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Abstract

We develop a new efficient simulation scheme for sampling two families of tilted stable

distributions: exponential tilted stable (ETS) and gamma tilted stable (GTS) distributions. Our

scheme is based on two-dimensional single rejection (SR). For the ETS family, its complexity is

uniformly bounded over all ranges of parameters. This new algorithm outperforms all existing

schemes. In particular, it is more efficient than the well-known double rejection (DR) scheme

(Devroye, 2009), which is the only algorithm with uniformly bounded complexity that we can

find in the current literature. Beside the ETS family, our scheme is also flexible to be further

extended for generating the GTS family, which cannot easily be done by extending the DR

scheme. Our algorithms are straightforward to implement, and numerical experiments and

tests are conducted to demonstrate the accuracy and efficiency.

Keywords: Exponentially tilted stable distribution; Gamma tilted stable distribution; Exact Sim-

ulation Algorithms; Monte Carlo simulation; Random variate generation; Two-dimensional single

rejection; Tempered stable distribution; Lévy process

1 Introduction

The family of positive stable distributions, which was introduced by Lévy (1925), is an import-

ant mathematical tool for capturing heavy tails of observations from reality, such as financial time
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series of price returns. A series of influential work by Mandelbrot (1961, 1963a,b) had demon-

strated its importance for potential applications in finance and economics. However, there is one

crucial problem, as later pointed by many scholars, is its infinite moments, which would be es-

pecially problematic for pricing assets such as options. In order to deal with this issue, the tail

of a positive stable distribution should be tilted (or tempered); see discussions in Carr and Wu

(2003) and Wu (2006). A very popular version of the tilted stable distribution is the so-called ex-

ponentially tilted stable (ETS) distribution, which was initially proposed by Tweedie (1984) and

Hougaard (1986). It plays a key role in mathematical statistics, as a model for randomness used by

Bayesians, and in economic models (Devroye, 2009). Furthermore, the family of ETS distributions

has become a fundamental component to be used to construct many useful stochastic processes,

which have numerous applications in finance and many other fields. For example, ETS-driven

non-Gaussian Ornstein-Uhlenbeck processes are used for modelling stochastic volatilities of asset

prices and contagion risk processes, see Barndorff-Nielsen and Shephard (2002, 2003); Andrieu

et al. (2010); Todorov (2015); Qu et al. (2021, 2019). More recently, ETS-driven Lévy subordinat-

ors have been adopted for modelling the stochastic-time clocks in a series of time-changed models

proposed by Li and Linetsky (2013, 2014, 2015) and Mendoza-Arriaga and Linetsky (2014, 2016).

Besides, ETS distributions as key members of infinitely divisible distributions, are closely connec-

ted with characteristic kernels, which play an import role in machine learning applications, see

Nishiyama and Fukumizu (2016).

The simulation design for sampling ETS distributions without bias has been recently brought

to the attention in the literature. The most widely used and trivial algorithm probably is the simple

stable rejection (SSR) scheme, which is developed by a simple combination of the well known

Zolotarev’s integral representation (Zolotarev, 1966) and an acceptance-rejection (A/R) scheme;

see Brix (1999). Hofert (2011a) suggested a fast rejection (FR) algorithm to enhance the SSR

scheme. However, the complexities1 of SSR and FR are unbounded, which obviously limit their

applicability as they would become extremely inefficient for some parameter choices. To overcome

this problem, Devroye (2009) developed a novel scheme based on double rejection (DR) such that

the complexity is uniformly bounded. Alternatively, in this paper, we design a new scheme for ETS

distributions based on two-dimensional single rejection (SR)2. The complexity of our SR scheme

is also uniformly bounded, and remarkably, it outperforms the DR scheme for all ranges of para-

meters. More precisely, the complexity of our SR scheme is roughly bounded by 4.2154 over all
1The complexity of an algorithm is the expected number of iterations before halting, see Law (2015, Ch.8). In

particular for the acceptance-rejection (A/R) methodology, its complexity is exactly the associated A/R constant.
2This idea originates from the approach of distributional decomposition and transformation adopted by Dassios et al.

(2018) where they tailored efficient simulation algorithms for some special ETS classes, see also Dassios et al. (2020)
for this approach.
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parameters, which is smaller than the one for the DR scheme. Furthermore, we can easily extend

our scheme for sampling gamma tilted stable (GTS) distributions, which cannot easily be done by

extending DR scheme since the R distribution suggested in Devroye (2009) has been replaced by

other distribution for GTS. The GTS distribution was first introduced by Barndorff-Nielsen and

Shephard (2001) for modelling stochastic volatility of financial time series. The first simulation

algorithm was just developed recently by Favaro et al. (2015), which is based on the decomposition

for the GTS. Since our algorithm for the GTS does not depend on the ETS simulation scheme, it is

much easier to set up and implement than the one in Favaro et al. (2015).

The paper is structured as follows: In Section 2, we provide preliminaries for the positive

stable distribution, exponential tilted stable distribution, introduce the general two-dimensional SR

framework, and develop several simulation schemes for sampling ETS distributions. In Section

3, we analyse the performances of several proposed algorithms regarding to different choices of

tilting and stability parameters, then, by optimally combining these schemes, we propose a super

efficient uniformly bounded scheme to sample ETS variables over the whole range of stability and

tilting parameters. In Section 4, we extend the simulation idea from ETS distributions to GTS

distributions. In Section 5, extensive numerical experiments for our algorithms as well as the

associated comparisons with other schemes have been carried out and reported in detail. Section

6 draws a brief conclusion for this paper.

2 Preliminaries

2.1 Exponential Tilted Stable Distributions

A positive stable random variable Sα with the stability index α ∈ (0, 1) has the Laplace transform

E
î
e−vSα

ó
= e−v

α
, v ∈ R+. (2.1)

The density function of Sα has the well-known Zolotarev’s integral representation (Zolotarev,

1986),

fα(s) =
1

π

π∫
0

α

1− α
B(u)

1
1−α s−

1
1−α e−B(u)

1
1−α s

− α
1−α

du, s ∈ R+, (2.2)

where B(u) is defined as

B(u) :=
sinα(αu) sin1−α

Ä
(1− α)u

ä
sinu

, u ∈ [0, π].
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The associated ETS random variable Sα,λ is defined through the exponentially tilting distribution

of Sα with tilting parameter λ ∈ R+. The Laplace transform of Sα,λ therefore is

E
î
e−vSα,λ

ó
= eλ

α−(λ+v)α , (2.3)

and the density function of Sα,λ is given by

fα,λ(s) = eλ
α−λsfα(s) =

π∫
0

f(s, u)du, (2.4)

where f(s, u) is the bivariate density function of (S,U) in (s, u) on [0,∞)× [0, π], i.e.,

f(s, u) =
αeλ

α

(1− α)π
B(u)

1
1−α s−

1
1−α exp

(
−B(u)

1
1−α s−

α
1−α − λs

)
. (2.5)

This Sα,λ can not be easily simulated directly due to the Zolotarev’s integral representation (2.2).

However, we can use our two-dimensional A/R scheme to sample (S,U) and return S to sample

Sα,λ instead.

Remark 2.1. Other papers in the literature may use an alternative parameterisation for the expo-

nential tilted stable distribution with Laplace transform

E
î
e−vSα,λ,θ

ó
= eθ[λ

α−(λ+v)α],

where θ ∈ R+ is a new parameter. Without loss of generality, we set θ = 1 in this paper, since

Sα,λ,θ
D
= θ

1
αS

α,λθ
1
α
,

see Devroye (2009, p.12).

2.2 Two-Dimensional Single Rejection Scheme

Several competing algorithms for simulating exponentially tilted stable distributions have been pro-

posed in the literature, i.e. simple stable rejection (SSR) scheme (Brix, 1999), fast rejection (FR)

scheme (Hofert, 2011a), and double rejection (DR) scheme (Devroye, 2009) . These algorithms are

unbiased and can produce very accurate samples. However, each of them has its own advantages

and limitations. For the SSR scheme, since the expected complexity is exponentially increasing,

the algorithm has a very poor acceptance rate for a large value of tilting parameter λ. For the FR

scheme, it works well for a small value of α, but its complexity is of order O(λα) which is clearly
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unbounded. For the DR scheme, although the complexity is uniformly bounded, the upper bound

is still large. In particular, when α is close to 0, the simulation becomes much less efficient. Com-

paring with the SSR scheme and the FR scheme, the DR scheme is more difficult for a practitioner

to implement as the procedure is rather complicated. Hence, it is of great interest to develop a

simpler and more efficient algorithm with lower uniformly bounded complexity for all α ∈ (0, 1)

and λ ∈ R+, and this is the aim of our paper.

Given the density function of Sα,λ in (2.4) with the joint density function f(s, u) of a bivariate

variable (S,U) in (2.5), we can use the two-dimensional A/R scheme to sample (S,U) by choosing

an appropriate bivariate envelope (S′, U ′) with density g(s, u). Therefore, we can use the follow-

ing general simulation framework, Algorithm 2.1, to sample the associated marginal variate S.

Algorithm 2.1. We have the following two-Dimensional single rejection framework

1. set C = sup
s,u
{f(s, u)/g(s, u)}

2. repeat{

3. sample (S,U) with density g(s, u), V ∼ U(0, 1)

4. if (V ≤ f(S,U)
Cg(S,U)) break

5. }

6. return S

The expected complexity, which stands for the expected number of iterations before halting, of

this two-dimensional single rejection (SR) scheme is the corresponding acceptance-rejection (A/R)

constant C in Algorithm 2.1. Hence,if we can find an appropriate bivariate envelope with a lower

and uniformly boundedC, then this method is more suitable than the double rejection (DR) method

used by Devroye (2009), as only one rejection procedure is involved within the entire simulation

instead of two.

3 Simulation Scheme for Exponential Tilted Stable Distribution

Based on the two-dimensional SR framework in Algorithm 2.1, we design an efficient simulation

algorithm to sample the exponential tilted stable distributions with uniformly bounded complexity.

First of all, let us define Erf(x) :=
2√
π

x∫
0

e−t
2
dt as the error function, Γ(x) :=

∞∫
0

tx−1e−tdt as the
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gamma function, and denote N (µ, σ2, lb = 0, ub = π)3 as the truncated normal distribution with

mean µ ∈ R and variance σ2 ∈ R+ within the domain [0, π]. The details of the new simulation

scheme for ETS distributions is provided in Algorithm 3.1 below.

Algorithm 3.1. The two-Dimensional single rejection algorithm for Sα,λ is provided as follows,

1. set R = Erf(
»
α(1− α)λαπ2/2), C1 = Γ(αλα)eαλ

α−1

(αλα)λ
α

Ä
α

1−α + αλα
äλα(1−α)+1, C2 =

Γ((1−α)λα+1)e(1−α)λ
α

((1−a)λα)(1−α)λα
,C3 = Γ(αλα+1)eαλ

α−1(αλα)−αλ
α

√
2πα(1−α)λα(1+1/[(1−α)λα])−1−(1−α)λα ,C4 = Γ((1−α)λα+1)e(1−α)λ

α

√
2πα(1−α)λα((1−α)λα)(1−α)λα

2. if (C1 = min {C1, C2, C3, C4}) {

3. repeat {

4. sample U ∼ U [0, π], X ∼ Γ(αλα, 1), V ∼ U [0, 1]; set S = X/λ

5. if (V ≤ αeλ
α

Γ(αλα)
1−α B(U)

1
1−αλ

α
1−αX−

α
1−α−αλ

α

e−B(U)
1

1−α λ
α

1−αX
− α

1−α
/C1) break

6. }

7. }

8. if (C2 = min {C1, C2, C3, C4}){

9. repeat{

10. sample U ∼ U [0, π], Z ∼ Γ
Ä
(1−α)λα + 1, 1

ä
, V ∼ U [0, 1]; set S = B(U)

1
αZ−

1−α
α

11. if (V ≤ eλαΓ((1− α)λα + 1)Z−(1−α)λαe−λB(U)
1
αZ− 1−α

α /C2) break

12. }

13. }

14. if (C3 = min {C1, C2, C3, C4}){

15. repeat{

16. sample U ∼ N
(
µ = 0, σ2 = [α(1− α)λα]−1, lb = 0, ub = π

)
17. sample X ∼ Γ(αλα, 1), V ∼ U [0, 1]; set S = X/λ

18. if (V ≤ Rαeλ
α

Γ(αλα)λ
α

1−αB(U)
1

1−α

C3(1−α)
√

2πα(1−α)λαX
α

1−α+αλα e
−
Ä
λB(u)

1
αX−1

ä α
1−α

+
α(1−α)λαU2

2 ) break

19. }

20. }
3 "lb" stands for the lower bound and "ub" stands for the upper bound
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21. if (C4 = min {C1, C2, C3, C4}){

22. repeat{

23. sample U ∼ N
Ä
µ = 0, σ2 = [α(1− α)λα]−1 , lb = 0, ub = π

ä
24. sample Z ∼ Γ

Ä
(1− α)λα + 1, 1

ä
, V ∼ U [0, 1]; set S = B(U)

1
αZ−

1−α
α

25. if (V ≤ Reλ
α

Γ((1−α)λα+1)

C4

√
2πα(1−α)λαZ(1−α)λα e

−λB(U)
1
αZ− 1−α

α +
α(1−α)λαU2

2 ) break

26. }

27. }

28. return S

Proof. According to (2.2) and (2.4), for

X = λSα,λ, (3.1)

the density of the random variable X is specified by

fX(x) =
1

π

π∫
0

αeλ
α

1− α
B(u)

1
1−αλ

α
1−αx−

1
1−α e−B(u)

1
1−α λ

α
1−α x

− α
1−α−xdu, x ∈ R+,

which is the marginal density of the bivariate variable (X,U) on [0,∞)× [0, π] with density

f(x, u) =
αeλ

α

π(1− α)
B(u)

1
1−αλ

α
1−αx−

1
1−α exp

(
−B(u)

1
1−αλ

α
1−αx−

α
1−α − x

)
. (3.2)

To sample Sα,λ, first, we sample (X,U) by applying the two-dimensional SR scheme in (2.1), and

then return

Sα,λ = X/λ.

To simulate (X,U) with density (3.2), we could choose a gamma-uniform bivariate envelope

(X ′, U ′) on [0,∞)× [0, π] with density

g(x, u) =
1

π

1

Γ(m)
xm−1e−x, (3.3)

for somem ∈ R+. Given the density function f(x, u) for (X,U) in (3.2) and g(x, u) for (X ′, U ′)

in (3.3), we have

f(x, u)

g(x, u)
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=
αeλ

α
Γ(m)

1− α
B(u)

1
1−αλ

α
1−αx−

α
1−α−m exp

(
−B(u)

1
1−αλ

α
1−αx−

α
1−α

)

≤ αeλ
α
Γ(m)

1− α
B(u)

1
1−αλ

α
1−α

 α
1−αB(u)

1
1−αλ

α
1−α

α
1−α +m

−
(1−α)m+α

α

exp

Ö
−B(u)

1
1−αλ

α
1−α

αB(u)
1

1−αλ
α

1−α

α+ (1− α)m

−1
è

=

Å
α

1− α

ã−m(1−α)
α

λ−mΓ(m)

Å
α

1− α
+m

ãm(1−α)+α
α

e−
m(1−α)+α

α
+λαB(u)−

m
α

≤
Å

α

1− α

ã−m(1−α)
α

λ−mΓ(m)

Å
α

1− α
+m

ãm(1−α)+α
α

e−
m(1−α)+α

α
+λαB(0)−

m
α

=

Å
α

1− α

ã−m(1−α)
α

λ−mΓ(m)

Å
α

1− α
+m

ãm(1−α)+α
α

e−
m(1−α)+α

α
+λα
î
(1− α)1−ααα

ó−m
α

= C1(α, λ;m),

where B(u) is a monotone increasing function with

min
0≤u≤∞

¶
B(u)

©
= B(0) = (1− α)1−ααα. (3.4)

The A/R constant C1(α, λ;m) can be further minimised overm. The optimal valuem∗ satisfies

α

1− α
ψ(0)(m∗) + ln

Å
α

1− α
+m∗

ã
= ln

(
α

1
1−αλ

α
1−α

)
, for ψ(0)(m) =

dΓ(m)

dm
. (3.5)

Hence, by approximating the LHS of (3.5), the optimal ratem∗ for the gamma-distributed envelope

is chosen by settingm∗ = αλα. The A/R decision therefore follows

V ≤ f(X ′, U ′)

C1(α, λ)g(X ′, U ′)
,

with

C1(α, λ) = C1 (α, λ;αλα) = (αλα)−λ
α

eαλ
α−1Γ (αλα)

Å
α

1− α
+ αλα

ãλα(1−α)+1

, (3.6)

where C1(α, λ) is the associated A/R constant to sample (X,U) via a gamma-uniform bivariate

envelope (X ′, U ′). Instead of this gamma-uniform bivariate envelope, one could use a gamma and

truncated-normal bivariate envelope (X̄, Ū) on [0,∞)× [0, π] with associated density of the form

h(x, u) =
xαλ

α−1e−x

Γ (αλα)

»
2α(1− α)λα/

√
π

Erf
(
π
»
α(1− α)λα/2

)e−α(1−α)λαu22 , (3.7)

to implement the two-dimensional SR scheme. We consider a new envelope
(
X̄, Ū

)
such that

X̄ ∼ Γ (αλα, 1) , Ū ∼ N
Ç
µ = 0, σ2 =

1

α(1− α)λα
, lb = 0, ub = π

å
,
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which is a truncated-normal random variable with mean µ = 0 and variance σ2 = 1
α(1−α)λα within

the domain [0, π]. Given the joint density of (X,U) in (3.2) and the joint density of
(
X̄, Ū

)
in (3.7),

first, by maximising f(x, u)/g(x, u) with respect to x, we have

f(x, u)

h(x, u)
≤

Erf
(
π
»
α(1− α)λα/2

)
αeλ

α
Γ(αλα)

(1− α)
»

2πα(1− α)λα
λ−αλ

α
B(u)−λ

α
e
α(1−α)λαu2

2

×
Ä
1 + (1− α)λα

ä1+(1−α)λα

e−(1+(1−α)λα).

According to Devroye (2009), we have the inequality

B(u)−λ
α ≤ B(0)−λ

α
e−

α(1−α)λαu2
2 =

î
αα(1− α)1−α

ó−λα
e−

α(1−α)λαu2
2 . (3.8)

Hence, by (3.8), we then have

f(x, u)

h(x, u)
≤

Erf
(
π
»
α(1− α)λα/2

)
Γ(αλα + 1)e−1+αλα(αλα)−αλ

α
(1− α)−1−(1−α)λα»

2πα(1− α)λα
Ä

1
λα + (1− α)

ä−1−(1−α)λα

≤ Γ(αλα + 1)e−1+αλα(αλα)−αλ
α»

2πα(1− α)λα

Ç
1 +

1

(1− α)λα

å1+(1−α)λα

= C3(α, λ), (3.9)

whereC3(α, λ) is the associated A/R constant to sample (X,U) via a gamma and truncated-normal

bivariate envelope (X̄, Ū). Given these two methodologies, one could set Sα,λ = X/λ to obtain

the realisation of Sα,λ once X has been generated.

Besides X = λSα,λ, we could use an alternative transformation to sample Sα,λ by setting

Z = B(U)
1

1−αS
− α

1−α
α,λ . (3.10)

According to (2.5), by changing the variables of the joint distribution function from (S,U) to

(Z,U), the bivariate density function of (Z,U) in (z, u) on [0,∞)× [0, π] is of the form

f(z, u) =
eλ

α

π
exp

(
−z − λB(u)

1
α z−

1−α
α

)
. (3.11)

To sample Sα,λ, we could sample (Z,U) first, and then return

Sα,λ = B(U)
1
αZ−

1−α
α .

To simulate (Z,U) with density (3.11), we choose an envelope (Z ′, U ′) on [0,∞) × [0, π] with

9



joint density function

g(z, u) =
1

π

zre−z

Γ(r + 1)
.

According to (3.4), we have

f(z, u)

g(z, u)
≤ eλ

α
Γ(r + 1)z−r exp

(
−λα(1− α)

1−α
α z−

1−α
α

)
≤
Ç

αr

(1− α)λ

å rα
1−α

e−
rα
1−α+λαΓ(r + 1)

î
(1− α)α

α
1−α
ó−r

= C2(α, λ; r),

where C2(α, λ; r) can be minimised over r. The optimal value r∗ satisfies

ψ(0)(r∗ + 1) =
α

1− α
ln

(
λ(1− α)

1
α

r∗

)
, for ψ(0)(r) =

dΓ(r)

dr
. (3.12)

By approximating the LHS of (3.12), the optimal rate r∗ is chosen by setting r∗ = (1 − α)λα.

Hence, the associated A/R constant with r∗ is given by

C2(α, λ) = C2

Ä
α, λ; (1−α)λα

ä
= Γ

Ä
(1−α)λα+1

ä
e(1−α)λα ((1− α)λα)−(1−α)λα , (3.13)

where C2(α, λ) is the associated A/R constant to sample (Z,U) via a gamma-uniform bivariate

envelope (Z ′, U ′). Similarly, one could also consider a gamma and truncated-normal bivariate

envelope
(
Z̄, Ū

)
for (Z,U) on [0,∞)× [0, π] with density (3.11), such that

Z̄ ∼ Γ
Ä
(1− α)λα + 1, 1

ä
, Ū ∼ N

Ç
µ = 0, σ2 =

1

α(1− α)λα
, lb = 0, ub = π

å
.

The joint density is given as

h(z, u) =
z(1−α)λαe−z

Γ((1− α)λα + 1)

»
2α(1− α)λα/

√
π

Erf
(
π
»
α(1− α)λα/2

)e−α(1−α)λαu22 .

Then, by maximising f(z, u)/h(z, u) with respect to z and applying inequality (3.8), we have

f(z, u)

h(z, u)
=

Erf
(
π
»
α(1− α)λα/2

)
eλ

α
Γ((1− α)λα + 1)»

2πα(1− α)λα
z−(1−α)λα exp

Ç
−λB(u)

1
α z−

1−α
α +

α(1− α)λαu2

2

å
≤

Erf
(
π
»
α(1− α)λα/2

)
e(1−α)λαΓ((1− α)λα + 1)»

2πα(1− α)λα
λ−α(1−α)λαααλ

α
B(u)−λ

α
e
α(1−α)λαu2

2

≤
Erf

(
π
»
α(1− α)λα/2

)
e(1−α)λαΓ((1− α)λα + 1)»

2πα(1− α)λα
(1− α)−(1−α)λαλ−α(1−α)λα

≤ Γ((1− α)λα + 1)»
2πα(1− α)λα

((1− α)λα)−(1−α)λαe(1−α)λα = C4(α, λ), (3.14)
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whereC4(α, λ) is the associated A/R constant to sample (Z,U) via a gamma and truncated-normal

bivariate envelope (Z̄, Ū). Given these two methodologies, one could set Sα,λ = B(U)
1
αZ−

1−α
α

to obtain the realisation of Sα,λ once X has been generated.

When specifying the input of (α, λ), to sample Sα,λ, these four two-dimensional SR schemes

will lead to different expected complexities, namelyC1(α, λ), C2(α, λ), C3(α, λ), C4(α, λ). There-

fore, the most efficient strategy to sample Sα,λ is to choose the one with the smallest highest ac-

ceptance rate, to implement the corresponding two-dimensional single rejection procedure, which

leads to Algorithm 3.1. And the overall complexity therefore would be formidable by C(α, λ),

where

C(α, λ) = min
i=1,2,3,4

®
Ci(α, λ) : (α, λ) ∈ (0, 1)× (0,∞)

´
. (3.15)

Given the complexity C(α, λ) in (3.15) for Algorithm 3.1, we conclude the following result.

Theorem 3.1. The complexity C(α, λ) in (3.15) for Algorithm 3.1 is uniformly bounded. In par-

ticular, we have

sup
α∈(0,1),λ≥0

C(α, λ) ≤ 4.2154.

Proof. According to Corollary 1.2 in Batir (2008), the following inequality

Γ(x+ 1) <
√

2πxxe−x
 
x+

1

2
,

hold for x ≥ 0, we then have the following results

C1(α, λ) <
√

2παλα + π

Ç
1 +

1

(1− α)λα

å
= C̄1(α, λ),

C2(α, λ) <
»

2π(1− α)λα + π = C̄2(α, λ),

C3(α, λ) <

 
1

1− α
+

1

2α(1− α)λα

Ç
1 +

1

(1− α)λα

å
= C̄3(α, λ),

C4(α, λ) <

 
1

α
+

1

2α(1− α)λα
= C̄4(α, λ).

Hence, for any combination of (α, λ) ∈ (0, 1)× (0,∞), we have

C(α, λ) = min
i=1,2,3,4

{Ci(α, λ) : (α, λ) ∈ (0, 1)× (0,∞)}

< min
i=1,2,3,4

{
C̄i(α, λ) : (α, λ) ∈ (0, 1)× (0,∞)

}
= C̄(α, λ). (3.16)
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To prove C(α, λ) is uniformly bounded over (α, λ) ∈ (0, 1)× (0,∞), it suffices to prove C̄(α, λ)

is uniformly bounded over (α, λ) ∈ (0, 1)× (0,∞). We notice that the following inequalities hold

min

®√
2παλα + π,

 
1

1− α
+

1

2α(1− α)λα

´
≤
 

1

1− α
+ π,

min

®»
2π(1− α)λα + π,

 
1

α
+

1

2α(1− α)λα

´
≤
 

1

α
+ π,

for any arbitrary (α, λ) ∈ (0, 1)× (0,∞)4, which indicate that

min
{
C̄1(α, λ), C̄3(α, λ)

}
≤
 

1

1− α
+ π

Ç
1 +

1

(1− α)λα

å
,

min
{
C̄2(α, λ), C̄4(α, λ)

}
≤
 

1

α
+ π.

Hence, we have

C̄(α, λ) ≤ min

{
C̄2(α, λ),

 
1

α
+ π,

 
1

1− α
+ π

Ç
1 +

1

(1− α)λα

å}
. (3.17)

Note that, since C̄2(α, λ) goes to
√

3π when both α, λ → 0, this C̄2(α, λ) in (3.17) will prevent

explosion when both α, λ→ 0.

First, for the case α ∈
î

1
2 , 1
ä
, since

»
1
α + π is decreasing and bounded, we have

C̄(α, λ) ≤
 

1

α
+ π ≤

√
2 + π ≈ 2.2675.

For the case α ∈
Ä
0, 1

2

ä
, we have

C̄(α, λ) ≤ min

{»
2π(1− α)λα + π,

 
1

1− α
+ π

Ç
1 +

1

(1− α)λα

å}
≤ min

ß√
2πλα + π,

√
2 + π

Å
1 +

2

λα

ã™
≤ max

(α,λ)∈(0,1)×(0,∞)

ß
min

ß√
2πλα + π,

√
2 + π

Å
1 +

2

λα

ã™™
≈ 4.2154,

where this supreme value is obtained at λα ≈ 2.3281, i.e. when

√
2πλα + π =

√
2 + π

Å
1 +

2

λα

ã
.

This is because one of the function is increasing in λα and the other function is decreasing in λα,

the maximum of the minimum of these two function over (α, λ) ∈ (0, 1) × (0,∞) is at the point
4The supreme value of the function defined by the minimum of an increasing and decreasing function is at the point

when the two functions meet.
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when these two functions are equal.

Hence, by (3.16), we have

C(α, λ) ≤ C̄(α, λ) ≤ 4.2154× 1{0<α<1/2} + 2.2675× 1{1/2≤α<1} ≤ 4.2154,

which clearly implies that C(α, λ) is uniformly bounded by 4.2154 over (0, 1)× (0,∞).

This C(α, λ) is uniformly bounded by 4.2154 over all combinations of the parameters. When

the stability parameter α is between 1/2 and 1, the upper bound can be reduced to 2.2685. In

principle, the uniform bound provided in Theorem 3.1 is the bound for C̄(α, λ), which is the upper

bound of C(α, λ), whereas the actual bound of C(α, λ) is much smaller than this uniform bound.

Remark 3.1. Given C(α, λ) in (3.15), when holding λ fixed, we have

lim
α→0

C(α, λ) = lim
α→0

C1(α, λ) = lim
α→0

e−1

Ç
1 +

1

(1− α)λα

åλα+1

=
4

e
,

lim
α→1

C(α, λ) = lim
α→1

C2(α, λ) = lim
x→0

Γ(x+ 1)x−xex = 1,

and

lim
λ→0

C(α, λ) = lim
λ→0

C2(α, λ) = lim
x→0

Γ(x+ 1)x−xex = 1,

lim
λ→∞

C(α, λ) ≤ lim
λ→∞

C̄(α, λ) = min
α∈(0,1)

{»
1/α,

»
1/1− α

}
≤
√

2,

while holding α fixed. Figure 2 shows the value of C(α, λ) for various values of α and λ. The

calculated maximum it attains for those values is about 2.5. This actual bound for C(α, λ) we

observed is much smaller than the one we discovered in Theorem 3.1.

In fact, this C(α, λ) is indeed the complexity of the scheme that optimally combines the four

two-dimensional SR algorithms with different envelopes and implements the most efficient al-

gorithm by choosing the one with the smallest A/R constant to sample the exponential tilted stable

random variable Sα,λ. The overall complexity of Algorithm 3.1 is C(α, λ) in (3.15), which, ac-

cording to Theorem 3.1, is uniformly bounded by 4.2154. Apparently, the complexity is smaller

than 8.1133, which is the complexity of the DR scheme (Devroye, 2009), and the relevant numer-

ical comparison tests of these algorithms will be illustrated in Section 5. Figure 1 represents the

plot of the regions over (0, 1) × (0,∞) where each of the two-dimensional SR algorithms sug-

gested in Algorithm 3.1 will be active. We can see that for α close to 0, the two-dimensional SR

13



Figure 1: Algorithm active regions: blue region represents C(α, λ) = C1(α, λ); green region represents
C(α, λ) = C2(α, λ); yellow region represents C(α, λ) = C3(α, λ); red region represents
C(α, λ) = C4(α, λ).

Figure 2: The complexity of Algorithm 3.1 for α ∈ (0, 1) and λ := − ln(1− z) with z ∈ (0, 1)
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algorithm with C1(α, λ) will be active and for α close to 1, or λ close to 0, the two-dimensional

SR algorithm with C3(α, λ) will be active. When λ getting large, depending on the size of α, one

of the two-dimensional SR algorithms with C2(α, λ) and C4(α, λ) will be active. The limits for

C(α, λ) provided in Remark 3.1 clearly explain these facts.

4 Simulation for Gamma Tilted Stable Distribution

Beside the ETS class, the gamma tilted stable (GTS) distribution is another interesting class of

tilted stable distributions. The GTS, denoted by Gα,λ,ν , was first introduced by Barndorff-Nielsen

and Shephard (2001), and its density is defined as

f(s) =
sνe−λsfα(s)

G(ν, λ)
, s ∈ R+, (4.1)

where ν > 0, andG(ν, λ) =

∞∫
0

yνe−λyfα(y)dy, and fα(·) is the density of the positive stable vari-

able Sα in (2.2). Based on the two-dimensional single rejection method and the gamma-uniform

envelope and the gamma and truncated-normal envelope for the ETS, we can also develop a simu-

lation scheme to sample the GTS variables. The details are provided in Algorithm 4.1.

Algorithm 4.1. We have the following simulation scheme for the gamma tilted stable Gα,λ,ν ,

1. set R1 = Erf(
»
α(1− α)λαπ2/2), R2 = Erf(π

»
(1− α)(αλα − ν)/2)

2. set G1 = eαλ
α−1

(αλα)λ
α

(
α+α(1−α)λα

1−α

)λα(1−α)+1
, G2 = e(1−α)λ

α(1−α)
(1−α)ν
α αν

(1−a)(1−α)λαλα(1−α)λα
,

G3 = λ−α
2λα+αe−1+αλαα−αλα+1(1−α)−1−(1−α)λα√
2πα(1−α)λα(1/λα+(1−α))−1−(1−α)λα ,G4 = e(1−α)λ

α
(1−α)

(1−α)ν
α αν√

2πα(1−α)λα
√

1−ν/[αλα]((1−α)λα)(1−α)λα
,

C̄1 = Γ(αλα+ν)λ−νG1, C̄3 = Γ(αλα+ν)λ−νG3, C̄2 = Γ ((1− α)λα − (1− α)ν/α+ 1)G2,

and C̄4 = Γ ((1− α)λα − (1− α)ν/α+ 1)G4

3. if
Ä
{C̄1 = min{C̄1, C̄2, C̄3, C̄4}, ν < αλα} or {C̄1 = min{C̄1, C̄3}, ν ≥ αλα}

ä
{

4. repeat{

5. sample U ∼ U [0, π], X ∼ Γ(αλα + ν, 1), V ∼ U [0, 1]; set G = X/λ

6. if (V ≤ αeλ
α

G1(1−α)B(U)
1

1−αλ
α

1−αX−
α

1−α−αλ
α

e−B(U)
1

1−α λ
α

1−αX
− α

1−α
) break

7. }

8. }
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9. if
Ä
C̄2 = min{C̄1, C̄2, C̄3, C̄4}, ν < αλα

ä
{

10. repeat{

11. sample U ∼ U(0, π)

12. sample Z ∼ Γ((1−α)λα− (1− α)ν/α+1, 1), V ∼ U [0, 1]; setG = B(U)
1
αZ−

1−α
α

13. if (V ≤ eλαB(U)
ν
αZ−(1−α)λαe−λB(U)

1
αZ− 1−α

α /G2) break

14. }

15. }

16. if
Ä
C̄3 = min{C̄1, C̄2, C̄3, C̄4}, ν < αλα} or {C̄3 = min{C̄1, C̄3}, ν ≥ αλα}

ä
{

17. repeat{

18. sample U ∼ N
(
µ = 0, σ2 = [α(1− α)λα]−1, lb = 0, ub = π

)
19. sample X ∼ Γ(αλα + ν, 1), V ∼ U [0, 1]; set G = X/λ

20. if (V ≤ R1αeλ
α
λ

α
1−αB(U)

1
1−α

G3(1−α)
√

2πα(1−α)λαX
α

1−α+αλα e
−
Ä
λB(u)

1
αX−1

ä α
1−α

+
α(1−α)λαU2

2 ) break

21. }

22. }

23. if
Ä
C̄4 = min{C̄1, C̄2, C̄3, C̄4}, ν < αλα

ä
{

24. repeat{

25. sample U ∼ N
(
µ = 0, σ2 = [(1− α)(αλα − ν)]−1, lb = 0, ub = π

)
26. sample Z ∼ Γ((1−α)λα− (1− α)ν/α+1, 1), V ∼ U [0, 1]; setG = B(U)

1
αZ−

1−α
α

27. if (V ≤ R2

G4

√
2π(1−α)(αλα−ν)Z(1−α)λα e

λαB(U)
ν
α e−λB(U)

1
αZ− 1−α

α +
(1−α)(αλα−ν)U2

2 ) break

28. }

29. }

30. return G

Proof. Given X = λGα,λ,ν , the bivariate density of (X,U) on [0,∞)× [0, π] is given by

f(x, u) =
αλ−νeλ

α

G(ν, λ)π(1− α)
B(u)

1
1−αλ

α
1−αx−

1
1−α+ν exp

(
−B(u)

1
1−αλ

α
1−αx−

α
1−α − x

)
. (4.2)
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To generate (X,U), we consider a bivariate envelope (X̃, Ũ) on [0,∞)×[0, π]with X̃ ∼ Γ (αλα + ν, 1)

and Ũ ∼ U [0, π], the joint density is given as

p(x, u) =
1

π

xαλ
α+ν−1e−x

Γ(αλα + ν)
,

hence, we have

f(x, u)

p(x, u)
=

λ−νΓ(αλα + ν)

G(ν, λ)

αeλ
α

1− α
B(u)

1
1−αλ

α
1−αx−αλ

α− α
1−α exp

(
−B(u)

1
1−αλ

α
1−αx−

α
1−α

)
=

λ−νΓ(αλα + ν)

G(ν, λ)Γ(αλα)

αeλ
α
Γ(αλα)

1− α
B(u)

1
1−αλ

α
1−αx−αλ

α− α
1−α exp

(
−B(u)

1
1−αλ

α
1−αx−

α
1−α

)
≤ C1(α, λ)λ−νΓ(αλα + ν)

G(ν, λ)Γ(αλα)
= C̄1,

where C1(α, λ) is defined in (3.6).

Alternatively, we consider a bivariate envelope (X̂, Û) on [0,∞)× [0, π] such that

X̂ ∼ Γ (αλα + ν, 1) , Û ∼ N
Ç
µ = 0, σ2 =

1

α(1− α)λα
, lb = 0, ub = π

å
,

and the joint density (X̂, Û) is given

q(x, u) =
xαλ

α+ν−1e−x

Γ(αλα + ν)

»
2α(1− α)λα/

√
π

Erf
(
π
»
α(1− α)λα/2

)e−α(1−α)λαu22 .

According to the inequality (3.9), we have

f(x, u)

q(x, u)
=

λ−νΓ(αλα + ν) Erf
(
π
»
α(1− α)λα/2

)
αeλ

α

G(ν, λ)(1− α)
»

2πα(1− α)λα
B(u)

1
1−αλ

α
1−αx−

α
1−α−αλ

α

× exp

Ç
−B(u)

1
1−αλ

α
1−αx−

α
1−α +

α(1− α)λαu2

2

å
=

λ−νΓ(αλα + ν)

G(ν, λ)Γ(αλα)

Erf
(
π
»
α(1− α)λα/2

)
αeλ

α
Γ(αλα)

(1− α)
»

2πα(1− α)λα
B(u)

1
1−αλ

α
1−αx−

α
1−α−αλ

α

× exp

Ç
−B(u)

1
1−αλ

α
1−αx−

α
1−α +

α(1− α)λαu2

2

å
≤ C3(α, λ)λ−νΓ(αλα + ν)

G(ν, λ)Γ(αλα)
= C̄3, (4.3)

which is the associated A/R constant.
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For ν < αλα, if we set

Z = B(U)
1

1−αλ
α

1−αX−
α

1−α ,

then, the joint density of (Z,U) on [0,∞)× [0, π] is

f(z, u) =
eλ

α

G(ν, λ)π
B(u)

ν
α z−

(1−α)ν
α exp

(
−z − λB(u)

1
α z−

1−α
α

)
. (4.4)

Hence, to generate (Z,U), we could choose a bivariate envelope (Z̃, Ũ) on [0,∞) × [0, π] with

density

p̃(z, u) =
z(1−α)λα− (1−α)ν

α e−z

πΓ
(
(1− α)λα − (1−α)ν

α + 1
) ,

and we have

f(z, u)

p̃(z, u)
=

Γ
(
(1− α)λα − (1−α)ν

α + 1
)
eλ

α

G(ν, λ)
B(u)

ν
α z−(1−α)λα exp

(
−λB(u)

1
α z−

1−α
α

)

≤
Γ
(
(1− α)λα − (1−α)ν

α + 1
)
e(1−α)λα

G(ν, λ)
λ−α(1−α)λαααλ

α î
(1− α)(1−α)αα

ó−αλα−ν
α

≤
C2(α, λ)Γ

(
(1− α)λα − (1−α)ν

α + 1
)
αν(1− α)

(1−α)ν
α

G(ν, λ)Γ((1− α)λα + 1)
= C̄2, (4.5)

where C2(α, λ) is defined in (3.13).

Alternatively, we could choose a bivariate envelope (Ẑ, Û) on [0,∞)× [0, π] with density

q̂(z, u) =
z(1−α)λα− (1−α)ν

α e−z

Γ
(
(1− α)λα − (1−α)ν

α + 1
) √

2

Erf
Ä
π/
√

2σ2
ä√

πσ2
e−

u2

2σ2 ,

with σ2 = [(1− α)(αλα − ν)]−1, i.e., we have

Ẑ ∼ Γ

Ç
(1− α)λα − (1− α)ν

α
+ 1, 1

å
, Û ∼ N

Ç
µ = 0, σ2 =

1

(1− α)(αλα − ν)
, lb = 0, ub = π

å
.

Hence, according to the inequality (3.14), we have

f(z, u)

q̂(z, u)
=

Erf
(
π
»

(1− α)(αλα − ν)/2
)

Γ
(
(1− α)λα − (1−α)ν

α + 1
)

G(ν, λ)
»

2π(1− α)(αλα − ν)

×eλαB(u)
ν
α z−(1−α)λα exp

Ç
−λB(u)

1
α z−

1−α
α +

(1− α)(αλα − ν)u2

2

å
≤

Erf
(
π
»

(1− α)(αλα − ν)/2
)

Γ
(
(1− α)λα − (1−α)ν

α + 1
)

G(ν, λ)Γ((1− α)λα + 1)
»

2π(1− α)(αλα − ν)

×(1− α)
(1−α)ν
α ανΓ((1− α)λα + 1)(1− α)−(1−α)λαλ−α(1−α)λαe(1−α)λα
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≤
C4(α, λ)Γ

(
(1− α)λα − (1−α)ν

α + 1
)

(1− α)
(1−α)ν
α αν

G(ν, λ)Γ((1− α)λα + 1)
»

1− ν
αλα

= C̄4,

where C̄4 is the associated A/R constant. In general, given parameters α, λ, ν, we choose the

envelope with the smallest A/R constant to generateGα,λ,ν . A combination of these four simulation

schemes leads to a more efficient algorithm.

In general, the additional parameter ν for the GTS distributions makes analysing the complexity

of Algorithm 4.1 more challenging, as the analytical form forG(ν, λ) is unknown. In the literature,

the only existing algorithm for GTS distributions is the decomposition scheme (DS) proposed by

Favaro et al. (2015). The relevant numerical comparison tests between Algorithm 4.1 and the DS

scheme (Favaro et al., 2015) will be illustrated in Section 5.

5 Numerical Verification and Comparison

In this section, we provide numerical examples for sampling two families of tilted stable distri-

butions: ETS and GTS distributions. The simulation experiments are all conducted on a normal

laptop with the Intel Core i7-6500U CPU@2.50GHz processor, 8.00GB RAM,Windows 10 Home

and 64-bit Operating System. The algorithms are coded and performed in R.3.4.2, and comput-

ing time is measured by the elapsed CPU time in seconds. Numerical validation and tests for the

ETS algorithm are based on the probability density function (PDF), cumulative distribution func-

tion (CDF), and quantiles of Sα,λ, which can be obtained by inverting Laplace transform (2.3)

numerically. For the GTS simulation scheme, verifying via the CDF, PDF, and quantiles are non-

executable as its closed-form Laplace transform is not available. So we establish comparison tests

for the empirical CDFs, PDFs, and quantiles generated by Algorithm 4.1 and by the decomposition

scheme (DS) of Favaro et al. (2015).

For Algorithm 3.1 of ETS distributions, the plots of CDFs and PDFs under parameter settings

α = 0.3, 0.6, λ = 1.0, 5.0 are provided in Figure 3. The Q-Q plots for the empirical quantiles of

Sα,λ against the corresponding theoretical quantiles are presented in Figure 4, and the associated

results in detail are reported in Table 1. We can see that our algorithm can achieve a very high

level of accuracy, and the simulated CDFs, PDFs, and quantiles are fitted pretty well to the asso-

ciated numerical inversions. There are a variety of available algorithms for numerically inverting

Laplace transforms with high accuracy in the literature, such as Gaver (1966), Stehfest (1970) and

Abate and Whitt (1992, 1995, 2006) to name a few. Here, we adopt the classical Euler scheme as

described in Abate and Whitt (2006, Section 5, p.415-416).
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Table 1: Comparison of the empirical quantiles of Sα,λ for the SR scheme (via Algorithm 3.1) against the
theoretical quantiles of Sα,λ approximated via numerical inverse the Laplace transform of (2.3)

Quantile 10% 20% 30% 40% 50% 60% 70% 80% 90%
α = 0.3 λ = 1

2D SR 0.0172 0.0342 0.0566 0.0877 0.1299 0.1912 0.2874 0.4451 0.7754
Numerical Inverse 0.0173 0.0342 0.0567 0.0877 0.1303 0.1913 0.2873 0.4452 0.7756

α = 0.6 λ = 5

2D SR 0.1592 0.1905 0.2185 0.2466 0.2773 0.3125 0.3558 0.4163 0.5181
Numerical Inverse 0.1592 0.1905 0.2184 0.2466 0.2772 0.3125 0.3562 0.4163 0.5182

Figure 3: Comparison of the empirical CDF/PDF for the SR scheme (via Algorithm 3.1) of Sα,λ with the
CDF/PDF obtained via numerical inverse the Laplace transform of (2.3)

0 0.5 1 1.5 2
0
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Figure 4: Q-Q plots with the vertical axis being the empirical quantiles of Sα,λ for the SR scheme (via Al-
gorithm 3.1) and the horizonal axis being the theoretical quantiles of Sα,λ approximated via nu-
merical inverse the Laplace transform of (2.3)
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To investigate the performance of our SR scheme for the ETS, we made a comparison of the

CPU time for Algorithm 3.1 against the DR scheme for simulating 100, 000 samples under the para-

meter settings α ∈ {0.05, 0.1, ..., 0.9, 0.99} and λ ∈
{
0.01, 0.1, ..., 106

}
. The numerical results

are reported in Table 2. We can see that our SR scheme performances well for all combinations of

α and λ. The out-performance of our algorithm would even become much more substantial when

α is close to 0. For example, it is about 8 times faster than the DR scheme when α = 0.05. In ad-

dition, Algorithm 3.1 is also very fast when the tilting parameter λ is not very large, which clearly

indicates that the acceptance rate of Algorithm 3.1 is higher than the DR scheme (Devroye, 2009)

for a small tilting parameter λ. Based on the DR scheme, Hofert (2011b) proposed a more efficient

sampling algorithm for ETS distributions by combining the FR scheme with the DR scheme. Since

the SR scheme outperforms the DR scheme over all combination of parameters, this combination

algorithms in Hofert (2011b) can be further improved by combining the SR scheme with the FR

scheme.

Table 2: Comparison of CPU time for generating 100, 000 samples based on the SR scheme (via Algorithm
3.1) and the DR scheme (Devroye, 2009), respectively

α
λ 0.01 0.10 1.00 10 100 1,000 10,000 100,000 1,000,000

SR DR SR DR SR DR SR DR SR DR SR DR SR DR SR DR SR DR
0.05 2.58 18.35 2.33 18.80 2.36 19.05 2.42 19.24 2.23 18.62 2.22 19.09 2.47 18.79 2.32 18.59 2.45 18.16
0.10 2.51 19.36 2.67 18.92 2.56 18.36 2.47 18.14 2.62 18.08 4.44 17.98 3.96 17.71 4.08 17.3 3.44 16.78
0.20 2.33 18.72 2.53 20.44 5.22 18.26 4.51 17.16 3.86 16.31 3.50 15.43 3.58 9.43 3.22 6.91 3.05 5.18
0.30 2.02 19.23 2.36 18.16 4.45 17.54 4.50 15.93 3.95 14.14 3.21 6.84 3.30 4.98 3.21 4.39 2.69 4.07
0.40 1.93 18.69 2.35 18.29 4.03 18.61 3.86 14.97 3.69 7.19 3.78 4.69 3.47 4.64 3.19 4.12 2.76 4.21
0.50 1.73 19.55 1.94 18.53 3.59 17.08 3.50 13.73 3.22 5.14 3.11 4.46 3.36 4.23 3.53 3.95 3.69 4.02
0.60 1.56 18.66 1.97 19.05 3.65 18.47 3.28 13.97 3.39 4.75 3.19 4.22 3.00 4.19 3.49 4.03 3.17 4.03
0.70 1.61 18.50 1.76 18.81 3.46 17.88 3.17 9.28 3.01 4.50 3.11 4.32 3.19 4.23 3.34 3.97 3.25 4.08
0.80 1.84 18.53 1.83 18.49 3.45 18.42 2.94 9.33 2.92 4.52 2.38 4.47 3.17 4.81 3.31 3.92 3.07 4.24
0.90 1.78 18.45 1.59 18.96 1.70 18.62 2.90 14.73 2.76 4.46 2.39 4.55 2.84 4.78 2.94 4.00 2.86 4.97
0.99 1.50 17.81 1.54 18.00 1.62 18.86 1.88 18.44 3.14 13.94 2.28 4.41 2.64 4.69 3.02 4.06 2.83 4.21

The comparison of empirical CDFs and CDFs for Algorithm 4.1 and the DS scheme under

various combinations of (α, λ, ν) are illustrated in Figure 5. We also present the comparison of

empirical quantiles in Figure 6, and report the associated results in Table 3. We can see that these

two algorithms are closely matched in terms of CDF, PDF and quantiles. Note that, Algorithm

4.1 also has one special feature, that is, it can be used to sample Gα,λ,ν for a negative ν such that

ν > −αλα. Figure 7 demonstrates the distributional behaviour of this special class of GTS via its

PDFs.

Meanwhile, we have also compared the simulation time for Algorithm 4.1 against the decom-

position scheme over a large range of values of α, λ, ν, and explore how the efficiency depends on

them. The related numerical results are listed in Table 4. We see that our scheme is more efficient
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Figure 5: Comparison of the empirical CDF/PDF for Algorithm 4.1 against the decomposition scheme (DS)
(Favaro et al., 2015)
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Figure 6: Q-Q plots with the vertical axis being the empirical quantiles of Gα,λ,ν for Algorithm 4.1 and the
horizonal axis being the empirical quantiles of Gα,λ,ν for the decomposition scheme (DS) (Favaro
et al., 2015)

for most parameter settings provided in Table 4, especially for large values of α, λ. For example,

Algorithm 4.1 is extraordinarily fast when α = 0.6 and λ = 1, 000. In general, our proposed al-

gorithm is significantly more efficient for a large range of parameter combinations. The key reason

is that our SR scheme is developed independently and generates the GTS random variable directly
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Table 3: Comparison of the empirical quantiles ofGα,λ,ν for Algorithm 4.1 against the decomposition scheme
(DS) (Favaro et al., 2015)

Quantile 10% 20% 30% 40% 50% 60% 70% 80% 90%
ν = 0.5 α = 0.3 λ = 10

Algo 4.1 0.0164 0.0271 0.0384 0.0510 0.0660 0.0840 0.1079 0.1420 0.2013
DS 0.0165 0.0272 0.0384 0.0509 0.0660 0.0844 0.1079 0.1419 0.2012

ν = 1.5 α = 0.5 λ = 15

Algo 4.1 0.0871 0.1081 0.1263 0.1441 0.1632 0.1849 0.2107 0.2451 0.3001
DS 0.0871 0.1083 0.1263 0.1443 0.1631 0.1849 0.2107 0.2450 0.3001

ν = 2.5 α = 0.7 λ = 20

Algo 4.1 0.2353 0.2583 0.2776 0.2955 0.3138 0.3336 0.3566 0.3861 0.4315
DS 0.2352 0.2583 0.2779 0.2954 0.3140 0.3334 0.3569 0.3862 0.4312
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Figure 7: PDFs of GTS with ν < 0

without using the DR or FR method. This leads to a more straightforward procedure for imple-

mentation. In fact, the DS scheme can be improved by generating the ETS random variable using

our Algorithm 3.1, which would then speed up the entire simulation for the GTS random variable.

6 Conclusion

In this paper, a new efficient simulation scheme has been developed for sampling exponential tilted

stable and gamma tilted stable distributions. The two important distributions appear routinely in

financial applications and other areas that heavily rely on Monte Carlo simulation. The key prin-

ciple of this approach is two-dimensional single rejection, which is very different from other exist-

ing schemes in the literature. The complexity of our new algorithm for the ETS family is uniformly

bounded over all ranges of parameters. Remarkably, it beats all other algorithms. Our further ex-

tension for exactly sampling the GTS family does not rely on sampling the ETS family, hence, our

algorithm for the GTS family is more efficient than the decomposition scheme (which is the only al-

ternative algorithm in the literature). For future research, our algorithms can be adopted for further
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Table 4: Comparison of CPU time for generating 100, 000 samples based on Algorithm 4.1 and the decom-
position scheme (DS) (Favaro et al., 2015), respectively

ν = 1 ν = 1.5 ν = 2 ν = 2.5 ν = 3 ν = 3.5 ν = 4

λ Algo 4.1 DS Algo 4.1 DS Algo 4.1 DS Algo 4.1 DS Algo 4.1 DS Algo 4.1 DS Algo 4.1 DS
α = 0.2

10 4.35 6.89 4.56 8.31 4.81 12.57 5.45 12.44 5.67 16.17 5.75 16.71 5.95 20.77
100 3.68 7.48 3.76 7.81 4.15 12.19 4.56 12.84 4.54 17.58 4.82 16.80 4.75 21.02
1,000 3.25 7.22 3.35 8.07 3.43 12.33 3.45 13.05 3.92 16.76 4.23 18.12 4.35 21.72

α = 0.4

10 4.43 7.02 4.67 7.98 5.56 12.97 6.43 13.95 6.89 17.14 7.80 17.70 8.64 21.11
100 3.35 6.88 3.56 7.79 3.65 12.89 4.22 13.08 4.77 16.97 5.23 16.64 5.54 21.01
1,000 3.28 6.81 3.49 8.88 3.34 11.89 3.54 13.88 3.53 16.31 3.89 18.14 4.23 21.00

α = 0.6

10 5.53 7.27 5.42 7.89 6.32 12.89 7.35 13.00 8.23 16.89 10.08 17.16 11.82 21.49
100 3.23 6.72 4.23 12.28 4.13 12.08 4.23 14.22 4.13 16.44 4.56 17.64 5.23 20.89
1,000 3.44 7.73 3.45 1540.32 3.25 12.16 3.62 186.15 3.15 16.52 3.86 54.73 3.65 20.67

generating ETS-driven or GTS-driven stochastic processes as mentioned early in the introduction,

which could lead many simulation-based applications.
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