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Abstract 
Do informal social ties connecting inventors across distant places promote knowledge flows between 
them? To measure informal ties, we use a new and direct index of social connectedness of regions based 
on aggregate Facebook friendships. We use a well-established identification strategy that relies on 
matching inventor citations with citations from examiners. Moreover, we isolate the specific effect of 
informal connections, above and beyond formal professional ties (co-inventor networks) and 
geographic proximity. We identify a significant and robust effect of informal ties on patent citation. 
Further, we find that the effect of geographic proximity on knowledge flows is entirely explained by 
informal social ties and professional networks. We also show that the effect of informal social ties on 
knowledge flows: has become increasingly important over the last two decades, is higher for older or 
`forgotten' patents, is more important for new entrepreneurs or `garage inventors', and is somewhat 
stronger across distant technology fields. 
 
 
Key words: knowledge flows, diffusion, social connectedness, informal networks 
JEL codes: O33; R12; Z13 
 
This paper was produced as part of the Centre’s Urban Programme.  The Centre for Economic 
Performance is financed by the Economic and Social Research Council. 
 
 
Acknowledgements 
We thank Adam Jaffe, Francesco Lissoni, Steve Gibbons, Marco Percoco, Olmo Silva, Felipe Carozzi, 
Riccardo Crescenzi, Enrico Berkes, and Jorge Perez Perez for fruitful comments and discussions. We 
also thank seminar participants at the 5th Geography of Innovation Conference in Stavanger, RSA North 
America Conference in Montreal, 2nd Regional and Urban Economics Workshop in Bogota, 9th 
European Meeting of the Urban Economics Association in Amsterdam, 6th Workshop in Economics of 
Innovation, Complexity and Knowledge in Turin, and the LSE Economic Geography Work in Progress 
Series. We are grateful to Michael Bailey at Facebook for early access to the Social Connectedness 
data. Andreas Diemer gratefully acknowledges financial support from the UK Economic and Social 
Research Council (ESRC). 

Andreas Diemer, SOFI, Stockholm University. Tanner Regan, Centre for Economic 
Performance, London School of Economics and London Business School.  
 
 
Published by 
Centre for Economic Performance 
London School of Economics and Political Science 
Houghton Street 
London WC2A 2AE 
 
 
All rights reserved.  No part of this publication may be reproduced, stored in a retrieval system or 
transmitted in any form or by any means without the prior permission in writing of the publisher nor be 
issued to the public or circulated in any form other than that in which it is published. 
 
 
Requests for permission to reproduce any article or part of the Working Paper should be sent to the 
editor at the above address. 
 
 
 A. Diemer, and T. Regan, submitted 2020.  



1 Introduction

Do inventors learn from the informal context that surrounds them? This paper empiri-

cally examines the role of social connectedness in the diffusion of knowledge among agents

located across distant geographies. Social connectedness is conceptualised as the overall

informal social environment of an agent, measured by the aggregate ties connecting the

agent’s neighbourhood to other neighbourhoods, net of her formal, professional, networks.

The research question we address, therefore, is whether stronger informal social ties to

other places can foster knowledge exchange with these places, above and beyond what

would be explained by professional channels or by simple geographic proximity. While

the paper is conceptually interested in the general case of knowledge flows, the empirical

analysis focuses on patent citations. Citations provide a powerful measure of econom-

ically relevant knowledge exchange, otherwise difficult to observe in different settings.

Moreover, they speak to the process of innovation and technological change, which is a

key determinant of long run economic growth (Romer, 1986, 1990; Lucas, 1988; Aghion

and Howitt, 1992).

This research relates to an old question in economics that considers the role of localised

knowledge spillovers in promoting the agglomeration of people and industries in space

(Marshall, 1890). As individuals come together and interact, they learn from each other

and become more productive (Glaeser, 1999). Local knowledge exchange, or learning, is

in fact one of the key drivers of urban agglomeration externalities (Duranton and Puga,

2004). With respect to innovation, the sharing and recombination of existing ideas in

dense urban environments supports the creation of more ideas (Carlino et al., 2007).

A large body of empirical research has attempted to validate the notion of knowledge

spillovers, frequently using patent data and patent citations to measure innovation and

knowledge transfers. In keeping with the notion of agglomeration, these studies typically

focus on the geographical dimension of spillovers (Jaffe et al., 1993; Audretsch and Feld-

man, 1996; Thompson and Fox-Kean, 2005; Murata et al., 2013).1 Yet numerous papers

emphasise that the mechanisms underlying the spread of knowledge, whether intentional

or unintentional, rely on interaction of people over networks (Saxenian, 1996; Bala and

Goyal, 2000; Feldman, 2002; Powell and Grodal, 2005; Henderson, 2007). Throughout the

paper, we refer to this process as social learning. Social learning, then, is geographically

local only to the extent that physical proximity shapes the quantity and quality of social

connections (Breschi and Lissoni, 2001; Storper and Venables, 2004). Breschi and Lissoni

(2009), in particular, show that the localisation of patent citations is largely determined

by the limited geographical reach of inventors’ inter-firm mobility.

The increasing availability of data on networks and interaction has thus spurred a growing

1See Audretsch and Feldman (2004) and Carlino and Kerr (2015) for comprehensive reviews.
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empirical literature that evaluates the role of social ties in the exchange of knowledge.

Some papers consider inventor networks constructed from data on co-patenting (Agrawal

et al., 2006; Breschi and Lissoni, 2009), others examine social proximity measures inferred

from belonging to similar ethnic groups (Agrawal et al., 2008; Kerr, 2008). Our efforts

focus on the role of informal connections across places, above and beyond what would be

explained by professional relationships (co-inventor networks). We exploit a new broad

and direct measure of social connectedness across counties in the US based on aggregate

counts of the universe of online friendships on Facebook, a popular social media platform

(Bailey et al., 2018b). These new data allow us for the first time to study knowledge

flows over informal networks on a large scale without relying on indirect proxies.

Our empirical analysis uncovers two new findings on the importance of informal networks

in knowledge flows. First, We identify a significant and robust effect of the social proxim-

ity of places on their propensity to cite one another. This is independent of geographical

distance or professional linkages between inventors and takes into account the endogenous

location of relevant knowledge due to the pre-existing geography of production. Accord-

ing to our preferred estimate, two counties at the 75th percentile of social connectedness

are on average 1.1 percentage points more likely to cite one another than a pair of coun-

ties at the 25th percentile.2 Second, we show that, conditional on social connectedness,

physical proximity (across regions, not within) has no economically or statistically signif-

icant effect on knowledge flows. This is not true for professional ties, which maintain a

large and significant effect on knowledge flows even conditional on social and geographical

proximity. All of these findings are robust to inclusion of a long list of bilateral controls,

patent and citation fixed effects, and a series of conservative robustness checks.

Next we examine margins of heterogeneity in the effect of social connectedness on knowl-

edge flows. Our analysis uncovers several new findings on the ways in which social

connectedness matters for knowledge flows. First, we find that the relevance of infor-

mal social ties has been increasing over time since the early 2000s. Second, we find no

evidence that geography and social proximity act as substitutes; social connectedness is

similarly strong across counties within a commuting zone as it is across states. Third,

we find that geographical distance is important for young patents (<3 years), while so-

cial connectedness is more important for older (>3 years) patents. Fourth, we find that

social proximity is most important for entrepreneurs or ‘garage inventors’; social con-

nectedness is strongest among young assignees (<2 years). Fifth, we find some evidence,

albeit noisy, that social connectedness is increasingly important for patents that are more

technologically distant.

2While this result may appear somewhat abstract, a look at the data reveals that two otherwise neigh-
bouring counties may occasionally display such a difference in connectedness strength with the same
third county. The relationship we document is thus economically meaningful as it can potentially be
achieved with limited geographical mobility.
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This work dialogues with three main strands of literature. First, it speaks to research

on urban economics and agglomeration economies by outlining micro-level channels by

which learning might occur, and specifically how social connectedness might provide

non-agglomerative mechanisms for transmission of knowledge unrestricted to physically

proximate agents. It also emphasises how this type of knowledge tends be technologically

more distant, which offers a new perspective on debates about specialised and diversi-

fied industrial clusters, opening to new research questions about complementarity and

substitution between internal and external sources of knowledge. Second, this analysis

contributes to the innovation literature pioneered by Jaffe et al. (1993), hereafter JTH,

which relies on patent citations to capture the geographic localisation of knowledge ex-

change and spillover of ideas. The use of data on social connectedness in this paper allows

to study informal social interactions at an unprecedented spatial scale. In fact, imposing

an a priori spatial boundary to social learning would seem excessively restrictive consid-

ering the tremendous progress in ICT and the fall in travel costs observed in the past

few decades. This work thus examines the conditions under which social learning might

occur independently of geographical constraints, particularly beyond the local level. Fi-

nally, this paper contributes to the growing scholarship on the role of social networks in

the innovation process, by explicitly looking at informal social connections defined as the

broader social environment to which inventors are exposed in their daily work. There

is ample scholarship documenting the importance of such ties among scientists and in-

ventors. The extant literature, however, emphasises the importance of professional ties

over informal ones (Breschi and Lissoni, 2009). Yet limiting the analysis to professional

networks draws a potentially incomplete picture due to the likely discipline-biased nature

of such ties, which tend to convey specialised knowledge. By contrast, it is possible that

informal types of connections lead to an entirely different type of knowledge exchange,

due precisely to their more diverse composition. This distinction reminds conceptually of

Granovetter (1973, 1983)’s ‘strength of weak ties’ hypothesis.3 However, research linking

informal networks to innovation dynamics is scant (Powell and Grodal, 2005). A no-

table exception is the work of Bailey et al. (2018b), who rely on the same data used in

this paper to explore empirical correlations of social connectedness with a broad set of

outcomes, including patent citations. Their analysis relies on the case-control matching

strategy by JTH, finding that connectedness positively correlates with innovative activ-

ity and knowledge flows. This paper aims to complement their work in several ways.

It focuses exclusively on the learning outcome, carefully conceptualising the underlying

relationship notably with respect to informal ties and light conveyors. It also improves

the estimation framework by attempting to identify the causal effect of connectedness on

knowledge flows using examiner added citations as a control group, and by controlling

3According to this notion, it is more distant relationships (acquaintances, and friends of friends) that
convey the most novel and valuable type of knowledge.
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for inventor mobility, their professional networks, and other confounding channels. Fi-

nally, we document several important dimensions of heterogeneity in the effects of social

connectedness that are consistent with the conceptual discussion.

The rest of the paper is organised as follows. Section 2 frames the problem conceptually.

Section 3 discusses the data and the empirical methods. Section 4 presents the results of

the analysis. Section 5 concludes highlighting limitations and future work.

2 Conceptual Framework

The conceptual discussion of knowledge flows over social networks that follows focuses

on the kind of scientific and technical knowledge found in patents (ideas or inventions).4

The reasons for this are twofold. First, patents embody knowledge that is economically

relevant and that determines, at least by some approximation, the rate of innovation,

productivity, and growth of an economy.5 There is therefore an economic interest in

studying this particular kind of knowledge. Second, patent citations ‘leave a trail’, al-

lowing to track flows of knowledge which are otherwise notoriously difficult to observe.

Patent citations are thus the empirical proxy for learning used in this analysis.

How might social interaction affect the flow of ideas and technological knowledge, as cap-

tured by patent citations? Three distinct mechanisms come to mind, which we generally

refer to as mobility, meetings, and exposure. Among these, we distinguish between heavy

and light knowledge conveyors in the process of social learning. Heavy knowledge convey-

ors are associated with interaction of inventors with colleagues in professional networks,

or with geographic mobility of inventors themselves. Light conveyors, by contrast, are

related to interaction in informal networks, and refer to less structured channels such as

chance meetings, referrals, perceptions, and salience of market opportunities. Table 1

gives an overview.

Table 1: Overview of possible mechanisms for the effects of social learning

Mobility Meetings Exposure

Heavy
Endogenous

inventors’ location
Endogenous

inventors’ networks
N/A

Light N/A
Chance meetings

and referrals
Salience of market

opportunities

The distinction between heavy and light conveyors is important because, in our empirical

4A systematic survey and discussion of possible transfer mechanisms over social networks for different
types of knowledge falls beyond the scope of this paper.

5A growing literature in macroeconomics discusses endogenous growth models that are micro-founded
onto the notion that social interaction spurs knowledge diffusion and innovation (Comin et al., 2012;
Lucas and Moll, 2014; Akcigit et al., 2018; Buera and Oberfield, 2020).
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framework, we are interested in isolating the effect of the latter, which we argue operates

through informal networks. We interpret informal networks in a broad sense, as the

social environment in which inventors work, net of their professional ties (see Section

3.1.1 below for further details). In what follows, we refer to this concept simply as

‘social connectedness’. The broad measure of social connectedness we adopt, however,

is potentially driving both heavy and light conveyors of knowledge. For instance, social

networks are known to correlate with labour mobility (Buechel et al., 2019). In line with

the findings of Breschi and Lissoni (2009), mobile inventors carry ideas with them as

they move across firms and places.6 Social connectedness might matter, then, to the

extent that it favours inventor mobility and influences their choice of location. It is also

possible that social connectedness determines professional networks (typically defined

empirically as networks of co-inventors), and therefore technical collaboration networks

can be endogenous to one’s informal social network. Powell and Grodal (2005) refer to

such ties as ‘emergent networks’, that is, unintentional networks that develop on the

grounds of ongoing relationships of a different nature (friendship ties, common ethnicity,

co-location or reoccurring meetings).7 Professional networks are of paramount importance

in innovation, as patents embody technical, often discipline-specific, ideas that require

prior knowledge to be absorbed (Cohen and Levinthal, 1990).

The channels outlined so far point to relatively well-specified ways in which social con-

nectedness can affect citation probability through heavy knowledge conveyors. However,

interpreted this way, any observed impact of informal networks would effectively be noth-

ing more but a reduced-form empirical correlation of limited interest if one can readily

observe inventor collaboration networks or inventor mobility. In fact, the correlation

should disappear once controlling for these variables (a task we take up in our empirical

model). Is there, at least conceptually, a residual role for social connectedness to influence

the flow of technical knowledge through lighter channels?

One light channel linking social connectedness to patent citations is through ‘Meetings’

(Table 1 column 2). Light meetings, unlike heavy meetings, refer to chance meetings and

referrals. Research is increasingly considering the importance of serendipitous encounters

in directing inventive activity and knowledge exchange. Catalini (2018) studies the exoge-

nous reallocation of university researchers due to building renovation. Atkin et al. (2020)

rely on cell-phone data to uncover the effect of unplanned meetings between workers from

different firms on the propensity of these firms to cite each other’s patents. Roche (2019)

shows that chance interactions promoted by better connecting local road networks foster

serendipitous knowledge exchanges within neighbourhoods, which can explain differences

6Lissoni (2018) provides a recent discussion with respect to international mobility and migration.
7Whilst not directly focusing on informal networks, Crescenzi et al. (2016) and Crescenzi et al. (2017) do
show that social proximity in co-invention networks influences the probability of forming a collaboration
in the future.
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in their innovative performance. With respect to access to external sources of knowledge,

intuitively, the probability of chance meetings occurring between individuals from differ-

ent places increases in the number of ties connecting these places. In practice, this could

happen through visits to distant friends, or even digitally via interaction on social media

and online communication platforms.

Another light channel linking social connectedness to patent citations is through ‘Ex-

posure’ (Table 1 column 3). Preliminary evidence emerges from a survey of inventors

carried out by Jaffe et al. (2002), which aimed to shed light onto the black-box process of

idea exchange in technical and scientific fields. The authors find that, asked about what

factors had a significant influence on the development of their inventions, almost 60% of

respondents cited the ‘awareness of a commercial opportunity’ while another 20% men-

tioned ‘word of mouth or personal interaction’. Notably, ‘joint work with others’ was only

mentioned by less than 15% of respondents. Moreover, ‘word of mouth’ and ‘viewed a pre-

sentation or demonstration’ also accounted for more than 30% of responses when asking

about how citing inventors learned about the previous patent, compared to only about

5% of inventors who cited ‘direct communication with the inventor’.8 Taken together,

these qualitative findings suggest that there might be something related to salience of

ideas and identification of market opportunities in the process of scientific learning. This

channel is not necessarily technical in nature nor is its scope confined to professional

connections. More concretely, exposure-induced learning could be driven by preferences

on the demand side (determining market opportunities for ideas both for consumers or

downstream firms) or through awareness of supply side technological opportunities via

knowledge of different but related products, solutions or applications prevailing in the

(possibly geographically distant but) socially connected market. This intuition is taken

up in the work of Breschi and Lenzi (2016), who, although focusing on professional ties

between inventors, emphasise the importance of allowing for social connections between

different cities as a means to “enriching and renewing a city’s knowledge base by facil-

itating access to fresh external knowledge” (p.66). More recently, Akcigit et al. (2018)

also emphasise the pernicious effects of restricted access to external knowledge, which

can limit innovation productivity. This is due to the ‘proximity paradox’, whereby the

absence of inflow of new ideas from interaction across clusters results in too much spe-

cialisation, cognitive lock-in, and lower idea quality (Miguélez and Moreno, 2015). The

conceptual argument made in this paper is similar. The emphasis however is on latent

knowledge embedded in informal connections, or ‘knowledge in the air’ as originally con-

ceptualised by Marshall (1890). According to the proposition of this paper, ideas are not

8These figures are particularly high considering that the survey could not distinguish between citations
made by the applicant from those included by the patent examiner during the review process. The
frequency of inventors who answered ‘[learned] during patent application process’ and ‘never before
now’ (about 60% in total) is consistent with the average incidence of examiner-added citations (about
60% of all patent citations, according to the data used in this paper).
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only channelled through one specific network connection but rather permeate the broader

informal social context in which innovation occurs. Accordingly, our empirical analysis

will attempt to isolate the effect of social connectedness on knowledge flows via light

conveyors, as opposed to its influence through heavy channels such as inventor networks

and mobility.

3 Data and Empirical Methods

3.1 Variable Definition and Measurement

This paper relies on two main sources of data. Social connectedness is measured using

information on friendship links on Facebook, a popular social media platform. Knowledge

flows are proxied using patent citation data. Additionally, the analysis also uses data from

the 2010 US Decennial Census and the Internal Revenue Service (IRS). What follows gives

details on how the key variables of interest are defined.

3.1.1 Informal Social Networks: the Social Connectedness Index

The proposed measure of informal social networks, or social connectedness, relies on an

index developed by Bailey et al. (2018b): the Social Connectedness Index (SCI). This

index essentially captures the social graph for the universe of active US Facebook users

as of April 2016, aggregated up to the level of counties.9 Users are deemed active if they

interacted with Facebook in the 30 days prior to the April 2016 snapshot. Geographic

location is assigned using the IP address from which users login most frequently. For all

users i and j and for each pair of counties c and k, the index is constructed as:

SCIck =
∑
i 6=j

∑
j

1ij, for i ∈ c and j ∈ k

Where 1ij is an indicator variable that takes the value of 1 if two users are friends with

each other, and 0 otherwise. Due to confidentiality concerns, Facebook only releases a re-

scaled version of these data. The index thus ranges between 0 and 1,000,000, the highest

observed value, which is assigned to connections of Los Angeles County to itself (i.e.,

friendships within the county). The result is a weighted social graph consisting of 3,136

nodes and 9,462,485 edges. Figure 1 visualises the top one percent of edges in the data,

assigning darker colours and thicker lines to stronger connections. The concentration of

social ties between counties hosting the largest cities in the US is evident.

Nevertheless, there are limitations in the use of the SCI to capture real-life ties. The

9In principle it would be more accurate to refer to Facebook accounts rather than users. However, the
same expression as in Bailey et al. (2018b) is used here for consistency.
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Figure 1: Top one percent of social connections across US counties

geography of connectedness might be measured imprecisely to the extent that Facebook

users do not represent the average American. Because friends are typically added on

Facebook rather than deleted, it is also possible that this measure overestimates real-life

interaction between people and places, a concern only partly mitigated by the fact that

Facebook imposes a limit of 5,000 friendships on personal accounts. However, erroneous

measurement is unlikely to bias estimates unless there are reasons to believe that this

error is correlated with the outcome of interest.10

Another important concern is that using the SCI involves a loss of precision in the mea-

surement of relevant informal social networks, insofar as they are imputed to each inventor

on the basis of their neighbourhood, rather than their actual social ties. We conceptu-

alise informal networks as those broad-based relationships individuals entertain in their

10Unfortunately, Facebook does not release covariates for these data. However, it is possible to gauge
some descriptive facts from secondary sources. At the time the data were extracted, there were over
220 million active monthly Facebook users in the United States and Canada (according to Facebook’s
2016 quarterly results report). A Pew Research Center study published in that same year estimates
that about 70% of US adults (aged 18 or more) used the social media platform (Greenwood et al.,
2016). Women, younger individuals (aged 50 or less), college educated and relatively poorer adults
were slightly overrepresented, albeit by small margins. Most Facebook friendships are with people with
whom users have ongoing interaction in real life. According to Hampton et al. (2011), ties between
Facebook users tend to occur among high school or college peers (31%), immediate or extended family
members (20%), co-workers (10%), and neighbours or acquaintances (9%). The remaining ties are with
friends of friends, or ‘dormant relationships’, that may become useful to users in the future. However,
only 3% of Facebook friendships are with someone the user has never met in person. Moreover, several
studies have shown that Facebook ties are good predictors of real life friendships and friendship strength
(Gilbert and Karahalios, 2009; Jones et al., 2013). All this suggest that there is strong potential in these
data to be used to study social relationships on a large-scale (Bailey et al., 2018b). A growing literature
documents the relevance of these data for explaining socio-economic outcomes, further validating its
use in this analysis. Bailey et al. (2020a) consider social interactions in urban areas, Bailey et al.
(2020d) examine the European case. Other research considers housing markets (Bailey et al., 2018a,
2019), product adoption (Bailey et al., 2020c), trade and investment flows (Bailey et al., 2020b; Kuchler
et al., 2020a; Bali et al., 2019), EITC claiming behaviour (Wilson, 2020), bank lending (Rehbein and
Rother, 2019), and the spread of COVID-19 (Kuchler et al., 2020b; Milani, 2020).
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personal life beyond work. These include family and friends, but also extend to relation-

ships beyond this inner circle of connections. There are two main ways to define such

informal networks empirically. One way is to directly look at each agent’s ties (social

ties proper, or interpersonal networks), restricting these to non-professional relationships

(professional ties in this application are inventors’ co-patenting networks). Another way

is to think of informal connections more generally as the social environment characteris-

ing the neighbourhood in which an individual lives or works (neighbourhood networks).

We adopt the latter definition, which emphasises the value of weak ties (Granovetter,

1973, 1983). The composition of this broader social environment is the aggregate result

of choices made by many individuals over many time periods, and therefore represents a

potentially richer and more diverse source of knowledge and ideas than strong ties such

as family and close friends. Ultimately, neighbourhood ties are simply interpersonal ties

aggregated for all agents residing in a given spatial unit. This distinction however matters

for at least two reasons. First, even though interpersonal and neighbourhood networks are

likely to overlap (most people have friends that live geographically close), some agents in

neighbourhood networks may never appear in interpersonal networks (even when consid-

ering high-degrees of separation), or enter at a social distance so high that interpersonal

networks seem unlikely to matter more than the fact that the same contact can be estab-

lished due to exposure to the same overall social environment. Second, neighbourhood

networks can be considered to be time-invariant over a sufficiently large area and a suffi-

ciently small period of time, due precisely to their aggregate and historically-determined

nature. This mitigates endogeneity concerns in the definition of this variable. Moreover,

by looking at the overall social environment in which inventors operate this measurement

of informal social networks is faithful to Marshall (1890)’s original conceptualisation of

spillovers as arising from knowledge ‘as it were in the air’.

Importantly, the assumption that the SCI captures informal connections relies on the

ability to separately account for interpersonal professional connections, which extant lit-

erature finds to significantly influence the exchange of technical knowledge. It is otherwise

possible that that social connectedness simply picks up a very noisy estimate of profes-

sional ties among inventors. The empirical measurement of such connections is discussed

jointly with the patent citation data below.

3.1.2 Knowledge Flows and Professional Networks: USPTO PatentsView

Contrary to the claim that “Knowledge flows [...] leave no paper trail” (Krugman, 1991,

p. 53), Jaffe et al. (1993) argue that in fact they sometimes do, for instance in the form of

patent citations. Following this intuition, this analysis relies on patent data released by

the United States Patent and Trademark Office (USPTO) to measure knowledge transfers.

In particular, the USPTO’s PatentsView platform offers access to large structured data on

9



over 40 years of patents and patent citations from 1976 until today. From 2001 onwards,

these data also include valuable information on who made the citation, the patent’s

applicant or its examiner. As discussed in Section 3.2, this information is at the core of

the proposed identification strategy. There are well known limitations to the use of patent

citations as a measure of knowledge flows (Pavitt, 1985; Griliches, 1998; Bessen, 2008).

Firstly, patenting is selective, meaning that not all ideas or inventions are observed. In

order to be patented, an invention needs to be novel, non trivial and commercially viable.

Very often, these criteria make it easier to patent inventions in manufacturing-related

activities rather than services, and there is bias within manufacturing industries too. It

entails that patents typically represent outcomes of applied, rather than basic research.

There is also a strategic component to patenting. Obtaining and maintaining a patent

is costly, so that it is likely that only the most valuable ideas are filed for intellectual

protection. Similarly, some firms may prefer to maintain their invention entirely secret.

Finally, patents necessarily represent a form of knowledge that is relatively structured

and that can be codified. This means that the more tacit kinds of knowledge are not

captured by this measure. Arguably, however, tacit knowledge is also the kind for which

social ties, interpersonal communication and face-to-face contact matter the most.11

With these caveats in mind, what follows describes the construction of the estimating

sample. We begin by taking the population of citations sent by patents issued in the

2002-2019 period. Each citing and cited patent is mapped onto US counties using the

mode of the location of listed inventors residing in the US, breaking ties randomly.12 We

prefer the use of inventor location, rather than the assignee’s. Lychagin et al. (2016) show

that the geographic location of a firm’s researchers better explains cross-firm spillovers

than that firm’s establishment location. For each citation, we retain its source, whether

it was added by the applicant or by the examiner. We then merge in all available patent

and county level information, such as issue and application years, technology fields, links

over inventors’ networks, bilateral geographical distances, social connectedness, and a set

of controls based on the 2010 US Census.13 Technological fields are based on the Interna-

tional Patent Classification (IPC), which provides a hierarchical system of codes.14 We

consider IPC classes (3-digit) and subclasses (4-digit), henceforth IPC3 and IPC4 classes

respectively. Moreover, based on this classification, the World Intellectual Property Or-

ganisation (WIPO) provides a list of fields that have the advantage of being largely

mutually exclusive, with adequate level of differentiation, and appropriate within-field

homogeneity (Schmoch, 2008). While a single patent could be associated with multiple

11Provided there is sufficient absorptive capacity, especially relevant in the case of technical knowledge.
12In earlier results, not reported herein, the mapping was also carried out using the location of the first

inventor for whom this information was available, with no substantial change in findings.
13Appendix Table B.6 provides a list of all variables.
14Detailed information on this system is available at this link: https://www.wipo.int/

classifications/ipc/en/
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IPC classes or subclasses, in the vast majority of cases there is only one WIPO field.15 A

complete list is available in Appendix Table B.1. The first listed IPC3 and IPC4 classes

are also retained, for robustness checks in the empirical analysis. Some sampling restric-

tions are applied. First, only national flows of knowledge are considered. Citing and

cited patents with no inventors residing in the US at the time the patent was issued are

thus dropped. Moreover, citations originating from or received by patents located outside

continental US states are also dropped. The sample is then restricted to citing patents

whose elapsed time between application and issue date was below the 95th percentile in

the distribution because of concerns of unobserved heterogeneity in the top 5% group.

Similarly, we drop cited patents whose elapsed time to citation (their ‘age’ at the time

of citing, using differences in application dates) was above the 95th percentile in the dis-

tribution. Finally, we restrict our attention to citations originating from patents issued

after 2016, as this is the date when the social graph of Facebook was extracted.

Figure 2: Top one percent of knowledge flows (citations) across US counties

The resulting estimating sample consists of 489,230 citing patents and 11,349,396 cita-

tions, of which on average about 60% were added by the applicant. Appendix Tables B.2

and B.4 offer descriptive details for citing and cited patents. A large number of patents

had all citations made by the applicant (29%) or all citations made by the examiner

(22%). This is in line with previous findings (Thompson, 2006; Alcácer and Gittelman,

2006; Alcácer et al., 2009). Still, one might worry that these extreme value patents could

bias the analysis. Thus, robustness checks will show that results are unchanged even

when these patents are dropped from the sample. Another concern relates to the fact

that inventors might cite other patents whose assignee is the same.16 These citations do

15In the few exceptions, the field most frequently associated the listed IPC classes is retained.
16An assignee is the legal person to whom ownership of the patent is granted, typically a firm, a university,

or another organisation. PatentsView provides assignee-disambiguation. For details, please refer to
this webpage: http://www.patentsview.org/community/methods-and-sources.
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not strictly speaking represent knowledge spillovers since they occur within the bound-

aries of the same organisation, and are less interesting for the case of knowledge flows.

Self-citations so defined represent about 10% of citations in the sample. They are not

used in the analysis. Figure 2 maps the top one percent of knowledge flows in the data

(aggregate bilateral citation counts for county pairs, irrespective of their direction), as-

signing darker colours and thicker lines to larger flows. There is a striking overlap between

the flows represented in this map, and the social connections in Figure 1. An alternative

way of visualising this relationship is proposed in Appendix Figures A.1 and A.2.

Finally, the professional network of inventors is measured in line with existing empirical

literature as a co-inventor, or co-patenting, network. To obtain the network, this method-

ology crucially relies on inventor name disambiguation. Luckily, PatentsView data feature

disambiguated inventor identifiers obtained through a discriminative hierarchical coref-

erence algorithm proposed by Nicholas Monath and Andrew McCallum from University

of Massachusetts Amherst.17 We rely entirely on these data and do not attempt to dis-

ambiguate inventor names in alternative ways. Using the unique identifiers for all listed

inventors (not just those located in the US), we construct a dummy for professional net-

works indicating whether citation patent pairs had a common inventor (self-citation),

whether they shared a co-inventor (first-degree connection), and whether they shared

the co-inventor of a co-inventor (second-degree connection). Figure 3 illustrates this net-

work. We begin with a bipartite representation of the data in panel (a), where each

inventor (blue nodes) is linked to patents (grey nodes). This graph can be converted to a

one-mode projection for inventors (panel b), showing co-patenting relationships. In this

example, A and B are connected by a first degree tie due to the common authorship of

patent P1. F is the co-author of B, a co-author to A, meaning he or she shares a second

degree connection with A. Finally, projecting the graph in (a) by patents allows to track

whether a citation falls within the inventors’ network. As shown in panel (c), patent P1

is connected to P2 and P3 due to a common inventor (‘degree zero’). Patent P1 is also

connected to P4 via a co-author, F, while patent P2 is linked to P4 via a second degree

connection due to F being the co-author of B who is co-author of A.

Just under 20% of citations in the data are linked by a professional connection. Unfortu-

nately, it was not computationally feasible to build higher order network links. Reassur-

ingly, however, Breschi and Lissoni (2009) document that the effect of inventor networks

on patent citations drops sharply in the degree of social distance.

17Details on the discriminative hierarchical coreference algorithm are available at this webpage: http:

//www.patentsview.org/data/presentations/UMassInventorDisambiguation.pdf.
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Figure 3: Illustration of a professional network based on co-patenting

3.2 Empirical Strategy

Researchers studying the geographic localisation of knowledge exchange face the challenge

of controlling for the pre-existing geography of production, that is, the propensity of

industries to cluster in space. Firms or workers might exchange knowledge locally within

a given industry simply as a result of their co-location due to mechanisms other than

learning. That is to say, inventors might disproportionately cite nearby knowledge not

because of some spatial friction that limits their access to knowledge produced farther

away, but simply because the most relevant knowledge tends to be created locally anyway

(and the inventor is located in that cluster precisely for that reason). This would not

be a problem if the concentration of relevant activities were entirely driven by spatial

frictions, but the literature shows that there are other reasons for the emergence of

industrial clusters. Indeed, agglomeration may also arise in the presence of economic

externalities due to matching and sharing benefits, such as thicker labour markets or

input-output relationships (Duranton and Puga, 2004). In this setting, the correlation

between knowledge flows and proximity would be spurious. It is therefore important to

empirically isolate learning as a distinct channel other than matching and sharing.

This empirical concern applies analogously to analyses that focus on the social space,

rather than the physical one (i.e., social connections). Firstly, because homophily in

social relationships typically entails that similar people like each other, thus making it

rather likely that the social network measure also reflects the geographic concentration of

industries (an example of what Manski, 1993, termed ‘correlated effects’). For instance,

software engineers are likely to be friends with each other, but also tend to work in the

same industries, which cluster around Silicon Valley. At the same time, in Silicon Valley

workers might share knowledge independently of these friendship links. Secondly, and

more trivially, the clustering of industrial activity matters because in this particular anal-

ysis social connectedness is imputed to inventors on the basis of their geographic location.

Another possible biasing factor relates to common unobserved environmental factors in

the respective locations of each agent, which simultaneously affect their propensity to

interact and the possibility of observing a flow of knowledge without the need that in-
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teraction is associated to knowledge exchange. This could be the case, for instance, if

two large university colleges facilitate interaction between graduate students, thus cre-

ating social ties, whilst at the same time being host to important research centres that

use knowledge produced by the other university. Yet this knowledge could be sourced

autonomously in complete absence of social learning, despite the existence of social links

between students.

To identify the effect of social connectedness on knowledge flows using patent citation

data, this paper relies on a strategy devised by Thompson (2006). This strategy exploits

information available on patents from 2001 onwards about the source of each citation:

whether it was the patent’s applicant, or if the citation was included by the examiner

during the review process.18 Examiner-added citations are then used as a control group

for knowledge flows. In practice, a variable Cij is coded to denote whether a citation of

patent j by patent i can be interpreted as a flow of knowledge:

Cij =

1, if j is cited by the applicant

0, if j is cited by the examiner

Levels of social connectedness between the counties c(i) and c(j) where patents i and j

where created are compared for Cij = 1 against those for Cij = 0, controlling for other

possible confounding factors, notably physical geography. This is achieved by means

of a Linear Probability Model (LPM) that estimates how physical and social distances

influence the likelihood that the citation of patent j by patent i is made by patent

i’s applicant, as opposed to its examiner.19 Econometrically, this relationship can be

represented as follows:

Cij = β ln SCI c(i)c(j) + δ lnDIS c(i)c(j) + ηNET ij +X ′
c(i)c(j)γ (1)

+ψc(i) + ψc(j) + θt(i) + θt(j) + µg(i)g(j) + πi + πj + εz(i)z(j)

Where ln SCI c(i)c(j) is the natural log of the Social Connectedness Index between counties

c(i) and c(j), lnDIS c(i)c(j) is the natural log of physical distance (great circle, in thousand

kilometres), NET ij is the professional networks dummy, andXc(i)c(j) is a vector of bilateral

controls defined at county pair level. Note that controlling for professional networks allows

to interpret β as the effect of informal social connections in the inventor’s neighbourhood.

Additionally, all specifications also include citing and cited counties fixed effects (FEs)

ψc(i) and ψc(j), citing and cited patents cohort fixed effects θt(i) and θt(j) (using issue years

18Examiners are specialised administrative officers whose job is to deliberate whether or not a patent
can be granted. The patent examination process is described in detail in Cockburn et al. (2002).

19A linear probability model is preferred over the probit or logit options due to the use of high dimen-
sional fixed effects, which would make probit and logit estimation computationally very demanding.
Moreover, this allows for a more straightforward interpretation of coefficients as marginal effects.
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t20), and a technology-pair fixed effect µg(i)g(j) for both patents (using WIPO fields). We

also explore the use of citing and cited patents fixed effects πi and πj. Finally, εz(i)z(j) is

an error term double-clustered by citing and cited commuting zones z(i) and z(j). This

adjustment is required when one clustering dimension is not nested within the other.

In this paper we are interested in estimating β. However, the estimating equation will

give biased estimates if E[εz(i)z(j)| ln SCI c(i)c(j)] 6= 0. We argue that the use of examiner

citations, combined with technology-pair fixed effects, allows to address the main sources

of bias discussed above by providing a set of ‘control’ citations that is orthogonal to the

physical and social geographies of the applicant. In addition, county-level fixed effects

capture any source of bias deriving from different propensities of counties to generate,

patent, or cite ideas, as well as their initial stock of patents, is absorbed. In fact, county

fixed effects solve any issue related to observed or unobserved characteristic specific to

each county. In selected specifications, citing patent fixed effects control for different

propensities of citations to be added by the examiner, which may be correlated with

the outcome at patent level. They also capture unobserved examiner characteristics and

whether the patent has an institutional assignee or not. Finally, the set of bilateral

controls for differences in observable characteristics of counties c(i) and c(j) mitigates

issues related to omitted variables specific to each county pair. For instance, we include

a dummy coding the presence of a large, leading, research intensive university in both

counties.21 We also include a variable capturing the log of gross migration flows between

all county pairs is therefore also included in the analysis. This addresses the concern that

the SCI is simply a result of past migration patterns between county pairs.22 Additional

bilateral controls include absolute differences in: the share of adult population with a

bachelor degree or higher, the share of children born in 1980-1984 who become inventors in

the 2001-2014 period (by CZ where they grew up)23, population density, median income,

unemployment rates, and shares of White, Black, Asian and Hispanic Americans in each

county.24

Using examiner citations as controls requires two main assumptions (Thompson, 2006).

Firstly, this method posits that citations made by the applicant are on average more

20Application year cohort fixed effects were also tested in robustness checks, with no change in findings.
21The data is obtained from the 2018 THE Ranking of US universities, retaining the top 50 institutions.
22This variable is constructed using rolling five-year cumulative counts of yearly county-to-county migra-

tion flows. It is assigned to each patent using county and application year information. The data on
mobility come from the Statistics of Income Division (SOI) of the US Internal Revenue Service (IRS).
They provide one of the most detailed sources of information at this level, based on address changes in
the records of all individual income tax forms filed between 1990 and today. The data were retrieved
at: https://www.irs.gov/uac/soi-tax-stats-migration-data.

23This variable is obtained from Bell et al. (2018), please consult the original paper for further details.
The original data can be downloaded from: https://opportunityinsights.org/data/.

24Unless otherwise specified, all variables are defined at county-level and are constructed using data from
the 2010 US Decennial Census.
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likely to represent genuine knowledge transfers than citations by the examiner. Examiner

citations are assumed to rather reflect an administrative act required to complete the

scope of prior art available for that patent. In other words, this strategy requires that

examiner citations can be credibly interpreted as counterfactuals for inventor citations:

knowledge that the inventor ought to have had, but did not, and that this knowledge

was not in turn added by the examiner as a result of knowledge flows.25 Note this

method does not require that all applicant citations reflect knowledge flows. Indeed

some citations may have been added by the patent attorney (Jaffe and de Rassenfosse,

2017). However, as long as applicant citations are systematically more likely to reflect

a knowledge flow than examiner ones, incorrectly attributed citations are simply noise,

and the method we propose works. A second identifying assumption is that examiners

do not learn via their social connections or geographic location. In other words, the

geographic and social locations of examiners must be orthogonal to the predominant

knowledge base of the patent being examined, so that examiners cannot learn about

prior art from the same localised knowledge flows that are specific to the particular set of

technologies of the examined patent. Importantly, this same requirement must also hold

for the social space: the position of examiners in the network of social relationships must

be exogenous to the predominant technological class of the citing patent so that exposure

to the same social networks as the inventors cannot be the reason why examiners cite

the patent. These conditions address the well known observation that firms and workers

in specialised industries co-locate (sorting), and that people with similar characteristics

are more likely to interact socially (homophily). Both these conditions are likely to be

met in our data. Cockburn et al. (2002) and Thompson (2006) point out that most

examiners work from one office located in Alexandria, VA. Moreover, within a given

subject area, patents are assigned to examiners in the order by which applications are

filed to the office, which introduces an extra dimension of randomness in case one worries

about the place of origin of the examiner before relocating to Virginia.26 As regards the

social space, exogeneity in the physical location of examiners allows to draw the same

conclusion for connectedness, to the extent that the latter is defined for geographical

units, and that it reflects relationships between the full population of Facebook users,

and not just inventors. This is another advantage of using the SCI.27

25In partial support for this claim, a survey of inventors confirms that applicant citations do represent a
measure of knowledge transfers - although noisy - and that when inventors were unaware of citations
made in their patent, this was typically due to the citation being added by the examiner (Jaffe et al.,
2000).

26Note that recent literature has documented the tendency of examiners to specialise by technological
areas, see Righi and Simcoe (2019), but technology pair fixed effects address this issue.

27Appendix Figure A.3 gives additional credit to our argument. The kernel density plots show the
distributions of geographical distance (a) and social connectedness (b) for applicant (in blue) and
examiner citations (control, in red), along with a distribution for control citations whose origin was
replaced with that of Alexandria, VA, where examiners are actually located (in green). Comparing
these fictional distributions to those of applicant citations and observed examiner citations, it is evident
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Finally, note that combining technology pair dummies with dummies for citing and cited

patent cohorts and patent-level FEs to some extent mimics the case-control matching

method first implemented by JTH and often used in this literature (including by Bailey

et al., 2018b). In fact, by combining estimates of the within technology-pairs, cohorts,

citing and cited patents effects with the examiner-control method, we believe that this

analysis imposes stricter constraints on the data.

4 Results and Discussion

4.1 Main Regression Models

We begin by showing in Table 2 the results of baseline models regressing the main variables

of interest separately one from the other. The models are estimated using Equation 1,

selectively restricting the coefficients β, δ, η and γ to zero. Each coefficient is estimated

in its raw form and with key fixed effects. For ease of reading, the outcome is expressed

in percentage points. Columns (1), (3) and (5) give raw correlations between citations

and social connectedness, geographical distance, and inventors’ professional networks,

respectively. Columns (2), (4) and (6) restrict the sample to citations across assignees

and counties, and introduce the main set of fixed effects used in this analysis: dummies

for citing and cited patent counties, cohorts (issue years), and pairs of WIPO technology

fields. Restricting the sample is important for two reasons. First, we are interested in

studying the impact of social connectedness across, rather than within the same region.

Second, and most importantly, this allows to implicitly control for inventor mobility,

which was one of the heavy knowledge conveyors discussed in Section 2. When the sample

excludes within-county and within-assignee citations, inventor self-citations (accounted

for by the professional network dummy) necessarily denote instances where the inventor

changed employer (at least for that particular patent), favouring one located in a different

county. Because the professional network dummy also controls for endogenous inventor

networks (another heavy channel), the SCI coefficient in this specification should only

capture light conveyors of knowledge such as chance meetings, referrals, or salience of

market opportunities (refer to Table 1 for an overview of all mechanisms). Moreover,

with respect to fixed effects, note that other than the previously mentioned omitted

variable concerns, county dummies also allow to account for the fact that larger county

pairs naturally display higher social connectedness.28

that examiners tend to draw citations from the social network (and geographic location) of applicants
rather than their own, confirming the orthogonality requirement discussed above.

28Their inclusion equals to controlling for the natural logarithm of the product of each county’s popu-
lation, which combined with the logarithm of the SCI mimics a measure of logged relative probability
of friendship (Bailey et al., 2018b) giving the number of existing connections over the number of total
possible connections between two regions.

17



Table 2: Baseline Regressions

(1) (2) (3) (4) (5) (6) (7)
ln SCI 0.243 0.452 0.268

(0.116)b (0.0556)a (0.108)b

ln Distance -0.506 -0.369 -0.00372
(0.194)a (0.0623)a (0.0983)

Prof. network 3.058 3.285 2.941
(0.775)a (0.561)a (0.555)a

Counties FEs • • • •
Years FEs • • • •
WIPO pairs FEs • • • •
Other county • • • •
Other assignee • • • •
Adj. R2 0.0006 0.1140 0.0005 0.1139 0.0017 0.1144 0.1145
R2 0.0006 0.1146 0.0005 0.1145 0.0017 0.1151 0.1152
N 11,288,174 8,803,245 11,274,650 8,791,193 11,288,174 8,803,245 8,791,193

Two-way cluster-robust standard errors for citing and cited CZ pairs (Cameron et al., 2011). Significance
levels: ap < 0.01; bp < 0.05; cp < 0.1. The outcome variable is expressed in terms of percentage points.

In column (2), the positive and significant coefficient of 0.45 suggests that a one percent

change in social connectedness leads to a 0.0045 percentage points increase in the prob-

ability of citation. Equivalently, it means that doubling the SCI yields a 0.31 percentage

point increase in citation likelihood (β × ln 2). This is more than ten times smaller than

the 4.37 percentage points estimated by Bailey et al. (2018b) for the same change us-

ing JTH’s case-control matching method. Interestingly, Column (4) shows that physical

distance displays a very similar effect, although with opposite sign. A county twice as

far to where knowledge is produced is a quarter of a percentage point less likely to cite

that knowledge, compared to a another located only half that distance away. Column

(6) shows the effect of professional networks. Being the co-author of a patent, having

co-authored with an author of that patent, or sharing a co-author with an author of

that patent increases the probability of citation by just over 3 percentage points. These

effects are all statistically significant at the highest conventional level. By contrast, Col-

umn (7) shows that when estimating all parameters simultaneously and controlling for

the same variables mentioned above, the coefficient on distance becomes insignificant.

Social connectedness, about 60% of the original magnitude, is only significant at the 5%

level. Although slightly reduced, the coefficient on professional networks also remains

statistically significant. This specification represents the basis on which all other main

models in this paper are estimated.

The main results of the present analysis are reported in Table 3. For reference, the first

column in this table copies the estimates of Column (7), Table 2. Column (2) introduces

a vector of controls for citing patents and for all county pairs. We rule out that the

citing patent’s team size and geographical diversity (proxied by the number of different
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US counties listed for all patent’s inventors) are driving the effects of social connected-

ness. Moreover, the log of gross migration flows across counties over the previous five

years addresses the concern that social connectedness does nothing more than to proxy

population mobility between regions. Similarly, a dummy coding the presence of a major

college in both citing and cited counties addresses the concern of spurious correlation

due to the co-presence of students and researchers, with the former affecting friendship

links and the latter generating citations, without any actual relationship between the

two. Other bilateral controls include differences in education attainment, inventor and

population densities, incomes, and ethnicities. Reassuringly, even after controlling for all

the above, the coefficient on the SCI remains significant, even increasing in magnitude.

Details on the marginal effects of each bilateral control are available in Appendix Table

B.7. Columns (3) and (4) introduce fixed effects for citing and cited patents. In both

specifications, we restrict our sample to patents sending or receiving at least 10 citations,

to avoid bias due to too few observations within each absorbed unit. The marginal ef-

fect of social connectedness is much smaller in both cases. It remains significant when

controlling for unobserved characteristics specific to each citing patent, but cannot be

distinguished from zero when effects for each cited patent are also added. However, we

argue that it is excessive to restrict our estimates to within-citing, or within-citing and

cited patents effects. In the latter case, the identifying variation effectively would only

come from the list of cited patents within each citing patent, when the cited patent is also

cited by other patents, net of all other fixed effects.29 Given our identification strategy,

our main concern at the citing patent level is that results could be driven by unobserved

examiner characteristics. To further reassure ourselves that this is not the case, in Col-

umn (5) we introduce fixed effects for nearly 600 examination art units and groupings

of examiners, obtained directly from PatentsView.30 The resulting coefficients are only

slightly smaller than those in Column (2). Column (5) is our preferred specification. It

suggests that two counties at the 75th percentile of the SCI are 1.1 percentage points more

likely to cite one another than a pair of counties at the 25th percentile (see the Appendix,

Table B.6, for summary statistics). Finally, Column (6) reports the same specification in

(5) but includes main effects for several dimensions of heterogeneity that we intend to ex-

plore using this estimating sample: different spatial boundaries (same county, same state,

other state), cited patent age in years, maximum age of citing patent assignees, and tech-

nological distance (deciles of distance across IPC4 classes). This specification is included

here for reference as it represents the baseline for all models that include heterogeneous

SCI effects. This ensures that the intercept is the same across specifications even as the

29In addition, we show in Appendix Table B.7 that much of the reduction in magnitude is due to a
change in the estimating sample, as opposed to cited patent fixed effects.

30Unfortunately, we do not have disambiguated identifiers for each examiner, but within citing patent
estimates in Column (3), albeit perhaps too restrictive, also reassure us that unobserved examiner
characteristics are unlikely to be driving our results.

19



coefficient on connectedness is broken down by different variables, allowing like-for-like

comparison (see Section 4.3 for further details). Despite this change, all coefficients are

comparable in magnitude to those in Column (5).

Table 3: Main Regressions

(1) (2) (3) (4) (5) (6)
ln SCI 0.268 0.446 0.104 0.0109 0.389 0.393

(0.108)b (0.106)a (0.0238)a (0.0233) (0.0913)a (0.0953)a

ln Distance -0.00372 0.0657 0.0169 -0.0253 0.0227 0.00492
(0.0983) (0.0850) (0.0190) (0.0181) (0.0856) (0.0956)

Prof. network 2.941 2.457 0.359 0.118 1.960 2.051
(0.555)a (0.495)a (0.120)a (0.0579)b (0.387)a (0.381)a

WIPO pairs FEs • • • • • •
Controls • • • • •
Within citing • •
Within cited •
Art unit FEs • •
Interaction samp. •
Adj. R2 0.1145 0.1174 0.5173 0.4630 0.1413 0.1477
R2 0.1152 0.1180 0.5279 0.4956 0.1420 0.1484
N 8,791,193 8,787,417 7,882,961 6,054,214 8,787,348 8,785,291

Two-way cluster-robust standard errors for citing and cited CZ pairs (Cameron et al.,
2011). Significance levels: ap < 0.01; bp < 0.05; cp < 0.1. The outcome variable is ex-
pressed in terms of percentage points. All specifications use citing and cited year and
county fixed effects. The sample excludes citations within same assignee or same county.
Within citing and cited patent specifications restrict to at least 10 citations. Controls: cit-
ing team size and geography (no. of US counties), gross migration, top 50 college, diff. in
education, inventors, density, income, ethnicity. Interaction controls: main effects for own
CZ or state, other state, elapsed time, assignee age, IPC4 technological distance.

4.2 Robustness Checks

Before investigating heterogeneous effects, what follows explores the robustness of esti-

mates in Column (5), Table 3, to changes in model specifications and in the sample. Table

4 summarises the findings. Column (1) simply copies the estimates of the preferred spec-

ification (5) in Table 3, for reference. Column (2) shows that the estimates are robust to

including fixed effects for application year cohorts, rather than issue year, for both citing

and cited patents. Column (3) addresses the possibility of omitted variable bias due to

assignment of location as the most frequently observed one among all inventors on the

patent. Bias could arise if the other locations of co-inventors are also likely to be the

most socially connected ones to the modal county of the patent. Knowledge flows from

these counties would then be erroneously attributed to connectedness, while in reality

they can be explained by (unobserved) co-location of one of the inventors. To address

this, we restrict the estimating sample to citations made and received by patents with

a single inventor. In such instances, location is necessarily assigned correctly with our

method and there is no omitted variable bias of this kind. Doing so significantly reduces
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the size of the estimating sample, which falls to roughly 700,000 citations. Despite this

very restrictive test, the coefficients on social connectedness and professional networks

remain statistically significant. In fact, both increase somewhat in magnitude (especially

the latter), suggesting that inventors who patent alone might disproportionately rely on

informal and professional ties for access to knowledge (or perhaps this is simply due to

more accurate measurement of location, further research may wish to explore this claim

more in detail).

Table 4: Robustness checks

(1) (2) (3) (4) (5) (6) (7)
ln SCI 0.389 0.302 0.403 0.328 0.301 0.399 0.372

(0.0913)a (0.0971)a (0.200)b (0.0834)a (0.0812)a (0.134)a (0.0800)a

ln Distance 0.0227 -0.0362 -0.229 0.0226 0.0202 -0.110 0.00308
(0.0856) (0.0896) (0.185) (0.0776) (0.0731) (0.177) (0.0872)

Prof. network 1.960 1.904 5.971 1.942 1.805 1.826 1.713
(0.387)a (0.361)a (0.818)a (0.381)a (0.367)a (0.580)a (0.388)a

Tech. pairs FEs WIPO WIPO WIPO IPC3 IPC4 WIPO WIPO
Controls • • • • • • •
Appl. year FEs •
Single-authored •
Non coastal •
Trimmed •
Adj. R2 0.1413 0.1406 0.2331 0.1465 0.1695 0.1594 0.1091
R2 0.1420 0.1413 0.2400 0.1481 0.1762 0.1606 0.1101
N 8,787,348 8,787,347 715,733 9,042,076 9,016,933 5,022,152 5,787,251

Two-way cluster-robust standard errors for citing and cited CZ pairs (Cameron et al., 2011). Sig-
nificance levels: ap < 0.01; bp < 0.05; cp < 0.1. The outcome variable is expressed in terms of per-
centage points. All specifications use citing and cited year and county fixed effects, and citing art
unit effects. The sample excludes citations within same assignee or same county. Controls: citing
team size and geography (no. of US counties), gross migration, top 50 college, diff. in education,
inventors, density, income, ethnicity. The single-authored sample drops citations sent or received
by patents with multiple authors. The non coastal sample drops citations originating or received
in Census Divisions bordering the Atlantic and Pacific coasts. The trimmed sample drops patents
with citations added exclusively by the applicant or the examiner.

Columns (4) and (5) replace fixed effects for WIPO technology field pairs with fixed

effects at IPC class (3-digit) and subclass (4-digit) levels. This entails moving from a set

of just under 1,200 possible combinations to over 300,000 and 13 millions respectively,

since there are more than 550 IPC classes and 3,700 subclasses. Despite this demanding

change, the coefficient on connectedness is only sightly reduced and remains significant

at the 99% level. Column (6) restricts the sample to non coastal areas only, dropping all

citations originating from or destined to Census Divisions not bordering the Atlantic and

Pacific coasts. It addresses the concern that population and economic activity naturally

cluster along the coasts, and so does innovation activity. As a result, more interaction

is to be expected between coastal areas, as well as greater exchange of knowledge (more

coast-to-coast citations), without the two being necessarily causally related to each other

(essentially, an omitted variable bias due to an unobserved ‘coast effect’). The size of the
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estimating sample is significantly reduced, but results are not affected by this restriction

either. We infer that our findings are not limited to coastal locations but apply throughout

the US territory. Finally, Column (7) trims the data by excluding patents whose citations

were added exclusively by the applicant or by the examiner. As discussed, these represent

a large group in our sample, and there is a concern that results are mainly driven by these

patents. Reassuringly, this trimming does not alter findings.

Appendix Table B.8 repeats the same exercise but includes fixed effects for citing patents

across all models, despite concerns that this specification might be too restrictive. Once

again, there does not seem to be any sizeable change in the coefficients compared to the

original estimates, with the exception of single-authored patents, where the sample is

likely too small to allow precise estimate of within-citing effects (indeed, the coefficient

magnitude is stable, but standard errors are inflated).31

4.3 Heterogeneous Effects

This section explores possible dimensions of heterogeneity in the marginal effects of social

connectedness. In line with the literature and with the conceptual framework outlined in

Section 2, we investigate three main drivers, described separately below. To empirically

test for heterogeneous effects, we estimate models that take the following general form:

Cij =
∑
h

βh ln SCI c(i)c(j) × INT h +
∑
h

δh lnDIS c(i)c(j) × INT h + ηNET ij (2)

+X ′
c(i)c(j)γ + ξij + ψc(i) + ψc(j) + θt(i) + θt(j) + µg(i)g(j) + εz(i)z(j)

Where all variables are defined as in Equation (1), with FEs for citing and cited counties,

issue year cohorts, and WIPO technology pairs. In addition, the interaction term INTh

takes different values depending on the heterogeneous margin of interest: We consider

heterogeneity over discrete geographical boundaries GEO c(i)c(j), cited patent age AGE ij,

citing assignee age ENT i (elapsed time since first patent), and quintiles of technological

distance TDS g(i)g(j). Note that all interaction terms are categorical variables, so that

βh and δh capture the marginal effect of social connectedness and distance for category

h of the interacted variable. At the same time, we always include main effects for all

interaction variables, captured by ξij. The sample restrictions discussed in Section 4.1

are always applied: we drop within county and assignee citations. In the absence of any

interaction term, thus, the baseline model reported in Table 3, Column (5), is estimated.

An additional driver of heterogeneity we examine is the issue year cohort of the citing

patent. In this particular case, however, we construct a new estimation sample dating

31In unreported results, we also confirm that our findings are robust to controlling for citing and cited
patent lawyer dummies, and for citing and cited patents sharing the same lawyer. In both instances,
we exploited lawyer disambiguation available from PatentsView.
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back to patents issued in 2002, to consider a longer time-span. As the overall estimate

of β is not directly comparable to that discussed so far anyway, the main effects term ξij

for all interaction variables is omitted (citing patent year cohort dummies are absorbed

anyway). We also do not consider heterogeneity in the geographical distance coefficient

δ here. The model specification is otherwise the same as in (2). We begin by discussing

this last case of heterogeneity.

4.3.1 Time Trends

Sonn and Storper (2008) show that geographical proximity has become more important

for knowledge production over time, despite advances in information and communication

technologies. Using the JTH case-control matching method, the authors reveal a greater

likelihood of observing US citations to the same state or city in 1997 compared to 1975.

The propensity to rely on local knowledge increases almost monotonically over this period.

The underlying causes for this trend, the authors argue, have to do with greater reliance on

tacit and non-codified knowledge on the technological frontier, faster product lifecycles

requiring more rapid innovation rates, and more complex organisational strategies in

knowledge production. More recently, Bloom et al. (2020) document a progressive decline

in the productivity of research, defined as the ratio of total factor productivity (TFP)

growth and the effective number of researchers. The authors thus conclude that “ideas

are getting harder to find”. Their result aligns with previous evidence by Jones (2009) on

the changing nature of innovation, which he argues is becoming increasingly difficult and

requires greater collaborative efforts. In keeping with these findings, we formulate the

hypothesis that social connectedness may have also become more relevant over time, as a

means to compensate for the increasingly demanding task of accessing relevant knowledge.

We test whether the effect of connectedness changes over time by allowing β to vary

depending on the issue year cohort of the citing patent. To this end, we introduce a new

sample that includes all patents issued from 2002 onwards. Information on the source

of citation, crucial for the identification strategy, was unavailable before this period.

The sample construction follows the same method described in Section 3.1.2, with the

exception that the size of the resulting list of citations is too large to work with, so

a stratified random sample of 20% is drawn. Randomisation is performed at the level

of citing patents to ensure that the drawn sample does not over-represent patents with

many citations. The resulting estimating sample consists of 364,372 citing patents and

7,212,370 citations, of which about 60% on average are made by applicants. Appendix

Tables B.3 and B.5 offer descriptive statistics for citing and cited patents.

Our results are summarised by the coefficient plot in Figure 4, which reports marginal

effects of social connectedness over time. All coefficients were obtained from the same

regression that interacts the log of the connectedness index with citing patent issue year
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Figure 4: Marginal effects by citing patent issue year

dummies, controlling for issue year main effects, geographical distance, inventor networks,

and differences in county-level observables. The results support our hypothesis. Not only

are point estimates significantly higher in recent years compared to the early 2000s,

marginal effects are mostly not statistically different from zero at the 95% level before

2012. As a robustness check, an alternative regression is run where the application year

of the citing patent is used, rather than the issue year. Results, reported in Appendix

Figure A.4, are largely unaffected. This finding also provides an additional reason for the

decision to restrict this analysis to knowledge flows occurring in the 2016-2019 period. It

should be noted, however, that the increasing magnitude of the effects could potentially

also be related to the measure of social connectedness becoming more accurate over time,

as it reflects a snapshot taken in 2016.

4.3.2 Spatial Boundaries

In this instance, we explore whether social connectedness becomes more important at

greater distances. This would be consistent with the notion that connectedness allows to

substitute for informal interaction that would otherwise occur locally due to geographic

proximity (of two different counties, as we consider cross-county flows only - we do not

test for substitution of co-location in the same county). For the same reason, we are also

interested in comparing these results with what would happen if we only used physical

distance as a proxy for this kind of interaction. As argued in Section 2, distance is likely

to be inadequate in capturing this effect. To validate this, we would expect the coeffi-

cient on physical distance to be insignificant across discrete spatial boundaries capturing

progressively larger areas.
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Figure 5: Marginal effects by spatial boundaries

Results reported graphically in Figure 5 cannot confirm this conjecture. The plot displays

coefficients on physical distance (a) and connectedness (b) broken down by three discrete

spatial boundaries: citations within CZ, within own state (but not own CZ), and across

states. They are all obtained from the same regression, as in Equation (2). There is no

evidence that the importance of connectedness increases as one considers progressively

more (physically) distant interactions. Similarly, whether looking at county pairs within

a cummuting zone, within the same state, or even across states, the marginal effect of

SCI is the same. There is thus no evidence supporting the hypothesis that social and

geographical proximity are strictly speaking substitutes. This contrasts with the findings

by Agrawal et al. (2008), who study the interaction effect between geographical distance

and co-ethnicity of inventors on citation likelihood.

4.3.3 Patent Age

This section considers the role of elapsed time to citation in mediating the effect of social

connectedness and geographical distance. Elapsed time to citation can be though of as

the ‘age’ of patent j when it was cited by i at time t, measured as:

AGE ij = tappi − tappj + 18 months

Where tappi is the application date of citing patent i, and tappj is the application date of

cited patent j. Since November 29, 2000, all applications received by the USPTO are

published 18 months after being filed irrespective of whether or not they are granted. We
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thus consider this to be the relevant ‘birth date’ for cited patents. Patent age, initially

expressed in months, is then discretised into years using a floor function that assigns the

greatest integer less than or equal to the value in months divided by twelve. We conjecture

that the impact of social connectedness might change over the interval defined by AGE ij.

The pattern of heterogeneity, however, is uncertain a priori. It is possible that social and

geographic proximity matter most for the citation of young patents, when frictions in

knowledge flows are highest. For geographic proximity, this effect is documented in JTH,

where it is shown that localisation of citations decreases as the cited patent becomes

‘older’. In the case of social connectedness, analogously, stronger informal ties might be

especially relevant for the exchange of knowledge that is yet to become common domain.

By contrast, it is also possible that once a patent does become common knowledge, its

citation depends increasingly on the presence of some linkage, whether of geographical or

social nature, which nudges inventors to tap into that pool of ideas as opposed to another.

Older patents, for instance, might have been ‘forgotten’. Making predictions about the

direction of heterogeneity is further complicated by the fact that geographic proximity

and social connectedness are not independent from each other, so that at different points

in time the effect of one might influence that of the other. Ultimately, thus, this is an

empirical question.

Figure 6: Marginal effects by cited patent age

Figure 6 graphically reports the marginal effects on geographical distance (a) and the SCI

(b), allowing the coefficients to vary across the age of cited patents.32 Dashed lines denote

95% confidence intervals. Controlling for the effect of social connectedness, geographic

32An unreported coefficient controls for the effect on all patents older than 20 years.
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proximity matters most for the citation of young patents, confirming previous results by

JTH. Greater distance between two counties decreases the probability of patents produced

in one to cite those produced in the other during their first five years of circulation.

The friction imposed by geographical distance is strongest for very young patents, then

falls sharply and becomes largely insignificant. By contrast, controlling for the effect of

geographical distance, social connectedness displays the opposite pattern. The marginal

effect of the SCI is insignificant for cited patents aged five years or younger, but increases

almost monotonically after that. The synchrony in the fading effect of physical geography

as that of social connections becomes relevant is striking. It suggests that there is some

degree of interaction between the two effects over time. It is difficult to interpret the

graph unambiguously, however. It appears that as patents become common domain in a

spatial sense, their likelihood of being cited depends increasingly on social connections.

This could reflect a degree of bias in the sources of available knowledge inventors tap

into, whereby they disproportionately rely on knowledge produced in places with stronger

informal ties to their location. It could also show that social connectedness mitigates a

propensity for older patents to become forgotten (without necessarily being obsolete).

4.3.4 Entrepreneurship and Garage Inventors

Does social connectedness matter differentially for organisations at different stages in

their life? In particular, are entrepreneurs and garage inventors disproportionately reliant

on their informal social environment as a source of ideas and innovation? In many

organisations, inventors ‘work for hire’ with little flexibility in terms of process, and

relatively strict guidance with respect to expected outputs. This is likely to be the

case especially for more junior inventors in established teams, and generally in larger

firms. For instance, Agrawal et al. (2010) find that inventors employed by large firms

in company towns (places where innovation is concentrated in a single organisation) are

more likely to draw on knowledge produced within the firm’s institutional boundaries.

The type of ‘light’ contributions channelled by social connectedness, such as salience of

market opportunities, experimental ideas, or chance meetings, are perhaps of secondary

relevance for this group. By contrast, they should matter most for more independent

types of organisations, such as smaller and younger firms, entrepreneurs, and garage

inventors (that is, inventors who work independently, on their own, often at the early

stages of a new idea). Duranton and Puga (2001) introduce the concept of ‘nursery

cities’ to highlight the role that access to diversified knowledge observed in large urban

agglomerations plays in fostering innovation and entrepreneurship. Analogously, we test

the hypothesis that social connectedness provides a similar source of advantage in the

early stages of a firm’s economic life. 33

33Consistent with this hypothesis, Percoco (2012) shows that local social capital is positively associated
with entrepreneurship in Italian cities, not least because of a possible effect on information transfers.
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A variable ENT i is created, which tracks the maximum age of all assignees listed for citing

patent i. Assignee age is defined by exploiting disambiguated identifiers on organisations

owning each patent. Organisations are assumed to have been established at the time

they were issued their first patent. Subsequently, for any patent i, assignee age is the

elapsed time between the issue year of the citing patent, and the issue year of the first

observed patent for that same assignee. By construction, therefore, year zero is when

none of the assignees owning the invention had previously patented. We think of them

as entrepreneurs, or garage inventors. Equation (2) is then estimated for h = 3, allowing

the coefficients on geographical distance and social connectedness to vary over assignee

age. Results are reported in Figure 7.

Figure 7: Marginal effects by maximum age of citing assignee(s)

While the marginal effect of geographical distance in (a) is mostly indistinguishable from

zero across all values of assignee age, the effect of social connectedness in (b) is at least

twice, and up to four times, as large for garage inventors and start-up firms (year zero),

than it is for older organisations. This difference is statistically significant compared to

coefficient values for firms that are up to three years older. During this period, in fact,

social connectedness does not matter for citation probability. From year four onwards,

then, stronger informal ties matter again, although with reduced strength compared to

garage inventors. This pattern is consistent with demographic studies of firms. Bartels-

man et al. (2005) find that in the US firms enjoy a honeymoon phase in their first year of

life, with the probability of exiting the market increasing significantly in the second year

before settling at a constant rate. By year three, about 30% of newly established firms

will have exited the market. Interpreting our results through this lens would suggest that
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while social connectedness is strongest for start-up firms, it is also lowest among firms

that are more likely to fail. Perhaps, then, firms that survive this high risk phase and are

still observed patenting as they age were somewhat advantaged by their greater social

connectivity. This interpretation, however, is largely speculative and cannot be tested

within the scope of this analysis. It is also possible, in fact even likely, that the proposed

garage inventor measure correlates with the size of the patenting firm, with smaller firms

(indeed potentially also young firms) disproportionately relying on external sources of

knowledge. Appendix Figure A.5 shows that our findings also hold when replacing as-

signee age with the assignee’s cumulative patents at the time of citation. The strength of

social connectedness effects decays rapidly in the number of patents owned by assignees,

becoming insignificant after the third one is granted.

4.3.5 Technological Distance

In this section, we explore the possibility that social connectedness matters differentially

for the flow of ideas depending on the type of knowledge that is exchanged. It is well

known that higher density leads to more innovation (Carlino et al., 2007). However,

this relationship is non monotonic, since patenting rates are highest at medium levels

of population density (Carlino et al., 2007; Henderson, 2007). Building on this finding,

Berkes and Gaetani (2020) propose a model where informal interaction spurred by high

density living sustains knowledge exchange across distant technologies. In other words,

while overall innovation occurs in medium-sized specialised clusters, it would appear

that ‘unconventional innovation’, as the authors call it, builds on informal interactions

made possible by very dense urban agglomerations. Following this intuition, we investi-

gate whether informal interaction fostered by stronger connectedness, rather than spatial

proximity, can play a similar role in bridging gaps between different communities of in-

ventors across the US. According to this hypothesis, social proximity would allow the

diversity of knowledge bases typical of large urban agglomerations to exist beyond the

constraints of geography. Feldman and Audretsch (1999) show that greater diversity in

the industrial composition of a region is associated with higher rates of local innovation.

One can think of informal social connectedness as a way to tap into a broader pool of

knowledge. This hypothesis is consistent with research suggesting that a city with strong

connections to other clusters benefits from the renewal and enrichment of its knowledge

base by gaining access to new external ideas (Bathelt et al., 2004; Breschi and Lenzi,

2016; Akcigit et al., 2018), conditional on having sufficient absorptive capacity to do so

(Miguélez and Moreno, 2015).

Technological distance is measured as the cosine dissimilarity in the reference set of

each pair of technologies (Yan and Luo, 2017), using IPC technology classes (IPC3) or

subclasses (IPC4), and the complete list of citations made by patents issued over the
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2002-2019 period. Because each citing and cited patent can belong to multiple classes or

subclasses, we consider a weighted average measure. We proceed as follows (we discuss

classes only, the method is the same for subclasses). First, we inflate the citation list

by assigning to each citing and cited patent all the classes they are associated with. We

then assign a citation of each patent pair proportionally to the number of citing and

cited classes for that pair. For instance, if citing patent i belongs to two classes and cited

patent j belongs to four classes, each class pair is assigned one eighth of that citation.

The resulting dataset is then collapsed summing up weighted citations by citing and cited

classes. This is used to compute the cosine dissimilarity measure. In particular, for every

pair of citing g(i) = A and cited g(j) = B classes, technological distance is measured as:

TDS g(i)g(j) = 1−
∑

k CAkCBk√∑
k C

2
Ak

√∑
k C

2
Bk

(3)

Where CAk and CBk denote the weighted number of citations sent from patents in tech-

nology class A and technology class B to patents in technology class k, with k indexing

all available classes. Intuitively, the fraction in (3) gives the similarity in the two vectors

representing the distribution of citations of each class to all classes (the cosine of their

angle), which is bounded in the [0, 1] interval. Subtracting this value from one thus gives

a measure of dissimilarity, or distance, based on how different the knowledge bases of the

two classes are. Finally, we assign a weighted average of this measure to each patent pair

in the estimating sample, based on all the technology classes associated with the citing

and cited patents. We also recode the variable in terms of quintiles over the distribution

in 2016-2019 (we retain the same variable name for simplicity). Equation (2) is then

estimated for h = 4.

Figure 8 graphically reports the marginal effects of geographical distance (a) and social

connectedness (b), allowing the coefficients to vary across quintiles of technological dis-

tance between citing and cited patents (IPC4 level). Vertical bars denote 95% confidence

intervals. These estimates appear to give some credit to our hypothesis with respect to

social connectedness, but the relationship is very noisy. The coefficients display a positive

sloping trend, with the SCI being nearly statistically indistinguishable from zero for the

bottom quintile of technological distance. Moreover, the point estimates on the most

technologically distant groups of citations are almost twice as large as that measured for

the first quintile. Yet we cannot argue that the coefficients are different from each other

in a statistical sense. By contrast, there does not seem to be any statistically significant

relationship between geographical distance and citation irrespective of which quintile is

considered. These results broadly hold also if distance between classes (IPC3), rather

than subclasses, is considered (Appendix Figure A.6).
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Figure 8: Marginal effects by technological distance (IPC4)

5 Conclusions

This paper explored the role of informal social interaction, defined in terms of social

connectedness, in the transfer of knowledge as captured by patent citation data. Using

an index of aggregate Facebook ties to measure social connectedness between places, it

finds that social proximity does seem to matter, positively influencing the probability

of observing a citation between two places. This is robust to controlling for physical

distance, the pre-existing geography of production (e.g., clustering due to other Marshal-

lian forces such as matching or sharing), and the existence of professional links between

any inventor involved in creating the citing or the cited patent (up to two degrees of

distance). Interestingly, these effects seem to explain away the statistical significance of

physical proximity. This suggests that informal social connectedness, despite its likely

correlation with geographical distance, offers perhaps a more accurate measure to study

knowledge flows. By this we do not mean to say that being socially connected can replace

the importance of being co-located. Our analysis did not directly test for substitution

of co-location in the same county, nor was it conclusive with respect to substitution be-

tween social and geographical proximity across counties. Rather, we note that physical

proximity and social connectedness appear to be two ways by which inventors can access

existing knowledge. In practice, most inventors will rely on both, especially to the extent

that physically proximate places are also likely to be strongly connected socially. We

document that the age of the cited patent might play a role in explaining the relevance of

geographical, as opposed to social proximity. In the early stages of knowledge creation,

spatial frictions are strong and spatial proximity facilitates access to knowledge. How-
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ever, as knowledge becomes common domain in a geographical sense, the informal social

environment in which inventors operate is increasingly important in shaping knowledge

flows across counties, irrespective of physical distance. We also show that social con-

nectedness matters most for entrepreneurs and garage inventors, and that it contributes

bridging gaps between technologically distant knowledge areas. Our key takeaway is that

no inventor is an island, as knowledge creation is inherently a social process. This is

not just true for interactions with colleagues in the profession, but also with respect to

informal ties in the inventors’ social environment.

In terms of magnitude, the effect of informal interaction is quite small. According to

our preferred specification, doubling social connectedness increases citation likelihood by

about a third of a percentage point. Social connectedness, however, can be economically

meaningful. Two counties at the 75th percentile of social connectedness are on average

1.1 percentage points more likely to cite one another than a pair of counties at the 25th

percentile. To be more concrete, consider the following example. The counties of Col-

leton and Dorchester in South Carolina neighbour each other geographically. The latter,

however, has a connectedness strength to Santa Clara County in California (one of the

top patenting counties in the US) at the 75th percentile of the overall distribution for

county-pairs, while the former is only at the 25th percentile. Between 2016 and 2019,

there were fourteen times as many applicant citations between Santa Clara and Dorch-

ester, than between Santa Clara and Colleton.34 This difference is striking considering

that the two counties are contiguous and certainly within commuting distance from each

other. Moving inventors from one to the other can potentially have implications for their

exposure to ideas. While admittedly anecdotal, and granted that it is hard to imagine

that there is actually a sharp discontinuity in connectedness at the county border, this

example helps illustrate the local variation existing in this measure, and the tangible dif-

ference that social connectedness can make for knowledge flows. There are several other

instances where this type of change can be achieved by moving relatively close in space.

Appendix Figure A.7 shows counties connected to Santa Clara, CA, with strength at

least as strong as the upper quartile (in blue), or at least as weak as the lower quartile

(in green). Evidently, green and blue counties are frequently located in close proximity.35

There are several limitations to the present work. The most important concern relates to

measurement. What is the SCI capturing in practice? With the level of aggregation used

in this analysis, we can only gauge an indirect picture. Ideally, one would observe the

entire social graph of inventors, allowing to explicitly account for the nature and strength

34In terms of propensity, the likelihood of observing a citation by an applicant, compared to all citations,
is 20% greater between Santa Clara and Dorchester, than between Santa Clara and Colleton.

35More systematically, Appendix Figure A.8 shows that of all county pairs strongly and weakly connected
to the same third county, over 5% are within 400 kilometres of distance from each other, and over 20%
are within a 1000 kilometres catchment area.
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of connections, as well as more generally to study the topography of this graph. The

SCI, however, also has some advantages over analyses of this kind. To our knowledge, for

instance, this index represents the most comprehensive measure of revealed social inter-

action available yet for the entire geography of the US. Moreover, failing to observe the

full network of inventors, we align to previous work by measuring the professional net-

work of inventors as proxied by co-patenting links. Future work could consider focusing

on a subset of the data to construct higher-order connections, which could not be done

in this paper due to computational constraints. Another problem relates to the possible

endogeneity of the SCI measure. Omitted variable bias, for instance, could arise to the

extent that people and economic activity tend to cluster around certain areas in response

to natural comparative advantages and history. Our estimating framework has attempted

to mitigate this concern, along with robustness checks that restricted the sample of ci-

tations to exchanges between non-coastal regions. Admittedly, however, this strategy is

incomplete. The ideal experiment would randomly re-wire the social connectivity of all

US citizens and measure the resulting effects on knowledge exchange. Finally, a reminder

that all results depend on the identifying assumptions underlying the use of examiner

citations as a control group. The literature is yet to form a clear view regarding the na-

ture of these citations and possible biases they may cause (Alcácer and Gittelman, 2006;

Alcácer et al., 2009; Righi and Simcoe, 2019). In the ideal picture, the examiners simply

fill in all technological connections to a patent that the applicant was not aware of. In

practice, however, citations are potentially also added by patent attorneys, and examin-

ers might be limited by their own imperfect search process. As such, results should be

interpreted as the relative effect of knowledge flows to the applicant, above and beyond

any bias accruing to the examiner (rather than relative to an ideal omniscient actor).

This, however, is likely to work against the detection of any effect. A comparison of our

estimates to those of Bailey et al. (2018b), who use a case-control matching approach and

estimate stronger effects, would indeed suggest that any distortion in our method biases

results downward. The estimate we provide is thus conservative. We also express a word

of caution in terms of the way knowledge flows are measured in this paper. We relied

on patents due to the ease of tracking exchanges via citations and to the availability of

structured data, but these data have well-known limitations (see Section 3.1.2). Future

work could investigate other types of knowledge exchange that would be more likely to

be channelled over informal ties.

There are also ways in which this work can be refined and expanded. One possibility is

to investigate whether stronger social connectedness is significantly associated to weaker

industrial agglomeration locally. Similarly, it would be interesting to study what types of

clusters rely more on this resource. Could it be that large diversified urban agglomerations

draw on this connectedness, or is it smaller, more specialised clusters that reap most
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benefits from stronger informal ties to actors elsewhere? Another important although

more challenging question would be to distinguish SCI-mediated knowledge flows from

pure spillovers. Indeed, observing that knowledge is more likely to flow from one place

to another does not necessarily entail that it causes productivity-enhancing spillovers, or

that the exchange took place outside market boundaries. In its simplest form, this analysis

would investigate whether stronger social connectedness is associated to the production

of higher-quality ideas holding inputs constant, where quality can be approximated using

counts of downstream citations. This could be additionally integrated with the study of

spillovers between specific industries, contributing to the understanding of how different

‘trees of knowledge’ emerge. Finally, another line of inquiry could take a closer look at

the nature of populations and their social ties, exploring how and why people in different

places are interconnected.

In conclusion, while this paper has attempted to set the ground for a sound investigation

into the physical and social geographies of knowledge exchange, evidently a great amount

of work still lies ahead.
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Appendices

A Figures

Figure A.1: Network Maps of US Counties by Quartiles

Notes: Panel (a) in each map shows, for a given citing county, all counties that receive citations by

patents issued in the 2016-2019 period. Polygons are coloured proportional to quartiles of received

citation counts. Panel (b) shows the log of social connectedness for counties most strongly connected to

the citing one, limiting the sample to the same number of counties as those receiving at least one citation

in panel (a). Polygons are coloured proportional to quartiles of connection strength. The similarity in

panels (a) and (b) for each citing county suggests that there is a correlation between knowledge flows

and social connectedness. Citing counties were selected to represent respectively the 99th, 75th, 50th, and

25th percentiles in the distribution of sent citations, conditional on citing at least 100 different counties.
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Figure A.2: Network Maps of US Counties by Quartiles (continued)

Notes: Continued from previous page. See notes on previous page for details on the interpretation of

these maps.
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Figure A.3: Distribution of distance and ln SCI for citation and control knowledge flows

Figure A.4: Marginal effects by citing patent application year
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Figure A.5: Marginal effects by maximum age of citing assignee(s)

Figure A.6: Marginal effects by technological distance (IPC3)
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Figure A.7: Strongly and weakly connected counties to Santa Clara, CA

Figure A.8: PDF and CDF of strongly and weakly connected county pairs
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B Tables

Table B.1: Complete list of WIPO technology fields

Code Field Title
1 Electrical engineering: Electrical machinery, apparatus, energy
2 Electrical engineering: Audio-visual technology
3 Electrical engineering: Telecommunications
4 Electrical engineering: Digital communication
5 Electrical engineering: Basic communication processes
6 Electrical engineering: Computer technology
7 Electrical engineering: IT methods for management
8 Electrical engineering: Semiconductors
9 Instruments: Optics
10 Instruments: Measurement
11 Instruments: Analysis of biological materials
12 Instruments: Control
13 Instruments: Medical technology
14 Chemistry: Organic fine chemistry
15 Chemistry: Biotechnology
16 Chemistry: Pharmaceuticals
17 Chemistry: Macromolecular chemistry, polymers
18 Chemistry: Food chemistry
19 Chemistry: Basic materials chemistry
20 Chemistry: Materials, metallurgy
21 Chemistry: Surface technology, coating
22 Chemistry: Micro-structural and nano-technology
23 Chemistry: Chemical engineering
24 Chemistry: Environmental technology
25 Mechanical engineering: Handling
26 Mechanical engineering: Machine tools
27 Mechanical engineering: Engines, pumps, turbines
28 Mechanical engineering: Textile and paper machines
29 Mechanical engineering: Other special machines
30 Mechanical engineering: Thermal processes and apparatus
31 Mechanical engineering: Mechanical elements
32 Mechanical engineering: Transport
33 Other fields: Furniture, games
34 Other fields: Other consumer goods
35 Other fields: Civil engineering

46



Table B.2: Summary statistics for citing patents

Mean Median Std. Dev. Min. Max.
Issue year 2017.39 2017 1.07 2016 2019
Application year 2014.69 2015 1.76 2008 2019
Citations per patent 23.36 6 91.15 1 4154
Share of applicant citations 0.62 0.79 0.40 0 1
Cited WIPO 2.83 2 2.72 1 34
Cited IPC3 (first) 3.16 2 3.60 1 65
Cited IPC4 (first) 4.49 3 6.52 1 169
Team size 1.96 1 1.43 1 37
Team US geog. 1.75 1 1.02 1 17
Assignee age (max) 19.11 15 15.06 0 43
Assignee experience (max) 10025.53 660 25651.18 1 131150

Number of citing patents 483,183
Share of citing patens with only applicant citations 0.29
Share of citing patens with only examiner citations 0.22

Table B.3: Summary statistics for citing patents, 20% random sample over 2002-2019

Mean Median Std. Dev. Min. Max.
Issue year 2011.37 2012 5.11 2002 2019
Application year 2008.40 2009 5.34 1994 2019
Citations per patent 19.78 7 60.40 1 3303
Share of applicant citations 0.57 0.67 0.40 0 1
Cited WIPO 2.83 2 2.48 1 33
Cited IPC3 (first) 3.16 2 3.20 1 65
Cited IPC4 (first) 4.37 3 5.47 1 141
Team size 1.84 1 1.32 1 37
Team US geog. 1.67 1 0.96 1 21
Assignee age (max) 17.41 15 13.36 0 43
Assignee experience (max) 6963.34 483 18169.60 1 131136

Number of citing patents 362,398
Share of citing patens with only applicant citations 0.21
Share of citing patens with only examiner citations 0.24
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Table B.4: Summary statistics for cited patents

Applicant Examiner Total
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

SCI 20,674.50 80,388.83 18,580.43 81,191.61 20,478.16 80,466.76
ln SCI 6.21 3.03 5.80 3.12 6.17 3.04
Distance (km) 1,573.65 1,426.60 1,630.55 1,375.90 1,578.99 1,422.02
ln Distance 6.06 2.63 6.27 2.48 6.08 2.62
Prof. network 0.19 0.39 0.12 0.33 0.19 0.39
Same inventor 0.07 0.26 0.07 0.26 0.07 0.26
Co-authored 0.07 0.25 0.03 0.17 0.07 0.25
Shared co-author 0.05 0.22 0.02 0.15 0.05 0.22
Same assignee 0.11 0.31 0.09 0.29 0.11 0.31
Issue year 2004.01 6.74 2004.50 7.34 2004.06 6.80
Application year 2001.08 6.27 2001.68 6.86 2001.14 6.33
Patent age (since app. +18m) 11.64 6.12 10.93 6.61 11.57 6.17
Patent age (since issue) 10.21 6.59 9.62 7.11 10.16 6.64
Same county 0.12 0.33 0.11 0.31 0.12 0.33
Same CZ 0.05 0.23 0.04 0.20 0.05 0.23
Other state 0.72 0.45 0.77 0.42 0.73 0.45

Number of applicant citations 10,129,600
Number of examiner citations 1,158,574
Total number of citations 11,288,174

Table B.5: Summary statistics for cited patents, 20% random sample over 2002-2019

Applicant Examiner Total
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

SCI 19,926.61 81,609.65 17,562.95 81,970.22 19,607.66 81,662.38
ln SCI 6.13 2.99 5.69 3.07 6.07 3.01
Distance (km) 1,606.18 1,416.38 1,642.18 1,369.14 1,611.04 1,410.15
ln Distance 6.13 2.60 6.33 2.42 6.15 2.58
Prof. network 0.16 0.37 0.10 0.31 0.16 0.36
Same inventor 0.07 0.25 0.06 0.24 0.06 0.25
Co-authored 0.06 0.23 0.03 0.16 0.05 0.23
Shared co-author 0.04 0.20 0.02 0.13 0.04 0.19
Same assignee 0.10 0.30 0.08 0.27 0.10 0.30
Issue year 2000.19 7.13 1999.51 7.51 2000.10 7.19
Application year 1997.59 6.66 1997.03 7.07 1997.52 6.72
Patent age (since app. +18m) 10.15 6.00 8.73 6.32 9.96 6.06
Patent age (since issue) 9.05 6.28 7.77 6.59 8.87 6.34
Same county 0.12 0.33 0.10 0.30 0.12 0.32
Same CZ 0.05 0.22 0.04 0.20 0.05 0.22
Other state 0.74 0.44 0.79 0.41 0.75 0.44

Number of applicant citations 6,047,894
Number of examiner citations 1,118,846
Total number of citations 7,166,740
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Table B.6: Overview of all variables used in the analysis

For county pairs: Mean Std. Dev. Min. 25th Pct. Median 75th Pct. Max.
SCI 146.75 3,226.25 0.00 1.91 7.71 30.97 1,000,000.00
ln SCI 2.05 2.17 -6.67 0.64 2.04 3.43 13.82
Distance (km) 1,531.01 1,055.81 0.00 714.72 1,282.30 2,189.93 4,561.70
ln Distance 7.00 1.01 0.00 6.57 7.16 7.69 8.43
Gross mig. flow 217.59 2,875.36 0.00 0.00 0.00 0.00 325,606.00
ln Gross mig. flow 0.99 2.19 0.00 0.00 0.00 0.00 12.69
D Bachelor (%) 12.87 9.58 0.00 5.20 11.00 18.70 63.20
D Inventors (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.01
D Density 1,847.29 6,048.23 0.00 203.52 596.08 1,475.67 69,467.53
D Median income 7,936.53 6,442.00 0.00 2,836.00 6,334.00 11,596.00 47,098.00
D Unemployment (%) 2.60 2.09 0.00 1.00 2.10 3.70 24.70
D White (%) 21.14 16.64 0.00 7.57 17.26 31.30 94.65
D Black (%) 11.03 11.88 0.00 2.44 7.03 15.65 81.53
D Asian (%) 4.17 5.43 0.00 0.96 2.36 4.80 33.00
D Hispanic (%) 11.65 12.67 0.00 2.63 7.07 16.22 95.06

For patent pairs: Mean Std. Dev. Min. 25th Pct. Median 75th Pct. Max.
Citation 0.91 0.29 0.00 1.00 1.00 1.00 1.00
Prof. network 0.19 0.39 0.00 0.00 0.00 0.00 1.00
Same inventor 0.07 0.26 0.00 0.00 0.00 0.00 1.00
Co-authored 0.07 0.25 0.00 0.00 0.00 0.00 1.00
Shared co-author 0.05 0.22 0.00 0.00 0.00 0.00 1.00
Same assignee 0.11 0.31 0.00 0.00 0.00 0.00 1.00
Same county 0.12 0.33 0.00 0.00 0.00 0.00 1.00
Same CZ 0.05 0.23 0.00 0.00 0.00 0.00 1.00
Other state 0.73 0.45 0.00 0.00 1.00 1.00 1.00
Issue year 2004.06 6.80 1982.00 1999.00 2004.00 2010.00 2019.00
Application year 2001.14 6.33 1981.00 1997.00 2001.00 2006.00 2017.00
Patent age (since app. +18m) 11.57 6.17 0.00 7.00 12.00 16.00 26.00
Patent age (since issue) 10.15 6.64 0.00 4.00 10.00 15.00 27.00
Tech. distance (IPC3) 0.32 0.32 0.00 0.00 0.27 0.56 1.00
Tech. distance (IPC4) 0.40 0.32 0.00 0.03 0.39 0.65 1.00

For the estimation sample: Mean Std. Dev. Min. 25th Pct. Median 75th Pct. Max.
ln SCI 5.36 2.41 -6.67 3.89 5.43 7.01 11.37
ln Distance 7.02 1.28 1.43 6.52 7.32 8.03 8.43
Prof. network 0.08 0.27 0.00 0.00 0.00 0.00 1.00

49



Table B.7: Main regressions with details on bilateral controls

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
ln SCI 0.268 0.347 0.361 0.374 0.446 0.104 0.371 0.0109 0.0161 0.389 0.393

(0.108)b (0.111)a (0.110)a (0.105)a (0.106)a (0.0238)a (0.0875)a (0.0233) (0.0212) (0.0913)a (0.0953)a

ln Distance -0.00372 -0.00839 0.00537 0.0119 0.0657 0.0169 0.0885 -0.0253 -0.00695 0.0227 0.00492
(0.0983) (0.0986) (0.0984) (0.0955) (0.0850) (0.0190) (0.0673) (0.0181) (0.0170) (0.0856) (0.0956)

Prof. network 2.941 2.940 2.936 2.480 2.457 0.359 1.386 0.118 0.112 1.960 2.051
(0.555)a (0.556)a (0.555)a (0.496)a (0.495)a (0.120)a (0.320)a (0.0579)b (0.0588)c (0.387)a (0.381)a

ln Gross mig. flow -0.0686 -0.0637 -0.0553 -0.0345 0.00968 -0.0335 0.00770 0.00636 -0.0414 -0.0537
(0.0538) (0.0535) (0.0539) (0.0627) (0.0158) (0.0449) (0.0125) (0.0117) (0.0574) (0.0537)

Top 50 colleges=1 -0.386 -0.397 -0.506 -0.0370 -0.395 -0.0700 -0.0256 -0.377 -0.314
(0.236) (0.232)c (0.252)b (0.0377) (0.178)b (0.0450) (0.0377) (0.208)c (0.213)

Team size 0.134 0.135 0 0.0782 0 0 0.142 0.145
(0.0480)a (0.0482)a (6.36e-18) (0.0342)b (5.56e-18) (4.64e-11) (0.0469)a (0.0488)a

Team US geog. 1.328 1.327 0 0.778 0 0 1.217 1.188
(0.164)a (0.164)a (4.34e-18) (0.116)a (3.35e-18) (1.60e-11) (0.144)a (0.137)a

D Bachelor (%) 0.0283 0.00120 0.0238 0.000350 0.00178 0.0230 0.0221
(0.0105)a (0.00196) (0.00673)a (0.00202) (0.00194) (0.00932)b (0.00927)b

D Inventors (%) 158.2 2.223 141.4 -17.46 -8.767 126.8 147.1
(69.36)b (17.59) (46.67)a (11.32) (15.29) (58.17)b (68.70)b

D Density 0.0000140 -0.00000437 0.00000371 -0.00000563 -0.00000441 0.00000960 0.0000165
(0.0000135) (0.00000449) (0.0000104) (0.00000411) (0.00000174)b (0.0000110) (0.0000102)

D Median income -0.0000105 -0.00000255 -0.00000686 -0.000000815 -0.00000229 -0.0000109 -0.0000103
(0.0000129) (0.00000279) (0.00000914) (0.00000279) (0.00000234) (0.0000123) (0.0000128)

D Unemployment (%) -0.0275 -0.0219 -0.0322 -0.0160 -0.0217 -0.0299 -0.0331
(0.0392) (0.00657)a (0.0271) (0.00887)c (0.00670)a (0.0374) (0.0369)

D White (%) -0.00845 -0.0000242 -0.00556 -0.000188 0.000456 -0.00689 -0.00787
(0.00399)b (0.000934) (0.00277)b (0.000963) (0.000738) (0.00348)b (0.00321)b

D Black (%) 0.0111 0.00316 0.00840 0.00226 0.000969 0.0131 0.0126
(0.00704) (0.00123)b (0.00439)c (0.00170) (0.00147) (0.00616)b (0.00599)b

D Asian (%) 0.00932 0.00203 0.00828 -0.00308 -0.000430 -0.000000376 -0.00584
(0.0105) (0.00256) (0.00665) (0.00208) (0.00181) (0.0101) (0.0100)

D Hispanic (%) 0.00209 -0.0000972 -0.000348 0.00189 -0.000577 0.00708 0.00648
(0.00573) (0.00130) (0.00412) (0.00169) (0.00130) (0.00540) (0.00542)

WIPO pairs FEs • • • • • • • • • • •
Within citing • • •
Within cited •
Art unit FEs • •
Interaction samp. •
Adj. R2 0.1145 0.1145 0.1145 0.1174 0.1174 0.5173 0.0914 0.4630 0.4253 0.1413 0.1477
R2 0.1152 0.1152 0.1152 0.1180 0.1180 0.5279 0.0921 0.4956 0.4391 0.1420 0.1484
N 8,791,193 8,787,610 8,787,610 8,787,610 8,787,417 7,882,961 7,882,961 6,054,214 6,054,214 8,787,348 8,785,291

Two-way cluster-robust standard errors for citing and cited CZ pairs (Cameron et al., 2011). Significance levels: ap < 0.01; bp < 0.05; cp < 0.1. The outcome variable is ex-
pressed in terms of percentage points. All specifications use citing and cited year and county fixed effects. The sample excludes citations within same assignee or same county.
Within citing and cited patent specifications restrict the sample to patents with at least 10 citations. Interaction controls: main effects for own CZ or state, other state, elapsed
time, assignee age, IPC4 technological distance. Column (7) estimates the same model as (5), restricting the sample to that in (6). Similarly, (9) estimates the model in (6) on
the sample used in (8). These restrictions allow to compare coefficient changes due to changes in the specification, as opposed to changes in the sample. The reduced ln SCI
coefficient in (6) can be largely attributed to the effect of citing patent dummies. By contrast, large part of the fall in the magnitude of ln SCI effects in (8) is due to a change
in the sample, as opposed to the use of cited patent dummies.
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Table B.8: Robustness checks with citing patent dummies

(1) (2) (3) (4) (5) (6) (7)
ln SCI 0.104 0.0812 0.100 0.0924 0.0864 0.120 0.153

(0.0238)a (0.0237)a (0.0997) (0.0236)a (0.0244)a (0.0378)a (0.0320)a

ln Distance 0.0169 0.00358 0.00188 0.00994 0.00482 0.0358 0.0172
(0.0190) (0.0188) (0.0635) (0.0202) (0.0195) (0.0398) (0.0280)

Prof. network 0.359 0.347 0.666 0.365 0.362 0.246 0.522
(0.120)a (0.106)a (0.360)c (0.121)a (0.123)a (0.137)c (0.197)a

Tech. pairs FEs WIPO WIPO WIPO IPC3 IPC4 WIPO WIPO
Controls • • • • • • •
Whithin citing • • • • • • •
Appl. year FEs •
Single-authored •
Non coastal •
Trimmed •
Adj. R2 0.5173 0.5167 0.6259 0.5177 0.5225 0.5404 0.3892
R2 0.5279 0.5274 0.6539 0.5288 0.5365 0.5564 0.4028
N 7,882,894 7,882,893 590,607 8,112,657 8,091,381 4,502,626 5,316,011

Two-way cluster-robust standard errors for citing and cited CZ pairs (Cameron et al., 2011). Sig-
nificance levels: ap < 0.01; bp < 0.05; cp < 0.1. The outcome variable is expressed in terms of
percentage points. All specifications use citing and cited year and county fixed effects, and citing
patent fixed effects, restricting to patents with at least 10 citations. The sample excludes citations
within same assignee or same county. Controls: citing team size and geography (no. of US coun-
ties), gross migration, top 50 college, diff. in education, inventors, density, income, ethnicity. The
single-authored sample drops citations sent or received by patents with multiple authors. The non
coastal sample drops citations originating or received in Census Divisions bordering the Atlantic
and Pacific coasts. The trimmed sample drops patents with citations added exclusively by the ap-
plicant or the examiner.
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