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Abstract 
We develop a dynamic spatial model in which heterogeneous workers are imperfectly mobile and 
forward-looking and yet all structural fundamentals can be inverted without assuming that the economy 
is in a stationary spatial equilibrium. Exploiting this novel feature of the model, we show that the 
canonical spatial equilibrium framework understates spatial quality of-life differentials, the urban 
quality-of-life premium and the value of local non-marketed goods. Unlike the canonical spatial 
equilibrium framework, the model quantitatively accounts for local welfare effects that motivate many 
place-based policies seeking to improve quality of life. 
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A Introduction

In economics, quality of life (QoL) is a location-specific utility shifter that can be used

to value local public goods or bads such as clean or dirty air. From Ricardo (1817)

via the neoclassical Rosen (1979)-Roback (1982) framework to quantitative spatial models

(QSMs) summarised by Redding and Rossi-Hansberg (2017), economists have inferred QoL

assuming a competitive spatial equilibrium (CSE) in which free mobility of homogeneous

workers leads to perfect spatial arbitrage. Spatially invariant utility then ensures that

spatial differences in amenity values are offset by differences in real wages, the so-called

compensating differential. In reality, workers rarely move between local labour markets

more than once or twice over their employment biography, owing to idiosyncratic tastes

for locations and non-pecuniary migration costs that typically exceed the equivalent of an

annual income (Koşar et al., 2019). Hence, spatial arbitrage is likely imperfect, raising a

range of important questions. How should we measure QoL without imposing an exogenous

reservation utility level? How should we value local non-marketed goods if real wage

differences do not map directly to compensating differentials? How should we evaluate

the aggregate and distributional consequences of QoL policies in a frictional world with

spatial incidence, i.e. persistent localised utility effects?

To answer these questions, we develop a quantitative general equilibrium model that

combines the strengths of two recent classes of spatial models. It inherits the complete

invertibility from QSMs (Allen and Arkolakis, 2014; Ahlfeldt et al., 2015; Monte et al.,

2018) and the ability to account for frictional adjustments in the spatial economy from

dynamic spatial models (DSMs) (Desmet et al., 2018; Caliendo et al., 2019a; Monras,

2020). Specifically, we propose the first DSM with heterogeneous, imperfectly mobile

and forward-looking agents that can be fully quantified without assuming that that the

economy is observed in stationary spatial equilibrium. We exploit this novel feature for a

threefold contribution. First, we propose a new approach to measuring QoL that allows

for worker heterogeneity and costly migration and does not impose any restriction on the

spatial distribution of worker utility. Second, we show theoretically and empirically that

the canonical CSE framework severely understates spatial differentials in QoL, the urban

QoL premium, and the value of local public goods. Third, we illustrate how the welfare

effect of spatially targeted QoL policies critically depends on the social welfare function,

owing to imperfect spatial arbitrage, relocation effects, and spatial incidence.

Our quantitative model incorporates an arbitrary number of worker groups and an

arbitrary number of local labour markets that are interconnected through costly migra-

tion. Following the conventions in the literature, we treat QoL as a group-region-specific

structural fundamental that shifts utility. Locations further differ in terms of exogenous

housing productivity and land supply. Labour productivity is group-region-specific and

consists of an exogenous component and an endogenous component that positively de-

pends on density (Combes and Gobillon, 2015). Labour is the only factor of production

used to produce one final good which is freely traded and consumed at a spatially invariant
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price. Housing is produced by developers who use capital and land from absentee owners

as inputs. Workers spend their labour income on the tradable good and housing. All

markets are competitive. Inelastic supply of land generates a dispersion force in the form

of high rents in places in high demand (Combes et al., 2019).

Unlike in CSE models that assume perfect spatial arbitrage, spatial arbitrage is an

endogenous mechanism in our model that operates through migration. Intuitively, mi-

gration into an attractive region congests the housing market, leading to subsequently

reduced in-migration as long as the housing-market-related congestion force exceeds the

labour-market-related agglomeration force. Concretely, we model migration as an invest-

ment decision in which workers choose destinations facing a trade-off between the present

value of expected utility flows and a one-off relocation cost. Following the discrete choice

literature in the tradition of McFadden (1974), workers receive bilateral amenity shocks

with an idiosyncratic and a group-year-specific component. This stochastic formulation

provides the microeconomic foundation for a migration gravity equation that has been

found to be empirically successful (Kennan and Walker, 2011; Bryan and Morten, 2019;

Tombe and Zhu, 2019). The dispersion of the idiosyncratic component is inversely related

to the migration elasticity, which monitors how strongly bilateral migration probabilities

respond to differences in expected indirect utility at migration destinations. If the migra-

tion elasticity approaches zero, shocks to labour and housing productivity or QoL will not

trigger migration so that any localised utility effect remains persistent. If the migration

elasticity approaches infinity, there is no taste heterogeneity so that migration will go on

until a shock that has caused migration is fully offset by adjustments in wages and rents.

Spatial arbitrage is then perfect. We show that for values of the migration elasticity found

in our data and in previous research (Caliendo et al., 2019b), the marginal worker’s will-

ingness to accept high real living cost steeply decreases in the size of a local labour market.

Therefore, our model rationalises real living cost differentials by much larger differences in

group-specific average QoL than the canonical CSE framework, leading to a higher urban

QoL premium and larger valuations of local public goods.

When switching between labour markets workers pay an origin-destination-group-

specific migration cost in the form of foregone utility in the relocation period. Workers

remaining at their origin incur no migration cost. Larger bilateral migration costs map to

smaller migration flows between local labour markets, leading to a lower speed of spatial

arbitrage. More generally, positive migration costs imply that spatial adjustments are non-

instantaneous, giving rise to the dynamic structure of the model and distinct notions of

spatial equilibria. In the absence of a consensus, we take the liberty of naming a transitory

spatial equilibrium (TSE) and a stationary spatial equilibrium (SSE) that prevail in the

nascent DSM literature. The role of the TSE is to rationalise observed data assuming that

goods and factor markets clear without imposing any restriction on trends in prices and

quantities on labour and housing markets. In the SSE, goods and factor markets clear and

all prices and quantities are stationary. Intuitively, the SSE is a counterfactual situation

to which a spatial economy would mean-revert in the absence of further shocks to labour
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productivity, housing productivity and QoL (the structural fundamentals). Since imper-

fectly mobile workers likely form sophisticated expectations about the economic prospects

at destinations, we assume that workers anticipate all model-endogenous adjustments in

wages and prices that occur over the transition from the TSE into the SSE.

Our main methodological contribution is to develop a DSM with forward-looking agents

that can be fully quantified from the TSE. The quantification follows the basic steps known

from the QSM literature (Redding and Rossi-Hansberg, 2017). First, we use observed data

and the structure of the model to estimate the key structural parameters. Second, we use

observed data, the structure of the model, and the structural parameters to invert the

structural fundamentals. For the quantification, we leverage on a matched employer-

employee data set covering about 30M German workers contributing to social insurances,

who we track over space and time. In particular, we observe the local labour market in

which they work (Kosfeld and Werner, 2012), the nominal wage, and a range of character-

istics including age, gender, and education for all years from 1993 to 2017. Aggregation

of these micro data yields total employment and bilateral migration by region, year and

18 worker groups based on age, gender, and skills. To these data, we merge a regional

mix-adjusted property price index starting in 2007, which we generate from property micro

data containing about 17M observations.

We derive all empirical specifications used in the estimation of the structural parame-

ters directly from the structure of the model. The identification strategies we use are close

to what we consider the current best-practice examples in the respective literature. Our

contribution is to exploit the richness of our data to provide parameter estimates for 18

gender-skill-age groups. We estimate the density elasticity of productivity from between-

labour market movers controlling for individual fixed effects (Combes et al., 2008) using a

100-year lag of population density as an instrument (Ciccone and Hall, 1996). Depending

on the group, our elasticity estimates rage from near zero to 0.042, with relatively large

estimates for female, skilled, and middle-aged workers. The weighted average of 0.024 is

close to the consensus in the literature (Combes and Gobillon, 2015). Our strategy to

estimating the share of land in housing is closest to Combes et al. (2019). We estimate a

value of 0.18 which is within the typical range in the literature (Ahlfeldt and Pietrostefani,

2019). For the migration elasticity, we use a log-linearised and spatially differenced version

of a migration gravity equation in which leading migration probabilities control for future

utility flows following Artuç et al. (2010). Our group-specific estimates range from 0.12

to 0.58 which compares to an estimate of 0.5 for the average worker in the US (Caliendo

et al., 2019b). To obtain group-origin-destination-specific estimates of bilateral migration

costs, we use our estimates of the migration elasticity, the restriction that internal migra-

tion is costless, and a non-parametric version of a conventional migration gravity equation

(Head and Mayer, 2014). Based on our estimates, we monetise the average moving cost at

e170K which is towards the higher end of the survey-based estimates provided by Koşar

et al. (2019). Controlling for distance and instrumenting with historic dialect similarity

(Falck et al., 2012), social connectedness as measured by Bailey et al. (2018) has a large
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and positive effect on our estimated migration costs, suggesting a role for social capital

(Glaeser et al., 2002).

Conditional on these estimates, the inversion of fundamental housing and labour pro-

ductivity is straightforward as there is a one-to-one mapping from wages and rents for

given structural parameters and observed density. In contrast, the inversion of QoL from

the TSE in a DSM with forward-looking agents is challenging. While QoL is straightfor-

ward to invert for given expected wages and rents, the model requires QoL as an input

to forecast the transition paths of wages and rents to the SSE. The DSM literature has

not yet found an elegant solution to this circularity problem. Desmet et al. (2018) avoid

the problem by assuming that workers have static expectations. Monras (2020) avoids the

problem by assuming that the economy is observed in a long-run equilibrium. Caliendo

et al. (2019b), Caliendo et al. (2019a) and Balboni (2019) use ”dynamic hat algebra” to

quantify the model in differences and do not invert QoL.1 Our contribution is to develop

a new procedure that inverts QoL and solves for the SSE simultaneously. To this end, we

exploit that there is a one-to-one mapping from employment to wages and rents for given

structural fundamentals and parameters. Therefore, we can conclude the quantification

of the model by treating the identification of the unknown group-region-specific QoL and

the unknown vector of group-region-specific employment for all future periods as a fixed

point problem that is solved numerically. Our solver nests three solution algorithms: the

first solves QoL for guessed values of future employment; the second forecasts future em-

ployment using guessed values of QoL; the third iterates over the first two algorithms and

forwards the outputs of the first as input to the second and vice versa until an internally

consistent solution for the employment vector and QoL is found. With this approach, we

find that about 65% of the spatial convergence from the TSE to the SSE are completed

within 30 years.

In the first application of our quantified model, we establish that our novel QoL index

(DSM-QoL) is much more dispersed than the canonical Rosen-Roback measure (RR-QoL).

In log terms, the within-group standard deviation of the DSM-QoL exceeds that of the

RR-QoL by a factor of three. This is a striking result that has major implications for the

literatures on the origins of QoL (e.g. Roback, 1982; Blomquist et al., 1988; Albouy, 2011)

and the value of local public goods (e.g. Chay and Greenstone, 2005; Linden and Rockoff,

2008; Cellini et al., 2010). We estimate that the city size elasticity of the DSM-QoL, at

about 0.45, is about four times as large as for the RR-QoL. Hence, the extant literature

may have dismissed an urban QoL premium too soon (see Albouy, 2011, for a summary).

For Germany, at least, consumption benefits contribute more to the spatial concentration

of workers in cities than productivity advantages. The relatively low dispersion of the RR-

QoL is also consequential for the valuation of local public goods. As an example, a decrease

in air pollution is associated with a more than twice as large increase in DSM-QoL than

in RR-QoL.2 This result helps reconciling the puzzling finding that the monetised effect

1See Table A1 for a summary classification of the related literature.
2This finding echos Bayer et al. (2009) who extend a hedonic model to account for moving cost when
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of dirty air on self-reported well-being is larger than the willingness to pay for clean air

inferred from property prices under the CSE assumption (Luechinger, 2009). Quantifying

the model under alternative values of the migration elasticity, we find that the elasticity of

the RR-QoL with respect to the DSM-QoL increases from less than 0.3 to 0.8 if we increase

the migration elasticity to three, after which the DSM-QoL asymptotically converges to the

RR-QoL. Hence, the CSE remains a useful and convenient framework for settings where

the idiosyncrasy of tastes can be demonstrated or at least expected to play a subordinate

role. Since a simple count measure of geo-tagged photos shared online (Ahlfeldt, 2013)

explains almost 60% of the variation in DSM-QoL, social media represents an alternative

avenue to proxy for QoL differentials, similar to use of lights at night as a proxy for GDP

(Henderson et al., 2012).

In the second application of our quantified model, we illustrate how the tractability of

our DSM makes it a powerful tool for spatial policy analysis. We introduce a procedure

suitable for the evaluation of any spatial policy that has an effect on any of the structural

fundamentals in general equilibrium. Because the model accounts realistically for imper-

fect spatial arbitrage and does not impose any restriction on the spatial distribution of

expected worker utility, spatial policies have spatial welfare effects. This is an important

contribution to a literature on place-based policy evaluation in which the incidence on

non-marginal workers is well understood theoretically (Moretti, 2011; Kline and Moretti,

2014), but ruled out in the extant quantitative frameworks based on the CSE (Blouri and

Ehrlich, 2020; Fajgelbaum and Gaubert, 2020).3 We illustrate our procedure for a hy-

pothetical policy that reduces air pollution in the most polluted areas, similar to the US

Clean Air Act (Chay and Greenstone, 2005). To this end, we establish the group-specific

causal link between the inverted DSM-QoL and observed air pollution (PM10) exploiting

wind-induced exogenous variation (Deryugina et al., 2019; Heblich et al., 2020). Starting

from the SSE, we use these estimates to update QoL to reflect the policy change and let the

model converge to a counterfactual SSE. Comparing the initial to the counterfactual SSE,

we obtain group-region-specific changes in expected utility alongside group-region-specific

wage, region-specific rent and rich sorting effects. This SSE-to-SSE comparison provides

causal estimates of the place-based policy that are unconfounded by the mean-reversion

tendency of the economy and account for displacement effects that are a challenge in the

reduced-form estimation of spatial policy effects. In a nutshell, we find that workers move

from the untreated to the (positively) treated regions. Due to sorting and agglomeration

effects, the policy effect on GDP is somewhat larger than on population. Since only about

one fourth of the QoL increase capitalises into rents, expected utility in the treated ar-

eas increases. Expected utility also increases in the untreated areas since the relocation

of workers reduces congestion on the housing market. In our example, spatial incidence

increases spatial inequality in welfare. Applying a lower-bound penalty for inequality

estimating the marginal willingness to pay for clean air.
3Much of the place-based policy focuses on reduced-form methods to provide causal evidence (Kline

and Moretti, 2013, 2014; Criscuolo et al., 2019). See Neumark and Simpson (2015) for a recent summary.

5



aversion following Atkinson (1970) reduces the social welfare effect by 13%. This is an

important insight for the literature in the tradition of Rosen (1979)-Roback (1982) which

has abstracted from a potential efficiency-equity trade-off by assuming perfect spatial ar-

bitrage.

The remainder of the paper is structured as follows. Section B presents stylised evi-

dence that guides our modelling choices. Section C outlines the model. Section D describes

the quantification of the model. Section E compares our new QoL index to the canoni-

cal measure in the literature. Section F shows how to use the model for policy analysis.

Section G concludes.

B Stylised facts

To motivate the structure of the model developed in Section C, we present some stylised

facts of a spatial economy in Figure 1 using data that we describe in Section D.1. The upper

panels show how spatial concentration is associated with benefits due to agglomeration

economies on labour markets (a) and costs due to congestion on housing markets (b).

Intuitively, the strengths of these agglomeration and dispersion forces determine the spatial

concentration of economic activity.

In the middle panels, we turn to causes and consequences of migration. There is a pos-

itive association between the average wage a local labour market offers and the number

of workers it attracts (c). At the same time there is a positive association between net

in-migration into labour markets and changes in local housing cost (d). This descriptive

evidence supports some important assumptions that are implicit to the notion of a spatial

equilibrium and the idea of spatial arbitrage. First, workers are at least imperfectly mo-

bile and respond to economic incentives when making location decisions. Second, due to

inelastic supply of land, migration into attractive destinations leads to rising house prices

and mean reversion in the attractiveness of locations.

Yet, the bottom panels of Figure 1 reveal that workers are not perfectly mobile. The

average worker changes the labour market region about once (1.08) over the employment

biography, although there is some variation across groups (e). Conditional on migrating,

the propensity of a location becoming a migration destination declines rapidly in space,

which points to spatially variant migration costs (f).

Motivated by these stylised facts, we develop a model in which imperfectly mobile

workers trade off expected utility at migration destinations against migration costs. In-

migration reduces incentives to migrate into a region since the cost of agglomeration ex-

ceeds the benefit, so that in the absence of shocks, the spatial economy tends to revert to

a stationary spatial equilibrium.
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Figure 1: Stylized facts of the spatial economy

(a) Agglomeration benefits (b) Agglomeration costs

(c) Wages and migration (d) Migration and housing costs

(e) Average number of moves (f) Spatial decay in migration flows

Note: Unit of observation in panels (a)-(d) is 141 labour market areas as defined by Kosfeld and Werner (2012).
Panels (a)-(d) and (f) use wage and employment data based on the universe of workers from the IAB in panels
observed in 2007 and 2017. Panel (e) uses all workers observed in at least 35 years over at least 40 years starting in
1975 (in West Germany). Housing cost measured as average per-square-meter housing prices.
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C Model

Consider an economy that is populated by L̄ =
∑

θ L̄
θ workers who we categorise into

groups θ ∈ Θ (e.g. according to age, gender, skill) and who supply one unit of labour

inelastically. Individuals choose their place of residence and work among i, j ∈ J local

labour markets to which we refer as regions. Workers in i have idiosyncratic tastes for

living in j and incur a cost when migrating from i to j. Each region is endowed with a

measure T̄i of land used for housing.

C.1 Workers

Individual ω belonging to group θ, living in region i at time period t, and previously living

in region k derives utility from the consumption of a freely-tradable homogeneous good

(xθi,t(ω)), housing (hθi,t(ω)) and amenities (Aθi,t, exp[aθki,t(ω)]) according to

U θi|k,t(ω) =

(
xθi,t(ω)

α

)α(
hθi,t(ω)

1− α

)1−α

Aθi,t exp
[
aθki,t(ω)− τ θki

]
. (1)

The Cobb-Douglas structure implies that individuals spend constant shares α and

1 − α of their income on the tradable good and housing. Normalising the price of the

homogeneous good to unity, pi,t represents the relative price of housing in region i. We

then obtain the demand functions

xθi,t(ω) = α(1− ι)wθi,t(ω)

hθi,t(ω) =
(1− α)(1− ι)wθi,t(ω)

pi,t
, (2)

where ι denotes the federal income tax rate and wθi,t(ω) are gross wages for an individual

ω in group θ in region i.

Migration from k to i comes at a time-invariant cost that depreciates utility in the

moving period to exp
[
−τ θki

]
, with τ θki ≥ 0 and τ θk,i=k = 0. Since we allow for arbitrary

group-origin-destination-specific migration costs, we can remain agnostic about the exact

nature of this cost. An intuitive interpretation is the cost of rebuilding social capital

(Glaeser et al., 2002) which may depend on how closely two regions are connected geo-

graphically, culturally (Falck et al., 2012), or socially (Bailey et al., 2018).

The composite amenity consists of two components. The first component is QoL,

an exogenous group-region utility shifter that collects the group-specific effects of region-

specific (dis)amenities:

Aθi,t = ζθt Ā
θ
i,t, (3)

where ζθt is a group-period-specific constant and Āθi,t is a relative QoL measure with a

within-group mean of one. The second component exp[aθki,t(ω)] is a stochastic bilateral
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amenity shock, with aθki,t(ω) being drawn from a type-I-extreme value (Gumbel) distribu-

tion

F θki,t(a) = exp
(
−B̄θ

ki,t exp {−
[
γθa+ Γ

]
}
)

∀ θ and γθ > 0, (4)

where B̄θ
ki,t ≡

(
Bθ
ki,t

)γθ
. With this formulation, we follow the multinomial logit model of

discrete response (McFadden and Train, 2000) and allow for a group-specific mean and a

group-specific variance of the amenity shock. ln(Bθ
ki,t) is the time-varying, group-specific

mean of the amenity shock and Γ is the Euler-Mascheroni constant.4 γθ governs the

group-specific dispersion of individual amenity shocks.

Amenity shocks are conceptually important and essential for the tractability of the

model. The bilateral group-year component Bθ
ki,t captures common trends such as down-

town gentrification that make specific pairs of locations closer substitutes for certain groups

in certain periods. Since we view migration cost as time-invariant, this is important to

rationalise migration flows that vary over time within groups and bilateral region pairs

even if wages, rents, and QoL remain constant. The heterogeneity of shocks within groups

allows for some idiosyncrasy in tastes for being in i among workers of group θ from k.

Unless we are in the limit case γθ → ∞ and tastes are homogeneous, there will be some

workers within a group who will have decided to migrate from k to i for given wages, rents,

QoL, and migration costs, while others did not. Hence, spatial arbitrage is imperfect in

the real world and in our model.

C.2 Production

Tradable good. Firms produce the tradable good under perfect competition using

labour as their only input. Following the conventions in urban economics (?) we model the

productivity of individuals, ϕθi,t(ω), as dependent on location factors that are exogenous to

our model (e.g. access to navigable rivers), endogenous agglomeration (employment den-

sity), and an individual effect that consists of time-invariant (innate skill) and time-varying

(e.g. employment status) factors:

ϕθi,t(ω) = ψθi,t

(
Li,t
T̄i

)κθ
δθi,t(ω), (5)

where δθi,t(ω) summarises idiosyncratic determinants of productivity and the group-region

productivity ϕθi,t = ψθi,t(
Li,t
T̄i

)κ
θ

depends on an exogenous component ψθi,t and on density

Li,t/T̄i. Prompted by evidence on skill-biased returns to agglomeration (Baum-Snow and

Pavan, 2013), we allow the density elasticity of productivity κθ ≥ 0 to vary across groups.

Similarly, each group is equipped with a location-specific exogenous productivity ψθi,t to

capture any complementarity between skills and exogenous location factors, such as an

4This implies that shocks are i.i.d across locations, individuals, and time. This approach is established
in the literature and has been applied to describe productivity distributions, e.g. as in Eaton and Kortum
(2002), or individual preferences, e.g. as in Ahlfeldt et al. (2015).
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airport that allows high-skilled workers to quickly travel to business meetings.

We assume that firms only observe the average productivity per group, so we impose

δθi,t(ω) to be a log-normally distributed error term of mean zero for the sake of simplicity.

As the price serves as the numeraire, the first-order condition of labour demand implies

that group-region productivity ϕθi,t directly maps into wages:

wθi,t = ψθi,t

(
Li,t
T̄i

)κθ
. (6)

Total output (equal to revenues and nominal income) in i is then given byXi,t =
∑

θ L
θ
i,tϕ

θ
i,t.

Housing Profit-maximizing developers supply housing under perfect competition ac-

cording to a Cobb-Douglas production function combining a share of the globally available

capital stock with location-specific land:

HS
i,t = ηi,t

(
T̄i
β

)β (
Ki,t

1− β

)1−β
, (7)

where Ki,t is the capital used in region i and ηi,t denotes total factor housing productivity,

capturing the role of regulatory (e.g. height regulations) and physical (e.g. a rugged

surface) constraints (Saiz, 2010). Owners of employed capital and land are absent so their

income is irrelevant for local demand. Normalising the world price of capital to unity and

assuming that developers make zero profits and housing markets clear, we obtain

pi,t =

(1− α)β(1− ι)Xi,t

η
1
β

i,tT̄i

β

. (8)

This formulation implies that both capital input and housing prices are increasing in

housing expenditure, and that pi,t is lower in locations with more land supply and higher

housing productivity, ceteris paribus. The larger the share of land in housing β, the smaller

the housing supply elasticity (1− β)/β, and the greater the congestion force the housing

market generates (see Appendix J.1 for details).

C.3 Migration and timing

Our approach to modelling migration decisions draws from financial economics. Intuitively,

we model migration as an investment decision in which expected returns in the form of

utility flows are traded against a migration cost, e.g. for rebuilding social capital at a

potential destination. The timing is as follows. Throughout period t, workers living in i

realise their k-i-worker-specific utility. At the end of period t, workers receive i-j-worker-

specific amenity shocks introduced in Section C.1. Migration takes place at the beginning

of the next period t + 1 based on the expected utility levels that can be obtained in any

of the j ∈ J regions in all future periods. Then, the procedure starts over again.
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In line with the conventions in the emerging DSM literature (Caliendo et al., 2019b), we

assume that workers have logarithmic preferences which leads to the following formulation

of a migration net present value (NPV) for a worker of type θ who was in region k in

period t − 1, is in region i in period t, and considers moving to region j in period t + 1

(see Appendix J.2 for derivations):

lnNPV θ
i|k,t(ω) = ln

[
(1− ι)wθi,t
p1−α
i,t

Aθi,t exp
(
aθki,t(ω)− τ θki

)]
+ max

j∈J

{ 1

1 + ρ

[
aθij,t+1(ω)− τ θij + lnVθj,t+1

]}
,

(9)

where lnVθj,t+1 ≡
(

lnAθj,t+1

ρ +
E(aθjj,t+2(ω))

ρ(1+ρ)

)
+
∑∞

s=t+1

(
1

1+ρ

)s−(t+1)
ln

(
(1−ι)wθj,s
p1−αj,s

)
is the

infinite sum over the discounted future utilities, ρ is a discount rate monitoring the time

preference, and the first term captures the utility in period t. Intuitively, the present value

of future utilities depends on future wages, rents, and QoL.

Given the distributional assumption regarding the idiosyncratic amenity component,

we obtain the following conditional probability that a worker from group θ migrates from

i to j (see Appendix J.3 for derivations):

χθij|i,t =

(
mθ
ijB

θ
ij,t+1Vθj,t+1

)γθ
∑

n∈J

(
mθ
inB

θ
in,t+1Vθn,t+1

)γθ , (10)

where Vθj,t+1 =
(
Aθj,t+1

) 1
ρ
(
Bθ
jj,t+2

) 1
ρ(1+ρ)

exp

{∑∞
s=t+1

(
1

1+ρ

)s−(t+1)
ln

(
(1−ι)wθj,s
p1−αj,s

)}
and

mθ
ij = exp

[
−τ θij

]
. Migration flows from i to j are simply given by M θ

ij,t = χθij|i,tL
θ
i,t.

Since all workers migrate to a destination in period t (which can be the origin), aggregate

employment in region i in t+ 1 equates to the sum of inflows M θ
ji,t from all locations j:

Lθi,t+1 =
∑
j∈J

M θ
ji,t =

∑
j∈J

χθji|j,tL
θ
j,t. (11)

Eq. (10) provides the micro-foundations for a migration gravity equation with a

destination-group-specific present value of future utilities Vθj,t+1, origin-destination-group-

specific migration costs τ θij and bilateral amenity shocks Bθ
ij,t+1, and an origin-group-

specific component akin to the multilateral resistance known from trade models (the de-

nominator). Via Vθj,t+1, higher wages, lower rents, and greater QoL at a potential destina-

tion increase the probability that workers migrate to j. The amenity dispersion parameter

γθ can be interpreted as a migration elasticity as it moderates how sensitive migration

decisions are to economic incentives. At low values of γθ, the idiosyncrasy of tastes domi-

nates and migration is inelastic whereas at high values difference in wages, rents, and QoL

have large effects on migration flows. Migration costs τ θij are critical to rationalising why
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physically, culturally, or socially close region pairs generate larger migration flows. Since

all τ θi,j 6=i ≥ 0 are defined relative to τ θi,j=i = 0, migration costs critically determine the

share of workers leaving a region in a period and, hence, the speed of spatial adjustments

in our DSM. Empirically, the effects of migration costs and the migration elasticity are

jointly determined by the origin-destination-group component τ θij×γθ, which we term mi-

gration resistance. Therefore, the typically observed distance decay in migration flows can

be rationalised by a large difference in migration cost if tastes are heterogeneous (small

γθ) or a small difference in migration costs if tastes are homogeneous (large γθ).

It is immediate from Eq. (10) that there are isomorphic model formulations in which

bilateral amenity shocks Bθ
ij,t are subsumed into time-varying migration costs, or vice

versa. We choose our parameterisation because we believe that differences in average

migration flows observed over 25 years in our data are most likely driven by fundamental

determinants of migration costs that hardly change over time, whereas deviations from

the long-run average most likely reflect the short-run effects of random events that tend

to cancel out over time.

C.4 Equilibrium

We take the structural parameters {α, β, ρ, ι, γθ, κθ, Bθ
ij,t, τ

θ
ij}, structural fundamentals

{ψθi,t, ηi,t, Aθi,t}, and labour and land endowments {L̄θt , T̄i} as exogenously given. We

impose the following labour market clearing conditions:

L̄θt =
∑
i∈J

Lθi,t (12)

with the economy-wide labour endowment L̄t =
∑

θ L̄
θ
t . Region-group specific labour

supply determined by Eq. (11) aggregates to regional employment Li,t =
∑

θ L
θ
i,t which

maps into wages wθi,t via the first-order condition of labour demand, Eq. (6). Likewise, we

impose housing market clearing so that regional employment Lθi,t maps into rents pi,t via

output Xi,t according to Eq. (8) (see Appendix Section J.1). Trade with the rest of the

world clears the markets for tradable goods and capital inputs.

Transitory spatial equilibrium. Frictional migration implies that shocks to structural

fundamentals lead to non-instantaneous adjustment in Lθi,t. The role of the TSE is to

rationalise unbalanced migration flows and non-stationary employment that are typically

observed in data.

Stationary spatial equilibrium. Migration is spatially neutral if the sum of outflows

equals the sum of inflows for each location:∑
j∈J

χθij|i,tL
θ
i,t =

∑
j∈J

χθji|j,tL
θ
j,t ∀ j ∈ J, θ ∈ Θ. (13)
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This condition enforces that Lθi,t is stationary, but it does not rule out migration due to

idiosyncratic taste shocks. We assume that the congestion force dominates the agglomer-

ation force to ensure that all regions are populated. The latter is governed by κθ for each

group according to Eq. (6). The former works through the price for housing as described

by Eq. (8). The effect of changes in population on individual housing expenditure is given

by (1 − α)∂pi,t/∂L
θ
i,t. We relegate details to Appendix J.4 where we also show that the

economy converges to a unique SSE for given primitives. Since Eq. (13) is unlikely to hold

in the data, we view the SSE as a counterfactual situation to which an economy observed

in a TSE would converge in the absence of further shocks.

Dynamic equilibrium. For given structural parameters and structural fundamentals

the dynamic equilibrium of the model is referenced by a (J×Θ) ×Zt vector of region-group-

year-specific employment Lθi,t, where Zt denotes the number of periods in the transition

period from a TSE in t to the SSE reached in t + Zt. Hence, the dynamic equilibrium

nests the SSE and all TSEs up to the period where the spatial economy has converged to

the SSE. For given structural fundamentals {ψθit , ηi,t}, Lθi,t maps to (J × Θ) ×Zt vectors

of wages wθ
i,t and prices pi,t via the first-order condition of labour demand, Eq. (6), and

housing market clearing, Eq. (8).

Competitive spatial equilibrium. Characteristic for the CSE is the absence of spatial

frictions. Within our framework, we can remove frictions by setting preference shocks and

migration costs to zero (aθki,t(ω) = 0, τ θki = 0). Since workers optimally relocate across

locations within any period, we can impose the standard spatial equilibrium condition

that workers are indifferent between locations. To this end, we set the indirect utility

equal to a group-time-specific reservation utility Ū θt .

V θ
i,t =

(
(1− ι)wθi,t

)α((1− ι)wθi,t
pi,t

)1−α

Aθi,t = Ū θt (14)

Hence, observed wages and rents directly map to a Rosen-Roback (RR) QoL measure

Aθi,t = qθt p
1−α
i,t /wθi,t (where qθt collects all group-period-specific constants).

C.5 Worker expectations

In specifying how agents form expectations, there is a trade-off between foresight and

tractability. Desmet et al. (2018) develop a fully tractable DSM under static expecta-

tions, i.e. workers project current realizations of good and factor prices into the infinite

future. In contrast, Caliendo et al. (2019b) exploit Bellman’s principle to estimate model

parameters and conduct counterfactual analyses under perfect foresight without pinning

down all primitives. We marry both approaches with the aim of incorporating forward-

looking expectations into a model where all structural parameters and fundamentals will

be quantified.
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Our choices are guided by the stylised fact that the mean worker moves only once over

the entire employment biography (see Section B). Hence, we assume that workers do not

consider sequential moves when making migration decisions. For a formal derivation of

the expected region-group-period utility in the general case with sequential moves and the

special case with singular moves, we refer to Appendix J.3.

Workers who expect to remain at a migration destination forever likely form sophisti-

cated expectations with respect to the evolution of wages and rents. Therefore, we assume

that workers correctly anticipate the dynamic equilibrium referenced by the employment

vector Lθi,t and all model-endogenous adjustments in wages and prices summarised by wθ
i,t

and pi,t. Shocks to exogenous structural fundamentals cannot be anticipated, so workers

project observed realisation of QoL Aθi,t+1 into the future. Consistent with the distribu-

tional assumptions in Eq. (4), workers expect a bilateral amenity E(Bθ
ij,t+s) = 1 for s > 1.

In line with the conventions in DSMs, workers have an infinite time horizon and do not

expect to age.

C.6 Spatial arbitrage

The CSE is the urban economics equivalent of the no-arbitrage condition in financial

economics (Glaeser, 2008). Perfect spatial arbitrage is an assumption that leads to constant

reservation utility as a building block of neoclassical urban economics models. In contrast,

spatial arbitrage is an endogenous process in our DSM that moderates the transition from

the TSE to a SSE.

Intuitively, shocks to structural fundamentals affect expected utility directly or in-

directly. For example, a positive shock to labour productivity maps into higher wages

wθi,t+s according to Eq. (6) due to perfect competition on goods and labour markets and

the choice of the tradable good as the numeraire. Likewise, a positive shock to housing

productivity maps into lower housing costs pi,t+s according to Eq. (8) due to perfect

competition among developers. Higher wθi,t+s and lower pi,t+s affect bilateral migration

probabilities χθij|i,t according to Eq. (10), leading to in-migration. Given Eq. (11), this

results in endogenous changes in employment which in turn determine changes in wages

according to Eq. (6) and housing costs according to Eq. (8). As long as agglomeration

costs exceed agglomeration benefits at the margin, the consequence of migration is to

reduce the differences in expected utility that cause migration. The pace at which this

spatial arbitrage process takes place depends positively on the migration elasticity γθ and

negatively on migration costs τ θij . Eqs. (10) and (11) establish how regions offering a

greater indirect utility Vθj,t+1 will experience larger net-immigration the larger γθ and the

smaller the migration resistance τ θij × γθ, ceteris paribus.

C.7 Quality-of-life premiums

The revealed-preference literature computes the value of amenities that jointly constitute

QoL via spatial differences in real living cost p1−α
i /wθi , the inverse of the real wage (Rosen,
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1979; Roback, 1982). Using the structural parameters and fundamentals quantified in

Section D, Figure 2 provides a graphical illustration of the simulated model to show how

QoL premiums are determined. Our case in point is the urban QoL premium which

captures how QoL depends on city size, a question that is controversially debated in the

literature (Albouy, 2011). To ease the presentation, we focus on the special case with one

worker group and refer to Appendix J.5 for formal derivations.

Figure 2 depicts two equilibrium loci for locations i = {1, 2}. The solid lines refer

to location 1 while the dashed schedules indicate location 2. The housing equilibrium

locus (HHi) is a log-linearised version of Eq. (8) collecting all combinations of real living

costs and employment that satisfy all housing-market related conditions that must hold

in the TSE (and the SSE). Under plausible parameterisations, the expenditure on housing

increases faster in city size (due to inelastically supplied land) than the wage (due to

agglomeration economies). Therefore, the housing equilibrium locus is positively sloped.

Greater housing productivity ηi shifts the housing equilibrium locus downwards.

Likewise, the migration equilibrium locus (LLi) collects all combinations of real living

costs and employment that satisfy all migration-related conditions that must hold in the

SSE. It is derived from Eq. (11). Intuitively, the migration equilibrium locus is downward

sloping since the preference of the marginal resident joining the city decreases as city

size increases due to taste heterogeneity (Arnott and Stiglitz, 1979; Moretti, 2011). The

slope of the migration equilibrium locus is inversely related to the migration elasticity γθ.

Higher QoL Aθi shifts the migration equilibrium locus upwards. The intersection of both

equilibrium loci is the only combination of real wages and employment that satisfies all

SSE equilibrium conditions and, hence, we can use it to quantify the model and derive

QoL premiums.

The two vertical dashed lines mark two cities of different size with L2 > L1. Housing

productivity ηi is higher in the larger city, which gives the city an edge in the competition

for workers since the housing sector provides more housing at the same equilibrium price

(HH2 is below HH1). Yet, despite the housing productivity advantage, the city size

differential can only be rationalised by a greater labour supply in the larger city and

an upward-shifted migration equilibrium locus (LL2 vs. LL1). Intuitively, the lower

idiosyncratic amenity of the marginal resident must be compensated for by a higher average

group-specific QoL Aθi in the larger city. Hence, there is a positive urban QoL premium.

With decreasing taste heterogeneity, the migration elasticity γθ increases, the slope of

the migration equilibrium flattens, and the urban QoL premium shrinks. For the limit case

γθ −→∞, our model nests the canonical CSE framework in which the migration equilibrium

locus is simply a horizontal line shifted by Aθi (see Eq. (14)). The corresponding migration

equilibrium schedules are described by LLCSEi . In the given example, because the larger

city has a fundamental housing productivity advantage, we qualitatively misrepresent the

urban QoL premium if we abstract from taste heterogeneity.

The important takeaway is that the urban QoL premium in the DSM with taste het-

erogeneity is necessarily more positive than in the canonical spatial equilibrium framework
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unless the migration elasticity γθ is large. More generally, we necessarily recover larger

QoL differentials from a model with taste heterogeneity. Since, consistent with the lit-

erature (Caliendo et al., 2019b), we estimate relatively low values of γθ for all groups,

we expect our quantitative framework to deliver larger valuations of local non-marketed

goods than the canonical Rosen-Roback framework.

Figure 2: Urban quality of life premium

Notes: A formal derivation of demand and supply shifters and elasticities is in Appendix J.5. We use parameter
values γ = 0.5 and β = 0.2 which are within the range of estimates in the literature and our own estimates in Section
D. We use the structural fundamentals quantified in Section D. To ease the presentation, we derive all curves for
one worker group (middle-aged, skilled male workers) exclusively.

D Quantification

The quantification of the model consists of two steps. First, we obtain values of the struc-

tural parameters {α, β, ρ, ι, γθ, κθ, Bθ
ij,t, τ

θ
ij}. We borrow {α, ι, ρ} from the literature and

estimate the remaining parameters using variables observed in data {Lθi,t, T̄i, wθi,t, χθij|i,t, pi,t}
and the structure of the model. Second, we use data, the estimated parameter values, and

the structure of the model to invert the structural fundamentals {ψθi,t, ηi,t, Aθi,t} and to

solve for the region-group-time-specific employment vector Lθi,t that references the dynamic

equilibrium.

D.1 Data

As an empirical correspondent to locations indexed by i in the model, we choose 141

German labour market regions defined by Kosfeld and Werner (2012) based on commuting

data. The centre of a labour market region is the municipality with the largest number

of workers. We treat periods t in our model as years in the data. We briefly discuss the

sources and processing of our data below and refer to Appendix K.1 for details.
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Employment. Our measure of employment Lθi,t is constructed from the Employment

History (BeH) covering the years 1993-2017. This dataset is provided by the Institute of

Employment Research (IAB) and contains information on the universe of employees in

Germany (with the exception of civil servants and the self-employed) on a daily basis. We

only select those workers who are employed subject to social security contributions (includ-

ing apprentices) and compute region-year-specific employment levels for different groups

which are defined according to the interactions between sex, three skill categories (no ap-

prenticeship, completed apprenticeship and tertiary education) and three age categories

(16-30 years, 31-50 years and 51-65 years).

Migration. We assign workers to labour market regions using their place of employment

as reported in the BeH. Bilateral group-specific migration flows M θ
ij,t are then constructed

by computing the number of workers belonging to group θ who were employed in region

i in year t and in region j in year t+ 1. The conditional migration probabilities are then

observed as χθij|i,t = M θ
ij,t/L

θ
i,t.

Wages. We follow the standard approach in labour and urban economics and identify

the region-group-year wage wθi,t from movers by regressing individual wages against region-

group-year fixed effects, controlling for individual fixed effects (Abowd et al., 1999; Combes

et al., 2008). We use matched employer-employee data including nominal wages from the

IAB covering the universe of German workers and establishments from 1993 to 2017.

Rents. We follow Combes et al. (2019) and compute a house price index for a represen-

tative property at the centre of a labour market area. Assuming a monocentric region,

this is the only location where we can abstract from commuting costs when inferring QoL

(Albouy and Lue, 2015). The price index maps into rent pi via a constant cap rate of 0.035

(Koster and Pinchbeck, 2018). The property micro data we use is from Immoscout24 cov-

ering more than 16.5 million sales proposals for apartments and houses between 2007-2017.

The data were accessed via the FDZ-Ruhr (Boelmann and Schaffner, 2019).

Geographic variables. We use a geographic information system (GIS) to compute the

land area T̄i of all regions and the great circle distance between all pairs of regions. For a

cultural distance measure, we use the inverse of the county-based dialect similarity index

by Falck et al. (2012), which we aggregate to labour markets.

Big data. We use social media data from Facebook, Flickr, and Picasa to approximate

regional amenity value and social connectedness. We use those data to over-identify esti-

mated structural parameters and inverted structural fundamentals.

Location characteristic. For our policy application, we collect the concentration of

particular matter (PM10), the spatial distribution of coal deposits, the locations of coal
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power plants, and the distribution of winds by direction for all regions. We also collect a

comprehensive data set on fundamental first-nature characteristics that potentially affect

productivity (e.g. access to navigable rivers), amenity (e.g. opera houses, World War II

destruction), and housing TFP (e.g. physical constraints to development).

D.2 Structural parameters

We set the housing expenditure share to 1 − α = 0.33, which is in line with a literature

summarised in Ahlfeldt and Pietrostefani (2019) and official data from Germany (Statistis-

ches Bundesamt, 2020). We use a tax rate of ι = 0.49 which incorporates social insurance

contributions that are proportionate to income in Germany (OECD, 2017). Likewise,

we set the intertemporal discount rate to ρ = 0.11 following the economics literature on

time-preferences (Moore and Viscusi, 1988; Frederick et al., 2002). Lastly, we impose that

stayers face no migration cost (τ θij=i = 0).

We estimate all other parameters using estimation equations that we derive from the

structure of the model. For identification, we generally follow the current best-practice

examples in the respective fields. Our main empirical contribution is to exploit our rich

data to account for greater inter-group heterogeneity than in previous work. We briefly

discuss the parameter values along with references to the identification strategies and the

relevant literature below. For a formal derivation of all estimation equations and full

estimation results we refer to Appendix K.2.

Density elasticity of productivity (κθ). The estimating equation for κθ is a log-

linearised version of Eq. (5). Identification comes from between-labour-market-area

movers and is conditional on individual effects (Combes et al., 2008). We use a 100-year lag

of population density following a literature that argues that production fundamentals that

determined productivity in history are no longer relevant today (Ciccone and Hall, 1996).

With this approach, we estimate the agglomeration elasticity for Θ = 18 groups and find

that returns to agglomeration (κθ) are not only biased with respect to skills (Baum-Snow

and Pavan, 2013), but also gender, with women benefiting more from agglomeration. The

weighted average elasticity estimate of 0.024 is close to the typical result in the literature

(Combes and Gobillon, 2015).

Land share (β). The estimating equation for β is a log-linearised version of Eq. (8). The

estimation equation is similar to the one in Combes et al. (2019), although, following from

our general equilibrium setting, the main independent variable is GDP density rather than

population. Following the literature we, again, use the 100-year lag of population density

as an instrument. Our estimate of β = 0.18 implies a population density elasticity of house

prices of 0.2, which is within the typical range in the literature (Ahlfeldt and Pietrostefani,

2019). The implied intensive-margin housing supply elasticity (1− β)/β = 4.2 is close to

existing structural estimates (Epple et al., 2010).
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Migration elasticity (γθ). The estimating equation for γθ is a log-linearised and spa-

tially differenced version of Eq. (10) in which leading migration probabilities control for

future utility flows according to the Bellmann’s principle (Artuç et al., 2010). We fol-

low the literature and estimate γθ using GMM. In our preferred approach, we restrict

the identifying variation to lagged group-specific average wage differences between eastern

and western states that likely capture a legacy of the cold-war era. The estimated aver-

age elasticity of 0.3 is somewhat larger than when we use the standard IVs (lagged wage

and migration probabilities), but somewhat smaller than previous estimates for the U.S.

(Caliendo et al., 2019a). Novel to the literature using this estimation approach, we find

that middle-aged and middle-skilled male workers are those that are most responsive to

economic migration incentives.

Migration costs (τ θij). The estimating equation for τ θij is a log-linearised version of

Eq. (10) using a PPML estimator. Destination-group-year and origin-group-year effects

control for arbitrary pull factors and multilateral resistance (Head and Mayer, 2014).

Exploiting the panel-dimension, origin-destination-time effects non-parametrically identify

origin-destination-group-specific migration resistance τ θij×γθ up to a constant. Exploiting

the no-internal-migration-cost constraint τ θi,j=i = 0, we derive theory-consistent estimates

of τ θij for given values of γθ. Female, old, and middle-skilled workers have the largest

resistance to migrate. Yet, middle-skilled workers experience low migration costs. Because

their tastes are relatively homogeneous (large γθ), small differences in migration costs

rationalise large differences in migration flows. In monetary terms, the weighted average

migration cost corresponds to about e170K which is more than revealed in survey-based

research for the average U.S. citizen, though much less than for those who report themselves

as “rooted” (Koşar et al., 2019).

Bilateral amenity. The estimating equation for Bθ
ij is the same gravity migration equa-

tion from which we infer migration resistance τ θij × γθ. For given values of γθ, we infer

Bθ
ij from the structural residual. Consistent with theory, we rationalise migration flows of

zero by setting Bθ
ij = 0.

D.3 Structural fundamentals

Labour and housing productivity. Given our estimates of the agglomeration elastic-

ity κθ and observed wages wθi,t, regional employment
∑

θ L
θ
i,t, and land area T̄i, we invert

fundamental labour productivity ψi,t using the first-order condition of labour demand,

Eq. (6). Likewise, we use our estimate of the land share β and observed rents pi,t, output∑
θ w

θ
i,tL

θ
i,t and land area T̄i to invert fundamental housing productivity ηi,t using housing

market clearing, Eq. (8).

Quality of life. Owing to the dynamic structure of our model, the inversion of QoL Aθi,t
is less straightforward. Given observed data on conditional migration probabilities χθij|i,t
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and estimates of bilateral amenities Bθ
ij,t, migration costs τ θij and the migration elasticity

γθ, we can invert the within-group QoL Āθi,t up to the group-year constant ζθt for a given

dynamic employment vector Lθi,t that determines future wages wθi,t+s and rents pi,t+s (see

Section C.4) using the migration gravity Eq. (10). However, to forecast Lθi,t using the

dynamic structure of the model, we require values of Āθi,t that feed into labour supply, Eq.

(11), via the migration gravity Eq. (10).

Therefore, we solve for the endogenous employment vector Lθi,t that references the

dynamic spatial equilibrium and the exogenous structural fundamental Āθi,t simultaneously.

To this end, we use a nested dynamic programming algorithm to which we refer as dynamic

solver for convenience. The dynamic solver consists of three components. First, a fixed-

point programming algorithm (FP) that delivers a numerical solution for Āθi,t (output)

for given guessed values of Lθi,t (input) using Eq. (10). Second, a dynamic programming

algorithm (DP) which forecasts Lθi,t (output) for guessed values of Āθi,t (input). The DP

iterates over Eqs. (10), (11), (6) and (8) to forecast χθij|i,t+s, L
θ
i,t+s+1, wθi,t+s+1, and pi,t+s+1

which feed into χθij|i,t+s+1 and Lθi,t+s+2 until Lθi,t+S is stationary. Third, an outer loop (OL)

that nests the two other algorithms and forwards the outputs from the FP as inputs to

the DP and vice versa.

In taking the dynamic solver to the data, we set a time horizon of H = 1000 years

which exceeds the transition period to the SSE in all our applications. As initial guesses

for the employment vector Lθi,t
0

we use the values we observe in year t for which the model

is being quantified:

Lθi,t
0

= Lθi,t, L
θ
i,t, ..., L

θ
i,t︸ ︷︷ ︸

H elements

.

Given Lθi,t
0
, we use the FP to generate starting values Āθi,t

0. We then start the OL

where in each iteration l the DP delivers an output Lθi,t
l

that is an input into the FP

which in turn delivers Āθi,t
l+1 as an output that serves as an input into the PF in the next

iteration. In this OL, we treat Lθi,t and Āθi,t as fixed points that are found in iteration

L when the input into the FP corresponds to the output from the DP and vice versa.

Once the OL converges, we crop Lθi,t
L

to the SL elements forecasted by the DF in the last

iteration of the OL. Saving Aθi,t
L

concludes the quantification of the model. For further

details on the dynamic solver, we refer to Appendix K.3.

D.4 Transition into the stationary spatial equilibrium

Figure 3 exemplarily illustrates the transition path from the TSE observed in our data

into the SSE found by the dynamic solver introduced in Section D.3. For Berlin, Ger-

many’s largest local labour market, the model forecasts that employment would grow by

14% as the economy transitions into the SSE if there were no further shocks to funda-

mentals. The average wage would increase by about 0.8%. This would be more than

the agglomeration-induced productivity effect and driven by a 5.4%-increase in the high-
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skilled share. The increase in housing demand would map to a higher house price and

lower housing consumption for all skill groups.

While it takes more than 700 years for group-region employment to become stationary,

almost all of the adjustment in Berlin takes place within the first 100 years. Zooming

out, we find that the sum of the absolute difference between TSE and SSE values across

all groups and regions shrinks by about 35% within the first 10 years, and by about 65%

within the first 30 years, with some variation depending on the outcome (see Figure A8

in Appendix K.4).

Figure 3: Transition from TSE into SSE in Berlin

Notes: Model-based forecasts using the dynamic solver introduced in Section D.3. 2017 starting values. Yearly gross
wage, skill shares and housing consumption are weighted by group shares.

The main takeaway from the aggregate outcomes in Table 1 is that during the transi-

tion into the SSE workers of all skill groups relocate to local labour markets with higher

QoL, but lower density, on average. This tendency is strongest for the unskilled. The effect

of relocating to lower-density labour markets dominates the QoL-effect on housing cost,

resulting in a slight increase in housing consumption. In contrast, the high-skilled tend

to remain in denser labour markets, so that the effect of sorting into higher QoL labour

markets dominates and housing consumption decreases. The reduction in the weighted

average density by 4% leads to a mild reduction in aggregate output owing to lower ag-

glomeration economies. A comparison of the TSE to the SSE at the regional level reveals

an increase in employment in the eastern states by nearly one million workers (at the

expense of the western states), partially offsetting domestic migration during the first 25

years after the end of the Cold War era. This increase in employment in the eastern states

drives rents, but does not map to higher average wages due to a moderate decrease in the

high skilled share (see Appendix Section K.4).
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Table 1: TSE vs. SSE

Outcome TSE SSE Ratio

Output in bn. 1.058 1.056 0.998
QoL index 1.616 1.639 1.014
Weighted average density (emp./km2) 150.710 144.462 0.959
QoL index, unskilled 2.169 2.272 1.048
QoL index, skilled 1.412 1.414 1.002
QoL index, high-skilled 2.149 2.218 1.032
Weighted density, unskilled 167.221 161.940 0.968
Weighted density, skilled 143.493 136.149 0.949
Weighted density, high-skilled 170.666 168.040 0.985
Yearly wage (e), unskilled 23222 23239 1.001
Yearly wage (e), skilled 33804 33722 0.998
Yearly wage (e), high-skilled 50784 50773 1.000
Yearly housing cost (e/m2), unskilled 132.364 133.601 1.009
Yearly housing cost (e/m2), skilled 121.136 120.420 0.994
Yearly housing cost (e/m2), high-skilled 150.365 152.752 1.016
Housing consumption m2, unskilled 43.353 43.656 1.007
Housing consumption m2, skilled 70.165 70.489 1.005
Housing consumption m2, high-skilled 86.407 85.577 0.990

Notes: TSE values observed in the data except for QoL which is inverted using the
dynamic solver introduced in Section D.3. All SSE values are model-based forecasts
of the dynamic solver. QoL index is normalised within-group measure Āθi,t, weighted
by group-region employment Lθi,t

D.5 Overidentification

To subject the model-derived structural parameters and fundamentals to a reality check,

we correlate fundamental labour productivity ψθi,t, fundamental housing productivity ηi,t

and migration costs τ θij with observable characteristics not used in the quantification of

the model. The results are generally plausible. As an example, fundamental labour pro-

ductivity is lower in the eastern states, likely a legacy of the Cold War era, and where

tradable services are over-represented. Housing productivity is low in the mountainous

region near the Alps where the geography is less favorable for development. Migration

costs increase in geographic and social distance, consistent with greater costs of rebuilding

social capital. Since the structural fundamental Aθi,t is the focus of our analysis, we explore

the correlation with observable characteristics more extensively in the next section.

Inverting the model from the TSE observed in t = 2007 , we find that the model-based

forecasts of employment Lθi,t+s over the 2007-2017 period are positively correlated with

observed employment data. Conditional on region and year effects, a log-point increase

in the out-of-sample forecast of regional employment is associated with a 0.75-log-point

increase in observed employment, with a standard error of just 0.03. Hence, the model

successfully captures a mean reversion tendency that is a feature of the data. We refer to

Appendix Section K.5 for estimation results and a detailed discussion.
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E Quality of life

In this section, we illustrate the spatial variation in the within-group measure of QoL,

Āθi,t, inverted from the DSM (DSM-QoL) and how it correlates with a range of amenity

measures typically employed in the literature as well as a composite amenity index derived

from ’big data’. We provide a comparison to a Rosen-Roback type QoL measure Aθi,t (RR-

QoL) and evaluate how the migration elasticity γθ moderates the relationship between the

two QoL measures.

E.1 Spatial variation in quality of life

Two important stylised facts arise from a comparison of the two QoL measures in Figure

4. First, the spatial distribution of QoL is similar, which is arguably reassuring. In

particular, there is a positive urban QoL premium. Large labour markets in Germany are

not only good places to work, but also good places to live. Second, there is significantly

more variation in DSM-QoL than in the canonical RR-QoL. This is consistent with our

theoretical analysis in Section C.7 and substantiated by Figure 5 which correlates the two

QoL measures across regions allowing for inter-group heterogeneity. For all 18 groups,

RR-QoL increases less than proportionately in DSM-QoL, confirming our theoretical prior

that the canonical framework understates QoL differentials if the migration elasticity γθ

is low. The bias is quantitatively large as group-specific regressions of lnAi,t=2017 against

ln Āi,t=2017 yield point estimates in the range of 0.16-0.45, with an unweighted mean of

0.27 (see Table A14 in Appendix L).

E.2 Determinants of quality of life

Since Roback (1982), it is conventional to regress inverted QoL measures against regional

amenity variables to infer the value of amenities. In Table 2, we illustrate how the larger

variation in the DSM-QoL leads to larger utility effects of regional amenities. We begin

by considering the number of geo-tagged photos shared in social media as a “big data”

composite amenity index that was originally proposed by Ahlfeldt (2013) and has gained

popularity recently (Gaigné et al., 2017; Saiz et al., 2018; Carlino and Saiz, 2019). This

measure assumes that social media users share visually appealing content (e.g. distinctive

architecture or scenic views) or interesting activities (e.g. hiking tours or restaurant visits)

that are related to a location’s endowment with amenities (see Appendix K.1.7 for details).

For the purpose of overidentification of our DSM-QoL, the appealing feature of the big data

amenity index is that it does not rely on an arbitrary selection of observable characteristics

that are more or less readily available. A simple bi-variate log-linear pooled cross-sectional

regression (excluding group, region, or year effects) of the DSM-QoL on the amenity index

explains almost 60% of the variation (Column 1). This high correlation simultaneously

lends support to the DSM-QoL and suggests that big data can be a similarly powerful

predictor of QoL as lights at night are for GDP (Henderson et al., 2012). The point
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Figure 4: Spatial variation in quality of life

(a) Dynamic model (Āi) (b) Rosen-Roback (Ai)

Note: Unit of observation is 141 labour market areas as defined by Kosfeld and Werner (2012). Group adjustment
in auxiliary regressions of ln(QoL) against group and region fixed effects, the latter being shown on the maps.

estimate in Column (1) has a structural interpretation in that it is the inverse of the QoL

elasticity in the photo production function (1/0.356 = 2.81), but it seems fair to assume

that this large estimate is to some extent driven by high QoL regions being more populated

(see Appendix L.2 for further discussion).

In the next two columns, we use DSM-QoL in 2007 (Column 2) and 2017 (Column

3) as dependent variables and add traditional amenity measures as explanatory variables,

taking inspiration from a literature that has been concerned with the role of city size

(Albouy, 2011), climate (Roback, 1982), crime (Linden and Rockoff, 2008), air pollution

(Chay and Greenstone, 2005), as well as natural and consumption amenities (Glaeser et

al., 2001). We use three supra-regional dummy variables to capture the effects of fresh

and rainy summers (near coast), cold winters (near Alps), and the legacy of the Cold

War era (East), none of which exhibits precisely estimated effects. There is no persistent

QoL effect of World War II bombings, consistent with rapid mean reversion in city size

documented by Brakman et al. (2004). We also do not find significant effects for crime or

bodies of water, likely because of limited variation across German regions.

In contrast, the positive urban QoL premium suggested in Figure 4 is substantiated
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Figure 5: Rosen-Roback vs. DSM QoL estimates

Notes: 2017 values. Unit of observation is region-group. Thick dashed line is the 45-degree line. Model-based
amenity inverts QoL from a TSE assuming that agents have perfect foresight. Rosen-Roback assumes that the
economy is in a SSE without spatial frictions. We tabulate the slope parameters of the log-linear fits in Table A14
in the appendix.

by a precisely estimated employment elasticity of QoL of about 0.45 (Columns 2 and 3).

The employment effect on the DSM-QoL is about four times as large as on the RR-QoL

(Columns 5 and 6), the latter being larger than found by Albouy (2011) for the U.S., but

close to the residential spillover effect found by Ahlfeldt et al. (2015) for Berlin. This

comparison highlights how in a quantitative model with preference heterogeneity, a high

fundamental QoL is required to rationalise why, for example, Berlin has almost 10 times

the employment of the average labour market. For Germany, the urban QoL premium is

much larger than even the unadjusted urban wage premium (see Figure 1, panel a), let

alone the skill-adjusted urban wage premium (see Section D.2).

The pollution effect illustrates how the same logic extends to non-marketed goods of

immediate policy interest. Descriptively, the DSM-QoL decreases in the concentration of

particulate matter at an elasticity of -0.4 (we turn to causal effects in Section F). For the

RR-QoL the estimated elasticity is not even half as large. Hence, the case for preserving

clean air is significantly stronger if we account for frictional migration. This finding is

consistent with previous evidence by Luechinger (2009), who finds larger pollution effects

on life satisfaction than on house prices, and Bayer et al. (2009), who show that the

willingness to pay for clean air is larger in a discrete choice model allowing for mobility cost

than in a conventional hedonic model. The same conclusion extends to cultural amenities

as opera houses are more strongly positively associated with the DSM-QoL measure than

with the RR-QoL measure.

To ensure that the big data amenity captures the effects of unobserved QoL determi-

nants, exclusively, we residualise the measure in auxiliary regressions against all covariates
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in Columns (2-3) and (5-6). While the point estimate drops, in particular in the DSM-QoL

models, it remains statistically and economically significant, highlighting the role big data

can play in controlling for QoL determinants that are difficult to observe.

Table 2: Quality-of-life determinants

(1) (2) (3) (4) (5) (6)

Ln(Āθi ) Ln(Āθi ) Ln(Āθi ) Ln(Aθi ) Ln(Aθi ) Ln(Aθi )
All 2007 2017 All 2007 2017

Ln big data amenity 0.356∗∗∗ 0.114∗∗∗ 0.129∗∗∗ 0.054∗∗ 0.064∗∗∗ 0.058∗∗

(residualised) (0.02) (0.03) (0.04) (0.02) (0.02) (0.02)
Ln employment 0.409∗∗∗ 0.455∗∗∗ 0.096∗∗∗ 0.123∗∗∗

(0.04) (0.05) (0.02) (0.02)
Near Alps (dummy) -0.068 -0.016 -0.009 0.054

(0.06) (0.08) (0.05) (0.06)
Near coast (dummy) -0.090+ -0.050 -0.007 0.011

(0.06) (0.06) (0.04) (0.04)
East (dummy) -0.025 -0.024 0.037 0.008

(0.06) (0.06) (0.03) (0.04)
Ln crime per capita 0.027 -0.032 -0.032 -0.063

(0.06) (0.07) (0.04) (0.04)
Ln pollution -0.302∗ -0.402∗∗ -0.148 -0.223+

concentration (pm10) (0.16) (0.19) (0.10) (0.13)
Housing stock destroyed -0.001 -0.001 -0.000 -0.001
in WWII (%) (0.00) (0.00) (0.00) (0.00)
# Opera houses 0.059∗∗ 0.051∗ 0.009 0.010

(0.02) (0.03) (0.01) (0.02)
Ln water area 0.063∗ 0.064+ 0.024 0.030

(0.03) (0.04) (0.02) (0.02)
Ln area -0.072+ -0.085+ -0.005 -0.035

(0.05) (0.05) (0.03) (0.04)

Group effects - Yes Yes - Yes Yes
Observations 27918 2538 2538 27918 2538 2538
R2 .593 .737 .721 .0379 .458 .459

Notes: Unit of observation is group-region. OLS estimation. Ln(Āθi ) is the region-group amenity
shifter in the DSM developed in this paper. Ln(Aθi ) is the region-group amenity shifter implied
by the Rosen-Roback framework (see section C.4). Standard errors clustered on regions in (1) and
(4) and on regions and groups in all other columns. Big data amenity is the log of the number of
geotagged photos shared on social media (flick and picasa) residualised in regressions against all
other covariates reported in a column. + p < 0.15, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

E.3 The role of the migration elasticity

To evaluate how sensitive the relationship between DSM-QoL and RR-QoL is to the choice

of the migration elasticity, we quantify the model under varying group-independent values

for γ. The left panel of Figure 6 confirms the theoretical expectation that DSM-QoL

approaches RR-QoL for large values of γ (see Section C.7). If one is willing to believe

that γ ≥ 3, the elasticity of RR-QoL with respect to DSM-QoL exceeds 0.8. The R2 of

a log-linear regression then exceeds 0.9. For smaller values suggested by the empirical

literature, however, a small change in the set or estimated value of the migration elasticity

can have large effects on inverted QoL.

Since for observed migration probabilities, migration resistance γθ×τ θij is exactly identi-
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fied by the migration gravity Eq. (10) (see Appendix K.2.4 for the empirical counterpart),

an increase in γθ implies a proportionate decrease in migration costs τ θij . Lower τ θij,j 6=i
relative to τ θij,j=i = 0 imply larger between-city migration flows, with implications for the

speed of spatial adjustments. The right panel of Figure 6 illustrates the negative relation-

ship between γ and the years it takes until 80% of the transition to the SSE are completed.

In terms of rents, which are log-proportionate to city employment, the adjustment period

shrinks from more than 65 years to 30 years. In terms of group-region wages, we observe

a decrease from close to 75 years to less than 55 years.

Figure 6: The role of the migration elasticity (γ)

(a) Fit of Rosen-Roback with model QoL (b) Years until 80% convergence to SSE

Notes: Elasticity estimates and within-R2 are from regressions of ln RR-QoL (A) against ln DSM-QoL (A), con-
trolling for group fixed effects. An increase in γ implies a decrease in migration cost τθi,j 6=i since the migration

resistance γ × τθi,j is exactly identified by the gravity migration equation. Convergence to the SSE is measured in
terms of a reduction in the sum of the absolute difference between TSE and SSE values. In all iterations, the model
is quantified using 2017 values observed in the data.

F Policy evaluation

In this section, we outline how to use the quantified model for the evaluation of policies that

seek to improve regional QoL. The first step is to establish a causal relationship between the

structural fundamental Aθi,t and some QoL determinant that is amenable to policy-induced

change. This challenge is shared with a reduced-form literature exploring capitalisation

effects of QoL determinants in house prices or inverse real wages. The second step is novel

to the QoL literature. Starting from the SSE, we use the causal estimate from the first

step to update Aθi,t, and then re-solve for a counterfactual SSE. A comparison between the

initial and the counterfactual SSE delivers general equilibrium comparative statics that

account for aggregate effects as well as inter-group and inter-region distributional effects.

Unlike in the canonical CSE that is anchored by a spatially invariant reservation utility,

spatial policies can have positive or negative effects on expected regional utility.
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Our case in point is an improvement in air quality. Air pollution causes 400 thousand

premature deaths per year in the EU and is by far the number one environmental factor

driving disease (European Environment Agency, 2020). Negative effects of dirty air on

health (Deryugina et al., 2019), property prices (Chay and Greenstone, 2005; Bayer et

al., 2009) and self-reported life satisfaction (Luechinger, 2009; Levinson, 2012) are well

established. Our policy counterfactual is a reduction in PM10 concentration in the most

polluted regions to the 75th percentile in the distribution across all regions. Since this

application is intended to serve as an illustrative example, we keep the estimation strategy

and the policy experiment simple and transparent. For future applications, researchers

are, of course, invited to expand on our application, e.g. by exploiting natural experi-

ments or randomised policies for identification, or considering more sophisticated policy

interventions in the counterfactuals. Naturally, the procedure outlined below can be ap-

plied to any other QoL determinant or, more generally, any determinant that affects any

of the structural fundamentals {ψθi,t, ηi,t, Aθi,t} in the model.

F.1 Procedure

Transition to counterfactual SSE. Adopting the conventional exact hat algebra no-

tation where hats represent ratios of counterfactual values over initial values (Dekle et

al., 2007), we model a policy as an exogenously induced relative change in QoL Âθi,t =

Âθi,t(b
θX̂i,t) that results in a counterfactual QoL Aθ

C

i,t = Âθi,tA
θ
i,t. X̂i,t is a relative change

in an exogenous QoL determinant and bθ is a group-specific parameter that describes a

causal relationship between Aθi,t and Xi,t.
Starting from the initial SSE, we use a simplified version of the dynamic solver intro-

duced in Section D.3 that takes Aθi,t
C as given to solve for a counterfactual SSE. As with

the initial SSE, the counterfactual SSE is referenced by stationary employment Lθi,t
C that

maps to the other endogenous variables as discussed in Section C.4. The transition into

the counterfactual SSE is moderated by a sequence of migration flows that restore the SSE

through the model-endogenous agglomeration and dispersion forces. The comparison of

the initial and the counterfactual SSE delivers a policy effect that is causal in the sense

that it is not confounded by the mean-reversion tendency of a spatial economy in the

TSE. Hence, our approach yields results that are comparable to the comparative statics

employed for economic policy evaluation in static models.

Welfare. Consider a social planner that extrapolates the expected indirect utility of

stayers in the SSE into the infinite future to create a group-region welfare measure:

Rθi,t =
V θ
i|i,t

ρ
=

(1− ι)
ρ

wθi,t

p1−α
i,t

Aθi,t exp
[
lnBθ

ii,t − τ θii
]

=
(1− ι)
ρ

wθi,t

p1−α
i,t

Aθi,t (15)

Since unlike in the canonical CSE framework utility is not equalised across regions in

our DSM, it is particularly important to specify the social welfare function when aggre-
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gating group-region-specific welfare. We define a social welfare function in the tradition

of Atkinson (1970) as

Wt(ε) =
1

1− ε
∑
i

∑
θ

(
Rθi,t

)1−ε Lθi,t
L̄t

= Rt (1− It(ε)) , (16)

where Rt is the weighted average of group-region utility and It ∈ [0, 1] represents the

Atkinson measure of inequality (see Appendix M.1 for derivation details). This formulation

separates social welfare into a scale-dependent part (average utility) that enters positively

into social welfare and a scale-independent inequality measure that imposes a penalty on

inequality. The strength of the penalty is governed by the inequality aversion parameter

0 ≤ ε 6= 1. If ε = 0, 1−I = 1, such that social welfare is solely determined by the aggregate

(utilitarian case). The inequality penalty increases in ε, with ε → ∞ representing the

limiting Rawlsian case in which the penalty is entirely determined by the weakest region-

group.

Based on W for the baseline (∗) and the counterfactual (c) SSE, we obtain the change

in social welfare from the initial to the counterfactual SSE for a given level of inequality

aversion as

Ŵt(ε) =
Rct
R∗t

1− It(ε)c

1− It(ε)∗
. (17)

With this formulation, we acknowledge the efficiency-equity trade-off that is inherent

to many spatial shocks and policies. If there is a positive effect on aggregate welfare

accompanied by an increase in inequality, the effect on social welfare qualitatively and

quantitatively depends on inequality aversion.

F.2 Application

Estimation. The descriptive results reported in Table 2 point to a negative effect of

particulate matter air pollution (PM10) on QoL. To obtain a causal estimate of the effect

of air pollution on group-specific QoL, we require an identification strategy that addresses

the obvious concern that air pollution may be correlated with unobserved QoL determi-

nants. As an example, a more extensive road network may induce traffic and increase air

pollution while having a positive QoL effect due to reduced travel times. The potential

for a downward bias in the air pollution effect on QoL is significant as transport accounts

for 20% of particulate matter emissions in Germany, on average, with a greater share in

urbanised regions (Umweltbundesamt, 2020).

Therefore, we use an instrumental variable approach which exploits that the spatial

diffusion of air pollution is shaped by winds (Deryugina et al., 2019; Heblich et al., 2020).

To this end, we compute black coal and brown coal exposure measures that aggregate over

black or brown coal deposits in surrounding regions, weighted by wind-adjusted distance.

Intuitively, we scale down the crow-flight distance from region j to i if winds typically blow
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from j to i and scale the distance up if the opposite is true. We normalise these exposure

measures by the naive spatial aggregate of coal deposits and exclude any coal deposits in

the own region. Hence, when we use the resulting (log) coal exposure measures as instru-

mental variables for air pollution, identification stems from exogenous variation introduced

by wind directions, exclusively. The rationale for using coal fields in the exposure measures

is that, historically, energy-intensive industries and coal power plants co-located with coal

fields as shipping costs were high until the mid 20th century (Fernihough and O’Rourke,

2020; Mohammed and Williamson, 2004). Unlike for industries and power plants, we can

rule out reverse causality from QoL to the locations of coal fields. Since we exclude the

own region (j = i) in the exposure measures, the instrumental variables exclude localised

disamenities, for example due to unpleasant views. For a more detailed discussion of the

construction, the relevance and the validity of the instruments as well as the underlying

mechanisms, we refer to Appendix M.2.

Figure 7: Quality-of-life effect of air pollution by group

Note: Elasticity estimates are from group-specific regressions of the log of DSM-QoL (Aθi,t) inverted as discussed in

D.3 against the log of particular matter (PM10), controlling for the remaining covariates listed in Table 2. We use
the log of the wind-adjusted-distance-weighted aggregates of black and brown coal deposits in surrounding regions
(excluding the self-potential) as instrumental variables for pollution. These coal exposure measures are normalised
by the non-wind-adjusted spatial lags of black and and brown coal deposits, so that identification is driven by wind
direction exclusively.

In Figure 7, we display the estimated pollution effects from group-specific instrumental

variable regressions in which we also control for all covariates used in Table 2. In keeping

with intuition, the point estimates are negative for all 18 groups. On average, the effect

is larger than in Table 2, suggesting a role for unobserved confounders that are positively

correlated with QoL and negatively correlated with pollution, such as transport. There is

a notable age gap, with the QoL of younger workers being more sensitive to air pollution.
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Regional effects. To generate an exogenous change in QoL Âθi,t, we combine the group-

specific estimates of the air pollution effect on QoL from Figure 7 with a hypothetical

region-specific policy. Specifically, we reduce the regional PM10 concentration to the 75th

percentile in the distribution of pollution levels across regions where the levels exceed that

threshold. While we choose the threshold arbitrarily with no particular policy in mind, the

general design vaguely resembles the US Clean Air Act. Panel (a) in Figure 8 illustrates

the simulated policy effect on the weighted (by group employment) average regional QoL.

Three broader regions stand out as being treated owing to relatively high air pollution

levels: The west, home to black coal fields; the north, home to various seaports; the east,

home to brown coal fields. The QoL effects are sizable, with the largest increase in average

QoL of 7.7% in Bochum (in the west).

The policy-induced positive change in regional QoL naturally creates incentives for

workers to relocate. As workers move to the treated regions, they congest the housing

market, leading to higher rents as illustrated in panel (b). Unsurprisingly, we find the

largest increase in rent of 6.3% in Bochum where QoL increased the most. There are small

decreases in rent in the range of -0.9% to -0.7% throughout the non-treated regions as

these lose workers to the treated regions. Accounting for relocation effects is a natural

strength of quantitative models compared to reduced-form settings, where indirect treat-

ments represent a challenge for the identification and interpretation of treatment effects.

Since we quantify the model for 18 age-gender-skill groups, our model-based counter-

factuals deliver rich sorting effects. Panel (c) shows how the policy leads to an increase in

the high-skilled share in the urbanised treated regions in particular. This increase is driven

by a combination of the high-skilled having a relatively large valuation of air quality (bθ)

and a relatively large migration elasticity (γθ) while facing relatively low migration costs

(τ θij 6=i) and net-costs of agglomeration (β × (1− α)− κθ).
A distinctive feature of our DSM is that there is no exogenous reservation utility that

anchors the spatial economy. Because of migration costs, spatial differences in expected

group-specific utility are not arbitraged away, not even in the SSE. Hence, while migration

leads to capitalisation of a change in QoL into rents (see panel b), capitalisation remains

imperfect so that we see persistent effects on regional utility in panel (d). Since 1−α = 33%

of the income is spent on housing, the 6.3% increase in rent in Bochum, for instance,

implies a 6.3% × 0.33% = 2.1% decline in utility, ceteris paribus, compared to the 7.7%

QoL-induced utility gain. In other words, only about one fourth of policy-induced QoL

increase capitalises into rents. The remaining fraction boosts utility persistently. Note that

the net-effect on expected indirect utility of 7.1% in Bochum does not amount exactly to

the difference between the equivalent utility effects of the QoL and rent increases due to

agglomeration-induced wage effects and sorting (see panel c).

Temporal effects. While there are sizable utility gains in the positively treated regions

in the SSE, utility increases even more during the transition period. In Figure 9, we plot

the evolution of wages, rents, and indirect utility during the first 100 years of the SSE-
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Figure 8: Counterfactual analysis: Regional effects

(a) QoL (b) Rent

(c) High-skilled share (d) Expected utility (stayers)

Note: We aggregate the model solutions for the initial and the counterfactual SSE from the region-group level to the
region level using the respective SSE employment shares as weights. We then display the ratio of the counterfactual
regional aggregates over the initial regional aggregates.

to-SSE transition. We show group-specific wage and indirect utility effects for middle-

aged, middle-skilled men and women separately. In Bochum, the selected group of female
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workers receives an 8.5% increase in QoL which maps one-to-one to an indirect utility

effect in the initial period. The respective male group receives a smaller gain due to a

lower valuation of clean air. Over the subsequent years, the heightened QoL attracts

workers from other regions, increasing rent (due to inelastically supplied land) and wage

(due to agglomeration economies) levels. Since the effect of the former dominates that of

the latter, indirect utility decreases over time, and so does the incentive for workers from

other regions to relocate to Bochum. Since women enjoy greater returns to agglomeration,

spatial arbitrage neutralises a smaller fraction of their utility gain, which adds to the

long-run benefits they experience relative to men.

Figure 9: Counterfactual analysis: Temporal effects

(a) Treated: Bochum (positive QoL effect) (b) Not treated: Munich (displacement effect)

Note: Model-based numerical simulation of the SSE-to-SSE transition. Pre-policy values in all variables normalized
to one. Policy is a region-group-specific increase in QoL due to a hypothetical reduction in air pollution in the most
polluted regions. f: female, m: male, m-skill: middle-skilled (apprenticeship), m-age: middle-aged (31-50).

Munich is not directly treated by our simulated policy. The city is indirectly affected

by the policy, however, as it loses workers to the positively treated regions. Rents and

wages decrease and since the effect of the former dominates the latter, indirect utility

increases. Hence, there is a positive policy spillover effect that operates through migration

and a de-congested housing market. Net benefits to women are lower since they take a

greater wage cut due to larger returns to agglomeration.

Aggregate effects. We aggregate the SSE-to-SSE region-group effects delivered by the

model simulations to relative changes in aggregate outcomes in Table 3. In doing so, we

distinguish between treated regions where the policy bites and the remaining non-treated

regions which are only indirectly affected through displacement. Although our estimated

migration elasticity parameters (γθ) are relatively small, we observe a sizable worker flow,

increasing employment in the treated regions by almost 10% in total. GDP increases more

than proportionately compared to employment in the treated area since agglomeration
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Table 3: Counterfactual analysis: Aggregate effects

Outcome All regions Treated area Non-treated area

Population 1.0000 1.0949 0.9536
GDP 0.9991 1.0996 0.9515
Average wage 0.9991 1.0043 0.9978
Average rent 1.0021 1.0175 0.9911
High-skilled share 1.0000 1.0109 0.9946
Skilled share 1.0000 1.0118 0.9976
Average utility 1.0219 1.0350 1.0003
Social welfare (inequality adjusted) 1.0191 . .
Monetised average utility (bn. e) 23.1 . .
Monetised social welfare (bn. e) 20.2 . .

Notes: Results from model-based numerical simulations. Treated regions are those where a hypo-
thetical policy improves QoL via lower air pollution. Non-treated regions are affected indirectly
through displacement. All outcomes except for the last two are given in ratios of counterfactual
(SSE) values over initial (SSE) initial values. Social welfare deflates average utility in group-
region inequality using the Atkinson (1970) measure (ε = 0.5). Monetised average utility and
social welfare are yearly flow measures obtained by multiplying the utility and welfare ratios by
initial GDP.

economies and sorting raise wages. Rents naturally increase in the treated area due to

more congested housing markets. Since the non-treated area accounts for about twice as

many workers (20M) as the treated area (10M) in the initial SSE, the relative decline

in employment in the non-treated area is about half as large (-4.5%). The displacement

effect naturally leads to adjustments in wages, rents and group composition in the opposite

direction of those in the treated area.

The employment-weighted group-region utility increases by 2.2% across all regions.

This increase is driven primarily by the treated area where the group-weighted average

utility increases by slightly more than 3.5%. There is a small positive effect within the

non-treated area owing to lower real living cost. The spatially differentiated utility effect

once more highlights that, unlike in the canonical CSE framework, spatial policies can help

targeted regions if there are mobility frictions. The effect on social welfare W is about

13% lower if we aggregate group-region utility Rθi using an inequality parameter ε = 0.5,

which is towards the lower end of the range considered by Atkinson (1970). If we use

ε = 2 (towards the higher end of the considered range), the discount increases to 35%.

Since we obtain virtually the same inequality-adjusted social welfare effect if we discount

on inter-regional inequality, exclusively, we can conclude that the cost of the policy comes

in the form of increased spatial inequality.

A simple way to monetise the welfare effect is to multiply the relative change in wel-

fare by the total wage bill in the initial SSE. If we abstract from inequality aversion, a

proportionate increase in yearly region-group wages that totals e23.1 bn would achieve

the same utility effect as the policy. If we adjust for the policy effect on inequality using

ε = 0.5, a fully equitable increase in the total wage bill of e20.2 bn would suffice. With

ε = 2, the monetised welfare effect drops to e15.0 bn. In this application of the model,
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we abstract from the cost of the measures used to achieve the pollution reduction. Yet, it

is clear from the example that once we move beyond the canonical CSE framework, the

result of a cost-benefit test of a spatial policy will critically depend on the social welfare

function.

F.3 Other applications

The Covid-19 pandemic has spurred a debate about the future of big cities (Nathan and

Overman, 2020). A typical argument brought forth is that the pandemic erodes the main

comparative advantage of big cities: economic and social benefits of proximity. We apply

the procedure developed in this section to quantitatively evaluate three apocalyptic sce-

narios: a) a reduction in productivity due to an elimination of all agglomeration benefits

arising from density; b) a reduction in QoL due to a loss of amenities that relate to social

interaction (captured by our big data amenity); c) the combination of a) and b). The

headline findings for the scenarios a)/b)/c) are as follows: Large labour markets (>250k

employed workers) lose 8.2%/36.7%/37.9% percent of their workforce to small labour

markets; aggregate GDP decreases by 10.5%/1%/10.9%; rents fall by 3.1%/9.3%/11.1%

in large labour markets whereas they increase (decrease) by (0.4)%/6.7%/5.1% in small

labour markets; despite a larger reduction in the urban wage premium, the high-skilled

are more likely to remain in large cities due to their amenity preference. While these

simulated effects on big cities are large, they are not nearly as devastating as predicted by

a frictionless CSE model. We refer the interested reader to Appendix M.3 for details.

G Conclusion

We develop the first DSM with heterogeneous forward-looking agents in which all unob-

served structural fundamentals can be quantified without assuming that the economy is

in a stationary spatial equilibrium. We exploit this novel feature of our model to make

several contributions that are of academic and policy interest alike.

A key insight from our analysis is that differentials in QoL across regions are much

larger once we quantitatively account for idiosyncratic taste heterogeneity. While the

existence of an urban wage premium that reflects productivity advantages of cities is by

now uncontroversial, the evidence for an urban QoL premium is weak at best. Our results

show that accounting for idiosyncratic tastes that reduce mobility, the consumption value

of cities is key to rationalising why more than 50% of the world’s population lives in cities.

CSE models have been the workhorse tool for the evaluation of non-marketed goods such

as clean air, education, safety, or transport, just to name a few. Our results show that

consensus estimates of the value of such local public goods are likely lower bounds, implying

a stronger case for policies that seek to improve QoL.

The existence of localised place-based policies such as Enterprise Zones or broader

regional redistribution schemes such as the EU Cohesion Fund suggests that spatial equity
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matters to policy makers and voters. There is an obvious tension between such spatial

policies and the workhorse spatial equilibrium models which rule out spatial effects of

spatial policies by assumption. We provide a quantitative framework for the evaluation of

the aggregate and distributional welfare consequences of place-based policies that allows

for spatial incidence and relocation effects. This framework closes the gap between QSMs

that assume perfect spatial arbitrage and the reality of spatial policy-making where trading

efficiency against equity is the order of the day. We show that even a moderate spatial

inequality aversion can have a sizable impact on the social welfare effect of a spatially

targeted policy. As the literature on spatial policy evaluation moves beyond the canonical

framework in the tradition of Rosen-Roback, the spatial aggregation of welfare effects will

require an explicitly defined social welfare function.
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ONLINE APPENDIX

This section presents an online appendix containing complementary material not intended

for publication. It does not replace the reading of the main paper.

H Stylised facts

Complementing Figure 1 in the main paper, Figure A1 visualises causes and consequences

of migration in three illustrative maps. Panel (a) plots the spatial distribution of nominal

wages. In keeping with intuition, wages tend to be higher in agglomerated areas such

as Rhine-Ruhr, Rhine-Main or the metropolitan areas of Hamburg, Munich or Stuttgart.

Panel (b) shows the spatial distribution of net-migration over the 2007 to 2017 period.

High-wage areas tend to experience positive net-migration, suggesting that workers re-

spond to economic incentives when making migration decisions. Panel (c) shows a strong

correlation between net-migration and changes in rents, in line with housing markets rep-

resenting a congestion force.
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Figure A1: Wages, migration and rents

(a) Wages 2007 (b) Change in employment 2007-2017

(c) Change in rent 2007-2017

Note: Data from the IAB and Immobilienscout24 accessed via FDZ Ruhr.
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I Literature appendix

Table A1 summarizes the recent literature on DSM and QSM that explicitly model migra-

tion. The distinctive feature of our model is the invertability of all structural fundamentals

under perfect foresight from a TSE.

Table A1: Dynamic and quantitative spatial models

Authors Model type Expectations Inversion Counterfactual

Ahlfeldt et al. (2020) WP DSM, GE, MC PF P,H,A,bMC SSE to SSE
Balboni (2019), R&R AER DSM, GE, MC PF P,MA TSE to ED
Bryan and Morten (2019), JPE QSM, MC Static - -
Caliendo et al. (2019b), Ecta DSM, GE, MC PF - TSE to ED
Caliendo et al. (2019a), R&R JPE DSM, GE, MC PF - TSE to ED
Desmet et al. (2018), JPE DSM, GE, MC Static P,A,uMC TSE to SSE
Fan (2019), AEJ: Macro QSM, GE, MC Static bMC, TC SSE to SSE
Monras (2020), JPE DSM, GE PF P,H,A*,MR TSE to SSE
Tombe and Zhu (2019), AER QSM, MC Static - -

Abbreviations:
Model type: QSM = Quantitative spatial model; DSM = Dynamic spatial model; GE = General equilib-
rium; MC = Migration cost
Expectations: PF = Perfect foresight
Inversion: P = Exogenous productivity; H = Exogenous housing supply; A = Exogenous amenity; uMC
= Unilateral migration costs; bMC = Bilateral migration costs; MR: Migration rate; MA = Market access;
TC: Trade costs
Counterfactual : SSE = Stationary spatial equilibrium; TSE = Transitory spatial equilibrium; ED = Given
end date
* Inversion assuming that the economy is in a spatial steady state

J Theory appendix

This section complements Section C in the main paper which develops our model.

J.1 Housing market

In this appendix, we derive the housing market equilibrium condition Eq. (8). Developers

produce housing according to the Cobb-Douglas housing production function in Eq. (7)

and seek to maximise profits:

πhi,t = pi,tηi,t

(
T̄i
β

)β (
Ki,t

1− β

)1−β
− rTi,tT̄i −Ki,t, (18)

where we have normalised the internationally competitive interest rate for capital to unity

and rTi,t is the local rental rate for developable land. From the first-order conditions, we

obtain:

rTi,t =
β

1− β
Ki,t

T̄i
. (19)
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Using Eq. (19) in Eq. (18) and assuming zero-profit delivers

pi,t =
(rTi,t)

β

ηi,t
. (20)

Using Eqs. (20) and (19) in Eq. (18), we can express housing supply as

HS
i,t = η

1
β

i,t

(
T̄i
β

)
p

1−β
β

i,t , (21)

where 1−β
β is the housing supply elasticity. From Eq. (2), housing demand in region i is

given by

HD
i,t = (1− α)(1− ι)

∑
θ

Lθi,tϕ
θ
i,t = (1− α)(1− ι)Xi,t. (22)

Housing market clearing implies that HD
i,t = HS

i,t, which leads to Eq. (8). Alternatively,

we can express the regional housing rent as a function of structural parameters, structural

fundamentals, and employment density:

pi,t =

(1− α)(1− ι)β

η
1
β

i,t

β [∑
θ

Lθi,t
T̄i

(
Li,t
T̄i

)κθ
ψθi,t

]β
. (23)

The first term in the sum captures the direct effect of employment density on the supply

of housing: inelastically supplied land generates a congestion force in the form of higher

rents when immigration into i raises employment. The second term in the sum captures

the indirect effect of employment density: Density increases productivity and in turn

wages via agglomeration economies, which further increases housing demand. While our

model can provide the microfoundations for a regression of the log of housing rents against

the log of employment density as in Combes et al. (2019), the estimated elasticity of

that regression would not directly correspond to β in our model. Using employment (or

population) density instead of output density as a regressor (see Eq. (30) below), we

would underestimate the land share, the housing supply elasticity, and the congestion

force generated by the housing market.

J.2 Net present value of utility

This section complements Section C.3 in which we introduce the migration net present

value.

Strictly monotonic transformations of utility functions still represent the same under-

lying preferences. We follow the conventions in the DSM literature (see e.g. Caliendo et

al., 2019b) and employ a logarithmic formulation of the net present value of utility, which

allows to derive simple closed-form solutions for expected utility in Appendix J.3.

This net present value of a worker of type θ currently living in region i, and who
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lived in region k at time period t − 1 depends on current period utility and the maximal

discounted future utility, which in turn depends on bilateral utility components only in

period t+ 1 and region-j-specific utility in all future periods:

lnNPV θ
i|k,t(ω) = ln

[
(1− ι)wθi,t
p1−α
i,t

Aθi,t exp
(
aθki,t(ω)− τ θki

)]

+ max
j∈J

{ 1

1 + ρ
ln

[
(1− ι)wθj,t+1

p1−α
j,t+1

Aθj,t+1 exp
(
aθij,t+1(ω)− τ θij

)]

+
∞∑

s=t+2

(
1

1 + ρ

)s−t
E

[
ln

(
(1− ι)wθj,s
p1−α
j,s

Aθj,t exp
(
aθjj,t+2(ω)

))]}
,

where 1
1+ρ ∈ (0, 1) is the time discount factor. By the iid-assumption the (unconditional)

expectation of future amenity shocks is constant over time. Holding furthermore exogenous

amenities constant we simplify to get:

lnNPV θ
i|k,t(ω) = ln

[
(1− ι)wθi,t
p1−α
i,t

Aθj,t exp
(
aθki,t(ω)− τ θki

)]

+ max
j∈J

{ 1

1 + ρ

(
aθij,t+1(ω)− τ θij +

lnAθj,t+1

ρ
+
E(aθjj,t+2(ω))

ρ(1 + ρ)

)

+

∞∑
s=t+1

(
1

1 + ρ

)s−t
ln

(
(1− ι)wθj,s
p1−α
j,s

)}
These results lead to the net present value of utility in Eq. (9).

J.3 Expected utilities and migration probabilities

This section complements Section C.3 in which we introduce the migration gravity Eq.

(10).

J.3.1 Expected utility

We are interested in the expected net present value of workers of type θ when migrating

from region k to i. Taking the expectation over idiosyncratic Gumbel-distributed amenity

shocks involves solving both the unconditional expectation over current shock realisations

as well as the expectation of future shocks, conditional on region j offering the highest

expected utility in t+ 1 to these workers.

J.3.2 Unconditional expectation of current period utility

Random amenity shocks are distributed according to a Gumbel distribution with the

following cumulative distribution and density function:
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F θij,t(a) = exp
(
−B̃θ

ij,t exp {−
[
γθa+ Γ

]
}
)

fθij,t(a) = γθB̃θ
ij,t exp

(
−γθa− Γ− B̃θ

ij,t exp {−
[
γθa+ Γ

]
}
)

We first solve for the unconditional expectation over the current component of log-transformed

net present value of utility:

E
[
vθi|k,t(ω)

]
≡ E

ln

(1− ι)wθi,tAθi,t exp
(
aθki,t(ω)− τ θki

)
p1−α
i,t


= E

[
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
+ aθki,t(ω)− τ θki

]
=

∫ ∞
−∞

[
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
+ aθki,t(ω)− τ θki

]
∗ f
(
aθki,t(ω)

)
daθki,t(ω)

=

∫ ∞
−∞

[
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
+ aθki,t(ω)− τ θki

]
∗ γθB̃θ

ki,t exp
(
−γθaθki,t(ω)− Γ− B̃θ

ki,t exp {−
[
γθaθki,t(ω) + Γ

]
}
)
daθki,t(ω),

where we substituted the density function for bilateral amenity shocks from above. We

then re-define the following variables:

xt ≡ γθaθki,t(ω) + Γ

λt ≡ ln B̃θ
ki,t

yt = xt − λt

Substituting into the integral above yields:

E
[
vθi|k,t(ω)

]
=

∫ ∞
−∞

γθB̃θ
ki,t

[
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
− τ θki +

1

γθ
(xt − Γ)

]
∗ exp (−xt) exp (− exp (λt) exp (−xt))

1

γθ
dxt

E
[
vθi|k,t(ω)

]
=

∫ ∞
−∞

B̃θ
ki,t

[
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
− τ θki +

1

γθ
(xt − Γ)

]
∗ exp (−xt − exp (− [xt − λt]))dxt

Then note that the derivative of exp (− exp (−yt)) is exp (−yt − exp (−yt)) and∫
yt exp (−yt − exp (−yt)) = Γ. This allows to evaluate the integral at its boundaries:
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E
[
vθi|k,t(ω)

]
=

∫ ∞
−∞

[
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
− τ θki +

1

γθ
(yt + λt − Γ)

]
∗ exp (−yt − exp (−yt))dyt

=

(
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
− τ θki +

1

γθ
(λt − Γ)

)
∗
∫ ∞
−∞

exp (−yt − exp (−yt))dyt +
1

γθ

∫ ∞
−∞

yt exp (−yt − exp (−yt))dyt

Furthermore note that [exp (− exp (−yt))]∞−∞ = 1. This yields

E
[
vθi|k,t(ω)

]
=

(
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
− τ θki +

1

γθ
λt

)
= ln

(
exp

(
−τ θki

)
(1− ι)wθi,tAθi,tBθ

ki,t

p1−α
i,t

)
.

In line with the definition of per-period utility in Eq. (1) we subsequently define the

average per-period welfare for workers of type θ as

V θ
i|k,t = expE

[
vθi|k,t(ω)

]
=

exp
(
−τ θki

)
(1− ι)wθi,tAθi,tBθ

ki,t

p1−α
i,t

.

J.3.3 Conditional expectation over future shocks

We next solve for the conditional expectation over idiosyncratic bilateral amenity shocks,

given that region j offers the highest life-time utility compared to all other regions n 6= j.

Note first that E
[
aθjj,t+2 (ω)

]
= lnBθ

jj,t+2 with the proof identical to the one above

with a slight change of notation. We next proceed to calculate the expectation over future

amenity shocks. Let lnVθj,t+1 ≡
(

lnAθj,t+1

ρ +
E[aθjj,t+2]

ρ(1+ρ)

)
+
∑∞

s=t+1

(
1

1+ρ

)s−(t+1)
ln

(
(1−ι)wθj,s
p1−αj,s

)
be the infinite sum over future utilities, then it holds that

E
[
vθij,t+1(ω)

]
≡ E

[
max
j∈J

1

1 + ρ

[
aθij,t+1(ω)− τ θij + lnVθj,t+1

]]
=
∑
j∈J

∫ ∞
−∞

(
1

1 + ρ

[
aθij,t+1(ω)− τ θij + lnVθj,t+1

])
f
(
aθij,t+1(ω)

)

∗
∏
n6=j

F

[
τ θin − τ θij + ln

Vθj,t+1

Vθn,t+1

+ aθij,t+1(ω)

]
daθij,t+1(ω)

=
∑
j∈J

∫ ∞
−∞

(
1

1 + ρ

[
aθij,t+1(ω)− τ θij + lnVθj,t+1

])
f
(
aθij,t+1(ω)

)
∗
∏
n6=j

F
[
Ωθ
ijn + aθij,t+1(ω)

]
daθij,t+1(ω),
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where we define the compound parameter Ωθ
ijn ≡ τ θin − τ θij + ln

Vθj,t+1

Vθn,t+1
. In a next step,

we substitute the cumulative distribution and density function for idiosyncratic amenity

shocks from above:

E
[
vθij,t+1(ω)

]
=
∑
j∈J

∫ ∞
−∞

(
1

1 + ρ

[
aθij,t+1(ω)− τ θij + lnVθj,t+1

])
γθB̃θ

ij,t+1

∗ exp
(
−γθaθij,t+1(ω)− Γ

)
∗ exp

(
−
∑
n∈J

B̃θ
ij,t+1 exp {−γθΩθ

ijn − γθaθij,+1 − Γ}

)
daθij,t+1(ω)

Similar to the proofs above we re-define variables:

xt+1 ≡ γθaθij,t+1(ω) + Γ

λt+1 ≡ ln
∑
n∈J

Bθ
in,t+1 exp

(
−γθΩθ

ijn

)
yt+1 = xt+1 − λt+1

If we substitute for the re-defined variables we get:

E
[
vθij,t+1(ω)

]
=
∑
j∈J

∫ ∞
−∞

(
−

τ θij
1 + ρ

+
lnVθj,t+1

1 + ρ
+

1

(1 + ρ) γθ
(xt+1 − Γ)

)

∗Bθ
ij,t+1 exp (−xt+1) exp

(
−
∑
n∈J

exp (−xt+1) exp
(
−γθΩθ

ijn

))
dxt+1

E
[
vθij,t+1(ω)

]
=
∑
j∈J

∫ ∞
−∞

Bθ
ij,t+1

(
−

τ θij
1 + ρ

+
lnVθj,t+1

1 + ρ
+

1

(1 + ρ) γθ
(xt+1 − Γ)

)
∗ exp (−xt+1 − exp (−xt+1 + λt+1))dxt+1

=
∑
j∈J

Bθ
ij,t+1 exp

(
−λθt+1

)∫ ∞
−∞

(
−

τ θij
1 + ρ

+
lnVθj,t+1

1 + ρ
+
yt+1 + λt+1 − Γ

(1 + ρ) γθ

)
∗ exp (−yt+1 − exp (−yt+1))dyt+1

=
∑
j∈J

Bθ
ij,t+1 exp

(
−λθt+1

)[(
−

τ θij
1 + ρ

+
lnVθj,t+1

1 + ρ
+

1

(1 + ρ) γθ
(λt+1 − Γ)

)

∗
∫ ∞
−∞

exp (−yt+1 − exp (−yt+1))dyt+1

+
1

(1 + ρ) γθ

∫ ∞
−∞

yt+1 exp (−yt+1 − exp (−yt+1))dyt+1

]
Note that the derivative of exp (− exp (−yt+1)) is exp (−yt+1 − exp (−yt+1)) and fur-

thermore
∫
yt+1 exp (−yt+1 − exp (−yt+1)) = Γ , such that, similarly to the proofs above,
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we can evaluate the integrals at their boundaries:

E
[
vθij,t+1(ω)

]
=
∑
j∈J

Bθ
ij,t+1 exp

(
−λθt+1

)(
−

τ θij
1 + ρ

+
lnVθj,t+1

1 + ρ
+

λt+1

(1 + ρ) γθ

)

=
∑
j∈J

Bθ
ij,t+1 exp

{
− ln

∑
n∈J

Bθ
in,t+1 exp

(
−γθΩθ

ijn

)}

∗

(
−

τ θij
1 + ρ

+
lnVθj,t+1

1 + ρ
+

1

(1 + ρ) γθ
ln
∑
n∈J

Bθ
in,t+1 exp

(
−γθΩθ

ijn

))

=
∑
j∈J

exp

{
− ln

∑
n∈J

Bθ
in,t+1 exp

(
−γθ

(
τ θin − τ θij + ln

Vθj,t+1

Vθn,t+1

))}

∗Bθ
ij,t+1

[
−

τ θij
1 + ρ

+
lnVθj,t+1

1 + ρ
+

1

(1 + ρ) γθ
ln
∑
n∈J

Bθ
in,t+1

∗ exp

(
−γθ

(
τ θin − τ θij + ln

Vθj,t+1

Vθn,t+1

))]
Re-arranging terms and simplifying we thus get:

E
[
vθij,t+1(ω)

]
=
∑
j∈J

Bθ
ij,t+1 exp

{
γθ
[
lnVθj,t+1 − τ θij

]
− ln

∑
n∈J

Bθ
in,t+1 exp

(
γθ
[
lnVθn,t+1 − τ θin

])}
∗ 1

(1 + ρ) γθ
ln
∑
n∈J

Bθ
in,t+1 exp

(
γθ
[
lnVθn,t+1 − τ θin

])

=

∑
j∈J B

θ
ij,t+1 exp

{
γθ
[
lnVθj,t+1 − τ θij

]}
∑

n∈J B
θ
in,t+1 exp

{
γθ
[
lnVθn,t+1 − τ θin

]}
∗ 1

(1 + ρ) γθ
ln
∑
n∈J

Bθ
in,t+1 exp

(
γθ
[
lnVθn,t+1 − τ θin

])
=

1

(1 + ρ) γθ
ln
∑
n∈J

Bθ
in,t+1 exp

(
lnVθn,t+1 − τ θin

)γθ
=

1

1 + ρ
ln
[∑
n∈J

{
exp

(
−τ θin

)
Bθ
in,t+1Vθn,t+1

}γθ] 1

γθ

Combining with the proof in the subsection above, we obtain the general case for

expected worker utility, when allowing for subsequent moves in the expectation:
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Uθi|k,t = exp
(
E[lnNPV θ

i|k,t(ω)]
)

= exp

{
ln

(
exp

(
−τ θki

)
(1− ι)wθi,tAθi,tBθ

ki,t

p1−α
i,t

)
+

1

1 + ρ
Oθi,t

}

with Oθi,t = ln
[∑
n∈J

{
exp

(
−τ θin

)
Bθ
in,t+1Vθn,t+1

}γθ] 1

γθ

Under the evidence-based assumption that workers only expect to relocate once over

their employment biography, the expected per-period utility simplifies to

Uθi|k,t = V θ
i|k,t =

exp
(
−τ θki

)
(1− ι)wθi,tAθi,tBθ

ki,t

p1−α
i,t

, (24)

as workers abstract from the migration option valueOθi,t in their migration decision process.

Eq. (24) forms the basis for the welfare measure in Eq. (15) used for policy evaluation in

the presence of displacement effects and spatial incidence.

J.3.4 Conditional migration probability

We finally derive the share of workers χθij|i,t who are located in region i and for whom

region j offers the highest life-time utility among alternatives n ∈ J next period:

χθij|i,t = Pr

{
−τ θij + τ θin + ln

Vθj,t+1

Vθn,t+1

+ aθij,t+1(ω) ≥ aθin,t+1(ω) ∀ n ∈ J

}

=

∫ ∞
−∞

f
(
aθij,t+1(ω)

)∏
n6=j

F
[
Ωθ
ijn + aθij,t+1(ω)

]
daθij,t+1(ω),

where again we define the compound parameter Ωθ
ijn ≡ −τ θij + τ θin + ln

Vθj,t+1

Vθn,t+1
.

Substituting the cumulative distribution and density function we get:

χθij|i,t =

∫ ∞
−∞

γθB̃θ
ij,t+1 exp

(
−γθaθij,t+1(ω)− Γ− B̃θ

ij,t+1 exp {−
[
γθaθij,t+1(ω) + Γ

]
}
)
∗∏

n6=j
exp

(
−B̃θ

ij,t+1 exp {−γθΩθ
i,jn,t+1 − γθaθij,t+1(ω)− Γ}

)
daθij,t+1(ω)

χθij|i,t =

∫ ∞
−∞

γθB̃θ
ij,t+1 exp

(
−γθaθij,t+1(ω)− Γ

)
∗

exp

(
−
∑
n∈J

B̃θ
in,t+1 exp

[
−γθΩθ

i,jn,t+1 − γθaθij,t+1(ω)− Γ
])
daθij,t+1(ω)

To solve this integral we re-define variables. In particular, we define the following

variables:
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xt+1 ≡ γθaθij,t+1(ω) + Γ

λt+1 ≡ ln
∑
n∈j

B̃θ
in,t+1 exp

(
−γθΩθ

i,jn,t+1

)
yt+1 = xt+1 − λt+1

Substituting in the re-defined variables delivers

χθij|i,t =

∫ ∞
−∞

γθB̃θ
ij,t+1 exp (−xt+1) exp {− exp (λt+1) exp (−xt+1)} 1

γθ
dxt+1

=

∫ ∞
−∞

B̃θ
ij,t+1 exp (−yt+1 − λt+1) exp {− exp (λt+1) exp (−yt+1 − λt+1)}dyt+1

= B̃θ
ij,t+1 exp (−λt+1)

∫ ∞
−∞

exp (−yt+1 − exp (−yt+1))dyt+1

Then note that the derivative of exp (− exp (−yt+1)) is exp (−yt+1 − exp (−yt+1)), such

that we can evaluate the integral at its boundaries:

χθij|i,t = B̃θ
ij,t+1 exp (−λt+1) ∗

[
exp (− exp (−yt+1))

]∞
−∞

= B̃θ
ij,t+1 exp (−λt+1)

Re-substituting for λt+1 and Ωθ
i,jn,t+1, we derive the probability of workers of type θ

to migrate from region i to region j between time periods t and t+ 1 as

χθij|i,t =
B̃θ
ij,t+1∑

n∈j B̃
θ
in,t+1 exp

(
−γθΩθ

i,jn,t+1

)
=

B̃θ
ij,t+1∑

n∈j B̃
θ
in,t+1

[
exp

(
−τ θij + τ θin +

[
ln
Vθj,t+1

Vθn,t+1

])]−γθ .
The share of workers of type θ who migrate from region i to region j is increasing

in life-time utility at the destination and bilateral amenities, but decreasing in bilateral

migration costs:

χθij|i,t =

(
mθ
ijB

θ
ij,t+1Vθj,t+1

)γθ
∑

n∈J

(
mθ
inB

θ
in,t+1Vθn,t+1

)γθ , (25)

with mθ
ij = exp

[
−τ θij

]
.
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J.4 Uniqueness

This appendix section complements Section C.4 in the main paper and provides a discus-

sion of equilibrium properties.

Our model features a direct mapping from group-region employment to local wages

and rents conditional on structural parameters according to Eqs. (6) and (8). Further,

applying the condition that adding one worker to a location raises expenditure more than

income ensures mean reversion of the model and all locations will be populated. With

respect to income, an immigrating worker exerts a positive production externality on a

θ-type worker in the destination region measured by the elasticity κθ according to Eq. (6).

Individual expenditure changes due to responses in housing rents. Combining demand and

supply effects and building on Appendix J.1, we obtain

(1− α)
∂pi,t

∂Lθi,t
= (1− α)βpi,t

[∑
θ

Lθi,t
T̄i
ψθi,t

(
Li,t
T̄i

)κθ]−1
Lθi,t
T̄i
ψθi,t

(
Li,t
T̄i

)κθ [ 1

Lθi,t
+

κθ

Li,t

]
.

For the SSE to hold, Eq. (13) has to be satisfied for all region-group pairs. Conditional

on primitives and given the mean-reversion tendency of the model, we find in Monte Carlo

simulations that there is a unique employment vector to which the economy converges in

the long run. Figure A2 illustrates this insight.

Figure A2: Monte-Carlo simulation - SSE employment

Note: The figure summarises the outcome from 250 Monte Carlo experiments. In each experiment, we hold all
primitives constant and use random values of Lθi,t drawn from a uniform distribution under the constraint

∑
i L

θ
i,t =

L̄θt to generate a TSE from which we solve for the SSE using the dynamic solver discussed in Sections D.3 and K.3.
The histogram illustrates the variation in SSE employment across Monte Carlo experiments within J ×Θ = 2, 538
region-groups. The variation is essentially zero, implying that the solver has converged to the same employment
values that reference a SSE in all experiments.
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J.5 Quality-of-life premiums

In this section, we derive the migration and housing equilibrium loci displayed in Figure

2 in Section C.7 from the structure of our model. Intuitively, the housing equilibrium

locus in the real living cost-employment space is a collection of points that satisfy all

housing-market-related conditions that must hold in the TSE (and the SSE). Likewise,

the migration equilibrium locus satisfies all migration-related conditions that must hold in

the SSE. The intersection of both loci is the only point where all equilibrium conditions

of the SSE are satisfied and, hence, we can use it to quantify the model and derive QoL

premiums.

Housing equilibrium. Inelastically supplied land implies that the cost of supplying

housing increases in the regional housing provision. Profit maximisation by developers,

perfect competition, and housing market clearing give Eq. (8), which we can rearrange

to represent how real living costs are related to housing demand and exogenous housing

productivity in equilibrium (housing markets clear in the TSE and the SSE):

ln

(
p1−α
i,t

wθi,t

)
= (1− α)β

(
ln [β (1− α) (1− ι)Xi,t]−

1

β
ln (ηi,t)− ln

(
T̄i
))
− ln

(
wθi,t

)
.

Regional output is the sum over the wage bill of all groups Xi,t =
∑

θ w
θ
i,tL

θ
i,t. Wages

wθi,t are a function of employment Lθi,t, exogenous labour productivity ψθi,t and exogenous

land T̄i as defined in Eq. (6). Therefore, there is a one-to-one mapping from employment

to real living cost under the parametrisation discussed in Section D. For the illustration

in Figure 2, we use the structural fundamentals inverted for the city of Essen and the

parameters estimated for the group of middle-aged, middle-skilled, male workers to derive

the housing equilibrium locus HH1. To obtain the housing equilibrium locus HH2, we

increase housing productivity ηi,t by 70%.

Since we are already in the real living cost-employment space, it is straightforward to

derive the total differential with respect to (log) employment.

d ln
(
p1−α
i,t /wθi,t

)
=
∑
θ

[
(1− α)βwθi,tL

θ
i,t∑

θ w
θ
i,tL

θ
i,t

(
1 +

κθLθi,t∑
θ L

θ
i,t

)
−

κθLθi,t∑
θ L

θ
i,t

]
d lnLθi,t,

where d lnLθi,t denotes the change in group-specific (log) employment lnLθi,t. For the

special case of Θ = 1 (one worker group), the elasticity of real living costs with respect to

employment (the slope of the housing equilibrium locus) simplifies to

d ln
(
p1−α
i,t /wi,t

)
d lnLi,t

= (1− α)β(1 + κ)− κ.
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In keeping with intuition, real living costs increase faster in city size the larger the land

share β (and hence, the smaller the housing supply elasticity) and the smaller the agglom-

eration elasticity κ.

Migration equilibrium. The supply of labour Lθi,t of group θ in city i in period t is the

sum over the products of the inbound migration probabilities χθji|j,t−1 and employment

Lθj,t−1 across all migration origins j (
∑

j χ
θ
ji|j,t−1L

θ
j,t−1) according to Eq. (11).

Intuitively, higher real living costs make a location less attractive as a migration desti-

nation, ceteris paribus. In the SSE, migration markets clear in the sense that the region-

group employment is stationary. As a result, the prices of labour and housing are also

stationary.

To derive the migration equilibrium locus LL1 in Figure 2, we again use the structural

fundamentals inverted for the city of Essen and the parameters estimated for the group

of middle-aged, middle-skilled, male workers. We then take a numerical approach and

compute LL1 under varying living costs. To obtain LL2, we repeat the exercises, increasing

the QoL shifter Aθi,t by 60%.

Since the SSE assumption simplifies the expected wage and rent vectors to an infinite

projection of the stationary realisations in t, we can derive an analytical solution for the

slope for the migration equilibrium locus. Starting from labour supply defined by Eq. (11),

we take logs, and then differentiate with respect to the log of real living costs
d lnLθi,t

d ln(p
(1−α)
i /wθi,t)

.

The inverse of this derivative gives the elasticity of real living cost to employment:

d ln
(
p1−α
i,t /wθi,t

)
d lnLθi,t

=
ρ

γθ

ln
(
p1−α
i,t /wθi,t

)
(

1− χθii|i,t−1

) ∑j∈J χ
θ
ji|j,t−1L

θ
j,t−1

χθii|i,t−1L
θ
i,t−1

< 0.

Hence, the migration equilibrium locus establishes a negative relationship between

real living cost and city employment, which is intuitive given that the inbound migration

probabilities χθji|,t−1 are positively related to the real wage at i via the migration gravity

Eq. (10).

The elasticity of real living cost to employment is governed by the variance of idiosyn-

cratic amenities that captures worker heterogeneity. Intuitively, greater worker hetero-

geneity implies a lower aggregate migration response to real living cost differentials as

economic migration incentives will dominate idiosyncratic factors for fewer workers. In

the limit γθ → 0, labour supply becomes perfectly inelastic (a vertical migration equilib-

rium locus). If workers are homogeneous
(
γθ →∞

)
, marginal differences in real living

costs trigger large frictionless migration adjustments, resulting in a horizontal migration

equilibrium locus.
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K Quantification appendix

K.1 Data

This section complements Section D.1 in the main paper. To estimate the crucial structural

parameters and invert the structural fundamentals, we require four sets of data compiled

for consistent spatial units: Employment, wages, floor space prices, and bilateral migration.

In addition, we collect data on determinants of migration costs as well as various location

characteristics for overidentification tests and policy simulations. A detailed description

of our data is below.

K.1.1 Spatial unit

As an empirical correspondent to locations indexed by i in the model we choose the 141

German labour market regions defined by Kosfeld and Werner (2012). The delineation

of these areas is based on combining one or more administrative regions at the county

level with the aim of creating self-contained labour markets. The boundary of local labour

markets are defined such that commuting within labour market regions is relatively large

compared to commuting between regions (subject to an upper limit on commuting time

of 45-60 minutes).

K.1.2 Employment

Our measure of employment Lθi,t is constructed from the Employment History (BeH) cov-

ering the years 1993-2018.5 This dataset is provided by the Institute of Employment

Research (IAB) and contains information on the universe of employees in Germany (with

the exception of civil servants and the self-employed) on a daily basis. We only select those

workers who are employed subject to social security contributions (including apprentices)

and who are aged between 16 and 65 years.6

Based on this selection we compute the number of employees in each year and labour

market region. In addition, we compute region-year-specific employment levels for different

groups which are defined according to the interactions between sex, three skill categories

(no apprenticeship, completed apprenticeship and tertiary education) and three age cat-

egories (16-30 years, 31-50 years and 51-65 years).7 Employment size varies considerably

between labour market regions. While the average number of employees stands at 201,000

in the year 2017, values range from 17,000 in the labour market region Vulkaneifel to 1.4

million in Berlin.

5We use version 10.04.00-190819.
6We extract all relevant information from the employment record that contains 30 June of a given

year. If a person has multiple employment records, we select according to 1) the average daily wage, 2)
the duration of the employment record, 3) at random.

7Individuals are assigned the highest qualification level that they achieve over the course of their working
life. Consequently, while a person’s age changes over time, sex and skill are time-invariant. The educational
qualification variable has been processed based on Imputation Procedure 1 described in Fitzenberger et al.
(2006).
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K.1.3 Migration

We assign workers to labour market regions using their place of employment as reported

in the BeH. Bilateral group-specific migration flows are then constructed by computing

the number of workers belonging to group θ who used to be employed in region i in year

t but who are working in region j in year t + 1 for every pair of origin region i and

destination region j. Based on these bilateral flows we construct group-specific migration

probabilities χθij,t that are defined as the ratio of the flows from i to j over the level of

employment in origin region i in year t. Since labour market regions are designed with the

aim of reflecting commuting patterns in a region, we propose that a change in the place of

employment across labour market regions is likely to go along with a change of residence.8

There are gaps in a worker’s employment record in our data, for example if a person

was in a different form of employment that is not subject to social security contributions,

unemployed or had withdrawn from the labour market. We close such gaps by creating

artificial records that duplicate the last available employment record and, in particular,

the place of employment. In doing so, we implicitly assume that a person remains in the

same labour market region until they find a new regular job in another region, which will

be recorded in our data.9

K.1.4 Productivity

We use information from the BeH on the universe of workers who are observed as employed

subject to social security (including apprentices) on June 30 during the 1993-2018 time

period to estimate the group-region-year-specific productivity which maps into the wage.

In line with the standard approach in the agglomeration literature (?), we assume in Eq.

(5) that worker productivity ϕθi,t(ω) is a multiplicative function of a group-region-year

component ϕθi,t and an individual component δθi,t(ω). Following the conventions in labour

economics (Abowd et al., 1999), we define δθi,t(ω) = exp(δ̄ωS
L
i,tz

LfL,θi,ω,t) as a function of

unobserved time-invariant individual productivity δ̄ω (we use ω as a subscript to index

workers), observable worker characteristics SLω,t (dummies for whether a worker is in an

apprenticeship or works part-time, with zL being the marginal effects) and a stochastic

residual term fL,θi,ω,t. Log-linearisation and setting individual productivity equal to the

nominal wage ϕθi,t(ω) = wθi,ω,t as predicted under perfect competition (see Section C.2)

then gives the estimation equation:

lnwθi,ω,t = δ̄ω + SLi,tz
L + ϕ̃θi,t + fL,θi,ω,t. (26)

8This assumption is backed up by a considerable degree of overlap between the place of employment
and the place of residence. For the year 2017, we find that approximately 75% of employees who work in
a specific labour market region also live there. Moreover, use of the place of residence would reduce the
available data as this information is only available from 1999 onward.

9Notice that this procedure is only used for the computation of migration flows. Estimation of
individual-level productivity is therefore unaffected. Approximately 19% of the employment records in
the data set are constructed in this way.
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In estimating Eq. (26), we remove all observations of individuals who never change

their place of employment and estimate the model separately by gender-skill groups for

computational efficiency. Table A2 shows the results of estimating Eq. (26) for each of the

six sex-skill groups. As expected, part-time workers and apprentices have lower expected

daily wages. In both cases the wage discount is larger for males than for females and

it increases in magnitude with the skill level. Moreover, wages are lower on average in

periods when the worker has not yet reached the highest skill level. Given the skill group,

male regular full-time workers who have reached their highest skill level have higher wages

than females. Likewise, within sex groups the expected wage of regular full-time workers

at their highest skill level increases with skill.

Table A2: Estimation of group-region-year productivity

(1) (2) (3) (4) (5) (6)
Female Female Female Male Male Male

No appren- Appren-
Tertiary

No appren- Appren-
Tertiary

ticeship ticeship ticeship ticeship

Part-time -0.331∗∗∗ -0.351∗∗∗ -0.441∗∗∗ -0.437∗∗∗ -0.455∗∗∗ -0.559∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Apprentice -0.798∗∗∗ -0.854∗∗∗ -0.953∗∗∗ -0.933∗∗∗ -1.017∗∗∗ -1.039∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Below highest skill - -0.162∗∗∗ -0.167∗∗∗ - -0.111∗∗∗ -0.149∗∗∗

(.) (0.00) (0.00) (.) (0.00) (0.00)
Constant 3.886∗∗∗ 4.143∗∗∗ 4.415∗∗∗ 4.158∗∗∗ 4.367∗∗∗ 4.689∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Worker effects Yes Yes Yes Yes Yes Yes
Group-region-year effects Yes Yes Yes Yes Yes Yes
Observations 3,690,790 71,274,252 21,087,352 5,427,142 107,566,946 36,3674,105
R2 .777 .763 .752 .805 .831 .830

Notes: Units of observation are individual-level employment records. The dependent variable is the log average
daily wage. + p < 0.15, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

We recover ˆ̃ϕθi,t as a log index of group-region-year-specific productivity which we re-

scale such that the group-averages match the group-specific log annual earnings in the raw

wage data. We remove a common national trend by running an auxiliary regression of

ˆ̃ϕθi,t against region and year effects and subtracting the latter (using 2017 as the reference

category). Exponentiating the regression-adjusted ˆ̃ϕθi,t, we obtain our final region-group-

year-specific productivity index ϕθi,t.

In Table A3, we test for systematic differences in lnϕθi,t across age, gender, and skill

groups. Results are shown separately for the period 2007-17, which is used in the empirical

analysis (as information on housing prices is only available for those years) as well as for

the full period, 1993-2018. Ceteris paribus, female worker productivity is 27% (=(exp(-

0.315)-1)*100%) lower than male productivity, with no discernible difference between the

two time periods. Workers with an apprenticeship have a predicted productivity that is

approximately 45% (=(exp(0.371)-1)*100%) higher than among workers without an ap-

prenticeship, while it is almost twice as high for workers with tertiary education. Whereas

the difference in productivities between workers with and without an apprenticeship are
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almost identical in both time periods, it has increased for university-educated workers.

Expected productivity increases with age. It is is 46% (=(exp(0.380)-1)*100%) higher

among the age group 31-50 and 64% (=(exp(0.495)-1)*100%) among the age group 51-65

compared to the youngest age group. Compared to the full time period, it appears that

the age gradient has become smaller.

Table A3: Productivity differences

(1) (2)
2007-17 1993-2018

Female -0.315∗∗∗ -0.315∗∗∗

(0.00) (0.00)
31-50 years 0.380∗∗∗ 0.472∗∗∗

(0.00) (0.00)
51-65 years 0.495∗∗∗ 0.624∗∗∗

(0.00) (0.00)
Apprenticeship 0.371∗∗∗ 0.373∗∗∗

(0.00) (0.00)
Tertiary education 0.707∗∗∗ 0.667∗∗∗

(0.00) (0.00)
Constant 9.878∗∗∗ 9.817∗∗∗

(0.00) (0.00)

Region effects Yes Yes
Year effects Yes Yes
Observations 27,918 65,988
R2 .916 .898

Notes: Units of observation are group-region-year
cells. The dependent variable is a group-region-year-
specific log productivity measure that is derived as a
fixed effect from an individual-level regression of log
daily wages that also controls for individual fixed ef-
fects. + p < 0.15, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

K.1.5 Housing costs

To compute mix-adjusted indices of purchase prices for a panel of labour market area-year

observations, we use the ”Real-Estate Data for Germany (RWI-GEO-RED)” micro data

discussed in detail by Boelmann and Schaffner (2019). The data originally come from

the internet platform ImmobilienScout24 and have been processed and made available for

scientific research by the FDZ (Forschungsdatenzentrum) Ruhr. It covers apartments and

houses for sale from 2007 to 2017. ImmobilienScout24 is the leading online platform for

real estate listings, with a self-reported market share of about 50% (Georgi and Barkow,

2010).

In line with standard practice in urban economics, we model the cost of housing as a

rental price whereas in our data we observe purchase prices. Following conventions, we

assume that property markets are competitive and investors and owner-occupiers apply a
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0.035 discount rate to future streams of actual or imputed rents over an infinite horizon

(Koster and Pinchbeck, 2018). Our empirical measure of rent then is pi,t = 0.035Pi,t,

where Pi,t is a location-time-specific house price index following Combes et al. (2019), who

in turn build on a long tradition of urban gradient regressions going back to Clark (1951):

lnPs,i,t = lnDP
s,iui + S̃Ps,i,tz

P
i + P̃i,t + fPs,i,t, (27)

where lnPs,i,t is the log of price per square meter floor area of property s, lnDP
s,i is the

distance from the geographic centroid of the municipality with the largest employment in

a labour market area, ui are the destination-specific gradients, S̃s,t = Ss,t − S̄ is a vector

of property characteristics Ss,t net of the national average S̄, zPi is a vector of destination-

specific implicit prices, P̃i,t is a location-year fixed effect and fPs,i,t is an unobserved residual.

To remove a common national trend, we run an auxiliary regression of P̃i,t against region

effects and year effects and subtract the latter. From the adjusted location-year fixed

effect we infer a property price index Pi,t = eP̃i,t , which is mix-adjusted for property

characteristics and location and representative for a property with the national average

characteristics at the centre of a labour market area. In following Combes et al. (2019), we

assume that workers are fully mobile and indifferent between locations within monocentric

regions indexed by i. Decreasing prices at greater distances from the regional centre offset

one for one increasing within-region transport costs. At any other location within a region,

quantifying QoL requires accounting for commuting costs (Albouy and Lue, 2015).

The processed data contain a detailed geo-reference, accurate to the level of 1x1 square

kilometer grid cells in the European standard ETRS89-LAEA projection. This makes it

straightforward to calculate the straight-line distance from a property to the centre of a

labour market area, defined as the geographic centroid of the municipality with the largest

employment number. Moreover, the data set contains a wide range of property character-

istics. However, the degree of coverage varies significantly, with missing values accounting

for the majority of observations for selected variables. We focus on control variables with

reasonably wide coverage, which include attributes that are typical in hedonic analyses

such as the floor area, the number of rooms, the type of property (house vs. flat), the type

of heating system and whether features such a balcony, a garden, or a basement belong to

the property. There are a limited number of missing values within these variables. For each

variable, we set the missing values to zero and generate an auxiliary indicator variable that

identifies all observations with a missing value in the selected variable. The mix-adjusted

hedonic index we generate then gives the price of a property with the national average

in observable characteristics and the average unobserved characteristics of properties with

non-missing values in observables, which is located right at the centre of the labour market

area. We report summary statistics of observable characteristics in Table A4. The average

property has a floor area of about 140 square meters, approximately five rooms, and a

40-percent chance of being an apartment.
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Table A4: House price index: Descriptive statistics

N Mean Stand. dev. 10th pct. 90th pct.

Price per square meter 16,591,919 2,317 225,608 714 3,258
Distance to CBD (in km) 16,591,919 17.45 13.4 2.89 35.98
Living space (in square meter) 16,591,919 141.81 130.13 59 232
Rooms 16,591,919 4.75 2.77 2 8
Type of housing 16,591,919 0.4 0.49 0 1
Balcony 16,591,919 0.28 0.45 0 1
Garden 16,591,919 0.08 0.27 0 0
Basement 16,591,919 0.35 0.48 0 1
Type of heating 16,591,919 7.1 6.14 0 13

Notes: Type of heating is a categorical variable between 1 and 13. Type of housing is a binary variable
with value one for apartments and zero for houses. Balcony, Garden and Basement are also binary
variables. Micro data from RWI-Leibniz Institute for Economic Research (Boelmann and Schaffner,
2019).

K.1.6 Migration distance

We first compute the distance between every pair of municipalities in Germany using the

delineation that is valid on 31 December 2018. To derive the distance between any two

labour market regions, we form the population-weighted geometric mean of the corre-

sponding municipal distances. For a cultural distance measure, we use the inverse of the

county-based dialect similarity index by Falck et al. (2012), which we aggregate to labour

markets regions.

K.1.7 Big data

Big data amenity. To generate a big-data amenity index, we use geotagged photos

shared in social media. They originally stem from Eric Fisher’s Geotaggers’ World Atlas,

whose observations are taken from Flickr and Picasa search APIs.10 We use about 1.5

million photos taken within the boundaries of German labour market regions, most of

which are from the early 2010s, roughly in the middle of our core study period (2007-

2017). The idea to use geotagged photos to capture the amenity value of locations was

originally proposed by Ahlfeldt (2013), with recent applications including Gaigné et al.

(2017), Saiz et al. (2018), and Carlino and Saiz (2019).

We follow Ahlfeldt (2013) and assume that there is a photo production function that

links the amenity value Aθi to the number of photos shared on social media:

Pθi = cθ
P
Aθi

ζθ∏
n

(X b
θ
n
P

i,n )εθi
P
, (28)

where Xi,n is a set of production factors indexed by n to be specified and Pθi = P̄i ∀ θ ∈ Θ

with P̄i being the total number of photos. As an example, regional employment Li may be

included since more residents may generate more photos at a constant photo propensity.

10See for details http://www.flickr.com/photos/walkingsf/sets/72157623971287575/).
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ζθ is the amenity elasticity of photo production, which will be positive if social media

users share visually appealing content (e.g. distinctive architecture or scenic views) or

interesting activities (e.g. hiking tours or restaurant visits) that are related to a location’s

endowment with amenities. εθ
P

is a residual term and {cθP , bθn
P } are parameters. Under

the assumptions made, we retrieve a big data amenity as Dθi = ζθ lnAi
θ + ln εθi

P
from the

following regression:

lnPθi = c̃θP +
∑
n

(bθn
P

lnXi,n) +Dθi .

The interpretation of the big data amenity naturally depends on the covariates in

Xi,n. We plot an unconditional version excluding any controls in the left panel of Figure

A3. Evidently, large urban labour market regions generate more photos. However, this is

not necessarily an amenity effect since we expect more populated areas to generate more

photos simply because there are more users. In the right panel, we plot a version where we

condition on employment and geographic land area. Now, some regions close to the Baltic

Sea in the North and the Alps in the South that are popular holiday destinations are also

identified as high-amenity areas. From the large labour markets, only Berlin remains in the

top category of amenity value. However, controlling for population not only removes the

effect on photo production, but also a potential urban quality-of-life premium. Thus, this

conditional version of the big data amenity is best interpreted as capturing amenities such

as a favourable geography offering scenic views, or historic buildings, but not a vibrant

cultural landscape due to restaurant variety, which are typical for large cities.

Social connectedness. We use the Social Connectedness Index (SCI) to measure the

strength of social ties that exist between two regions. The SCI is defined as the ratio

between the number of friendship connections that exist between Facebook users of any

two regions i and j over the product of Facebook users in each of the two regions:

SCIij =
Connectionsij
Usersi × Usersj

.

The variable is then re-scaled so that it ranges from 1 to 1, 000, 000, 000. A more detailed

discussion of the SCI can be found in (Bailey et al., 2018).

Facebook provides the SCI data at the regional level for a broad range of countries

(see Bailey et al. (2020) for an application). Within Europe data are available at the

third level of the Nomenclature of Territorial Units for Statistics (NUTS). In Germany,

NUTS3 regions correspond to counties, so that the data can be aggregated to the level of

the labour market region. We first select all region pairs for which both counties are in

Germany. We then proceed to compute a weighted average of the SCI over all county pairs

within a pair of labour market regions using the sum of the populations in each county

pair as a weight.
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Figure A3: Photo count and big data amenity

(a) Unconditional big data amenity (b) Conditional big data amenity

Note: Unit of observation is 141 labour market areas as defined by Kosfeld and Werner (2012). Conditional big
data amenity is the log photo count stripped off the effect of log employment and log geographic area in an auxiliary
regression.

K.1.8 Location characteristics

Air pollution. We use the concentration of particulate matter to measure air pollution.

According to the German Environment Agency (Umweltbundesamt), particulates with a

diameter of less than 10 micrometer (PM10) exhibit a particular health risk. We access

raw data at the municipality level from the German Environment Agency for 2019. Since

there is a direct mapping from municipalities to the local labour markets defined by Kosfeld

and Werner (2012), aggregation of the data is straightforward.

Coal deposits and power plants. To compute the coal exposure measure used in

the policy application in Section F, we collect data on the spatial distribution of energy

resources, especially brown and black coal, from the Federal Institute for Geosciences and

Natural Resources in Germany (www.bgr.bund.de). To explore the mechanisms underlying

our identification strategy for the estimation of pollution effects, we collect the locations

of active coal power plants from the Bundesnetzagentur (www.bundesnetzagentur.de, list

of power plants from 1 April 2020).
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Wind directions. We obtain wind frequencies by 36 directions for all local labour mar-

kets from Kasperski (2002), which we use to generate a wind-adjusted coal exposure mea-

sure that serves as an instrument for air pollution.

Fundamentals. We compute a comprehensive data set on fundamental first-nature char-

acteristics that potentially affect productivity (e.g. access to navigable rivers), amenity

(e.g. climate), and housing TFP (e.g. physical constraints to development).

World War II destruction. We compile a new dataset based on Hohn (1991) docu-

menting the share of living space destroyed during World War II. The data are available

for all German cities with more than 2,000 inhabitants in 1939. Combining this informa-

tion with average destruction rates per state and population weights for each location, we

construct the weighted average share of destroyed living space per labour market region.

K.1.9 Summary statistics

Table A5 provides descriptive statistics for the central variables from the year 2017 that

are used for the quantification of our model.

K.2 Structural parameters

This section complements Section D.2 in the main paper by formally deriving estima-

tion equations and providing full estimation results. Before we introduce the technical

details and full estimation results in the following subsections, we provide an accessible

summary of the key parameters of the model in Table A6 and summarise the variation in

group-specific parameters by means of regressions against group-dummies in Table A7 for

convenience.

K.2.1 Density elasticity of productivity (κθ)

Our empirical approach to the identification of exogenous and endogenous productivity

effects is inspired by Combes et al. (2008). We use a conventional AKM-regression de-

scribed in the data section K.1.4 to separate the group-region-year specific component of

productivity ϕθi,t defined in Eq. (5) from the worker-specific component. Next, we define

the exogenous group-region-year productivity as ψθi,t = exp(aL,θg + eL,θi,t ), where aL,θg is a

group-zone specific effect and eL,θi,t is a structural residual. Zone effects capture differences

in exogenous productivity between former East Germany and West Germany, indexed by

g, due to persistent effects of the division period. Log-linearisation yields the following

group-specific regression model, which exactly identifies the group-specific density elastic-

ity of productivity κθ and the exogenous group-region-year productivity ψθi,t:

lnϕθi,g,t = aL,θg + κθ ln
(Li,t
T̄i

)
+ eL,θi,g,t. (29)
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Table A5: Summary statistics

N Mean Std dev

Bilateral flows and distances

Migration flow 357,858 81.12 1,929.79
Ln distance 19,740 5.62 0.60
Ln cultural distance 19,881 0.03 0.01
Ln social connectedness 19,881 -8.99 0.99

Employment variables

Ln employment 2,538 8.25 1.58
Employment share: Female (%) 141 46.38 2.95
Employment share: Apprenticeship (%) 141 75.79 5.68
Employment share: Tertiary education (%) 141 15.76 4.99
Employment share: 31-50 years (%) 141 46.15 1.64
Employment share: 51-65 years (%) 141 32.48 2.93
Employment share: Agriculture (%) 141 1.09 1.14
Employment share: Construction (%) 141 6.69 1.90
Employment share: Tradable services (%) 141 9.43 4.20
Employment share: Manufacturing (%) 141 25.60 9.06
Employment share: Energy-intensive heavy industry (%) 141 5.37 3.34
Ln employment density 141 4.07 0.79

Wages and rents

Ln wage 2,538 10.37 0.36
Ln price 141 4.22 0.57

Structural fundamentals

Ln quality of life (DSM) 2,538 0.53 0.55
Ln quality of life (Rosen-Roback) 2,538 -8.94 0.39

Regional characteristics

Ln area 141 7.69 0.56
East Germany (dummy) 141 0.23 0.42
Near Alps (dummy) 141 0.02 0.14
Near coast (dummy) 141 0.11 0.31
Ln historic population density 141 4.65 0.68
Ln crime per capita 141 -6.30 0.31
Housing stock destroyed in WWII (%) 141 9.60 9.72
Number of opera houses 141 0.80 1.08
Ln water area 141 17.39 1.00
Big data amenity index (residualised) 141 0.00 0.43

Pollution variables

Ln pollution (PM10) 141 2.62 0.12
Number of active coal plants 141 0.52 1.37
Ln meteorological black coal exposure (net of geographical exposure) 141 -0.11 0.46
Ln meteorological brown coal exposure (net of geographical exposure) 141 -0.24 0.26

Notes: Number of observations differ: 141 regions; 141 regions x 18 groups = 1,551 region-groups; 141 regions x 141
regions = 19,881 region pairs; 141 regions x 141 regions x 18 groups = 357,858 region-pair-groups. Distance is not defined
when origin and destination regions are identical.
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Table A6: Parameter values

Parameter Value Approach Source Appendix

1-α Share of expenditure on housing 0.33 Set Statistisches Bundesamt (2020) -
ρ Discount rate 0.11 Set Moore and Viscusi (1988) -
ι Tax rate 0.49 Set OECD (2017) -
β Share of land in housing 0.18 Estimated Combes et al. (2019) K.2.2

κθ Density elasticity of productivity 0.001-0.042 Estimated Combes et al. (2008) K.2.1

γθ Migration elasticity 0.12-0.58 Estimated Artuç et al. (2010) K.2.3

τθi.j=i Migration cost (iceberg) 0 Set Assumption -

τθi,j 6=i Migration cost (iceberg) 6.4-68.3 Estimated OD-FE in migration gravity | γθ K.2.4

Bθij,t Bilateral amenity 0.03-17.84 Estimated Residual in migration gravity | γθ K.2.5

Notes: If the approach is ”set”, we borrow a parameter value from the paper given under ”source”. If the approach is
”estimated”, we estimate the parameter following the estimation strategy in the paper given under ”source”. For details,
we refer to the section given under ”appendix”.

Table A7: Parameter estimates: Average effects by group

Agglomeration
elasticity

Migration
resistance

Migration
elaticity

Migration
iceberg cost

Monetised
migration cost

κθ ln τθij × γθ γθ τθij e1000

Female 0.014∗∗∗ 0.284∗∗∗ -0.141∗∗∗ 9.669∗∗∗ -51.783∗∗∗

(0.00) (0.00) (0.02) (0.01) (0.04)
31-50 years 0.010∗∗ 0.524∗∗∗ 0.153∗∗∗ -7.963∗∗∗ 32.498∗∗∗

(0.00) (0.00) (0.03) (0.01) (0.05)
51-65 years 0.003 0.839∗∗∗ 0.148∗∗∗ -8.177∗∗∗ 37.859∗∗∗

(0.00) (0.00) (0.02) (0.02) (0.06)
Apprenticeship 0.016∗∗ 0.427∗∗∗ 0.239∗∗∗ -24.122∗∗∗ 46.342∗∗∗

(0.01) (0.00) (0.04) (0.02) (0.08)
Tertiary education 0.012∗ -0.256∗∗∗ 0.071+ -16.032∗∗∗ 120.518∗∗∗

(0.01) (0.00) (0.04) (0.02) (0.08)
Constant -0.001 6.436∗∗∗ 0.146∗∗∗ 44.496∗∗∗ 108.045∗∗∗

(0.01) (0.00) (0.04) (0.02) (0.08)

Unit Group O-D-group Group O-D-group O-D-group
O-D effects - Yes - Yes Yes
Observations 18 355320 18 355320 355320
R2 .86 .971 .935 .936 .944

Notes: O = origin; D = destination. All explanatory variables are binary indicator variables. Stan-
dard errors in parentheses. O-D-group-level regressions weighted by O-D-group flows.
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Unobserved fundamentals correlated with density pose a threat to identification of κθ.

Following Ciccone and Hall (1996), we use the deep lag of log population density (1907) as

an instrument for the log of contemporary density, arguing that fundamentals that gave

rise to density a century ago are of limited relevance for productivity today. Since the

instrumental variable is time-invariant, we cluster standard errors on regions.

The resulting estimates of the density elasticity of productivity are presented in Figure

A4. The employment-weighted average estimate for κ is 0.024, close to the consensus of

about 0.02 in the literature (?). There is significant heterogeneity across worker groups,

with κθ estimates ranging from close to zero for young male workers to 0.041 for skilled and

experienced female workers. In line with skill-biased returns to agglomeration (Baum-Snow

and Pavan, 2013), we generally obtain greater κθ estimates for groups with higher skills.

There is also a systematic gender gap in κθ favouring women, implying a greater gender

pay gap in rural areas. Finally, young groups benefit little from agglomeration, suggesting

that the productivity advantage associated with urban density materialises through an

interaction with experience. An econometric analysis of the conditional variation in κθ-

estimates by group is in Table A7.

Figure A4: Density elasticity of productivity (κ)

Notes: Elasticity estimates from regressions of AKM-adjusted log wages (see section K.1.5) against log density,
controlling for zone effects (former East vs. former West Germany) and using 1907 log population density as an
instrument. Confidence bands are at the 95% level.

K.2.2 Land share in housing (β)

We use a similar approach as in K.2.1 to identify the exogenous and endogenous determi-

nants of housing costs. We define exogenous housing TFP as ηi,t = − exp(ãPg +ePi,t), where

ãPg captures zone-specific legacy effects from the division period and ePi,t is a structural
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Table A8: Output density elasticity of housing cost

(1) (2)
Log housing costs
(region-year-specific)

Log housing costs
(region-year-specific)

Log output density (β)
0.184***
(0.02)

Log employment density
0.196***
(0.02)

Zone effects Yes Yes

Observations 1,551 1,551
R2 .321 .301

Notes: Units of observation are labour market region-year cells. Housing costs is
the annualised house price index inferred from micro data as described in the data
section K.1.5. We use the 1907 log population density as an instrument for log
of output density and log employment density. Zone effects distinguish between
former East and West Germany. Standard errors in parentheses clustered on labour
market areas.* p < 0.1, ** p < 0.05, *** p < 0.01

residual. Log-linearisation of Eq. (8) then yields the empirical specification:

ln pi,g(i),t = aPg + β ln
(Xi,t

T̄i

)
+ ePi,g(i),t, (30)

where aPg = β ln (1− α)β(1− ι) + ãPg collects all scalars in Eq. (8) and the effects of

zone-specific housing TFP. Given set values for α and ι and an estimated value for β,

exogenous housing TFP is uniquely identified as ηi,t = ((1 − α)β(1 − ι))β(Xi,t/T̄i)
β/pi,t.

To address the concern that contemporary productivity shocks may be correlated with

output and housing TFP, we use the deep lag of population density as an instrument for

output density and cluster standard errors on regions.

In Column (1) in Table A8 we obtain an estimate of the output elasticity of housing

costs β of 0.18. Note that because in our framework productivity varies across locations,

there is a density-induced demand-side effect on wages in addition to the supply-side effect

of employment density on housing costs that arises because of inelastically supplied land

(see Appendix J.1 for a formal derivation). Thus, unlike Combes et al. (2019) who model

the cost of agglomeration as dependent on population and land area, we have output

density Xi,t/T̄i = (
∑

θ L
θ
i,tϕ

θ
i,t)/T̄i on the right-hand side of the structural specification.

For comparison, we also estimate the employment density elasticity in Column (2), which

takes the value of 0.20. This value is between the average in the literature of 0.15 re-

ported by Ahlfeldt and Pietrostefani (2019) and the predicted value of 0.25 for a country

with the urban density of Germany (2,800 residents per km2, see Demographia (2019))

according to the rule of thumb suggested by Ahlfeldt and Pietrostefani (2019). The value

is towards the lower bound of the 0.2-0.27 range reported for France by Combes et al.

(2019), which is consistent with France having a higher urban density (3,100 residents per

km2) than Germany. Notice that the estimated density elasticity of housing expenditure

(1 − α)
∂ ln pi,t

∂ ln (Li,t/T̄ )
= 0.066 substantially exceeds our κθ-estimates for all groups, which is

necessary for a well-behaved solution for the SSE. Note that our estimate of β implies
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a housing supply elasticity (1 − β)/β of about 4.4, which is close to existing structural

estimates (Epple et al., 2010).

K.2.3 Migration elasticity (γθ)

The standard approach to the identification of the migration elasticity is to regress relative

(to internal migration) log migration flows against bilateral differences in log wages at

migration origins and destinations, controlling for leading relative log migration flows

(Artuç et al., 2010).

To motivate a similar estimating equation, we start from Eq. (10) and derive the

difference in migration propensity between stayers and movers as:

lnχθij|i,t − lnχθii|i,t = γθ
(

lnmθ
ij − lnmθ

ii

)
+ γθ

(
lnBθ

ij,t+1 − lnBθ
ii,t+1

)
+ γθ

(
lnVθj,t+1 − lnVθi,t+1

) (31)

with lnVθj,t+1 the infinite sum of indirect utilities. This sum can be re-written as a sum of

utility in period t+ 1 and the present value of future utilities in the subsequent periods:

lnVθj,t+1 = ln

(
(1− ι)wθj,t+1A

θ
j,t+1

p1−α
j,t+1

)
︸ ︷︷ ︸

utility in period t+1

+
∞∑

s=t+2

(
1

1 + p

)s−(t+1)

ln

(
(1− ι)wθj,sAθj,s

p1−α
j,s

)
+

lnBθ
jj,t+2

ρ (1 + ρ)︸ ︷︷ ︸
present value of future utilities in the subsequent periods

The infinite sum of indirect utilities in the next period simply corresponds to the

present value of future utilities from t+ 1, discounted by one period:

lnVθj,t+2 = (1 + ρ)
∞∑

s=t+2

(
1

1 + p

)s−(t+1)

ln

(
(1− ι)wθj,sAθj,s

p1−α
j,s

)
+

lnBθ
jj,t+3

ρ (1 + ρ)

so that we have

lnVθj,t+1 = ln

(
(1− ι)wθj,t+1A

θ
j,t+1

p1−α
j,t+1

)
+

1

1 + ρ
lnVθj,t+2. (32)

Moreover, lnVθj,t+2 is a determinant of migration probabilities in period t+ 2:

lnχθij|i,t+1 − lnχθii|i,t+1 = γθ
(

lnmθ
ij − lnmθ

ii

)
+ γθ

(
lnBθ

ij,t+2 − lnBθ
ii,t+2

)
+ γθ

(
lnVθj,t+2 − lnVθi,t+2

)
.

(33)

Hence, we can use Eq. (33) in Eqs. (32) and (31) to write current relative migration
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propensities as a function of bilateral wages next period and relative migration propensities

one period forward:

lnχθij|i,t − lnχθii|i,t − γ
θ

[
ln
(

(1− ι)wθj,t+1

)
− ln

(
(1− ι)wθi,t+1

)]
− 1

1 + ρ
(lnχθij|i,t+1 − lnχθii|i,t+1) +

(
1− 1

1 + ρ

)
γθτ θij

= γθ
(

ln
(
pα−1
j,t+1

)
− ln

(
pα−1
i,t+1

))
+ γθ

(
lnBθ

ij,t+1 − lnBθ
ii,t+1

)
− γθ

1 + ρ

(
lnBθ

ij,t+2 − lnBθ
ii,t+2

)
+
γθ(lnBθ

jj,t+2 − lnBθ
ii,t+2)

ρ (1 + ρ)

−
γθ(lnBθ

jj,t+3 − lnBθ
ii,t+3)

ρ (1 + ρ)2 + γθ
(

lnAθj,t+1 − lnAθi,t+1

)
.

(34)

Following Artuç et al. (2010), we estimate our key parameter of interest using GMM.

To this end, we collect the terms on the right-hand side of Eq. (34) in a structural residual

Eθij,t, take α, ι, and ρ as given, and normalise all variables by their geometric within-origin-

destination-group mean, which removes time-invariant migration costs τ θij . To identify γθ

we make the following identifying assumption:

E(Z̄θij,tĒθij,t) = 0, (35)

where Z̄θij,t is a (n ≥ 1) × 1 vector of instrumental variables which we require to be

uncorrelated with the structural residual and the upper bar indicates normalisation by

the geometric mean. Substituting Eq. (34) into Eq. (35) (via Eθij,t), we obtain n moment

conditions:

E

(
Z̄θij,t

[
ln χ̄θij|i,t − ln χ̄θii|i,t − γ

θ
(

ln
(
w̄θj,t+1

)
− ln

(
w̄θi,t+1

))
− 1

1 + ρ
(ln χ̄θij|i,t+1 − ln χ̄θii|i,t+1)

])
= 0.

(36)

Eq. (36) excludes rents which are in the structural residual Eθij,t. This not only makes the

estimation equation similar to the literature, it also avoids an endogeneity problem since

our model predicts that amenities in the structural residuals (A and B terms) capitalise

into rents.

The conventional approach is to estimate Eq. (36) using lagged values of relative

migration probabilities and relative wages as instruments for leading relative migration

probabilities and relative wages (Artuç et al., 2010; Caliendo et al., 2019b). This approach

addresses the concern that contemporaneous shocks that affect wages and leading migra-

tion decisions may also affect components of the structural residual term. A remaining

concern is that if there is serial correlation in the instrumented variables and the structural

residuals, the identifying assumption will be violated.
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Against this background, we consider it worth exploiting an alternative source of identi-

fying variation that is specific to the German context. It is rather uncontroversial that after

unification former East Germany had a lower fundamental labour productivity owing to

an inferior production technology (Burda and Hunt, 2001). Over time, western technology

diffused to the eastern parts of Germany, reducing the differences in fundamental produc-

tivity inherited from the cold-war era. To capture the convergence in fundamental labour

productivity between the formerly separated parts of the country, we compute for each

year, group, and bilateral route a regional relative wage, where we replace the observed

wages for labour markets i and j with the average wage in zone r, s ∈ East,West a labour

market falls in. We then use lags of these relative zone wages
(
ln
(
w̄θs,t

)
− ln

(
w̄θr,t

))
as sole

(excluded) instruments for the identification of the parameters of interest. Effectively, this

approach restricts the identifying variation to changes in cross-border differences in wages

over time.

The GMM estimation results are in Table A9. With the canonical instrumental vari-

ables we estimate a migration elasticity of about 0.1 (Column 1), which is significantly be-

low the implied value of 0.5 for year-on-year variation reported by Caliendo et al. (2019b).

With our preferred identification using the zone wage gap, we estimate a migration elas-

ticity of 0.4 (Column 2), which is closer to the literature. A cause for concern is that

the discount parameter is either very large (Column 2) or negative and, hence, theory-

inconsistent (Column 1). This is in line with the notion in the literature that the identi-

fication of these parameters with the state-of-the-art estimation strategy is weak (Artuç

et al., 2010). Hence, we repeat the estimation, setting the discount parameter to our pre-

ferred value of 0.11 taken from the literature (Moore and Viscusi, 1988). Once we do this,

reassuringly, the migration elasticity estimates using both sets of instruments are close

(Columns 3 and 4). Our preferred estimate of the migration elasticity of 0.295 (Column 4)

is moderately smaller than the 0.5-estimate for the U.S. by Caliendo et al. (2019b), which

implies that workers in Germany are, on average, somewhat less responsive to migration

incentives than in the U.S.

To obtain group-specific estimates of the migration elasticity, we build on our preferred

Table A9: Migration elasticity estimates (uniform)

(1) (2) (3) (4)

Migration elasticity 0.118∗∗∗ 0.443∗∗∗ 0.255∗∗∗ 0.295∗∗∗

γ (0.03) (0.15) (0.02) (0.08)
Discount -0.274∗∗∗ 0.376∗∗∗ - -
parameter ρ (0.01) (0.03) - -

Parameter ρ Estimated Estimated Set to 0.11 Set to 0.11
IV Canonical Regional wage gap Canonical Regional wage gap

Notes: GMM estimation. Unit of observation is year-group-region-route (origin-destination
pair). Weighting. Canonical instrumental variables are lags 1-3 of relative migration proba-
bilities and relative wages. Regional wage gap instrumental variables are lags 1-3 of the year-
group-route-specific difference in the regional average wage, where regions are former East- and
West-Germany. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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specification (Column 4) whose estimation we repeat sequentially, keeping only specific

gender, age, and skill groups. Thus, we estimate 2 (gender groups) + 3 (age groups) + 3

(skill groups) = 8 specifications. Compared to the alternative of estimating 2×3×3 = 18 =

Θ group-specific models, this approach is less susceptible to producing outlier estimates

while still allowing for sizable heterogeneity. We disaggregate our gender- (γg), age- (γa),

and skill- (γs) specific estimates to group-θ-specific estimates as follows:

γθ(g,a,s) = wθ,gγg + wθ,aγa + wθ,sγs,

where the weights are defined as the size of a specific θ-group relative to the size of the

age-, sex- or skill-group. We obtain standard errors for the resulting γθ(g,a,s) by means of

bootstrapping in 1,000 iterations. The results in Figure A5 reveal sizable heterogeneity

in the migration elasticity across groups. In particular, it appears that the migration

elasticity is larger for male than for female workers. It is largest for the middle skill and

the middle age category.

Figure A5: Migration elasticity estimates (γ) by group

Note: GMM estimates by gender, age, and skill groups, disaggregated to gender-age-skill groups. Bootstrapped
standard errors in 1,000 iterations.

K.2.4 Migration cost (τ θij)

A log-linearised version of Eq. (10) provides the micro foundations for a non-parametric

reduced-form migration gravity equation:

lnM θ
ij,t = cθ +Oθi,t +Dθ

j,t + m̃θ
ij + B̃θ

ij,t, (37)
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where empirically we use the group-specific flow of workers leaving region i for region j in

year t after moving ln (Lθi,t) into the origin-year fixed effect

Oθi,t = ln
(
Lθi,t

)
+ ln

(∑
n∈J

(Bθ
in,tVθn,tmθ

in)γ
θ

)

that also captures multilateral resistance. Dθ
j,t = γθ ln(Vθj,t) is a destination-group-year

effect capturing migration pull factors while B̃ij,t = γθ lnBij,t is a structural residual

capturing bilateral amenity, and m̃θ
ij = cθ−γθ×τ θij is an origin-destination effect identifying

migration resistance up to a group-specific constant cθ. We use the theory-consistent

restriction τ θij,j=i = 0, which implies that cθ = m̃ij,j=i to identify τ θij =
m̃θij,j=1−m̃θij

γθ
.

We estimate Eq. (37) using a Poisson Pseudo Maximum Likelihood estimator (Head

and Mayer, 2014). The non-parametric nature of Eq. (37) implies that we require no

identifying assumption other than that group-specific shocks to bilateral amenity Bθ
ij,t

are random within origin-destination pairs. For selected origin-destination routes, we

do not observe any migration flow throughout our observation period. In these cases,

we impute m̃θ
ij using a group-specific higher-order polynomial regression of m̃θ

ij against

bilateral distance.

In Figure A6, we present the distribution of the estimated migration resistance effects

γθτ θij,t = m̃θ
ij by group and geographic distance. These reduced-form effects control for

arbitrary migration push and pull factors and provide first evidence on which groups ex-

hibit the largest resistance to migration, either because they face large migration costs

(reflected in a large τ θij), or because of limited idiosyncrasy in their location choice (re-

flected in a large γθ). Migration resistance increases in distance at a decreasing rate.

There is a kink at about 100 km. The differences in migration resistance across groups

are also quantitatively important as revealed by the results from a regression of the es-

timated resistance parameters against categorical group identifier variables presented in

Table A7. The migration resistance of old workers (age between 51 and 65 years) is

131% (=(exp(0.839)-1)*100%) larger than that of young workers (aged 16-30). Likewise,

women have an about 33% (=(exp(0.284)-1)*100%) higher migration resistance than men.

Skilled (apprenticeship) and high-skilled (tertiary education) workers’ migration resistance

is about 53% (=(exp(0.0.427)-1)*100%) higher and 23% (=(exp(-0.256)-1)*100%) lower

than for unskilled workers (no apprenticeship).

K.2.5 Bilateral amenity (Bθ
ij)

From Eq. (37), it is straightforward to recover Bθ
ij =

B̃θij
γθ

. In a theory-consistent man-

ner, we rationalise zero-migration flows with origin-destination-group-year cells by setting

Bθ
ij = 0.
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Figure A6: Migration resistance by group and distance

Notes: Migration resistance identified as origin-destination-group effects from panel PPML estimation of a migration
gravity model controlling for origin-year-group and destination-year-group effects. Confidence bands are at the 95%
level.

K.3 Structural fundamentals

This section complements Section D.3 in the main paper. We show how to invert funda-

mental labour and housing productivity and introduce the dynamic solver used to invert

QoL.

K.3.1 Fundamental labour productivity

We invert fundamental labour productivity ψθi,t using observed data on mix-adjusted wages

wθi,t, employment Lθi,t, land area T̄i, our estimate of the density elasticity of productivity

κθ and the first-order condition of labour demand using Eq. (6) as follows:

ψθi,t = wθi,t

(
Li,t
T̄i

)−κθ
.
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K.3.2 Fundamental housing productivity

We invert fundamental housing productivity ηi,t using observed data on mix-adjusted

housing rents pi,t, employment Lθi,t, wages wθi,t, land area T̄ θi,t, our estimate of the land

share β and housing market clearing using Eq. (8) as follows:

ηi,t =

(1− α)β(1− ι)
∑

θ w
θ
i,tL

θ
i,t

p
1
β

i,tT̄i

β

.

K.3.3 Quality of life (Aθi,t)

The dynamic solver introduced in Section D.3 is a nested dynamic programming algorithm

which operates according to the procedure outlined in the programming flowchart in Figure

A7. Intuitively, there is an iterative fixed-point algorithm (FP) that solves for Āθi,t for given

guesses of Lθi,t, a dynamic programming algorithm (DP) that delivers Lθi,t for guessed values

of Āθi,t and an outer loop (OL) that forwards the inputs of the former to the latter and vice

versa until guesses and solutions are consistent. We introduce the three building blocks of

the nested structure in more detail below.

Fixed-point programming algorithm (FP). We use a Newton algorithm to obtain

numerical solutions for QoL Āθi,t which we treat as an unobserved structural fundamental.

The algorithm finds a numerical solution of Āθi,t using Eq. (10). It uses the following

inputs: Observed data on migration probabilities χθij,t, values of the structural parameters

τ θij (migration costs), γθ (migration elasticity), ι (tax rate), Bθ
ij (bilateral amenity), the

employment vector Lθi,t which for given fundamental labour productivity ψθi,t and funda-

mental housing productivity ηi,t maps to future wages wθi,t+s and rents pi,t+s. The iterative

procedure starts from uniform guesses Āθi,t
f=1 = 1. Given the inputs, Eq. (10) delivers pre-

dicted migration probabilities χ̂θij,t and a multiplicative adjustment factor
∑

j χ̂
θ
ij,t/

∑
j χ

θ
ij,t

which we apply to Āθi,t
f=1 before moving into the next iteration f = 2. The procedure ends

when the adjustment factor approaches one. The FP consists of the processes connected

by the red lines in the programming flow chart in Figure A7. Note that in QSMs with

static expectations, where data are rationalised assuming a SSE, the FP algorithm alone

would suffice to invert quality of life.

Dynamic programming algorithm (DP). Exploiting the dynamic structure of the

model, the DP forecasts Lθi,t using the following inputs: structural parameters {α, β, ρ, ι,

γθ, ζθ, κθ, Bθ
ij,t, τ

θ
ij}; inverted labour productivity ψθij and housing productivity ηi,t; ob-

served employment Lθi,t and land area T̄i; guessed values of Āθi,t and Lθi,t, which map into

vectors of guessed wages wθ
i, and rents pi,t via the first-order condition of labour demand

(Eq. (6)) and housing market clearing (Eq. (8)). The DP begins the iterative procedure in

iteration s = 0 where it uses the above inputs to forecast migration probabilities χθij|i,t+s
using Eq. (10). The labour supply Eq. (11) then delivers employment Lθi,t+s+1 in the
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next period. Lθi,t+s+1 maps to wages wθi,t+s+1 via the first-order condition of labour de-

mand (Eq. (6)). Lθi,t+s+1 and wθi,t+s+1 give regional output Xi,t+s+1 =
∑

θ w
θ
i,t+s+1L

θ
i,t+s+1

which maps into rents pi,t+s+1 via housing market clearing (Eq. (8)). Unless the dynamic

solver has converged to the dynamic equilibrium, the forecasts of Lθi,t+s+1, wθi,t+s+1, and

pi,t+s+1 will not equate to the respective (s+1)-th elements in the vector of guessed em-

ployment Lθi,t(1,s+1)
, wages wθ

i,t(1,s+1)
, and rents pi,t(1,s+1). Hence, we adjust wage and

rent guesses concerning future periods v > s+ 1 by the multiplicative adjustment factors

wθi,t+s+1/w
θ
i,t(1,s+1)

and pi,t+s+1/wi,t(1,s+1). This way, the dynamic solver “learns” from

mismatches between guessed and predicted values in every iteration of the DP in every

iteration of the OL as opposed to only once per iteration of the OL. This greatly enhances

the speed of the solver. Then, the iterative procedure starts over again and continues

until in iteration S employment is stationary (Lθi,t+s = Lθi,t+s+1). The DP consists of the

processes connected by the green lines in the programming flow chart in Figure A7.

Figure A7: Dynamic solver

Notes: Programming flowchart that illustrates the procedure of the dynamic solver introduced in Section D.3. Blue
lines outline the outer loop. Red lines mark the nested fixed-point algorithm solving for Aθi,t. Green lines mark the

nested dynamic programming algorithm that forecasts Lθi,t. Bold letters are (J ×Θ)×H matrices of for H = 1, 000

periods into the future. Other letters are (J × Θ) × 1 vectors for one period. Letters with *-superscripts indicate
solved outputs. Other letters indicate guessed inputs. To ease the presentation we omit all indices {θ, i, t} in the
flow chart.
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Outer loop (OL). The OL indicated by the blue lines in the flow chart in Figure A7

nests the FP and DP algorithms. It feeds the output of the FP (Āθi,t) as input into the

DP and the output of the DP (Lθi,t) as input into the FP. Intuitively, the OL treats the

solutions for Āθi,t and Lθi,t as a fixed point that is found in an iterative procedure when the

guessed input into the FP is identical to the output of the DP and vice versa.

Before the dynamic solver enters the OL, the first step is to define initial values for

{Lθi,t,wθ
i,t,pi,t} which are critical inputs for the FP. This is the first process in Figure A7

after “Start”. Since we do not know a priori the number of years S over which the spatial

economy converges to a SSE, we begin with a long time horizon of H = 1, 000 years over

which agents form their expectations. Note that H exceeds S for all applications of the

solver we report in this paper. As initial guesses for the employment vector Lθi,t
0

we use

the values we observe in year t for which the model is being quantified:

Lθi,t
0

= Lθi,t, L
θ
i,t, ..., L

θ
i,t︸ ︷︷ ︸

Helements

.

Given the first-order condition of labour demand (Eq. (6)) and housing market clearing

(Eq. (8)), Lθi,t
0

maps directly to {wθ
i,t

0
,pi,t

0} for given parameters and fundamental labour

and housing productivity.

With these inputs, the first iteration l = 1 of the OL begins. The next processes until

the first decision rule (A = A∗), including the feedback loop marked by red lines, constitute

the FP algorithm. Once the decision rule is satisfied, the OL forwards the solutions for

Āθi,t
l=1 to the DP which is represented by the processes up to the next decision rule

(Lθi,t+s = Lθi,t+s+1), including the green loop. Once this decision rule is satisfied, the OL

evaluates whether the values {wθ
i,t
l=1
,pi,t

l=1} solved by the DP correspond to the guessed

inputs into the FP. Until this criterion is satisfied, the OL updates the guesses and the

procedure starts over gain.

Once the OL converges in iteration L, we crop Lθi,t
L
,wθ

i,t
L
,pi,t

L to SL elements deliv-

ered by the DP in the last iteration of the OL. Āθi,t
L represent the solution to unobserved

QoL. Hence, the model is fully quantified.

K.4 Transition into the stationary spatial equilibrium

This section complements Section D.4 in the main paper.

Figure A8 summarises how the spatial economy converges from the TSE to the SSE

using the sum of absolute deviations between TSE and SSE values across region-groups

as a benchmark. Depending on the outcome, about 55%-70% of the spatial convergence

occurs after 30 years.

Figure A9 scatters the SSE values in selected outcomes against the TSE values. Wages

and rents are relatively closely aligned. While there are subtle differences in employment

and skill shares, the correlations are still strong.

Figure A10 maps the ratios of SSE values over TSE values in selected outcomes at the
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Figure A8: Spatial convergence

Notes: All trends show sum of absolute deviations from SSE values in an outcome across group-regions. 2017
starting values. Model-based forecasts.

Figure A9: SSE vs TSE values

(a) Employment (b) Wage

(c) Rent (d) High-skilled share

Note: Unit of observation is region-group in panels a), b), d) and regions in c). Ratio of model-based forecasts
(SSE) over observed data that are perfectly rationalized by the model (TSE).

regional level. As the economy converges to the SSE, the eastern states gain population

at the expense of the western states. As the population increases, congestion on housing

markets leads to rising rents. In contrast, there is no obvious spatial pattern in the change

in skill composition and wages.
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Figure A10: Ratio of SSE over TSE values

(a) Employment (b) Wage

(c) Rent (d) High-skilled share

Note: Unit of observation is 141 labour market areas as defined by Kosfeld and Werner (2012). Ratio of model-based
forecasts (SSE) over observed data that are perfectly rationalized by the model (TSE).

K.5 Overidentification

This section complements Section D.5 in the main paper. We correlate some of the struc-

tural parameters and structural fundamentals obtained from the model quantification with
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observable characteristics not used in the quantification of the model. Previewing our re-

sults, we find that observable characteristics correlate with model-derived fundamental

labour productivity, fundamental housing productivity, and migration costs in an intu-

itively plausible manner. Moreover, the model forecasts changes in employment over time

for the transition from the TSE to the SSE that are closely correlated with employment

changes observed in data.

Labour productivity. In Table A10, Column (1), we regress fundamental labour pro-

ductivity ψθi,t=2017, inverted as described in Section K.3.1, against a set of dummy variables

denoting some German supra-regions. We control for group fixed effects to net out com-

position effects. We find that fundamental labour productivity is about 7% smaller in the

eastern states, likely a legacy of the Cold War era. Fundamental productivity is some-

what higher, on average, near the Alps. In keeping with intuition, a casual inspection

of fundamental productivity across regions reveals a greater productivity at peripheral

regions where the local economies are dominated by global companies such as Volkswa-

gen in Wolfsburg (see Figure A11). Adding industry sector shares in Column (2) reveals

that part of the east-west gap is attributable to industry composition. In keeping with

intuition, regions with a high share of tradable services tend to be more productive.

Table A10: Fundamental productivity

(1) (2) (3) (4)
Labour

productivity
Labour

productivity
Housing

productivity
Housing

productivity

ψθi,t=2017 ψθi,t=2017 ηi,t=2017 ηi,t=2017

East (0,1) -0.067∗∗∗ -0.039∗∗∗ 0.263∗∗∗ -0.072
(0.01) (0.01) (0.09) (0.10)

Alps (0,1) 0.040∗∗∗ 0.051∗∗∗ -0.517∗∗∗ -0.639∗∗∗

(0.01) (0.02) (0.14) (0.19)
Coast (0,1) -0.021∗∗∗ -0.002 0.007 -0.065

(0.01) (0.01) (0.15) (0.12)
Agricultural share (%) 0.002 0.019

(0.00) (0.04)
Construction (%) -0.001 -0.029

(0.00) (0.03)
Tradable services (%) 0.005∗∗∗ -0.083∗∗∗

(0.00) (0.01)
Manufacturing (%) 0.002∗∗∗ -0.007

(0.00) (0.01)
Constant 10.316∗∗∗ 10.220∗∗∗ -2.278∗∗∗ -1.045∗∗∗

(0.00) (0.02) (0.05) (0.39)

Group effects Yes Yes - -
Observations 2,538 2,538 141 141
R2 .982 .985 .0794 .413

Notes: Unit of observation is region-groups in (1) and regions in (2). (1) indicates binary
indicator variables. Standard errors in parentheses.

Housing productivity. In Table A10, Column (3), we regress fundamental housing

productivity ηi,t=2017, inverted as described in Section K.3.2, against a set of dummy
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variables denoting the German supra-regions. We find that housing productivity is signif-

icantly higher in the eastern states. This is a plausible finding given the country’s history.

During the division period, former East Germany was governed by a socialist planning

regime with an emphasis on the provision of affordable housing. The relatively large

quantities of housing provided came at the expense of poor housing quality. Following

Germany’s unification, favourable tax reliefs to real estate investors led to a construction

boom and a rejuvenation of the housing stock (Flockton, 1998). Hence, it is plausible that

as of 2017, there is a greater supply of housing services for given levels of geographic land

area and demand. Likewise, it is plausible, that there is a negative housing productivity

effect near the Alps as mountainous areas are more difficult to develop. Adding industry

shares in Column (4) reveals a negative correlation between tradable services and hous-

ing productivity. One interpretation that would be in line with anecdotal international

evidence is that places with high labour productivity tend to develop restrictive planning

systems to protect amenities that are valued by the high-skilled (as, for example, in some

Californian cities). Since tradable services are concentrated in cities in the western states

(e.g. Frankfurt, Munich, Dusseldorf), the east-west gap is reduced close to zero conditional

on the industry controls.

Figure A11: Fundamental labour and housing productivity

(a) Labour productivity ψi,t=2017 (b) Housing productivity ηi,t=2017

Note: Unit of observation is 141 labour market areas as defined by Kosfeld and Werner (2012). Values inverted as
described in Sections K.3.1 and K.3.2. Group-region productivities aggregated to regions using TSE sector shares.

79



Migration costs. In Table A11, we correlate our parameter estimates capturing mi-

gration costs with measures of migration distance which, intuitively, should be positively

correlated. Indeed we find that migration resistance increases in distance at an elasticity

of 1.74 (Column 1). With a negative sign, this parameter corresponds to the distance

elasticity of migration flows that is frequently estimated by reduced-form gravity models.

Tombe and Zhu (2019) and Imbert and Papp (2019) estimate similar elasticities for China

and India. Bryan and Morten (2019) report a distance elasticity of migration of 0.7 for

Indonesia. In our model, migration costs are monitored by the origin-destination-group-

specific iceberg migration cost parameter τ θij . This parameter increases in distance at an

elasticity of 0.245 (Column 3).

Table A11: Migration costs vs. geographic and social distance

Migration
resistance

Migration
resistance

Migration
iceberg cost

Migration
iceberg cost

τθij × γθ τθij × γθ τθij τθij
Ln geographic distance 1.740∗∗∗ 0.815∗∗∗ 0.245∗∗∗ 0.148∗∗∗

(0.01) (0.03) (0.00) (0.00)
Ln social distance 0.647∗∗∗ 0.068∗∗∗

(0.02) (0.00)

Group effects Yes Yes Yes Yes
IV - Yes - Yes
Observations 355,320 355,320 355,320 355,320
R2 .808 .904 .933 .86

Notes: Unit of observation is origin-destination-group. Ln social distance is the inverse
of the log of the Facebook social connectedness index (Bailey et al., 2018). Log historic
dialect (Falck et al., 2012) similarity is used as an instrumental variable for log social
distance where indicated. Standard errors in parentheses. Regressions weighted by
O-D-group flows.

To shed some light on the mechanisms through which the geographic distance effect

operates, we utilise a social distance measure defined as the inverse of an index that

summarises how connected Facebook users in two regions are (see Appendix K.1.7 for

further details on the social connectedness index). Figure A12 shows an approximately

log-linear relationship between social distance and our estimated migration cost parameters

τ θij , suggesting that social ties may reduce the cost of rebuilding social capital at a migration

destination. As expected, social distance is positively correlated with geographic distance,

a well-known feature of social networks (Bailey et al., 2018). The geographic proximity

effect is also visible in a measure of cultural distance which is the inverse of historic dialect

similarity (Falck et al., 2012). Hence, it is no wonder that social distance and cultural

distance are also positively correlated, implying that regions that are closely connected

today usually have had cultural ties in the past.

When adding log social distance as an additional covariate in Columns (2) and (4)

in Table A11, we use log cultural distance as an instrumental variable to address re-

verse causality from migration cost to social connectedness. We find that migration costs

increase significantly in social distance, controlling for geographic distance. Moreover,

adding social distance, reduces the geographic distance effect by 53% (Column 2) and
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Figure A12: Migration cost vs. bilateral distance measures

Note: Social distance is the inverse of the Facebook social connectedness index (Bailey et al., 2018). Cultural
distance is the inverse of historic dialect similarity (Falck et al., 2012). Geographic distance is the great-circle
distance. Observations are grouped into 10−6 on the x-axis. All distance and cost measures computed for pairs of
German local labour markets.

40% (Column 4), suggesting that the cost of rebuilding social capital may be an impor-

tant component of migration costs.

To summarise how the relationship between migration costs and social distance varies

by group, we first regress the estimated migration cost parameter τ θij on log social distance

and geographical distance by group θ. We estimate the average difference in the estimated

coefficients of log social distance between gender, sex and skill groups in a second-step

regression reported in Table A12. Our preferred instrumental variable results reveal that

the elasticity of migration costs with respect to social distance is relatively large for middle-

skilled and high-skilled workers.

Employment (out-of-sample). Our data set contains all critical variables for the in-

version of the model from 2007 onward. To compare the TSE to SSE transition path

forecast by the dynamic solver to data, we invert the model from a 2007 TSE and regress

the model-based employment forecast on values observed in the data in Table A13. This

is a demanding out-of-sample over-identification test as we expect all fundamentals to be

affected by exogenous shocks, hence the within-region correlation over time is necessarily

noisy. We expect a positive correlation to the extent that these shocks are orthogonal

to the TSE deviations from the SSE since the model can predict mean reversion and the
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Table A12: Migration cost against social distance (by group)

OLS 2SLS

Female 0.004 0.004
(0.00) (0.01)

31-50 years -0.015∗∗∗ -0.000
(0.00) (0.01)

51-65 years -0.036∗∗∗ -0.003
(0.01) (0.00)

Apprenticeship 0.071∗∗∗ 0.055∗∗∗

(0.00) (0.01)
Tertiary education 0.051∗∗∗ 0.049∗∗∗

(0.00) (0.01)
Constant 0.084∗∗∗ 0.023∗∗

(0.01) (0.01)

Observations 18 18
R2 .971 .885

Notes: The units of observation are labour market re-
gion pairs. The dependent variable is the estimated co-
efficient of log social distance from separate regressions
of the estimated bilateral migration costs τθij on log ge-
ographical and log social distance for each θ-group. In
the 2SLS specification, cultural distance is used as an
instrumental variable for social distance. Robust stan-
dard errors are shown in parentheses.

causal effects of known exogenous shocks, but not the occurrence of future events.

Yet, the within-region elasticity of forecast employment with respect to observed em-

ployment is precisely estimated at 0.775 (t-stat > 25). Weighting by employment, the

estimated elasticity increases to 0.852 (t-stat > 25). Hence, the model successfully cap-

tures a mean reversion tendency that is a feature of the data, in particular for the larger

labour markets. Consistent with a less favourable signal-to-noise ratio the correlation is

weaker at the group-region level where cell sizes are much smaller. Nevertheless, if we

weight by the size of the region-group cells the elasticity, at 0.493 is still positive and

precisely estimated (t-stat > 45).

Table A13: Employment: Model-based forecast vs. data

Ln employment
(2007-2017 in data)

Ln employment
(2007-2017 in data)

Ln employment
(2007-2017 in data)

Ln employment
(2007-2017 in data)

Lθi,t Lθi,t Lθi,t Lθi,t
Ln employment (2007-2017, 0.775∗∗∗ 0.852∗∗∗ 0.091∗∗∗ 0.493∗∗∗

forecast from 2007 TSE) (0.03) (0.03) (0.01) (0.01)

Unit Region-year Region-year Region-group-year Region-group-year
Time effects Year Year Year-group Year-group
Location effects Region Region Region-group Region-group

Weights - Region emp. - Region-group emp.
Observations 1551 1551 27918 27918
R2 1 1 .998 .999

Notes: Employment forecast from a 2007 TSE using the dynamic solver. Year and year-group effects capture the effects
in changes in the size of the workforce that occur in the data but not in the model-based forecast. Standard errors in
parentheses.
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L Measuring quality of life

This section complements Section E in the main paper.

L.1 Spatial variation in quality of life

Table A14 presents estimates of the elasticity of RR-QoL with respect to DSM-QoL by

worker group that correspond to the log-linear slopes plotted in Figure 5. On average

log-point increase in DSM-QoL is associated with a 0.27-log-point increase in RR-QoL.

The estimated log slope tends to be somewhat larger for male, old, and skilled workers,

but remains below 0.5 for all groups. On average, the DSM-QoL explains almost 60% of

the variation in the RR-QoL, with some variation across groups.

Table A14: Elasticity of Rosen-Roback QoL with respect to dynamic model QoL

Gender Age Unskilled Skilled High-skilled Mean

Male 16-30 years 0.21∗∗∗ 0.32∗∗∗ 0.22∗∗∗ 0.25
Male 31-50 years 0.22∗∗∗ 0.44∗∗∗ 0.27∗∗∗ 0.31
Male 51-65 years 0.29∗∗∗ 0.45∗∗∗ 0.37∗∗∗ 0.37
Female 16-30 years 0.16∗∗∗ 0.20∗∗∗ 0.17∗∗∗ 0.18
Female 31-50 years 0.16∗∗∗ 0.31∗∗∗ 0.21∗∗∗ 0.23
Female 51-65 years 0.19∗∗∗ 0.38∗∗∗ 0.37∗∗∗ 0.32

Mean 0.21 0.35 0.27 0.27

Notes: Point estimates from group-specific region-level regressions of ln RR-
QoL (lnAθi ) against ln DSM QoL (ln Āθi ). All estimates are significant at the
1% level. The last column and row present unweighted row and column means.
QoL inverted from 2017 data.)
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L.2 Determinants of quality of life

Figure A13 shows the correlation between DSM-QoL and the big data amenity index

introduced in Appendix D.1 by group. Consistent with the pooled regression results in

Table 2, there is a positive correlation between both measures. Moreover, the correlation

is similarly well defined across groups. Hence, Figure A13 substantiates the notion that

social-media-based big data may serve as a proxy for QoL.

Figure A13: Quality of life (DSM) vs. big data (photos) amenity

Notes: 2017 values. Unit of observation is region-group. Model-based amenity inverts QoL from a TSE assuming
that agents have perfect foresight. Big data amenity is the number of geo-tagged photos shared in social media
(Flickr and Picasa).
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M Policy evaluation

This section complements Section F in the main paper.

M.1 Social welfare

In this section, we derive the social welfare measure introduced in Section F.1. We start

with a social welfare function that allows for inequality aversion in a general form. Fol-

lowing Atkinson (1970), we assume

W =
1

1− ε
∑
i

∑
θ

(
Rθi,t

)1−ε Lθi
L̄

(38)

for both the baseline (∗) and the counterfactual (c) spatial equilibrium. The degree of

inequality aversion is measured by 0 ≤ ε 6= 1.11

It is instructive to transform Eq. (38) into a scale-dependent part R and a scale-

independent part that penalises for inequality 1 − I. The former is simply the weighted

average of location-group utility that for the baseline and the counterfactual is respectively

given by:

R∗ =
∑
i

∑
θ

Rθi|i
∗Lθi

∗

L̄
(39)

Rc =
∑
i

∑
θ

R̂θiR
θ
i|i
∗Lθi

∗

L̄
. (40)

Using the “exact hat algebra” approach by Dekle et al. (2007), we express group-region

utility in the counterfactual measured at the migration origin as R̂θiRθi|i
∗
. This way, we

account for changes in expected utility and migration costs which enter into R̂θi .
To derive the inequality measure I, we search for the equally distributed equivalent

utility UEDE (a hypothetical average level of expected lifetime utility across individuals)

that leads to the same level of welfare as with the actual distribution of expected lifetime

utilities. Eq. (38) implies that

W(REDE) =
1

1− ε
(REDE)1−ε, (41)

such that we can solve for REDE by equalising Eqs. (38) and (41). This yields

REDE =

[∑
i

∑
θ

(
Rθi|i

)1−ε Lθi
L̄

] 1
1−ε

.

11We obtain log-utility as a special case for ε = 1.

85



Using Atkinson’s inequality measure

I = 1− REDE
R

∈ [0, 1], (42)

we obtain

I∗ = 1−
[∑

i

∑
θ

(Rθi|i∗
R∗

)(1−ε)Lθi
∗

L̄

] 1
1−ε

(43)

Ic = 1−
[∑

i

∑
θ

(R̂θiRθi|i∗
Rc

)(1−ε)Lθi
∗

L̄

] 1
1−ε

(44)

for both the baseline and the counterfactual case, respectively. These derivations allow us

to reformulate Eq. (38) as W = R (1− I) and express changes in social welfare according

to Eq. (17).

M.2 Instrumental variable estimates of air pollution effects

This section complements Section F.2 in the main paper. We discuss our wind-adjusted

coal exposure instrumental variables in greater detail and provide a discussion of the rele-

vance and the validity of the instrumental variables as well as the underlying mechanisms.

Wind-adjusted coal exposure. To generate exogenous variation in pollution levels,

we follow Deryugina et al. (2019) and Heblich et al. (2020) and exploit that the diffusion

of air pollution is shaped by winds and that, historically, coal deposits attracted high-

polluting industries (for example steal mills) and power plants. We define wind-induced

coal exposure E for region i as follows:

EEi =

∑
i 6=j

CCEj
WDij∑

i 6=j
CCEj
Dij

, (45)

where E = {black coal, brown coal}, CCj is the percentage of the geographic area of region

j with coal deposits, Dij is the crow-flight distance between region i and region j and WDij

is the wind-adjusted distance defined as follows:

WDij =
Dij
wi,r(ij)

1
R

∑R
s=r=ws,i(ij)

,

where wr,i(ij) =
Wr,i(ij)∑R
s=rWs,i(ij)

and Wr(ij) is the frequency of winds blowing from direction

r ∈ R.

The denominator in Eq. (45) is a geographical exposure measure that aggregates CCi

across surrounding regions, weighted by distance. This formulation is closely related to

the market potential by Harris (1954), which has become a workhorse tool in economic

geography, international trade, and urban economics. The fact that we exclude the “self-
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potential” (for region i = j) makes our exposure measure similar to spatial lags used in

geographic data science where spatial auto-correlation is viewed as a typical manifestation

of the First Law of Geography (Tobler, 1970). The numerator in Eq. (45) is a meteorological

exposure measure constructed in exactly the same way as the denominator, except that the

spatial weights incorporate wind patterns. Intuitively, we scale down geographic distance

(WDij < Dij) if winds typically blow from j to i. Likewise, we scale up geographic

distance (WDij > Dij) if winds typically blow from i to j. Through the normalisation by

the conventional spatial lag, we net out the effects of outcomes that are correlated with CC

and auto-correlated in space. Since we exclude region i in the exposure measure EEi , we

also exclude any unobserved variables that determine the QoL and pollution production

within the same region. As a result, our exposure measure identifies the air pollution effect

from wind-induced variation, exclusively.

We obtain the frequency distribution of winds by direction r ∈ R for region i ∈ J

from Kasperski (2002). In these data, r is defined in terms of R = 36 10-degree intervals

where r = 0 if region j is exactly north of region i. Figure A14 illustrates the frequency

distribution for the four largest German cities using wind rose diagrams. With this infor-

mation, it is a matter of simple 2D geometry to compute a radian angle for an ij-route as

atan2(yj − yi, xj − xi) (x and y are coordinates in a projected system) and map it to the

wind rose via a standard radian-to-degree conversion.
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Figure A14: Wind rose diagrams

(a) Hamburg (b) Berlin

(c) Cologne (d) Munich

Note: Own illustration of data provided by Kasperski (2002). Sizes of slices are proportionate to wind frequency.
Darker colours indicate stronger winds. Geographic directions (in a polar coordinate system) refer to the directions
from where winds blow.
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Relevance. Panel (a) of Figure A15 illustrates the regional differences in the concen-

tration of particulate matter in Germany. With the exception of a few regions along

the former inner-German border, pollution levels are generally higher in East Germany.

Within West Germany, higher concentration levels are recorded around the Ruhr Valley in

North-Rhine Westphalia as well as in parts of the North. Except for Ludwigshafen, where

chemical industry is located, and Passau, pollution levels are considerably lower in South

Germany.

Figure A15: Coal cover vs. pollution

(a) PM10 concentration (b) Coal deposits (back and brown)

Note: Unit of observation are 141 labour market regions defined by Kosfeld and Werner (2012). Coal exposure is
the wind-adjusted-distance-weighted aggregated of coal deposits in surrounding regions j 6= i.
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–Figure A15 – continued from previous page

(c) Meteorological black coal exposure (d) Geographical black coal exposure

(e) Meteorological brown coal exposure (f) Geographical brown coal exposure

Note: Unit of observation are 141 labour market regions defined by Kosfeld and Werner (2012). Meteorological
coal exposure is numerator in Eq. (45). Gegraphical coal exposure is denominator in Eq. (45). Intuitively, both
exposure measures are distance-weighted aggregated of coal deposits in surrounding regions j 6= i using inverse
distance weights. For the meteorological exposure measures, geographic distance are adjusted for wind directions .
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These differences in the concentration of particulate matter bear a close resemblance

to the spatial distribution of brown and black coal fields which is shown in panel (b).

Areas in which large-scale extraction of coal has been taking place are clearly visible in

North-Rhine Westphalia and the Saarland in West Germany as well as in parts of Saxony,

Saxony-Anhalt and Brandenburg in East Germany.

Panel c) shows a region’s log meteorological exposure to black coal which is based

on the wind-adjusted distances (the numerator of Eq. (45)). The area with the highest

concentration contains the Ruhr Valley as well as the regions to the North-East of the

former, because winds typically blow from the South-West (as shown in Figure A14).

Panel d) reflects the geographical exposure to black coal that is based on adjusted crow-

flight distances (the denominator of Eq. (45)). In contrast to panel c), the iso-exposure

lines are approximately concentric, with the Ruhr Valley being the nucleus of the gradient.

Panels e) and f) show the same exposure measures for brown coal deposits. Intuitively,

we identify from wind-induced exposure to coal deposits, exclusively, by using the log-

Table A15: Quality-of-life determinants

(1)
lnPM10

(2)
lnPM10

(3)

Āθi
Ln wind-adjusted exposure 0.152∗∗∗ 0.105∗∗∗

to black coal (0.02) (0.02)
Ln wind-adjusted exposure 0.077∗ 0.028
to brown coal (0.04) (0.03)

Ln pollution concentration (pm10) -1.935∗∗∗

(0.69)
East -0.221∗∗

(0.09)
Near Alps (dummy) -0.452∗∗∗

(0.17)
Near coast (dummy) -0.286∗∗∗

(0.10)
Ln crime per capita 0.340∗∗∗

(0.11)
Ln area 0.112

(0.09)
Housing stock destroyed in WWII (%) 0.013∗∗∗

(0.00)
Number of Opera houses 0.178∗∗∗

(0.03)
Ln water area 0.175∗∗

(0.08)

First-stage F-statistic 24.532
Group-year effects Yes Yes Yes
Controls No Yes Yes
Observations 27,918 27,918 27,918
R2 .508 .673 .504

Notes: Unit of observation is region-group-year. Regional pollution is instru-
mented using the wind-adjusted log exposure to black and brown coal as de-
scribed in Section M.2 and are determined net of market access.First-stage F-
Statistic refers to the Kleibergen-Paap rank LM statistic. Standard errors clus-
tered on regions. + p < 0.15, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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difference between the two exposure measures depicted in panels (c) and (d) as well as in

(e) and (f) as instrumental variables for air pollution.

Columns (1) and (2) of Table A15 provide a closer assessment of the relationship

between the concentration of particulate matter and the coal exposure IVs. While the

conditional correlation of the brown coal exposure measure depends on the specification,

black coal exposure has a positive effect on air pollution levels throughout.

Mechanism. For much of the 19th and the 20th century, coal was an essential input

for energy-intense industries and coal power plants which co-located with coal deposits

due to transport costs that used to be much higher than they are today (Mohammed

and Williamson, 2004; Fernihough and O’Rourke, 2020). Path-dependency is a well-

documented feature of economic geography (Davis and Weinstein, 2002; Redding et al.,

2010; Bleakley and Lin, 2012). Polluting industries and power plants are no exception and

have remained in close proximity of coal deposits when transport costs fell, making them

an indirect source of air pollution. The advantage of using coal deposits in the exposure

measure over polluting establishments is that the former is exogenously determined by ge-

ology while the location of the latter is to some extent endogenously determined by local

economic conditions.

Column (1) of Table A16 shows that there is a strong relationship between brown and

black coal deposits on the one hand and the number of active coal plants on the other

hand. This association extends to the geographical coal exposure measures, as shown in

Column (2). In Columns (3) and (4) we use the number of employees in energy-intensive

heavy industry as the dependent variable. A larger share of areas with coal deposits is

associated with a larger number of worker in these sectors (conditional on a region’s overall

employment level) which supports the hypothesis of collocation of black coal deposits and

energy-intensive industry. We find no such relationship in the case of brown coal, which

is consistent with the greater predictive power of the black coal exposure measure in the

first stage of the IV regressions (see Table A15).

Validity. The use of coal exposure as an instrumental variable hinges on the assumption

that there are no other channels through which the former might influence QoL. Arguably,

we have ruled out many of the causes for concern by excluding region i = j from the

exposure measures. Hence, local disamenity effects of coal power plants, for example

related to unpleasant views, will not be captured by our instrumental variables. There

is also the concern that the presence of heavy industry in regions with coal deposits led

to intensive bombing raids during WWII. It is conceivable that the resulting destruction

of the housing stock and of infrastructure led to a permanent reduction in QoL in those

regions. We control for a potential war-destruction effect in our IV regressions, but even if

our control was imperfect, excluding region j = i in the construction of the coal exposure

IVs ensures that the IVs will not capture effects of WWII destruction in region i.

However, one may argue that workers travel across regions for leisure. Hence, WWII
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Table A16: Collocation of energy-intensive heavy industries and coal plants with
coal deposits

(1)
Number of
active coal

plants

(2)
Number of
active coal

plants

(3)
Employees in

energy-intensive
heavy industry

(4)
Employees in

energy-intensive
heavy industry

Black coal cover (in %) 1.658∗∗∗ 0.288∗∗

(0.51) (0.14)
Brown coal cover (in %) 3.226∗∗∗ -1.133∗∗

(0.89) (0.53)
Ln black coal exposure 1.063∗∗∗ 0.390∗∗∗

(0.33) (0.10)
Ln brown coal exposure 0.869∗∗ -0.336∗∗∗

(0.43) (0.13)
Ln employment 0.789∗∗∗ 0.740∗∗∗

(0.06) (0.04)
Constant -1.107∗∗∗ 5.966∗∗∗ -0.369 0.279

(0.26) (1.84) (0.76) (0.89)

Observations 141 141 141 141
Pseudo R2 .099 .089 .650 .717

Notes: Unit of observation is region. Poisson estimation. Sector shares are measured in 2017.
Robust standard errors. + p < 0.15, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

destruction or any other legacy effect of nearby coal fields on the attractiveness of nearby

regions could be captured by our coal exposure measures. This is why we normalise mete-

orological exposure by geographic exposure in Eq. (45). We argue that all spatial spillover

effects that operate independent of wind directions will be net out by geographic exposure

in the denominator. Hence, the instrument defined in Eq. (45) provides identifying vari-

ation stemming purely from wind-induced patterns in air pollution which we argue to be

exogenous.

M.3 Other applications

This section provides a more detailed discussion of the results summarised in Section F.3.

We present several counterfactual exercises, which are all motivated by the frequently

expressed concern that the Covid-19 pandemic may negatively affect the attractiveness

of large cities due to reduced personal contacts that are crucial for productivity (e.g.

knowledge spillovers) or the utility derived from endogenous amenities (e.g. pubs).

We would like to stress that we do not wish to take any stance on the likely effect of

Covid-19 on productivity and QoL in cities. The below scenarios are hypothetical thought

experiments and, if anything, worst-case scenarios. The reduction in the urban wage and

QoL life premia will likely be partial and to some extent temporary. Moreover, even if

worse comes to worst, our model predicts that it will take 30 years for 75% of the effects

in Table A17 to materialise (see Figure A8).

No agglomeration economies. In this counterfactual, we hold all structural funda-

mentals constant. Instead, we set the agglomeration elasticity parameter κθ = 0 after we
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Table A17: Counterfactual analysis: Other applications

(a) No agglomeration economies All LLM Large LLM Small LLM

Population 1.000 0.912 1.095
GDP 0.895 0.840 0.976
Average wage 0.895 0.893 0.904
Average rent 0.942 0.969 0.996
High-skilled share 1.000 1.032 0.981
Skilled share 1.000 0.981 1.010
Average utility 0.886 0.903 0.905

(b) No social amenities

Population 1.000 0.633 1.492
GDP 0.990 0.625 1.521
Average wage 0.990 0.988 1.019
Average rent 0.734 0.907 1.067
High-skilled share 1.000 0.999 1.173
Skilled share 1.000 0.967 0.977
Average utility 0.604 0.601 0.781

(c) Scenarios (a) and (b) combined

Population 1.000 0.621 1.508
GDP 0.891 0.554 1.379
Average wage 0.891 0.893 0.914
Average rent 0.718 0.889 1.051
High-skilled share 1.000 1.008 1.169
Skilled share 1.000 0.961 0.979
Average utility 0.548 0.551 0.707

(d) Scenario (c) with threefold γθ

Population 1.000 0.373 1.848
GDP 0.889 0.339 1.690
Average wage 0.887 0.907 0.915
Average rent 0.627 0.794 1.066
High-skilled share 1.000 0.746 1.342
Skilled share 1.000 1.011 0.943
Average utility 0.642 0.653 0.717

Notes: Results from model-based numerical simulations. Large (small) local labour markets
(LLM) have a workplace employment of more (less) than 250k workers. All outcomes except
for the last two are given in ratios of counterfactual (SSE) values over initial (SSE) initial
values.
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solve for the initial SSE and before we solve for the counterfactual SSE. The results are

in panel a) of Table A17. Without agglomeration economies, productivity, wages, and

GDP decline in all local labour markets (LLMs). The effects are stronger in the large

LLMs which lose about 9% of their workers to smaller LLMs. The reduction in housing

demand owing to decreasing wages leads to lower rents in all LLMs. Due to the shift in

demand from the larger towards smaller LLMs the effect is quantitatively small in the

smaller LLMs.

No social amenities. We start from the assumption that conditional on controls the

big data amenity index captures QoL-effects of endogenous amenities (e.g. cafes, concert

halls, pubs) where people engage in activities that generate social media content. Solving

Eq. (28) for the log of QoL gives the following specification which we take to the data in

group-specific regressions:

lnAθi,t = c̄P ζ̃θ lnPi + X ′
i b̃
θ + ε̃i

θ,

where c̄P ≡ c̃P , ζ̃θ = 1
ζθ

, X ′
i b̃
θ ≡

∑
n (bθn

P
lnXi,n) and ε̃i

θ ≡ − ln εi
θ. We include all covari-

ates other than the residualised big data amenity index from Table 2 in X ′
i . To evaluate

an extreme case in which all amenities captured by the big data amenity conditional on

covariates become obsolete, we define the counterfactual change in QoL as Âθi =
(
PMin

Pi

)ζθ
,

where PMin is the smallest value in the distribution of the big data amenity index across

regions. Otherwise, the procedure is identical to the one outlined in Section F.

The results are in panel b) of Table A17. As with the reduction in agglomeration

economies, the QoL shocks hit the larger LLMs harder which is consistent with large cities

offering particularly vibrant cultural, gastronomic, and nightlife amenities. The effects are

considerably larger than in the no “agglomeration economies” scenario, with population

size predicted to drop by almost 40% in large LLMs. The effect on overall GDP is more

moderate, though there is a large drop (increase) for large (small) LLMs. The large

migration into small LLMs causes rents to rise in absolute terms, whereas they naturally

fall in the large LLMs.

No agglomeration economies and no social amenities. In a third scenario, we

explore the joint effect of eliminating productivity and consumption benefits of big cities.

As expected, the results in panel c) of Table A17 blend the results from panels a) and

b). Large LLMs lose slightly more of their population than in panel b). There are large

negative effects on wages in both regions and yet rents increase in the small LLMs due to

the shift in demand.

No agglomeration economies and no social amenities, with threefold γθ. The

last scenario in panel d) of Table A17 serves the purpose of illustrating how the frictional

nature of our DSM anchors the spatial economy in the presence of a major shock. As
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discussed in Section C, spatial arbitrage in our model is imperfect unless the migration

elasticity γθ is very large. Larger γθ necessarily imply lower migration costs τ θij,j 6=i since

γ × τ θij is jointly identified empirically. Tripling γθ brings the average across groups close

to unity after which the DSM-QoL approaches the RR-QoL (see Figure 6).

In panel d) we invert the model using thrice the estimated value of γθ. We then make

the same changes to κθ and Aθi as in scenario c) maintaining the large γθ values. Expect-

edly, the larger migration response owing to reduced idiosyncratic attachment amplifies

the effects found in scenario c). Large LLMs lose more than 60% of their workers and al-

most 70% of their GDP. Despite a reduction in wages of about 9%, small LLMs experience

rents increasing by 7% due to an increase in employment by about 85%.

The important takeaway is that the effects predicted by our model are not nearly

as devastating as predicted by a canonical SSE model. The intuition is that because of

idiosyncratic tastes many infra-marginal workers will not leave large LLMs even if the

expected group-specific utility is larger in small LLMs. We consider this a realistic feature

of our model.

N Quality-of-life rankings

In Table A18, we provide a ranking of regions according to QoL in the spirit of Blomquist et

al. (1988) and Albouy (2011). We use the region-level group-mix adjusted QoL measures

displayed in Figure 4. Confirming the evidence presented in Section E, DSM-QoL and

RR-QoL are closely correlated at the regional level, in logs and ranks (see also Figure

A16).

Figure A16: DSM-QoL vs. RR-QoL

(a) Logs (b) Ranks

Note: Unit of observation is 141 labour market areas as defined by Kosfeld and Werner (2012). Group adjustment
in auxilliary regressions of ln quality of life against group and region fixed effects, the latter being shown in figures.
Marker size proportionate to employment in local labour market.
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Table A18: Quality of life rankings

Labour market
DSM-QoL
Rank

DSM-QoL
in logs

RR-QoL
Rank

RR-QoL
in logs

Rank
difference

Berlin 1 1.648 3 0.393 2

München 2 1.563 2 0.438 0

Hamburg 3 1.549 1 0.478 -2

Frankfurt am Main 4 1.366 4 0.303 0

Köln 5 1.097 5 0.281 0

Düsseldorf 6 1.089 7 0.245 1

Stuttgart 7 1.048 14 0.200 7

Hannover 8 0.855 16 0.192 8

Nürnberg 9 0.702 39 0.096 30

Mainz 10 0.647 12 0.209 2

Leipzig 11 0.588 24 0.149 13

Münster 12 0.581 13 0.203 1

Karlsruhe 13 0.578 41 0.081 28

Heidelberg 14 0.563 25 0.146 11

Dresden 15 0.553 8 0.243 -7

Bonn 16 0.538 30 0.124 14

Bremen 17 0.512 57 0.049 40

Ludwigshafen 18 0.507 64 0.026 46

Essen 19 0.494 92 -0.076 73

Freiburg 20 0.467 9 0.239 -11

Bielefeld 21 0.432 61 0.033 40

Ingolstadt 22 0.430 17 0.184 -5

Regensburg 23 0.430 11 0.215 -12

Würzburg 24 0.397 36 0.103 12

Böblingen 25 0.378 31 0.124 6

Koblenz 26 0.374 49 0.060 23

Erlangen 27 0.359 10 0.231 -17

Heilbronn 28 0.355 55 0.055 27

Ravensburg 29 0.350 43 0.076 14

Darmstadt 30 0.341 21 0.160 -9

Dortmund 31 0.339 87 -0.065 56

Ulm 32 0.329 35 0.104 3

Kiel 33 0.328 33 0.112 0

Aachen 34 0.320 38 0.098 4

Augsburg 35 0.320 28 0.131 -7

Gießen 36 0.307 42 0.076 6

Erfurt 37 0.286 45 0.071 8

Kassel 38 0.274 58 0.046 20

Osnabrück 39 0.273 47 0.068 8

Konstanz 40 0.265 6 0.257 -34

Traunstein 41 0.232 20 0.163 -21

Soest 42 0.225 68 0.021 26

Göttingen 43 0.205 34 0.107 -9

Magdeburg 44 0.205 51 0.059 7

Oldenburg 45 0.192 26 0.145 -19

Braunschweig 46 0.168 40 0.082 -6

Rostock 47 0.158 19 0.179 -28

Landshut 48 0.155 29 0.130 -19

Reutlingen 49 0.152 48 0.061 -1

Halle 50 0.138 74 0.004 24
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–Table continued from previous page

Labour market
DSM-QoL
Rank

DSM-QoL
in logs

RR-QoL
Rank

RR-QoL
in logs

Rank
difference

Bochum 51 0.132 112 -0.143 61

Fulda 52 0.118 52 0.059 0

Bamberg 53 0.117 15 0.200 -38

Aschaffenburg 54 0.109 27 0.135 -27

Saarbrücken 55 0.078 77 -0.016 22

Trier 56 0.074 22 0.160 -34

Chemnitz 57 0.068 108 -0.131 51

Heidenheim 58 0.044 76 -0.015 18

Kempten 59 0.032 59 0.044 0

Lübeck 60 0.029 66 0.023 6

Ortenaukreis 61 0.029 62 0.032 1

Rottweil 62 0.001 85 -0.052 23

Minden 63 -0.001 97 -0.085 34

Wolfsburg 64 -0.007 54 0.057 -10

Hagen 65 -0.009 111 -0.142 46

Schwerin 66 -0.021 65 0.025 -1

Teltow-Fläming 67 -0.032 37 0.100 -30

Schweinfurt 68 -0.035 75 -0.002 7

Jena 69 -0.037 32 0.112 -37

Weilheim-Schongau 70 -0.066 23 0.153 -47

Bayreuth 71 -0.070 60 0.042 -11

Vechta 72 -0.084 44 0.074 -28

Märkisch-Oderland 73 -0.095 18 0.182 -55

Emsland 74 -0.114 93 -0.077 19

Göppingen 75 -0.114 69 0.020 -6

Wuppertal 76 -0.117 131 -0.200 55

Olpe 77 -0.120 118 -0.169 41

Pforzheim 78 -0.122 84 -0.038 6

Lörrach 79 -0.123 50 0.060 -29

Schwäbisch Hall 80 -0.149 70 0.011 -10

Borken 81 -0.179 67 0.021 -14

Kaiserslautern 82 -0.194 88 -0.066 6

Limburg-Weilburg 83 -0.195 98 -0.092 15

Memmingen 84 -0.197 56 0.053 -28

Potsdam-Mittelmark 85 -0.202 104 -0.106 19

Altötting 86 -0.211 71 0.009 -15

Amberg 87 -0.213 91 -0.074 4

Emden 88 -0.216 126 -0.185 38

Siegen 89 -0.220 103 -0.103 14

Frankfurt (Oder) 90 -0.231 95 -0.082 5

Deggendorf 91 -0.234 53 0.059 -38

Landau 92 -0.239 72 0.009 -20

Oberhavel 93 -0.251 46 0.069 -47

Bad Kreuznach 94 -0.253 83 -0.037 -11

Flensburg 95 -0.258 110 -0.138 15

Waldshut 96 -0.261 63 0.027 -33

Cottbus 97 -0.268 80 -0.031 -17

Passau 98 -0.273 81 -0.032 -17

Bautzen 99 -0.289 132 -0.217 33

Ansbach 100 -0.305 94 -0.082 -6
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– Table continued from previous page

Labour market
DSM-QoL
Rank

DSM-QoL
in logs

RR-QoL
Rank

RR-QoL
in logs

Rank
difference

Goslar 101 -0.307 120 -0.173 19

Coburg 102 -0.308 73 0.005 -29

Nordvorpommern 103 -0.315 79 -0.031 -24

Pirmasens 104 -0.336 102 -0.101 -2

Elbe-Elster 105 -0.336 107 -0.125 2

Kleve 106 -0.346 100 -0.093 -6

Ostprignitz-Ruppin 107 -0.349 82 -0.035 -25

Celle 108 -0.365 90 -0.074 -18

Donau-Ries 109 -0.367 78 -0.021 -31

Dessau-Roßlau 110 -0.369 124 -0.180 14

Mecklenburgische Seenplatte 111 -0.380 109 -0.136 -2

Bremerhaven 112 -0.392 127 -0.186 15

Stade 113 -0.401 89 -0.071 -24

Gera 114 -0.409 122 -0.178 8

Weißenburg-Gunzenhausen 115 -0.414 101 -0.099 -14

Suhl 116 -0.427 119 -0.173 3

Cham 117 -0.446 86 -0.062 -31

Südvorpommern 118 -0.475 105 -0.107 -13

Hof 119 -0.500 141 -0.413 22

Hameln 120 -0.505 121 -0.178 1

Eisenach 121 -0.508 114 -0.150 -7

Saalfeld-Rudolstadt 122 -0.509 117 -0.165 -5

Wilhelmshaven 123 -0.511 135 -0.239 12

Zollernalbkreis 124 -0.530 123 -0.179 -1

Uckermark 125 -0.533 106 -0.121 -19

Nordhausen 126 -0.537 99 -0.093 -27

Lüchow-Dannenberg 127 -0.544 113 -0.148 -14

Altenkirchen 128 -0.547 125 -0.181 -3

Havelland 129 -0.577 136 -0.241 7

Waldeck-Frankenberg 130 -0.584 139 -0.299 9

Dithmarschen 131 -0.589 96 -0.082 -35

Stendal 132 -0.608 128 -0.191 -4

Sigmaringen 133 -0.621 115 -0.150 -18

Bitburg 134 -0.624 116 -0.156 -18

Freyung-Grafenau 135 -0.655 133 -0.218 -2

Höxter 136 -0.676 134 -0.229 -2

Vulkaneifel 137 -0.688 129 -0.192 -8

Kronach 138 -0.689 130 -0.198 -8

Uelzen 139 -0.701 137 -0.244 -2

Unstrut-Hainich 140 -0.735 138 -0.282 -2

Prignitz 141 -0.777 140 -0.340 -1
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