046] 7.85%

Table III
Predictive Regressions for S&P 500, Annual Data, Market

Reinvestment, 1947 to 2019

RHSt LHSt+1 â0 s.e. â1 s.e. R2

rt+1 − gt+1 –0.031 [0.040] 2.290 [1.073] 6.91%
yt rt+1 –0.018 [0.049] 3.554 [1.154] 10.43%

−gt+1 –0.013 [0.045] –1.264 [1.228] 2.30%

rt+1 − gt+1 0.311 [0.123] 0.076 [0.036] 6.92%
dpt rt+1 0.519 [0.137] 0.120 [0.041] 10.76%

−gt+1 –0.208 [0.135] –0.044 [0.039] 2.51%

results of the form11

LHSt+1 = a0 + a1 × RHSt + εt+1,

with Hansen–Hodrick (1980) standard errors shown in brackets. (Under the
AR(1) assumption, we could also use (23) or (25) as estimates of Et (rt+1 −
gt+1). This approach yields very similar results, as we show in Table A.I of
Appendix A.)

The variables yt and dpt have similar predictive performance and, consistent
with prior literature, we find that valuation ratios help to forecast returns in
the post-1947 sample but have limited forecasting power for dividend growth.
We have also considered variations on this exercise. Table II reports results
using cash-reinvested dividends in the full CRSP post-1926 sample. Tables III
and IV report results using market-reinvested dividends in the post-1947 and
the post-1926 period, respectively. Tables V to VII use the price and dividend
data of Goyal and Welch (2008) (updated to 2018 and taken from Amit Goyal’s
webpage); this gives us a longer sample, as it incorporates Robert Shiller’s

11 Stambaugh bias has little effect on these numbers. In our main sample, implementing the
correction given in equation (18) of Stambaugh (1999) changes the predictive coefficient from 3.54
to 3.35 in the data since 1947, or from 5.12 to 5.11 in the data since 1926. We therefore report
simple OLS coefficients for simplicity. The analysis of Section IV.B.2 can also be interpreted as a
conservative response to the possibility of Stambaugh bias.
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Table IV
Predictive Regressions for S&P 500, Annual Data, Market

Reinvestment, 1926 to 2019

RHSt LHSt+1 â0 s.e. â1 s.e. R2

rt+1 − gt+1 –0.063 [0.041] 2.921 [1.123] 8.38%
yt rt+1 –0.015 [0.048] 2.875 [1.138] 5.16%

−gt+1 –0.048 [0.040] 0.046 [1.003] 0.00%

rt+1 − gt+1 0.347 [0.130] 0.089 [0.038] 6.52%
dpt rt+1 0.411 [0.142] 0.095 [0.042] 4.66%

−gt+1 –0.064 [0.120] –0.005 [0.035] 0.03%

Table V
Predictive Regressions for S&P500, Annual Data from Amit Goyal’s

Website, 1947 to 2018

RHSt LHSt+1 â0 s.e. â1 s.e. R2

rt+1 − gt+1 –0.070 [0.048] 3.549 [1.289] 8.26%
yt rt+1 –0.020 [0.047] 3.807 [1.182] 10.84%

−gt+1 –0.050 [0.023] –0.257 [0.734] 0.31%

rt+1 − gt+1 0.435 [0.141] 0.111 [0.040] 8.46%
dpt rt+1 0.511 [0.134] 0.116 [0.039] 10.54%

−gt+1 –0.076 [0.072] –0.005 [0.020] 0.12%

Table VI
Predictive Regressions for S&P500, Annual Data from Amit Goyal’s

Website, 1926 to 2018

RHSt LHSt+1 â0 s.e. â1 s.e. R2

rt+1 − gt+1 –0.120 [0.049] 4.470 [1.369] 12.05%
yt rt+1 0.033 [0.049] 1.628 [1.343] 2.04%

−gt+1 –0.153 [0.040] 2.842 [1.213] 17.07%

rt+1 − gt+1 0.500 [0.169] 0.135 [0.048] 8.84%
dpt rt+1 0.315 [0.153] 0.065 [0.044] 2.67%

−gt+1 0.186 [0.133] 0.069 [0.037] 8.17%

Table VII
Predictive Regressions for S&P500, Annual Data from Amit Goyal’s

Website, 1871 to 2018

RHSt LHSt+1 â0 s.e. â1 s.e. R2

rt+1 − gt+1 –0.143 [0.041] 4.500 [0.968] 13.03%
yt rt+1 0.043 [0.038] 0.992 [0.872] 0.89%

−gt+1 –0.185 [0.030] 3.507 [0.769] 22.91%

rt+1 − gt+1 0.501 [0.125] 0.140 [0.037] 9.00%
dpt rt+1 0.217 [0.108] 0.041 [0.033] 1.07%

−gt+1 0.284 [0.093] 0.099 [0.028] 13.09%
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data, which go back as far as 1871. The predictability of r relative to g is to
some extent a feature of the postwar period. In the long sample, returns are
substantially less predictable and dividends substantially more predictable,
perhaps because of the postwar tendency of corporations to smooth dividends
(Lintner (1956)). Encouragingly, however, we find that the predictive relation-
ship between yt (or dpt) and the difference rt+1 − gt+1 is fairly stable across
sample periods and data sources.

III. A Lower Bound on Expected Log Returns

High valuation ratios are sometimes cited as direct evidence of a bubble.
But valuation ratios can be high for good reasons if interest rates or rationally
expected risk premia are low. In other words, if we use yt to measure Et (rt+1 −
gt+1) as suggested above, we may find that yt is low simply because Etrt+1
is very low, which could reflect low interest rates r f,t+1, low (log) risk premia
Etrt+1 − r f,t+1, or both.

While interest rates are directly observable, risk premia are harder to
measure. We start from the following identity, which generalizes an identity
introduced by Martin (2017) in the case Xt+1 = Rt+1:

EtXt+1 = 1
Rf,t+1

E∗
t (Rt+1Xt+1) − covt (Mt+1Rt+1,Xt+1) .

We write E∗
t for the time t conditional risk-neutral expectation operator, de-

fined by the property that 1
Rf,t+1

E∗
t Xt+1 = Et (Mt+1Xt+1), where Mt+1 denotes an

SDF that prices any tradable payoff Xt+1 received at time t + 1. Assuming the
absence of arbitrage, such an SDF must exist, and the identity above holds for
any gross return Rt+1 such that the payoff Rt+1Xt+1 is tradable. Henceforth,
however, Rt+1 will always denote the gross return on the market.

We are interested in expected log returns, Xt+1 = log Rt+1, in which case the
identity becomes

Et log Rt+1 = 1
Rf,t+1

E∗
t

(
Rt+1 log Rt+1

) − covt
(
Mt+1Rt+1, log Rt+1

)
. (26)

The first of the two terms on the right-hand side, as a risk-neutral expec-
tation, is directly observable from asset prices, as it represents the price of a
contract that pays Rt+1 log Rt+1 at time t + 1. (Neuberger (2012) studies this
contract in a different context.) The second term can be controlled: we argue
below that it is reasonable to impose the assumption that it is negative. The
identity (26) then implies a lower bound on expected log returns in terms of a
quantity that is directly observable from asset prices.

To make further progress, we make two assumptions throughout the paper.
As we show below, we can use option prices to bound the first term on the
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right-hand side of the identity (26). Our first assumption addresses the minor12

technical issue that we observe options on the ex-dividend value of the index,
Pt+1, rather than on Pt+1 + Dt+1.

ASSUMPTION 1: If we define the dispersion measure 	(Xt+1) ≡ E∗
t f (Xt+1) −

f (E∗
t Xt+1), where f (x) = x log x is a convex function, then the dispersion of Rt+1

is at least as large as that of Pt+1/Pt:

	(Rt+1) ≥ 	(Pt+1/Pt ). (27)

This condition is very mild. Expanding f (x) = x log x as a Taylor series to sec-
ond order around x = 1, f (x) ≈ (x2 − 1)/2. Thus, to second order, Assumption 1
is equivalent to var∗

t Rt+1 ≥ var∗
t (Pt+1/Pt ), or to var∗

t (Pt+1 + Dt+1) ≥ var∗
t Pt+1. A

sufficient, though not necessary, condition for this to hold is that the price Pt+1
and dividend Dt+1 are weakly positively correlated under the risk-neutral mea-
sure.

Our second assumption is more substantive.

ASSUMPTION 2: The mNCC holds:

covt
(
Mt+1Rt+1, log Rt+1

) ≤ 0 . (28)

Martin (2017) imposes the closely related NCC covt (Mt+1Rt+1,Rt+1) ≤ 0. The
two conditions are plausible for similar reasons: in any reasonable model, Mt+1
is negatively correlated with the return on the market, Rt+1, and we know from
the bound of Hansen and Jagannathan (1991), coupled with the empirical fact
that high Sharpe ratios are available, that Mt+1 is highly volatile.

In fact, the two conditions are equivalent in the lognormal case. Suppose that
the SDF Mt+1 and return Rt+1 are conditionally jointly lognormal and write
r f,t+1 = log Rf,t+1, μt = log EtRt+1, and σ 2

t = vart log Rt+1. Then the mNCC and
NCC are both equivalent to the assumption that the conditional Sharpe ratio
of the asset, λt ≡ (μt − r f,t+1)/σt , exceeds its conditional volatility, σt .13

The Sharpe ratio of the market is typically thought of as being on the order
of 30% to 50%, while the volatility of the market is on the order of 16% to 20%.
Thus the mNCC holds in the calibrated models of Campbell and Cochrane
(1999), Bansal and Yaron (2004), Bansal et al. (2014), and Campbell et al.

12 In fact, it is so minor that the distinction between options on Pt+1 and options on Pt+1 + Dt+1
is often neglected entirely in the literature. For example, Neuberger (2012) “avoid[s] irrelevant
complications with interest rates and dividends” by treating options on forward prices as observ-
able, as do Schneider and Trojani (2019), and (essentially equivalently) Carr and Wu (2009) use
options on stocks as proxies for options on stock futures. These authors effectively assume that
our inequality (27) holds with equality.

13 By Stein’s lemma, covt (Mt+1Rt+1, log Rt+1) = covt (log Mt+1 + log Rt+1, log Rt+1). By lognor-
mality of Mt+1 and Rt+1, the fact that Et (Mt+1Rt+1) = 1 is equivalent to log EtMt+1 + log EtRt+1 =
−covt (log Mt+1, log Rt+1). It follows from these two observations that covt (Mt+1Rt+1, log Rt+1) ≤ 0
if and only if vart log Rt+1 ≤ log EtRt+1 − r f,t+1, that is, if and only if λt ≥ σt . Under lognormality,
this condition is equivalent to covt (Mt+1Rt+1,Rt+1) ≤ 0, as shown by Martin (2017).
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(2018), among many others. But Martin (2017) argues that option prices are
inconsistent with the lognormality assumption. This motivates the following
result, which provides a sufficient condition for the mNCC to hold without re-
quiring lognormality.

RESULT 4: Suppose that an investor’s SDF takes the form

Mt+1 = β
VW (Wt+1, zt+1)

VW (Wt, zt )
,

where VW is the investor’s marginal value of wealth, and zt is a vector of state
variables, with signs chosen so that VW is weakly decreasing in each (just as it
is decreasing in Wt+1). We allow time t + 1 wealth, Wt+1, to be invested in the
market and in some other asset or portfolio of assets with gross return R̃t+1:

Wt+1 = αt (Wt − Ct )Rt+1︸ ︷︷ ︸
market wealth,Wm,t+1

+ (1 − αt )(Wt − Ct )R̃t+1︸ ︷︷ ︸
nonmarket wealth

, where αt ∈ (0,1].

If (i) Rt+1, R̃t+1, and the elements of zt+1 are associated random variables,14 (ii)
the investor ensures that the share of wealth in the market, Wm,t+1/Wt+1, is at
least θ ∈ (0,1], some fixed constant, and (iii) the investor’s relative risk aversion
−WVWW/VW (which need not be constant) is at least 1/θ , then the mNCC holds.

Proof: We must show that covt (−Rt+1VW (Wt+1, zt+1), log Rt+1) ≥ 0, that is, we
must prove that the covariance of two functions of Rt+1, R̃t+1, and zt+1 is posi-
tive. The two functions are

f (Rt+1, R̃t+1, zt+1) = −Rt+1VW

(
αt (Wt − Ct )Rt+1 + (1 − αt )(Wt − Ct )R̃t+1, zt+1

)
and

g(Rt+1, R̃t+1, zt+1) = log Rt+1.

(As the covariance is conditional on time t information, we can treat αt and
Wt − Ct as known constants.) As the random variables are associated, the
result follows if f and g are each weakly increasing functions of their ar-
guments. The assumptions above ensure that this is the case. For exam-
ple, differentiating f with respect to Rt+1, we need −VW (Wt+1, zt+1) − αt (Wt −
Ct )Rt+1VWW (Wt+1, zt+1) ≥ 0 or, rearranging,

−Wt+1VWW (Wt+1, zt+1)
VW (Wt+1, zt+1

≥ Wt+1

Wm,t+1
.

14 The concept of associated random variables (Esary, Proschan, and Walkup (1967)) extends the
concept of nonnegative correlation in a manner that can be extended to the multivariate setting.
Jointly Normal random variables are associated if and only if they are nonnegatively correlated
(Pitt (1982)), and increasing functions of associated random variables are associated. It follows
that lognormal random variables are associated if and only if they are nonnegatively correlated.
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But this holds, by assumptions (ii) and (iii):

−Wt+1VWW (Wt+1, zt+1)
VW (Wt+1, zt+1

(iii)≥ 1
θ

(ii)≥ Wt+1

Wm,t+1
.

It is immediate that f and g are weakly increasing in their other
arguments. �

Result 4 provides a flexible set of conditions under which the mNCC holds.

EXAMPLE 1: Suppose that there is a representative investor who maximizes
utility over next-period wealth and who chooses to invest her wealth fully in
the stock market. Then by Result 4, the mNCC holds so long as her relative
risk aversion (which need not be constant) is at least one at all levels of wealth.
Furthermore, if the representative investor has log utility, then the mNCC
is tight—that is, the inequality holds with equality—because Mt+1Rt+1 = 1 is
a constant.

EXAMPLE 2: Alternatively, if the investor keeps at least (say) a third of her
wealth in the market, then her relative risk aversion must be at least three.
We also require that the market and nonmarket returns be associated. In the
lognormal case, this holds if the market and nonmarket returns are nonnega-
tively correlated.

These examples make no assumption about the beliefs of other investors
in the economy. We can therefore think from the perspective of a rational in-
vestor surrounded by other investors, some of whom are potentially irrational.
We think that the assumption that the investor chooses to invest fully in the
stock market represents a natural benchmark in such cases, but the possibility
arises that the lower bound might be violated—say in the late 1990s—because
no rational investor would want to hold the market. We discuss this possibil-
ity after introducing the sentiment measure in Section IV. We provide further
examples of situations in which the mNCC holds in Appendix B.

We can now state our lower bound on expected log returns.

RESULT 5: Suppose Assumptions 1 and 2 hold. Denote by callt (K ) and putt (K )
the time t prices of call and put options on Pt+1 with strike K, and denote by Ft
the time t forward price of the index for settlement at time t + 1. Then we have

Etrt+1 − r f,t+1 ≥ 1
Pt

{∫ Ft

0

putt (K )
K

dK +
∫ ∞

Ft

callt (K )
K

dK

}
︸ ︷︷ ︸

LVIXt

. (29)
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Proof: As E∗
t Rt+1 = Rf,t+1 and E∗

t Pt+1 = Ft , the inequality (27) can be rear-
ranged as

1
Rf,t+1

E∗
t Rt+1 log Rt+1 − log Rf,t+1 ≥ 1

Rf,t+1

[
E∗

t

(
Pt+1

Pt
log

Pt+1

Pt

)
− Ft

Pt
log

Ft

Pt

]
.

(30)

The right-hand side of this inequality can be measured directly from option
prices using a result of Breeden and Litzenberger (1978) that can be rewritten,
following Carr and Madan (2001), to give, for any sufficiently well-behaved
function g(·),

1
Rf,t+1

[
E∗

t g(Pt+1) − g(E∗
t Pt+1)

] =
∫ Ft

0
g′′(K )putt (K ) dK +

∫ ∞

Ft

g′′(K )callt (K ) dK.

Setting g(x) = x
Pt

log x
Pt

, we have g′′(x) = 1/(Ptx). Thus,

1
Rf,t+1

[
E∗

t

(
Pt+1

Pt
log

Pt+1

Pt

)
− Ft

Pt
log

Ft

Pt

]
= 1

Pt

{∫ Ft

0

putt (K )
K

dK +
∫ ∞

Ft

callt (K )
K

dK

}
. (31)

The result follows by combining the identity (26), the inequalities (28) and
(30), and equation (31). �

We refer to the right-hand side of equation (29) as LVIX because it is remi-
niscent of the definition of the VIX index, which, in our notation, is

VIX2
t = 2Rf,t+1

{∫ Ft

0

putt (K )
K2 dK +

∫ ∞

Ft

callt (K )
K2 dK

}
,

and of the SVIX index introduced by Martin (2017),

SVIX2
t = 2

Rf,t+1P2
t

{∫ Ft

0
putt (K ) dK +

∫ ∞

Ft

callt (K ) dK

}
.

We do not annualize our definition (29), so to avoid unnecessary clutter we also
do not annualize the definitions of VIX and SVIX above. We typically choose the
period length from t to t + 1 to be 12 months. The forecasting horizon dictates
the maturity of the options, so we use options expiring in 12 months to measure
expectations of 12-month log returns.

VIX, SVIX, and LVIX place differing weights on option prices. VIX has
weighting function 1/K2 on the prices of options with strike K, LVIX has
weighting function 1/K, and SVIX has a constant weighting function. In this
sense, we can think of LVIX as lying halfway between VIX and SVIX. (We could
also introduce a factor of two into the definition of LVIX to make the indices
look even more similar to one another, but have chosen not to.)
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Figure 1. This figure plots the LVIX index, which provides a lower bound on the mar-
ket’s expected excess log return Etrt+1 − rf ,t+1, by Result 5. (Color figure can be viewed at
wileyonlinelibrary.com)

We calculate LVIX using end-of-month interest rates and S&P 500 index
option (mid) prices from OptionMetrics. In practice, we do not observe option
prices at all strikes between zero and infinity, so we have to truncate the in-
tegral on the right-hand side of (29) (as does the CBOE in its calculation of
the VIX index). In doing so, we understate the idealized value of the integral.
That is, our lower bound would be even higher if given perfect data, and thus
it is conservative.

Figure 1 plots LVIXt , at the end of each month, over our sample period from
January 1996 to June 2019. Under our maintained assumptions, the large
spikes visible during in 2008 to 2009, for example, indicate that expected ex-
cess log returns were very high in the depths of the subprime crisis, consistent
with the results of Martin (2017). Of greater relevance for this paper, expected
excess log returns were also relatively high around the turn of the millennium,
despite the high valuation ratios that prevailed at the time.

One might worry that option markets were illiquid, or segmented from
the broader stock market, during the late 1990s. Lamont and Thaler (2003)
present evidence that this was indeed the case for certain individual stocks
(most famously for options on Palm), and ascribe the anomalous behavior of
prices of these stocks, and of options on the stocks, to the difficulty or impos-
sibility of shorting the stocks. As short-selling the broader stock market was
possible at low cost throughout this period (for example, via the futures mar-
ket), we do not expect this to be an issue for our approach. But to address the
more general concern that option markets may have exhibited extreme bid-ask
spreads at the time, we recompute the LVIX index using bid prices as opposed
to mid prices. (We use bid rather than ask prices to be conservative, as this will
drive our sentiment indicator down.) As shown in Figure 2, doing so has very
little effect on our results.
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Figure 2. LVIXt , S&P 500 index, annual horizon, computed using mid prices or bid
prices. (Color figure can be viewed at wileyonlinelibrary.com)

A. Empirical Evidence on the Modified NCC

We motivated the inequality of Result 5 via a theoretical argument that the
mNCC should hold. We can also assess the inequality empirically by examin-
ing the realized forecast errors rt+1 − r f,t+1 − LVIXt . To do so, we carry out a
one-sided t-test of the hypothesis that inequality (29) fails. Using a block boot-
strap,15 we find a p-value of 0.097. Thus, despite the relatively short sample
period imposed on us by the availability of option price data, we can reject the
hypothesis with moderate confidence. This supports our approach.

More optimistically, it is natural to ask whether inequality (29) might ap-
proximately hold with equality (though we emphasize that this does not need
to be the case for our approach to make sense). For this to be true, we would
need both (27) and (28) to hold with approximate equality. As the conditional
volatility of dividends is substantially lower than that of prices, it is reasonable
to think that this is indeed the case for (27), and as noted in footnote 12, much
of the literature implicitly makes that assumption. Meanwhile the mNCC (28)
would hold with equality if (but not only if) one adopts the perspective of an
investor with log utility who chooses to hold the market, as is clear from the
proof provided in Example 2 above. The perspective of such an investor has
been shown to provide a useful benchmark for forecasting returns on the stock
market (Martin (2017)), on individual stocks (Martin and Wagner (2019)), and
on currencies (Kremens and Martin (2019)).

Table VIII reports results from the regression

rt+1 − r f,t+1 = α + β × LVIXt + εt+1 (32)

15 As our sample is 276 months long, we use a block length of seven months, following the T1/3

rule of thumb for block length for a sample of length T . For comparison, the corresponding p-value
using naive OLS standard errors would be 0.001.
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Table VIII
Coefficient Estimates for Regression (32), 96:01 to 17:12

Horizon α̂ s.e. β̂ s.e. R2

3m 0.009 [0.018] 1.381 [3.629] 0.54%
6m –0.004 [0.021] 3.128 [1.514] 3.67%
9m –0.002 [0.041] 2.948 [1.439] 3.70%
12m 0.006 [0.063] 2.493 [1.613] 2.86%

at horizons of three, six, nine, and 12 months. Returns are computed by com-
pounding the CRSP monthly gross return of the S&P 500. We report Hansen–
Hodrick (1980) standard errors to allow for heteroskedasticity and for autocor-
relation that arises due to overlapping observations. If inequality (29) holds
with equality, we should find α = 0 and β = 1. We do not reject this hypothe-
sis at any horizon; and at the six- and nine-month horizons, we can reject the
hypothesis that β = 0 at conventional significance levels.

IV. A Sentiment Indicator

We now adopt the perspective of a hypothetical investor whose expectations
and SDF satisfy the mNCC so that the lower bound (29) of Section III applies.
We also assume that this hypothetical investor’s beliefs are consistent with the
predictive relationship (25) between valuation ratios, returns, and dividend
growth, as studied in Section II. We do so to force the investor’s beliefs to be
consistent with the historical evidence, in order to prevent him or her from
“explaining” asset prices simply by concluding that “this time is different” (in
the words of Reinhart and Rogoff (2009)).

We can derive a lower bound on such an investor’s subjective expectations
about fundamentals by subtracting Et (rt+1 − gt+1), as revealed by valuation
ratios, from Etrt+1, as revealed by interest rates and option prices:

Etgt+1 = r f,t+1 + Et
(
rt+1 − r f,t+1

) − Et (rt+1 − gt+1)

≥ r f,t+1 + LVIXt − Et (rt+1 − gt+1). (33)

The inequality follows (under our maintained Assumptions 1 and 2) because
Etrt+1 − r f,t+1 ≥ LVIXt , as shown in Result 5.

We use yt to measure Et (rt+1 − gt+1) via the fitted value â0 + â1yt , as in
Table I, giving the sentiment indicator Bt , which is a lower bound on the in-
vestor’s expected log dividend growth:

Bt = r f,t+1 + 1
Pt

[∫ Ft

0

putt (K )
K

dK +
∫ ∞

Ft

callt (K )
K

dK

]
− (â0 + â1yt ).

We estimate the coefficients â0 and â1 using an expanding window: at time t
they are estimated using data from 1947 until time t. As a result, Bt is observ-
able at time t.
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Figure 3. The sentiment indicator, computed using the full sample to estimate the re-
lationship between yt and rt+1 − gt+1 (left) or using an expanding window (right). (Color
figure can be viewed at wileyonlinelibrary.com)

As we have discussed, Bt can be interpreted as a lower bound on expected
dividend growth, Etgt+1. If Etgt+1 itself follows an AR(1)—as in the work of
Bansal and Yaron (2004) and many others—then Bt can also be interpreted,
after rescaling, as a lower bound on long-run dividend expectations. The reason
is that if Et+1gt+2 − g = φg(Etgt+1 − g) + εg,t+1, then we can define a measure of
expected long-run dividend growth, at time t, as

(1 − ρ)
∑
i≥0

ρi(Etgt+1+i − g) = 1 − ρ

1 − ρφg
(Etgt+1 − g) .

(We have introduced a factor 1 − ρ so that long-run expected dividend growth
can be interpreted as a weighted average of all future periods’ expected growth
because the weights (1 − ρ)ρi sum to one.)

Figure 3, Panel A plots Bt over our sample period using the full sample from
1947 to 2019 to estimate the relationship between yt (or dpt) and rt+1 − gt+1.
We work at an annual horizon,16 so the value of Bt at a given point in time
is (subject to our maintained assumptions) a lower bound on the expected
dividend growth over the subsequent year. Figure 3, Panel B shows the cor-
responding results using an expanding window to estimate the relationship,
so that the resulting series is observable in real time. Encouragingly, the in-
dicator behaves stably as we move from full-sample information to real-time
information. Unless otherwise indicated, henceforth we work with the series
that is observable in real time.

The figures also show modified indicators, Bdp,t , that use dpt rather than yt
to measure Et (rt+1 − gt+1), as in (23). These have the advantage of familiarity—
dpt has been widely used in the literature—but the disadvantage that they

16 We find similar results at the two-year horizon, as can be seen from Tables IA.I and IA.II,
and Figures IA.1 and IA.2, of the Internet Appendix. The Internet Appendix is available in the
online version of the article on The Journal of Finance website.
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Figure 4. The three components of the sentiment indicator. (Color figure can be viewed at
wileyonlinelibrary.com)

may err on the side of signaling a bubble too soon, as shown in Result 3. Con-
sistent with this prediction, the two series line up fairly closely, but the Bdp,t
series are less conservative—in that they suggest even higher Etgt+1—during
the period in the late 1990s when valuation ratios were far from their mean.

Note, moreover, that net dividend growth satisfies Et
Dt+1
Dt

− 1 > Etgt+1 be-
cause egt+1 − 1 > gt+1. Our lower bound on expected log dividend growth there-
fore implies even higher expected arithmetic dividend growth. If dividend
growth were conditionally lognormal, for example, we would have log Et

Dt+1
Dt

=
Etgt+1 + 1

2 vartgt+1. The variance term is small unconditionally—in our sample
period, vargt+1 ≈ 0.005—but it is plausible that during the late 1990s there
was unusually high uncertainty about log dividend growth.

Figure 4 plots the three components of the sentiment indicator Bt from 1996
to 2019. LVIX and Et (gt+1 − rt+1) moved in opposite directions for most of our
sample period, with high valuation ratios occurring at times of low-risk pre-
mia. But all three components were above their sample means during the
late 1990s.

In particular, our approach implies that the expected annual log dividend
growth perceived by our hypothetical representative investor rose above 12%
around the turn of the millennium, a degree of optimism that we do not think
was reasonable. If we reject this conclusion, we must reject at least one of the
assumptions that delivered it.

The first possibility is that there is no investor whose preferences and beliefs
are such that the mNCC is satisfied. In particular, this would be a violation of
the equilibrium models and various examples discussed in Section III.

Alternatively, if the mNCC did hold, then—for the hypothetical investor to
perceive high expected log returns and, simultaneously, low expected log divi-
dend growth during the bubble period—he or she must have believed that the
historical forecasting relationship between dividend yield and Et (rt+1 − gt+1)
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had broken down, perhaps because of a “paradigm shift” or because the predic-
tive coefficients estimated using historical data failed to reflect the true popu-
lation values. (“This time is different!”) To see this, write Êt (rt+1 − gt+1) for the
regression-implied time t forecast of rt+1 − gt+1, which we now allow to differ
from the agent’s forecast Et (rt+1 − gt+1). Then, from inequality (33), we have

Etgt+1 = r f,t+1 + Et
(
rt+1 − r f,t+1

) − Êt (rt+1 − gt+1)

+ [
Êt (rt+1 − gt+1) − Et (rt+1 − gt+1)

]
≥ r f,t+1 + LVIXt − â0 − â1yt︸ ︷︷ ︸

Bt

+[
Êt (rt+1 − gt+1) − Et (rt+1 − gt+1)

]
.

An agent who believed, in the late 1990s, that Etgt+1 was lower than Bt must
therefore have concluded that Êt (rt+1 − gt+1) < Et (rt+1 − gt+1). By the loglin-
earization (24), this is equivalent to Etyt+1 < Êtyt+1. On this interpretation, our
hypothetical investor’s beliefs were consistent only because she expected yt+1
to remain, in the short run, lower—and valuations higher—than suggested by
the historical evidence. We discuss this possibility further in Section IV.B.1 be-
low.

A. Alternative Stochastic Processes for yt

We have modeled yt as following an AR(1) to avoid overfitting. Aside from the
obvious advantages of parsimony, the partial autocorrelations of yt , as shown
in Figure C.1 of Appendix C, support this choice: the partial autocorrelations
of yt at lags greater than one are close to zero.

The question of how to model yt is not central to the point of this paper,
however, so we also consider the possibility that yt follows an AR(2) or AR(3).
If yt follows an AR(2) process, then from the linearization (24), we have

rt+1 − gt+1 = α + βyt + γ yt−1 + εt+1,

while if yt follows an AR(3) process, we have

rt+1 − gt+1 = α + βyt + γ yt−1 + δyt−2 + εt+1.

The results of these regressions are reported in Table A.II of Appendix A.
The corresponding lower bounds on Etgt+1 are shown in Figure 5. They are

very similar to our baseline measure during the late 1990s, but they are lower
during the crisis of 2008 to 2009 and higher in its aftermath. Once again, we
note that the indicator behaves fairly stably as we move from full-sample in-
formation to real-time information. Figure IA.3 in the Internet Appendix plots
the minimum of the three series computed under AR(1), AR(2), and AR(3) as-
sumptions; this serves as a conservative lower bound.
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Figure 5. Sentiment indicators calculated on a full-sample or real-time basis, assuming
that yt follows an AR(1), AR(2), or AR(3) process. (Color figure can be viewed at wileyonlineli-
brary.com)

Figure 6. Bt with one-sided confidence interval. (Color figure can be viewed at wileyonlineli-
brary.com)

B. Variations

B.1. Estimation Uncertainty

The coefficients in the regression of rt+1 − gt+1 onto yt (and its lags, in the
AR(2) and AR(3) cases) are estimated with statistical uncertainty. To illus-
trate, Figure 6 plots block-bootstrapped one-sided 90% and 95% confidence in-
tervals for our baseline measure Bt .17 At the edge of the 90% (95%) confidence

17 We compute the confidence intervals, at each point in time t, by adding r f,t + LVIXt to the
bottom 5% (or 10%) quantile of the bootstrapped sample of Et [gt+1 − rt+1]. In the case of the
AR(1) model, for example, the bootstrapped sample is created by repeating the following proce-
dure 10,000 times (i.e., for k = 1, . . . , 10, 000): (i) estimate âk and b̂k via OLS from the equation
rk,t+1 − gk,t+1 = ak + bkyk,t + εk,t+1, where the sample of (rk,t+1, gk,t+1, yk,t ) is drawn in blocks of
length T1/3, with replacement, from the annual data of (rt+1, gt+1, yt ) between 1947 and 2019, and
(ii) compute −âk − b̂kyt , where yt is the monthly series between 1996:01 and 2019:06.
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intervals, the lower bounds on expected dividend growth peak at 9.3% (7.9%)
for the AR(1) model and at 9.5% (7.8%) for the AR(3) model.

While we think these numbers remain implausibly high, one might perhaps
argue that they were reasonable forecasts of expected dividend growth. We em-
phasize, however, that when using the 90% or 95% percentile as the estimate
of expected dividend growth, the implicit position taken is that the historical
relationship between valuation ratios and rt − gt—as embodied in the point es-
timates, the correct central measure—is misleading. Furthermore, a prudent
policymaker should also entertain the symmetric possibility that in the pres-
ence of estimation uncertainty, the true Bt is substantially higher than implied
by the central point estimates of the predictive coefficients.

B.2. What If the Valuation Ratio Follows a Random Walk?

A true believer in the New Economy might have argued that our measure of
Et (rt+1 − gt+1), which is based on an assumption that yt follows an AR(1)—or
AR(2) or AR(3)—had broken down during the late 1990s. Perhaps the most ag-
gressive possibility our hypothetical investor could reasonably entertain is the
“random walk” view that the price-dividend ratio had entirely ceased to mean-
revert, as considered by Campbell (2008, 2018). Such a perspective might also
be adopted by a cautious central banker to justify inaction on the basis that
valuation ratios could remain very high indefinitely.18

We now show how to accommodate this possibility. If yt follows a random
walk, then, from equation (14),

Etgt+1
(14)= Etrt+1 − yt ≥ LVIXt + r f,t − yt︸ ︷︷ ︸

B̃t

,

where we define a variant on our previous indicator,

B̃t = LVIXt + r f,t − yt, (34)

that has the further benefit of not requiring estimation of any free parameters.
More generally, if all one knows is that Etyt+1 ≥ yt—irrespective of the details
of the evolution of yt—then equation (24) implies that

Etgt+1 ≥ B̃t .

Figure 7 plots the time series of B̃t . Even if valuation ratios were expected to
follow a random walk in the late 1990s—a dubious proposition in any case—
the implied expectations about cash flow growth appear implausibly high.

Unlike our preferred indicator, Bt , the random walk version B̃t spiked almost
as high during the subprime crisis as it did around the turn of the millennium.
This pattern reflects the fact that implied volatility, and hence the LVIX index,
rose dramatically during the last months of 2008, indicating that log returns

18 It can also be interpreted as a conservative approach to addressing Stambaugh bias.
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Figure 7. The alternative sentiment indicator, B̃t . (Color figure can be viewed at wileyon-
linelibrary.com)

were expected to be very high over the subsequent year (by Result 5). From
the perspective of our notional policymaker who believed that valuation ra-
tios follow a random walk, these high expected log returns could only have
reflected high expected log dividend growth. This prediction is unreasonable,
in our view, because the random walk assumption is unreasonable. The point
is that even a policymaker who believed valuation ratios followed a random
walk would have had to perceive unusually high expected dividend growth in
the late 1990s.

B.3. What If Dividend Growth Is Unforecastable?

If dividend growth is unforecastable (in the sense that Etgt+k = g for k ≥ 1,
as in the work of Campbell and Cochrane (1999) and many others), then valu-
ation ratios reveal long-run expectations of log returns while LVIX reveals the
corresponding short-run expectations.

Specifically, if dividend growth is unforecastable and yt is stationary, then
from equation (15)

yt = (1 − ρ )
∞∑

i=0

ρiEt[rt+1+i − gt+1+i] = (1 − ρ )Et[rt+1] + (1 − ρ )ρ
∞∑

i=0

ρiEt[rt+2+i] − g.

This equation can be rearranged to give

Etrt+1 − (1 − ρ)
∑
i≥0

ρiEtrt+2+i = Etrt+1 − yt − g
ρ

.
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Exploiting the inequality Etrt+1 − r f,t ≥ LVIXt of Result 5, we can conclude that

Etrt+1︸ ︷︷ ︸
short-run returns

− (1 − ρ)
∑
i≥0

ρiEtrt+2+i︸ ︷︷ ︸
long-run returns

≥ LVIXt + r f,t − yt − g
ρ

= B̃t − g
ρ

.

This inequality provides an alternative interpretation of the indicator B̃t =
LVIXt + r f,t − yt that we define in equation (34) above and that is plotted in
Figure 7. If dividend growth is unforecastable, then unusually high levels of
B̃t indicate that short-run expected log returns are unusually high relative to
subsequent long-run expected log returns.

B.4. Are Valuation Ratios Alone Enough?

Valuation ratios alone would make for an even simpler sentiment indicator.
Are they enough? In theory, no: as we have argued, valuation ratios can be
high for good reasons if interest rates are low or if risk premia are low (and are
widely understood to be low), or both, and our measure embraces this fact by
incorporating r f,t and LVIXt .

Nonetheless, theory aside, we do know of course that valuation ratios were
very high during the late 1990s, so it is interesting from a purely empirical per-
spective to see how they compare with Bt . We plot the valuation ratio measures
−yt and pdt on the same axes as Bt over our sample period in Figure C.2 in Ap-
pendix C. For ease of comparison, we standardize all three series to have zero
mean and unit standard deviation and we use the full-sample version of Bt so
that the predictive coefficients do not vary over the time series. The sentiment
index Bt gives a clearer indication of bubbliness in the market at the start of
our sample, from 1996 to 2000, in the sense that it is generally around one-
half to one standard deviation further above its mean than are the valuation
ratio series.

In the opposite direction, valuation ratios have been very high in recent
years. But our measure suggests that this does not represent a bubble, as the
high valuation ratios have reflected unusually low interest rates (and, for much
of this period, low volatility).

B.5. Can the Methodology be Applied in Other Markets?

Our approach can be applied to other assets if their returns obey the mNCC.
It is reasonable to expect that this is the case for stock market indices, for
example. Figure 8 plots our sentiment index for the NASDAQ-100. To do so,
we calculate LVIX using the mid prices of NASDAQ-100 options from Option-
Metrics and estimate the predictive regression (25) over the period 1983 to
2019 using NASDAQ-100 dividend yield and price data from Datastream. (As
the predictive regression is estimated over a shorter time series, we present
results using the full sample rather than using an expanding window.) The
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Figure 8. The sentiment index computed for the NASDAQ-100 index (and, for compari-
son, the baseline sentiment index for the S&P 500). (Color figure can be viewed at wileyon-
linelibrary.com)

sentiment index for the NASDAQ-100 was substantially higher than that for
the S&P 500 around and before the turn of the millennium, consistent with
the conventional view that sentiment was particularly elevated in tech stocks
at the time.

For “hedge” assets, such as gold, one would expect the direction of the in-
equality (28) to be reversed. This rules out using our approach to detect bub-
bles in such assets. The situation is more promising in the case of individual
stocks: it may be possible to argue that the mNCC holds for stocks with betas
sufficiently close to or greater than one, along the lines of Martin and Wagner
(2019) and Kadan and Tang (2019), but we leave this extension for future re-
search.

B.6. Nonlinearity in the Functional Form

We can also allow for a nonlinear relationship between rt+1 − gt+1 and yt . In
Appendix A, we report the results of regressions of the form

rt+1 − gt+1 = a0 + a1yt + a2y2
t + εt+1

and

rt+1 − gt+1 = a0 + a1yt + a2y2
t + a3y3

t + εt+1.

Figure 9, Panel A, shows that these regressions deliver similar results to the
linear specification reported above when we use the full sample period to esti-
mate the coefficients ai. But the coefficient estimates in the higher-order speci-
fications are strikingly unstable when we estimate the regressions in real time
using expanding windows (Figure 9, Panel B), even though the regressions are
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Figure 9. Sentiment indicators calculated with linear, quadratic, and cubic specifica-
tions for the relationship between expected rt+1 − gt+1 and yt (Color figure can be viewed
at wileyonlinelibrary.com)

estimated on almost 50 years of data at the start of our sample period, that is,
on data from 1947 to 1996.

In the late 1990s, for example, the estimated cubic specification implies
a negative relationship between yt and forecast rt+1 − gt+1 around the then-
prevailing value of yt . That is, given the then-recent association of unusu-
ally low dividend yield with high realized returns, the cubic specification pre-
dicts extremely high returns going forward, as shown in Figure C.3, Panel
A, in Appendix C. (It is important that the low dividend yields at the time
were unusual, because the cubic specification makes it possible to associate
high returns with extremely low yields without materially altering the long-
established relationship between low returns and low yields that prevails over
the usual range of yields.)

We view this exercise as a cautionary tale. Given that bubbles occur
fairly rarely, it is particularly important to avoid the possibility that an
(over-)elaborate model achieves superior performance in-sample by overfitting
the historical data. The ingredients of a bubble indicator should behave sta-
bly during historically unusual periods, as our simple linear specification does
(Figure C.3, Panel B in Appendix C).

V. Other Indicators of Market Conditions

We now compare the sentiment indicator to other indicators of financial con-
ditions that have been proposed in the literature. We standardize all time se-
ries to have zero mean and unit standard deviation throughout this section,
for ease of comparison and so that correlations can be equivalently interpreted
as betas (noting that corr(X,Y ) = cov(X,Y )

varX if X and Y have unit standard devia-
tion).
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A. Volume

We start by exploring the relationship with volume, which has been widely
proposed as a signature of bubbles (see, for example, Harrison and Kreps
(1978), Duffie, Garleanu, and Pedersen (2002), Cochrane (2003), Lamont and
Thaler (2003), Ofek and Richardson (2003), Scheinkman and Xiong (2003),
Hong, Scheinkman, and Xiong (2006), Barberis et al. (2018)). We construct
a daily measure of volume using Compustat data from January 1983 to De-
cember 2017 by summing the product of shares traded and daily low price over
all S&P 500 stocks on each day. (We find essentially identical results if we use
daily high prices to construct the measure.) As volume trended strongly up-
ward during our sample period, we subtract a linear trend from log volume.
We do so using an expanding window, so that our detrended log volume mea-
sure, which we call vt , is (like Bt) observable at time t.

The left panel of Figure 10 plots detrended log volume, vt , and Bt over the
sample period, with both series standardized to zero mean and unit variance.
There is a remarkable similarity between the two series, so it is worth empha-
sizing that they are each based on entirely different input data. The sentiment
index is a leading indicator of volume: the right panel shows the correlation be-
tween Bt+k and vt , where k is measured in months. The shaded area indicates
a block bootstrapped19 95% confidence interval. The correlation between the
two is higher than 0.9 when k is around −10 months. Thus, Figure 10 shows
that Bt−10 is highly statistically significant as a forecaster of vt (and, to a lesser
extent, that vt is a statistically significant forecaster of Bt+10).

B. Survey Expectations of Long-Term Earnings Growth

We next compare Bt to a quarterly time series of financial analysts’ long-
term earnings growth (LTG) forecasts constructed by Nagel and Xu (2019).
Figure 11 plots the LTG series against Bt , with the latter computed as in our
baseline measure (i.e., using an AR(1) and with an expanding window to com-
pute predictive coefficients) and with an AR(3) using full-sample data. There is
a striking similarity between the two series—particularly when the sentiment
indicator is computed using an AR(3) and full-sample estimation of the predic-
tive regression—but we note that Bt rose more rapidly during the late 1990s.

C. The Probability of a Crash

One expects that the probability of a crash should be higher during a bubble
episode; if not, the episode is perhaps not actually a bubble.20 To assess this
prediction, we use a measure of the (time t conditional) probability of a crash
derived by Martin (2017, Result 2), which can be computed in terms of option

19 As before, we draw 10,000 bootstrap samples, using block length of T1/3. We use the same
procedure in the correlation plots shown in Figures 11, 12, C.4, C.5, and IA.4 to IA.10.

20 Greenwood, Shleifer, and You (2019) document, at the industry level, that sharp increases in
stock prices do indeed signal a heightened probability of a crash.
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Figure 10. The sentiment indicator and detrended log volume (standardized). Shaded
areas in the right panel indicate bootstrapped 95% confidence intervals. k is measured in months.
(Color figure can be viewed at wileyonlinelibrary.com)

prices as

Pt (Rt+1 < α) = α

[
put′

t (αPt ) − putt (αPt )
αPt

]
, (35)

where put′
t (K ) is the first derivative of the put price as a function of strike,

evaluated at K. This measure represents the probability of a market decline
perceived by an unconstrained log investor who chooses to hold the market.
We also require that the investor is marginal in option markets, so we there-
fore rule out the possibility that these markets are segmented from the stock
market. (In other words, the above calculation relies on a stronger assumption
than the rest of the paper, namely, that the SDF Mt+1 satisfies Mt+1 = 1/Rt+1;
this implies that the mNCC holds with equality.) The probability of a crash
(35) is high when out-of-the-money put prices are highly convex, as a function
of strike, at strikes at and below αPt . By contrast, the measure of volatility (29)
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Figure 11. Bt plotted against the LTG measure of Nagel and Xu (2019). All series are stan-
dardized. As LTG is quarterly, k is measured in quarters. (Color figure can be viewed at wileyon-
linelibrary.com)

that is relevant for our sentiment indicator is a function of option prices across
the full range of strikes of out-of-the-money puts and calls.

The left panel of Figure 12 plots the crash probability over time. The proba-
bility of a crash was elevated during the late 1990s, consistent with standard
intuition about bubbles. But it was also high in the aftermath of the subprime
crisis, an episode that we would certainly not identify as bubbly. The right
panel shows the correlation between the two series at different leads and lags.
The sentiment measure is a leading indicator of crash probability at horizons
of about two years.

The possibility that high valuation ratios, expected log returns, and expected
log dividend growth can coexist with a high crash probability (in the mind
of our representative investor) is reminiscent of the view of the world color-
fully articulated by former Citigroup chief executive Chuck Prince in a July
2007 interview with the Financial Times: “When the music stops, in terms of
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Figure 12. The sentiment indicator, volume, and crash probability. Shaded areas in the
right-hand panels indicate bootstrapped 95% confidence intervals. k is measured in months. (Color
figure can be viewed at wileyonlinelibrary.com)

liquidity, things will be complicated. But as long as the music is playing, you’ve
got to get up and dance. We’re still dancing.”

D. Other Measures

The panels of Figures C.4 and C.5 compare the sentiment index to vari-
ous other measures of financial conditions: the excess bond premium (EBP)
of Gilchrist and Zakrajšek (2012), the National Financial Conditions Index
(NFCI), and the Adjusted National Financial Conditions Index (ANFCI), all of
which are generated on a weekly basis by the Federal Reserve Bank of Chicago.
We convert them to monthly series by taking the last week’s observation in
each calendar month.
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Lastly, Figures IA.4 through IA.9 in the Internet Appendix compare Bt with
various series drawn from quarterly surveys studied by Ben-David, Graham,
and Harvey (2013). The variables ER1yr and ER10yr are, respectively, the cross-
sectional average subjective expectations of stock market returns over one- and
10-year horizons, as reported by survey respondents, EER1yr and EER10yr are
the corresponding average subjective expected excess returns, and ERstd1yr
and ERstd10yr are disagreement measures at the same horizons (that is, the
cross-sectional standard deviations of reported subjective expected returns).
Figure IA.10 compares Bt with a quarterly time series of average subjective
expectations of dividend growth constructed by De la O and Myers (2021). The
measures of mean subjective expected returns and of mean subjective expected
dividend growth are positively correlated with Bt , whereas the measures of
mean subjective expected excess returns and of disagreement are negatively
correlated with Bt . We are hesitant to draw firm conclusions from this evidence,
however, as the comparison series do not include the period of greatest interest,
from 1996 to 2000.

VI. Conclusion

We present a sentiment indicator based on interest rates, index option prices,
and the market valuation ratio. The indicator can be interpreted as a lower
bound on the expected dividend growth that must be perceived by an uncon-
strained, rational investor with risk aversion equal to at least one who is happy
to invest his or her wealth fully in the stock market and whose beliefs are con-
sistent with historical evidence on the relationship between valuation ratios,
returns, and dividend growth.

The bound was very high during the late 1990s, reflecting dividend growth
expectations that in our view were unreasonably optimistic—hence our de-
scription of it as a sentiment indicator—and that were not realized ex post. We
also show that it is a leading indicator of detrended volume, of LTG expecta-
tions, and of various measures of stress in the financial system.

In simple terms, we characterize the late 1990s as a bubble because valua-
tion ratios and short-run expected returns—as revealed by interest rates and
our LVIX measure—were simultaneously high. Both aspects are important. We
would not view high valuation ratios at a time of low expected returns, or low
valuation ratios at a time of high expected returns, as indicative of a bubble.
On the contrary, the latter scenario occurred in the aftermath of the market
crash in 2008.

Our measure does not point to an unreasonable level of market sentiment at
the end of our sample period in 2019, as it interprets the high valuation ratios
that prevailed at the time as being justified by the low levels of interest rates
and of implied volatility.

Volatility and valuation ratios have, of course, long been linked to bubbles.
A novel feature of our approach is that we use some theory to motivate our
definitions of volatility and of valuation ratios, and to make the link quanti-
tative. There are various choices to be made regarding the construction of the
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indicator. We make these choices in a conservative way to avoid “crying bub-
ble” prematurely, in the hope that the indicator might be useful to cautious
policymakers in practice. Our approach does ultimately require an appeal to
the good judgment of policymakers, as we do not address the hard question of
how to identify whether a given level of expected dividend growth is reason-
able. We do not see a way to avoid some degree of expert judgment in identi-
fying market-wide bubbles, but we believe that the approach proposed in this
paper would make it easier for such judgment to be applied in a focussed and
disciplined manner.
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Appendix A: Other Specifications

If yt follows an AR(1) with autocorrelation φ, then the linear approximation
(24) reduces to

Et (rt+1 − gt+1) = ρ(φ − 1)
1 − ρ

y︸ ︷︷ ︸
α

+ 1 − ρφ

1 − ρ︸ ︷︷ ︸
β

yt . (A1)

In the body of the paper, we estimate the predictive relationship between
rt+1 − gt+1 and the predictor variable yt (and dpt) via linear regression. Under
our AR(1) assumption, we could also estimate the constant term and the co-
efficient on yt directly, as in (A1), by estimating ρ and the autocorrelation φ.
Table A.I shows that both approaches give similar results.

Alternatively, if yt follows an AR(2) process, then from the linearization (24),
we have

rt+1 − gt+1 = α + βyt + γ yt−1 + εt+1,

while if yt follows an AR(3) process, we have

rt+1 − gt+1 = α + βyt + γ yt−1 + δyt−2 + εt+1.

Table A.II reports the results of these regressions.
We can also consider the effect of allowing for quadratic or cubic functional

relationships between rt+1 − gt+1 and yt . Table A.III reports results from the

Table A.I
Comparison of AR(1) Parameterization and Linear Regression

Method α β R2

OLS –0.07 3.54 8.33%
AR(1) –0.08 3.81 8.51%

Annual price and dividend data, 1947 to 2019, from CRSP (cash reinvestment), as in Table I.
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Table A.II
Predictive Regressions for S&P 500, Annual Data, Cash

Reinvestment, 1947 to 2017

â s.e. β̂ s.e. γ̂ s.e. δ̂ s.e. R2

AR(1) –0.067 [0.049] 3.415 [1.317] 7.73%
AR(2) –0.056 [0.053] 6.098 [3.378] –2.991 [3.339] 8.84%
AR(3) –0.040 [0.055] 6.473 [3.313] 0.651 [3.231] –4.457 [2.373] 11.32%

Table A.III
Predictive Regressions for S&P 500, Annual Data, Cash

Reinvestment, 1947 to 2017

â0 s.e. â1 s.e. â2 s.e. â3 s.e. R2

linear –0.067 [0.049] 3.415 [1.317] 7.73%
quadratic –0.072 [0.111] 3.740 [6.348] –4.390 [81.250] 7.73%
cubic –0.120 [0.230] 9.350 [20.960] –166.400 [576.000] 1402.800 [4821.300] 7.81%

regressions

rt+1 − gt+1 = a0 + a1yt + a2y2
t + εt+1

and

rt+1 − gt+1 = a0 + a1yt + a2y2
t + a3y3

t + εt+1.

Appendix B: Further Examples

We provide some other illustrations of situations in which the mNCC
holds. These illustrations are intended as proof-of-concept rather than as fully
fleshed-out models, so we have simplified them as far as possible.

EXAMPLE B1 (Heterogeneous preferences): This example is a simplification
of Longstaff and Wang (2012), except that we do not need to make any as-
sumptions on the distribution of aggregate consumption growth. Consider
a two-period economy with complete markets and two agents with homoge-
neous beliefs and power utility, but with differing coefficients of risk aversion,
γ2 > γ1 ≥ 1. Agent i’s problem is therefore

max
C1−γi

i,t

1 − γi
+ βEt

C1−γi
i,t+1

1 − γi
.

As markets are complete and beliefs are homogeneous, the SDF is unique, so
that β(C1,t+1/C1,t )−γ1 = β(C2,t+1/C2,t )−γ2 . Following Longstaff and Wang (2012)
in assuming that γ1 = γ and γ2 = 2γ to ensure a closed-form solution, we
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therefore have

C1,t+1

C1,t
=

(
C2,t+1

C2,t

)2

. (B1)

Writing Yt = C1,t + C2,t for aggregate consumption, this implies that

C2,t+1 = 2
a

(√
1 + aYt+1 − 1

)
,

where the constant a = 4C1,t/C2
2,t reflects the relative wealth of the two agents.

We wish to check whether the mNCC holds for the return on the market,
that is, the aggregate consumption claim. To do so, we construct a represen-
tative agent for whom the mNCC holds. (Although agents 1 and 2 are not
representative—neither invests only in the market—they have the same be-
liefs and SDF as the representative agent, so it will then follow that the mNCC
holds for them too.) In the usual way, the representative agent consumes Yt+1
and has marginal utility v′(Yt+1) that is proportional to C−2γ

2,t+1. Integrating, the
representative agent’s utility function is

v(Yt+1) =
(√

1 + aYt+1 − 1
)2(1−γ )

2(1 − γ )
+

(√
1 + aYt+1 − 1

)1−2γ

1 − 2γ
.

The representative agent’s relative risk aversion is therefore low in good times
and high in bad times, and it lies between γ and 2γ :

−Yt+1v′′(Yt+1)
v′(Yt+1)

= γ + γ√
1 + aYt+1

→
{
γ as Yt+1 → ∞
2γ as Yt+1 → 0

.

As γ ≥ 1, the mNCC holds.

EXAMPLE B2 (Heterogeneous beliefs): This example is based on Martin and
Papadimitriou (2021). A continuum of investors with log utility over terminal
wealth trade a risky asset in unit supply (“the market”) and a riskless asset in
zero net supply. The net riskless rate is zero. Uncertainty evolves on a binomial
tree, so the risky asset’s return, R, equals Ru at the up-node and Rd at the
down-node; we choose labels so that Ru > Rd. Investors, indexed by h ∈ (0,1),
have heterogeneous beliefs: investor h believes that the probability of an up-
move is h. On wealth-weighted average, investors must hold one unit of the
asset to clear the market. At any node, we can define a representative agent
H ∈ (0,1) who invests fully in the risky asset with no borrowing or lending. We
also define the risk-neutral probability of an up-move (on which all investors
agree) as p∗ ∈ (0,1). Optimists (h > H) lever up, while sufficiently pessimistic
investors (h < p∗) go short, as they perceive that the market earns a negative
risk premium.

These assumptions imply that the representative agent perceives the mar-
ket as growth-optimal, and hence that H

Ru
+ 1−H

Rd
= 1 (as the gross riskless rate

is one). However, again using the fact that the gross riskless rate equals one,
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we must also have p∗Ru + (1 − p∗)Rd = 1 by the defining property of the risk-
neutral probability. Combining these two equations, we have

p∗Ru = H and (1 − p∗)Rd = 1 − H. (B2)

We can now find the covariance cov(h)(MR, log R) from the perspective of an
arbitrary investor h ∈ (0,1). We have

cov(h)(MR, log R) = E∗(R log R
) − E(h) log R

= p∗Ru log Ru + (1 − p∗)Rd log Rd − h log Ru − (1 − h) log Rd

= (H − h) log
Ru

Rd
,

where we use (B2) in the third line. The mNCC therefore holds when h ≥ H,
that is, for the representative investor and for all more optimistic investors.

EXAMPLE B3 (Heterogeneous preferences and beliefs): Consider a collection of
investors who maximize next-period utility. Investor i allocates a fraction θi of
wealth to the risky asset, and 1 − θi to the riskless asset, so E(i)W1−γi

i,t+1/(1 − γi),
where Wi,t+1 = Wi,tRf + θiWi,t (R − Rf ). Risk aversion γi ≥ 1 may be heteroge-
neous across investors. Beliefs are also heterogeneous: we suppose that every
investor i perceives the return on the market as lognormal, log R ∼ N(μi, σ

2
i ),

and that μi − r f + 1
2σ

2
i = γiσ

2
i , where r f = log Rf is the log riskless rate. This

last assumption implies (together with the first-order condition for optimal θi)
that every investor will set θi = 1, which clears the market. Every investor is
therefore representative, and as γi ≥ 1, the mNCC holds for them all.

Appendix C: Additional Figures

Figure C.1. Partial autocorrelations of yt . Annual data, 1947 to 2017, cash-reinvestment
method.
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Figure C.2. Standardized series of −yt , pdt , and Bt (with Bt calculated using predic-
tive coefficients from the full-sample predictive regression). (Color figure can be viewed at
wileyonlinelibrary.com)

Figure C.3. Forecasting with cubic and linear specifications at the beginning (01/96)
and end (12/17) of our sample, and around the market highs in 12/99. Lines indicate the
estimated functional relationship between Et (rt+1 − gt+1) and yt , and dots indicate the specific
values of yt and Et (rt+1 − gt+1) that happened to prevail on the relevant dates. (Color figure can
be viewed at wileyonlinelibrary.com)
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Figure C.4. The relationship between Bt and various measures of financial conditions.
Shaded areas in the right panels indicate bootstrapped 95% confidence intervals. k is measured in
months. (Color figure can be viewed at wileyonlinelibrary.com)
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Figure C.5. The relationship between Bt (AR(3), full sample) and various measures of
financial conditions. Shaded areas in the right panels indicate bootstrapped 95% confidence
intervals. k is measured in months. (Color figure can be viewed at wileyonlinelibrary.com)
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