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Abstract 
This paper estimates the link between population density and COVID-19 spread and severity in the 
contiguous United States. To overcome confounding factors, we use two Instrumental Variable (IV) 
strategies that exploit geological features and historical populations to induce exogenous variation 
in population density without affecting COVID-19 cases and deaths directly. We find that density 
has affected the timing of the outbreak, with denser locations more likely to have an early 
outbreak. However, we find no evidence that population density is positively associated with 
time-adjusted COVID-19 cases and deaths. Using data from Google, Facebook, the US Census 
and The County Health Rankings and Roadmaps program, we also investigate several possible 
mechanisms for our findings. We show that population density can affect the timing of 
outbreaks through higher connectedness of denser locations. Furthermore, we find that 
population density is positively associated with proxies for social distancing measures, access to 
healthcare and income, highlighting the importance of these mediating factors in containing the 
outbreak. 
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1. Introduction

The ongoing COVID-19 pandemic had led to approximately 6.3 million confirmed
cases and 375 thousand deaths globally as of 31 May 2020. Whilst the virus has
affected most countries around the world to some extent, there is wide variation be-
tween and within countries in the spread and severity of cases. Given the significant
health and economic consequences of the pandemic, it is vital to understand the key
drivers of this variation to establish an adequate policy response. Historically, cities
have been associated with the propagation of infectious diseases but it remains un-
known whether this is also the case for the COVID-19 pandemic.1 Has density - the
defining feature of cities - promoted the spread of COVID-19? Have city dwellers
been especially affected by the health consequences of the pandemic?

Estimating how population density shaped the spread and severity of the COVID-
19 outbreak is challenging for several reasons. First, population densities are not
randomly assigned and they might be correlated with unobserved confounding fac-
tors. For example, population densities can be affected by locational productive ad-
vantages, whether natural or man-made (e.g. soil quality or transportation infras-
tructure), that may also simultaneously affect local economic conditions. Insofar
as the COVID-19 outbreak is affected by economic factors, unobservable locational
advantages can confound the effect of density on the spread and severity of the dis-
ease. Second, differences in the timing of the onset of the disease can generate cross-
sectional differences in the severity of the outbreak at one point in time. Finally, data
on COVID-19 cases might be reported with error due to variation in local testing
strategy and capacity.

In this paper, we estimate the causal relationship between population density and
the health impacts of COVID-19 in urban counties of the contiguous United States.
We overcome the empirical challenges mentioned above in several ways. We use two
Instrumental Variable (IV) strategies borrowed from the agglomeration literature
in economics to induce plausibly exogenous variation in population density without
affecting COVID-19 cases and deaths directly. More specifically, in our geological

IV approach, we use the presence of aquifers, earthquake risk, and soil drainage

1See Duranton and Puga (2020); Voigtländer and Voth (2013) for treatments of this relationship
in economics.
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capacity to build an instrument for density (as in Carozzi and Roth 2020). In our
historical IV strategy, we use the traditional long-lag instrument, which measures
urban population density in the 1880 US Census (as in Ciccone and Hall 1996). We
study both how density affected the timing of the outbreak in each county and the
time adjusted number of deaths after that outbreak. We focus on the daily number
of confirmed COVID-19 deaths rather than cases as our main outcome of interest
since this is considered to be a more accurate indicator of local COVID-19 prevalence
Subbaraman (2020). Nevertheless, we do also provide complementary analysis us-
ing reported cases. Finally, we cross-validate our COVID-19 figures with data from
different sources to ensure reported deaths are consistent with other measures of
COVID-19 mortality.

To the best of our knowledge, there are only three available studies that have
examined the link between density and COVID-19 incidence in the United States.2

Wheaton and Kinsella Thompson (2020) used data on 351 cities and towns in Mas-
sachusetts to provide a cross-section analysis of the per capita infection rate. They
find that population density has an economically and statistically significant positive
effect on the incidence of the disease. Almagro and Orane-Hutchinson (2020) also
examine this link but use data on the number of tests and positives across NYC zip
codes. They also find a significant positive relationship between population density
and the share of positive tests, but this relationship seems to decline over time. Fi-
nally, Hamidi, Sabouri and Ewing (2020) document a flat relationship relationship
between density and prevalence at the county level after controlling for population.3

Importantly, these studies provide descriptive evidence on the correlation between
density and the spread of the pandemic, but do not attempt to identify a plausibly

2The literature on the relationship between the 1918 Influenza pandemic (the Spanish Flu) and
population density is naturally more developed and can shed light on the link between pandemics
and density more broadly. Interestingly, while it may seem intuitive that the influenza pandemic was
positively associated with population density as the virus spread via human contact, a review of the
literature produce mixed results. For example, Garrett (2007) finds a positive relationship between
mortality rates and population density in the US. In contrast, Mills, Robins and Lipsitch (2004) find
no statistical association between population density and the initial reproductive number (R) using
data on 45 US cities. Chowell et al. (2008) also find no association between transmissibility, death
rates and indicators of population density in England and Wales. Ferguson et al. (2006) studies the
development of the 1918 pandemic and finds early onset in dense urban cores before a more smooth
development of the disease across space.

3Flat cross-sectional relationships between COVID incidence and density have been reported for
Spain by Diego Puga and the United Kingdom by Max Nathan.
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causal relationship, nor they discuss the timing of the outbreak.
We find convincing evidence that density has affected the timing of the outbreak

in each county, with denser locationsmore likely to have an early outbreak. However,
we find no evidence that population density is positively associated with COVID-19
cases and deaths once we adjust for the timing of the onset of the disease and account
for confounding factors. On first reflection, this latter result seems surprising given
that the virus spreads via human contact and denser areas provide more opportuni-
ties for human interactions. Nevertheless, several mediating factors might explain
why even in theory the direction of this relationship is in fact ambiguous. For ex-
ample, variation in density might affect the behavioural responses to the pandemic,
which can itself affect the spread and severity of the outbreak.

We examine several potential mechanisms for our main results using data from
Google, Facebook, the US Census and The County Health Rankings and Roadmaps
program. We begin by exploring the effect of density on Americans’ behavioural re-
sponses to the pandemic since the spread of the virus is not exclusively a biological
phenomenon but also a social one (Papageorge et al., 2020). We show that density is
negatively associated with the change in work and leisure related activities during
the outbreak, suggesting that compliance with social distancing measures might be
an important mediating factor. Relatedly, we examine whether population density is
associated with differences in political preferences. This is motivated by documented
partisan differences in Americans’ responses to the pandemic. We find that density
is negatively associated with the share of Republican voters, which have been shown
to be less engaged in social distancing and other efforts to reduce transmission All-
cott et al. (2020). Finally, we examine the effect of density on access to healthcare,
household income and age, as these are likely to affect COVID-19 related mortality.
We find that population density is positively associated with access to healthcare and
income and negatively associated with age. These results highlight the possibility
that better access to healthcare, higher income and lower share of older residents,
might alsomediate the hypothesised positive effect of density on COVID-19 incidence
and mortality. Collectively, these results yield suggestive evidence of mechanisms
generating offsetting negative effects of density on the spread and severity of the
COVID-19 outbreak.
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Our study provides several contributions to the existing academic literature on
urban density and has significant policy implications. First, to the best of our knowl-
edge we are the first to credibly estimate the causal relationship between population
density and COVID-19 related mortality. Second, our results show population den-
sity appears to affect the impact of COVID-19 only through the timing of outbreaks
and not through the rate of subsequent spread. As such, our results highlight some
weaknesses of the popular hypotheses of the supposedly detrimental effects of the
COVID-19 pandemic on cities. Third, our study predicts that in case of a second
wave of the pandemic, denser places might be affected earlier (due to their connect-
edness) but once affected, the spread and severity may not differ from less denser
places. Importantly, our results also highlight the gravity of non-pharmaceutical in-
terventions (i.e. social distancing) and access to healthcare in containing the spread
and severity of the virus.

2. Data

Our dataset combines information on COVID-19 cases and deaths, population
density, demographics, social connectedness, behavioural adjustment, voting be-
haviour, healthcare provision, income and geological features at the US county level.
The period under investigation ranges from the the 22nd of January, when the first
US case was confirmed in ‘King County’, up until the 1st of June 2020. We restrict
our sample to urban counties4 in the contiguous United States which leaves us with
1,759 counties representing ∼ 93% of the total US population. For certain parts of
the analysis, we focus on the outbreak dynamic and therefore reduce the sample fur-
ther to those counties that had at least one confirmed COVID-19 related death 45
days before the end of our sample period. Our final sample consists of 1,197 counties
representing ∼ 82 % of the total US population (see Figure A.1). In the following, we
describe the dataset and provide further information about the sources and URLs
for download in Appendix B and descriptive statistics in Table 1.

COVID-19 Cases and Deaths

4Urban counties are those that are classified as either ‘metropolitan’ or ‘micropolitan’ core-based
statistical areas in the 2010 census.
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We obtain a panel of daily confirmed COVID-19 fatalities and cases for US counties
from usafacts.org. The most intuitive indicator to monitor the COVID-19 outbreak
is the daily number of confirmed cases. However, this figure is likely to be distorted
by varying local testing strategy and capacity. Furthermore, the ability of the virus
to spread across asymptomatic people makes the task of recording the number of
infections in the community extremely difficult (Subbaraman, 2020). Therefore, we
mainly use the daily number of confirmed COVID-19 deaths as this is a more accu-
rate indicator of the local COVID-19 prevalence.5 In order to ensure that our COVID-
19 data is reliable, we cross-validate our COVID-19 figures with official data from
the Centers for Disease Control and Prevention (CDC). In the left panel of Figure
A.2, we compare our total COVID-19 fatality counts by county to the latest figures
on officially confirmed deaths due to COVID-19. In the right panel, we compare total
fatalities to CDC excess death estimates. Both graphs exhibit strong linear relation-
ships and support the validity of our COVID-19 data.6

Population Density
Based on the US census for 2010, we compute two measures of population den-
sity. The first indicator is simply the total population of a county over its total area.
The second indicator computes the population density for all census-blocks within a
county and then computes population-weighted mean density. Population-weighted
density is meant to measure average “experienced” density and was popularized in
economics Glaeser and Kahn (2004); Rappaport (2008). It can be obtained using
spatially disaggregated data on the spatial distribution of population and weighting
each small unit population density by its relative population in the county.

Instrumental Variables:
For our geological instrumental variable estimates we use three different instru-

5Recent work led by Diego Puga looks at the relationship between density and COVID-19 incidence
in Spain using prevalence data obtained from randomized serological tests. Cross-sectional correla-
tions using this information point to a flat (or weakly negative) relationship between the disease’s
spread and density. Unfortunately, this type of data is not available for the United States.

6In contrast, the correlation between county level COVID-19 fatalities and USAFacts is -0.001 and
insignificant indicating that COVID-19 mortality is not simply an amplification of fatalities occurring
under normal circumstances but rather follows distinct patterns that are consistently capture by our
database.
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ments. More specifically, we use variables measuring earthquake risks and presence
of aquifers from the United States Geological Survey (USGS) (also used in Duranton
and Turner (2018)), and data on soil drainage quality from NRCS State Soil Geo-
graphic Data Base. We match our grid cells to the geological data using grid cell
centroids to spatially impute data on aquifers, earthquake risks and soil drainage
quality. For our historical instrument, we use population density obtained from the
1880 United States census. We impute this data on the county level using spatial
matching based on the assumption of uniform population distribution within 1880
counties. 7

Behavioral Adjustment/Social Distancing:
To measure how much people in different counties adjusted their behaviour as a
response to the COVID-19 outbreak we use the ‘COVID-19 Community Mobility Re-
ports’ by Google (Google CMR). This database aggregates extensive anonymised mo-
bile device GPS user data and estimates the percentage change in activities (such
as work, retail or transit) by county and day. The five week period from January 3rd
to February 6th before the start of the COVID-19 outbreak in the US serves as the
corresponding baseline period.

Other Variables:
We obtain data on county-level demographic characteristic estimates for 2018 from
the US census. Social connectedness is measured with Facebook’s Social Connect-
edness Index (Facebook SCI), which captures the intensity of the link between loca-
tions using the number of friend links in this social network (See Bailey et al. (2018)
for further details on the SCI). Finally, data on access to healthcare and income
comes from the County Health Rankings and Roadmaps program. Specifically, we
use three indicators: (1) the ratio of population to primary care physicians (2) the
percentage of adults under the age of 65 without health insurance and (3) median
household income.

7Note that, while the assumption of uniform distribution is clearly a simplification which could
lead to measurement error, this should not have a substantial impact on our main estimates. This
is because measurement error in the instruments could affect the relevance of the instruments but
should not generate bias in the coefficients of interest unless the measurement error itself is corre-
lated with COVID-19 incidence.
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3. Empirical Strategy

The top left panel of Figure 1 illustrates the positive cross-sectional correlation
between a county’s population density - calculated as the total population over the
surface area - and the number of COVID-19 related deaths per capita. This is the ba-
sic fact that had been noticed inWheaton and Kinsella Thompson (2020) and Dubner
(2020) as early as April 2020. Similar graphs, again displaying positive relationships
using population-weighted densities and number of cases are reported in Appendix
Figure A.3.

Naturally, these cross-sectional patterns do not constitute conclusive evidence
that urban density results in faster or more deadly COVID-19 spread. There are at
least two problems that could arise in this context. First, the positive correlation
in the top left panel of Figure 1 can be the result of differences in the timing of the
onset of the disease across locations. Second, certain location characteristics which
are correlated with both density and COVID-19 spread and severity could induce a
correlation in the absence of any actual causal link. We discuss this second issue in
detail in the next section.

The top right panel of Figure 1 illustrates the point on differences in the timing
of the onset of the disease across locations by showing the relationship between pop-
ulation density and the number of days between the 22nd of January and the first
fatality in each county. The figure exhibits a clear negative relationship, indicat-
ing that dense locations experienced COVID-19 fatalities earlier than more sparsely
populated locations.

We can adjust for the differences in the timing of the onset of the disease by com-
puting the number of deaths after a fixed number of days from that onset. This is
what is typically shown in cross-country comparisons of the evolution of the pan-
demic. In our case, we can compute the number of COVID-19 deaths at a specified
time after the outbreak started in a county. We define the start of the outbreak as
the first day with a reported case and compute the number of deaths 45 days after
this date for all counties. The link between these time-adjusted variable and density
is illustrated in the bottom panel of Figure 1.

The relationship is almost flat after time-adjusting, suggesting that density does
not simply translate into a higher rate of COVID-19 fatalities. Several factors could
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explain this result. We will turn to this point in detail when we discuss mechanisms
in Section 3.1, but consider as an illustration the role of changes in mobility across
cities.

Figure 2 shows the change in mobility relative to the January 2020 baseline for
sparse and dense counties, with the split based on median county density.8 The left
panel corresponds to changes in workplace-related mobility, the middle panel corre-
sponds to changes in mobility for leisure activities and the right panel for transit. As
expected, we observe a sharp reduction in mobility starting around mid-March. Im-
portantly, in all cases we observe that this reduction ismore acute in denser counties.
Glaeser, Gorback and Redding (2020) show reductions in mobility had a substantial
effect on the spread of COVID-19 over our sample period. Therefore, a sharper re-
duction in mobility in denser cities could contain the spread of the disease in these
locations.

Beforewe can obtain specific estimates for the relationship between time-adjusted
COVID-19 related mortality and density, we also need to deal with potential con-
founders affecting both density and the prevalence and severity of the disease. Cli-
mate conditions, for example, can simultaneously influence household location de-
cisions (see Glaeser, Kolko and Saiz 2001) and COVID-19 spread.9 Local amenities
such as waterfronts or low precipitation levels can themselves influence travel pat-
terns - e.g. by increasing tourist arrivals - which could in turn affect COVID-19 rates.
Insofar as some of these elements are observable, we can include them as controls
in our regressions. Yet some confounders may be unobservable due to their inherent
nature or lack of accurate data. For instance, locational productive advantages can
simultaneously affect local economic conditions and increase local densities.10 Ex-
amples range from natural factors such as fertile or irrigable lands to man-made in-
frastructures such as ports or highways. Insofar as COVID-19 incidence and deaths
are affected by economic conditions, unobservable locational advantages can con-

8The data is based on COVID-19 Community Mobility Reports released by Google and is based on
data from portable device users in United States counties.

9A number of recent papers document a negative effect of temperature on COVID-19 incidence,
at least in temperate weathers. See for example Prata, Rodrigues and Bermejo (2020); Tobías and
Molina (2020).

10Locational advantages increase local densities because higher land prices in these areas trigger
a substitution of land for capital in the production of structures (i.e. an increase in building heights).
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found the effect of density on the spread and severity of the disease.
To overcome the problem posed by potential unobservable confounding factors, we

borrow canonical instruments for density from the agglomeration literature Combes,
Duranton and Gobillon (2011) and our previous work on the relationship between
density and air pollution Carozzi and Roth (2020). Specifically, we will instrument
population density with either geological factors which can affect the costs of compact
urban development or a long-lags in population density.

We use three geological instruments: the fraction of the urban footprint with
aquifer presence, a measure of average earthquake risks and an estimate of soil
drainage quality. The rationale for the aquifer instrument is that new dwellings in
the periphery of urban areas need either to pay for a costly connection with the mu-
nicipal network or to directly connect with an underwater source. Given that the
option of the underwater source is only available if there is an aquifer where the
dwelling is located, cities with more land over aquifers can sprawl out further, con-
tain more sparse development and lower densities. This instrument is motivated by
the work in Burchfield et al. (2006) which reports that aquifers in the urban fringe
are associated with urban sprawl. The rationale for our earthquake risk instrument
is the expectation that the risk of an earthquake might influence building regula-
tions, construction practices and the space between buildings, thus also affecting
urban density. We also expect this instrument to satisfy the exogeneity condition,
once we condition for distance to sea, latitude and longitude, and state fixed effects.
Finally, the soil drainage quality variable is expected to affect land suitability for
building at different densities. In fully urbanized land, a significant fraction of rain-
fall is drained through drainage networks and sewage systems Konrad (2003). How-
ever, at lower densities, soil drainage capacity is important to avoid stagnant water
and, possibly, floods. In addition, high drainage soil is not ideal for laying down
heavy infrastructure, making the task of building high density development more
expensive.

We use a separate instrument for density based on historical population as recorded
in the 1880 US census. Settlements in this period were in place before much of the
technological revolutions in transportation that have affected location patterns in
the last decades and also precede current patterns of industrial location. The use of
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historical population instruments for density was popularized by Ciccone and Hall
(1996) and have often been used in the literature on agglomeration economies since
(see Combes and Gobillon 2015 for a review).

Our main estimating equation will regress measures of COVID-19 presence on
the logarithm of population density:

Yi = αs + βLn(Pop.Density)it + γ′Xi + εi (1)

where i indexes individual counties, αs is a set of state effects and Xi is a set of
controls. In all specifications, we control for average maximum and minimum tem-
peratures, average yearly precipitation, latitude, longitude, distance between the
county centroid and the closest sea front and distance to the closest waterfront. Our
outcomes include different measures of COVID-19 presence. In most of our analy-
sis these are either variables capturing the time it took for the disease to arrive at a
county or a time-adjustedmeasure of COVID-19 presence - the logarithm of the num-
ber of COVID-19 fatalities in the county 45 days after the first case was confirmed.
Finally, we will consider two alternative measures of density: total population di-
vided by surface area of the county, and population-weighted density.

Results

Main Results

We first report baseline cross-sectional correlations between population density
and COVID-19 cases and deaths on the 1st of June. In Table A.1, we estimate Equa-
tion 1 via Ordinary Least Squares (OLS) using the logarithm of the number of cases
per 100,000 inhabitants and the logarithm of the number of deaths per 100,000 in-
habitants as outcome variables. We find positive and statistically significant effects
of population density on COVID-19 incidence, in line with the descriptive evidence
reported in Figure 1. Specifically, when using the conventional measure of popula-
tion density we find elasticities of 22% and 8% for cases and deaths, respectively.
This suggests that a 1% increase in population density increases cases and deaths
per 100,000 people by 0.22% and 0.08%. When using our population-weighted mea-
sure of density, we also find positive elasticities, though these are of slightly smaller
magnitude and statistically insignificant in the case of deaths per 100,000 inhabi-
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tants. The findings for COVID-19 cases are consistent with the evidence presented
by Wheaton and Kinsella Thompson (2020) and Almagro and Orane-Hutchinson
(2020). Yet this should not be taken as conclusive evidence that density has a causal
effect on the spread of COVID-19. As argued above, potential differences in the tim-
ing of the onset of the disease across locations or the presence of potential unobserv-
able confounders can induce substantial bias in these coefficients.

Estimates reported in Table 2 deal with these empirical issues by looking ex-
plicitly at differences in the onset of the COVID-19 epidemic across locations and
incorporating our instrumental variable strategy. In panels A and B, we report esti-
mates for the effect of density on the number of days to the first case and the number
of days to the first death. These numbers are measured relative to the date of the
first reported case in the United States, so that small numbers correspond to an
earlier onset of an outbreak. In column 1, we report OLS estimates obtained after
controlling for state effects and covariates. In columns 2 and 3, we show IV estimates
obtained using our Geological and Historical instruments respectively. We find that
doubling density is associated with approximately 3 days earlier onset of the disease.
Estimates are fairly consistent across panels A and B, as well as across estimation
methods. We find that denser areas have indeed experienced earlier onsets of the dis-
ease whether we use days to the first case or days to the first death. These estimates
are large, demonstrating the importance of adjusting for differences in the timing
of the onsets across locations when estimating the relationship between population
density and COVID-19 health outcomes.

In Panel C of Table 2, we examine our main outcome of interest; the effect of pop-
ulation density on COVID-19 related mortality. As mentioned previously, we focus
on confirmed COVID-19 related deaths rather than cases as our main outcome of
interest because it is considered to be a more accurate indicator of local COVID-19
prevalence. Nevertheless, we also provide complementary analysis using reported
cases in Section 3.2. Given our results from Panels A and B, we adjust for differ-
ences in the timing of the onset of the disease by constructing our outcome variable
as the number of deaths per 100,000, 45 days after the first case. In column 1, we
find that the cross-sectional correlation observed in Table A.1 becomes negative and
statistically insignificant, suggesting that the positive link between population den-
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sity and COVID-19 deaths might have been confounded by differences in the timing
of the onset. In columns 2 and 3, we use our instrumental variable approach to test
this hypothesis more convincingly. Importantly, our first stage estimates yield F-
stats of 23 and 78, indicating that our instruments are not weak. Our second-stage
results reveal a statistically insignificant relationship between population density
and COVID-19 related deaths in both columns, portraying a similar picture as the
OLS estimate presented in column 1. Our 2SLS results are unsurprisingly less pre-
cise, but the overall picture is clear. We find no evidence that population density is
positively linked with COVID-19 related deaths.

We further investigate the link between density and COVID-19 incidence in Table
A.2, using population-weighted density as our main regressor of interest. Unfortu-
nately, since our geological instruments do not provide a strong first stage in this
setting, our IV analysis relies solely on our long lag instrument. Reassuringly, we
find that the overall results are similar to those obtained in Table 2. Panels A and B
show denser counties had earlier onsets of the disease compared to sparse counties.
In panel C, we find a negative association between weighted density and COVID-19
related deaths when using OLS. However, our IV estimates again show a statisti-
cally insignificant elasticity. We therefore conclude that variation in density did not
result in more COVID-19 incidence and deaths in the United States beyond the effect
on early onset of the disease despite prior descriptive evidence suggesting otherwise.

On first reflection, our results seem surprising given that the virus spreads via
human contact and denser areas can provide more opportunities for human inter-
actions. Nevertheless, there are several mediating factors that might offset this
intuitive mechanism. For example, density itself might attract younger residents
who are less likely to develop significant symptoms. In addition, both behavioural
and/or policy induced changes in behaviour may be different in dense counties. In
fact, studies on previous pandemics (e.g. the 1918 influenza pandemic) also show
that population density is not necessarily linked with the spread and severity of a
disease Mills, Robins and Lipsitch (2004). In the next section, we explore potential
mechanisms that could explain underlying our reduced-form findings.
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3.1. Mechanisms

Variation in density might lead to changes in several local conditions, which can
themselves affect the spread and severity of the disease. These types of changes
may provide mechanisms that reinforce or offset the hypothesised positive effects
that have been suggested in the literature, both in terms of timing of the local onset
of the pandemic and subsequent spread. We turn to study some of these mechanisms
by estimating the effect of density on other determinants of COVID-19 spread and
severity. To do so, we re-estimate Equation 1 using these hypothetical mediators
as outcomes. The resulting estimates do not provide definite proof regarding the
mechanisms explaining the effect of density on COVID-19 incidence and mortality,
but should be interpreted as suggestive evidence in this regard.

We begin by looking at possible factors explaining the early onset of the disease
in denser cities and show that density is associated higher social connectedness with
other US counties. Our proxy for this variable relies on Facebook’s Social Connect-
edness Index.11 This index is based on the relative frequency of friendship links
between users of the social-network, with higher index values corresponding to a
larger number of friendship links. To proxy for social connectedness with other coun-
ties we aggregate the SCI of each county with all other counties and normalize it by
the own-county SCI. The resulting variable is large when inhabitants in a county are
disproportionately connected to other counties. Coefficients resulting from estimat-
ing equation 1 using the logarithm of this proxy as an outcome variable are provided
in Panel A of Table 3. As above, we report both OLS estimates (column 1) and 2SLS
estimates using our geological and historical instruments (columns 2 and 3). We
observe consistently positive elasticities of roughly 0.4-0.5 across columns, indicat-
ing denser counties are more intensely related to other counties in the US.12 These
results provide a plausible explanation to our findings of early onsets of COVID-19
cases and deaths in denser counties illustrated in Figure 1 and Table 2.

Next, we study how density affects behavioural responses to the pandemic (e.g.
compliance with social distancing measures). We use data from Google COVID-

11Kuchler, Russel and Stroebel (2020) study how interpersonal networks provided a channel for the
spread of the disease based on the SCI.

12Dense counties are also candidates to have higher connectedness with locations outside of the
United States.
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19 Community Mobility Reports (CMR) to measure how mobility patterns in each
county have changed relative to baseline levels measured in January 2020. In Pan-
els B,C and D of Table 4, we show the relationship between county density and the
change in mobility to workplaces, leisure time activities and transit respectively. We
find that population density is associated with a larger decline in mobility for all of
these indicators between January and April. Doubling density reduces workplace-
related mobility by approximately 3.5-4.75%, leisure related mobility by 2.6-3.2%
and transit by 4-5.7%. Given the significant variation in density across US coun-
ties, these estimates are large. Insofar as social distancing reduces the spread of
the disease, these differences in behaviour might explain why we find limited dif-
ferences in spread by location after accounting for the timing of onset of the disease
and confounding factors.

Several factors could explain this difference in behaviour across dense and sparse
counties. One candidate that could account for both policy responses and individual
differences in behaviour relates to ideological or political views. Allcott et al. (2020)
show that the Republican county vote share has a positive and significant associ-
ation with the number of weekly visits to points of interest during the peak of the
social distancing measures in April. Anecdotal evidence also reveals substantial dif-
ferences in the tone of the Democratic and Republican parties when discussing the
pandemic and its consequences. If density is associated with reduced support for
the Republican party, residents of denser areas may be more likely to comply with
the social distancing advise. In Panel E of Table 3, we estimate this link using vot-
ing data from the 2016 presidential election as a proxy for Republican support. We
find that population density has a negative association with the share of Republican
voters, an observation that should come as no surprise for observers of US politics.13

This difference in political preferences across locations could explain, at least in part,
the observed differences in the behavioural response to the pandemic illustrated in
Figure 2 and Table 3.

We can arrive at two conclusions from the results reported in Table 3. First, dense

13This relationship remains highly robust upon controlling for the share of black population as
well as the population above 60 years of age. In fact, when adding these additional controls, the
relationship remains between -0.04 and -0.05 and significant at the 99% confidence level for all three
estimation approaches.
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counties are more connected with other locations and this may account for earlier
onset of the COVID-19 epidemic in these areas. Second, the behavioural response
to the disease was larger in denser counties, with less mobility for work and leisure
and reduced use of public transit in these locations.

In Table A.3, we examine alternative mechanisms that can also explain the lack
of a positive relationship between density and COVID-19 related deaths. In Panels
A and B, we examine the effect of density on access to healthcare using the ratio of
population to primary care physicians and the percentage of adults under the age of
65 without health insurance as proxies. We find that density is positively associated
with the former and negatively associated with the latter, suggesting that denser lo-
cations benefit from better access to healthcare. In our context, this could be an im-
portant mediating factor for two main reasons. First, access to primary healthcare
might affect the presence and management of underlying health conditions which
consider being risk factors for COVID-19 mortality (Zhou et al., 2020). Second, ac-
cess might also affect the probability of seeking and receiving medical treatment
once infected with COVID-19. Relatedly, we also examine the link between popula-
tion density and income as it is likely to affect access to healthcare and also health
status more broadly. As expected, we find that the density is positively associated
with median household income, offering an additional explanation for our headline
results. Finally, in Panel D, we examine the effect of density on the share of the pop-
ulation above 60 years of age. This is of particular importance given that older age
considered to be a significant risk factor (Zhou et al., 2020) and that population den-
sity is likely to affect the age structure of local areas via its impact on employment
opportunities Glaeser (1999). Indeed, we find that population density is linked with
a smaller share of residents above 60 years of age. In other words, dense counties
are “younger” than sparse counties and this could reduce the number of deaths in
these areas.

Overall, our points relating to behavioural responses, healthcare provision and
demographics provide probable explanations for the surprisingly flat relationship
between density and COVID-19 related mortality reported in panel C of Tables 2
and A.2.
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3.2. Robustness Checks

In this section, we provide several robustness checks for our main findings. We
first look at our results for the number of COVID-19 deaths 45 days after the onset
of the disease in each county. In Panel A of Appendix Table A.4, we test whether
the null effect of density is affected by flexibly controlling by week of onset in each
state. This goes beyond simply time-adjusting the outcome variable of interest as
it also incorporates differences in knowledge regarding the disease or country-wide
behavioural adjustments. We find that our qualitative results remain unchanged,
with coefficients being insignificantly different from 0 across specifications. In panel
B, we test whether our results are affected by excluding the New York metropoli-
tan area.14 In this case, we find a negative and statistically significant relationship
between density and time-adjusted COVID-19 deaths in the first two columns. We
interpret these results with caution, as we are imposing sample selection that simul-
taneously exclude the MSA with the largest initial outbreak and the highest density.
Results in Table A.4 further emphasize that the time adjusted number of deaths does
not appear to be affected positively by density.

We also check the robustness of our results regarding suggested mechanisms for
the link between density and COVID-19 deaths to our definition of density. We re-
produce Table 3 using the population-weighted densities as the main regressor of
interest. Recall that in this case we can only use our long lag instrument as geo-
logical instruments are weak predictors of population-weighted densities. Results
are presented in Appendix Table A.5 and are qualitatively analogous to those pre-
sented for the conventional measure of density. Hence, we conclude that evidence in
support for our suggested mechanisms does not depend on the chosen measure for
density.

Finally, we test whether density affects the time-adjusted number of reported
cases of COVID-19. As argued above, the number of cases is more likely to be af-
fected by variation in testing resources and asymptomatic cases. This motivates our
focus on number of deaths in much of the main analysis. Yet, data on reported cases
can be used instead. In Panel A of Table A.5, we report estimates of the relationship

14We use the census 2010 definition corresponding to the New York-Northern New Jersey-Long
Island CBSA.
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between density and the number of cases per capita 45 days after the first reported
case in the county. IV estimates are not completely conclusive, with a negative and
marginally significant elasticity reported using the geological IVs and a positive but
insignificant elasticity when using the historical instrument. We replicate our es-
timates using the log of the number of cases per 100,000 people after 30 days as
the dependent variable. Results are reported in Panel B of Table A.5 and show in-
significant or even negative effects of density on the time-adjusted number of cases
in US counties. We conclude that the data does not yield evidence indicating a clear
positive effect of density on the spread of the disease.

4. Conclusions

Urban areas are often places of intense social interactions, crowded living and
close contact. Whether Justinian’s Constantinople, fourteenth century Florence or
1918 Philadelphia - cities have historically been associated with the propagation
of infectious disease. In the first three months of the COVID-19 global pandemic,
large, dense urban areas around the world such as New York, Madrid and London
were identified as disease hotspots. Increased awareness of the risks of present and
future epidemics has understandably prompted a debate about the future of cities.
Does density - the defining feature of cities - promote the spread of the disease? Will
this affect the long-run outlook of urban areas?

Our analysis of the onset of the COVID-19 pandemic in the United States raises
a series of important points regarding these questions. First, density is associated
with an early arrival of COVID-19, so that urban cores and superstar cities get a head
start on the spread of the disease. Second, the subsequent spread - once COVID-19
has arrived - is not faster or deadlier than in smaller towns or sparsely populated
peripheries. Cities get hit first, but do not necessarily get hit harder. Third, several
mechanisms may explain these findings. Large cities are intensely inter-connected
with other locations, which can explain early onset. Yet, in the case of within-city
spread, many different offsetting forces may be at play. Crowding may promote the
spread of the disease but differences in precautionary measures, access to health-
care and demographics may contain it. As a result, it is important to distinguish
differences in spread between and within locations.
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This paper is based on reported patterns for the spread and severity of the disease
in the US over a relatively short period of five months. Therefore, drawing definitive
conclusions of long-term impacts across urban systems is hardly warranted. Yet,
our results may be useful for understanding and predicting the dynamics of future
waves of viral disease outbreak across urban areas. As such, our findings may help
policy makers to better plan and execute measures to contain outbreaks. Lastly, by
showing that the time-adjusted number of COVID-19 related deaths appears not to
be affected by density, we also cast doubts on hasty predictions on the consequences
of dense urban living.
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Figures & Tables

Table 1
Descriptive Statistics

Mean Standard Deviation
A. Whole Sample
Population Density 147 696
Weighted Population Density 522 1,117
Population 173,406 432,333
COVID-19 Deaths 45 Days after first Case 25.7 171.5
COVID-19 Cases 45 Days after first Case 488.1 2,280.4
∆ Workplace Related Activity -40.6 7.8
∆ Retail Related Activity -35.6 12.0
Number of Counties: 1,759
Share of US population: 93%

Mean Standard Deviation
B. COVID-19 Outbreak Subsample
Population Density 195 822
Weighted Population Density 644 1,308
Population 225,227 467,881
COVID-19 Deaths 45 Days after first Case 36.8 204.4
COVID-19 Cases 45 Days after first Case 686.6 2,706.5
∆ Workplace Related Activity -41.8 7.9
∆ Retail Related Activity -36.3 11.1
Number of Counties: 1,197
Share of US population: 82%

Notes: Descriptive statistics presenting the mean and standard deviation for a set of key variables
of interest. Panel A corresponds to the whole sample of urban counties. Panel B corresponds to the
COVID-19 subsample consisting of counties that had at least one confirmed COVID-19 case 45 days
before the end of our sample period on the 1st of June 2020 (Panel B).
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Table 2
Onset of the Disease and Deaths after 45 Days

OLS IV

A. Days to First Case
Log(Population Density) -4.578*** -4.093*** -4.617***

(0.231) (0.656) (0.576)
IV F-stat 24.5 122.8
Obs. 1745 1745 1719
B. Days to First Fatality
Log(Population Density) -5.493*** -4.627*** -4.097***

(0.407) (1.194) (1.010)
IV F-stat 26.0 84.0
Obs. 1324 1324 1302
C. Log(Deaths per 100,000 after 45 Days)
Log(Population Density) -0.105 -0.105 0.010

(0.070) (0.146) (0.086)
F-stat 23.5 78.7
Obs. 1197 1197 1175
Instrument Geological Historical
State Effects No Yes Yes

Notes: The main explanatory variable in all models is the natural logarithm of population density.
Panels A and B report the estimates for the number of days to the first case and death respectively.
Panel C reports the result for the log of the number of deaths per 100,000 residents in a county, 45
days after the first case. Column (1) corresponds to OLS estimates, column (2) and (3) presents
2SLS estimates using the Geological and Historical instruments respectively. In all models, we
include controls for average maximum and minimum temperatures, average yearly precipitation,
latitude, longitude, distance between the county centroid and the closest sea front and distance to
the closest waterfront. The specifications in columns (2) and (3) add state effects. Standard errors
in parenthesis are clustered at the CBSA level. ***p<0.01, **p<0.05, *p<0.1.
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Table 3
Suggested Mechanisms

OLS IV

A. Social Connectedness
Log(Population Density) 0.552*** 0.429*** 0.395***

(0.019) (0.045) (0.030)
IV F-stat 24.5 122.8
Obs. 1758 1758 1732
B. ∆ Workplace Activity
Log(Population Density) -4.033*** -5.095*** -3.661***

(0.172) (0.520) (0.286)
IV F-stat 17.3 70.9
Obs. 1355 1355 1336
C. ∆ Leisure Time Activity
Log(Population Density) -3.024*** -2.840*** -3.406***

(0.473) (1.101) (0.622)
IV F-stat 16.3 60.7
Obs. 1289 1289 1270
D. ∆ Transit Activity
Log(Population Density) -6.016*** -5.081*** -4.268***

(0.537) (1.693) (1.038)
IV F-stat 11.4 53.3
Obs. 817 817 806
E. Republican Vote Share 2016
Log(Population Density) -0.052*** -0.013 -0.080***

(0.003) (0.012) (0.007)
IV F-stat 24.5 122.8
Obs. 1759 1759 1733

Notes: The main explanatory variable in all models is the natural logarithm of population density. In
Panel A, we present the results for the social connectedness of a county based on Facebook’s Social
Connectedness Index. Panels B, C and D report the results on behavioural adjustment of workplace,
leisure and transit activities relative to the January baseline respectively. Panel E features the re-
sults on votes for the Republican party in the 2016 presidential election. Column (1) corresponds to
OLS estimates, column (2) and (3) presents 2SLS estimates using the Geological and Historical in-
struments respectively. In all models, we include controls for average maximum and minimum tem-
peratures, average yearly precipitation, latitude, longitude, distance between the county centroid and
the closest sea front and distance to the closest waterfront. The specifications in columns (2) and (3)
add state effects. Standard errors in parenthesis are clustered at the CBSA level. **p<0.01, *p<0.05,
*p<0.1.
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Figure 1
COVID-19 and Population Density

Notes: The horizontal axis represents the logarithm of the county’s population density. In the top left
panel, the vertical axis represents the logarithm of the number of fatalities per thousand inhabitants.
In the top right panel, the vertical axis represents the number of days between the 22nd of January
and the first fatality in each county. Black markers correspond to counties forming part of a CBSA.
Black fit lines estimated via Ordinary Least Squares.

23



Figure 2
Changes in Mobility Relative to January Baseline

Notes: The figures plot the daily change and local regression curve (LOESS) over time in mobility
relative to the January 2020 baseline for sparse counties and dense counties, with the split based
on median weighted county density. The left panel refers to adjustment of workplace-related activ-
ity. The middle panel refers to leisure time activities including restaurants, cafes, shopping centres,
theme parks, museums, libraries, and movie theatres. The right panel refers to transit including
public transport hubs such as subway, bus, and train stations.
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Appendix
A. Additional Tables and Figures

Table A.1
Cases and Deaths: Baseline OLS Estimates

Log(Cases per 100,000) Log(Deaths per 100,000)

Log(Population Density) 0.234*** 0.219*** 0.074 0.081**
(0.033) (0.027) (0.057) (0.040)

Obs. 1745 1745 1319 1319
Log(Cases per 100,000) Log(Deaths per 100,000)

Log(Weight. Density) 0.237*** 0.206*** 0.083 0.057
(0.035) (0.026) (0.066) (0.042)

State Effects No Yes No Yes
Obs. 1745 1745 1319 1319

Notes: Baseline OLS estimates. Columns (1) and (2) use the log of cases per 100,000, columns (3)
and (4) the log of deaths per 100,000 inhabitants on the 1st of July as dependent variables. In the
top, the log of population density constitutes the explanatory variable, in the bottom it is the log of
population weighted density. In all models, we include controls for average maximum and minimum
temperatures, average yearly precipitation, latitude, longitude, distance between the county
centroid and the closest sea front and distance to the closest waterfront. The specifications in
columns (2) and (4) add state effects. Standard errors in parenthesis are clustered at the CBSA
level. ***p<0.01, **p<0.05, *p<0.1.
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Figure A.1
Sample Counties, COVID-19 and Population Density
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Figure A.2
Validating Covid-19 Figures

Notes: In the left panel, the vertical axis represents the log of the officially confirmed COVID-19 mor-
tality rate per county by the CDC and the horizontal axis the COVID-19 mortality rate by USAFacts.
The right panel plots the USAFacts state-level mortality rate (vertical axis) over the excess death es-
timates by the CDC (horizontal axis). Blue fit lines estimated via Ordinary Least Squares including
the 95% confidence interval in grey.

Figure A.3
Cases and Deaths per 100,000 vs. Weighted Density

Notes: The horizontal axis represents the logarithm of the county’s population-weighted density. In
the left panel, the vertical axis represents the logarithm of the number of cases per 100,000 inhab-
itants. In the right panel, the vertical axis represents the logarithm of the number of fatalities per
thousand inhabitants. Black markers correspond to counties forming part of a CBSA. Black fit lines
estimated via Ordinary Least Squares.
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Table A.2
Weighted Densities: Onset of the Disease and Deaths after 45 Days

OLS IV

A. Days to First Case
Log(Weight. Density) -4.212*** -9.290***

(0.262) (1.506)
IV F-stat 31.5
Obs. 1745 1719
B. Days to First Fatality
Log(Weight. Density) -5.241*** -9.418***

(0.482) (2.667)
IV F-stat 19.8
Obs. 1324 1302
C. Log(Deaths per 100,000 after 45 Days)
Log(Weight. Density) -0.101** 0.022

(0.049) (0.188)
F-stat 21.0
Obs. 1197 1175
Instrument Historical
State Effects No Yes

Notes: The main explanatory variable in all models is the natural logarithm of weighted density.
Panels A and B report the estimates for the number of days to the first case and death respectively.
Panel C reports the result for the log of the number of deaths per 100,000 inhabitants in a county,
45 days after the first case. Column (1) corresponds to OLS estimates and column (2) presents 2SLS
estimates using the Historical instrument. In all models, we include controls for average maximum
and minimum temperatures, average yearly precipitation, latitude, longitude, distance between the
county centroid and the closest sea front and distance to the closest waterfront. The specifications
in columns (2) and (3) add state effects. Standard errors in parenthesis are clustered at the CBSA
level. ***p<0.01, **p<0.05, *p<0.1.
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Table A.3
Alternative Mechanisms

OLS IV

A. Log Primary Care Physicians per Capita
Log(Population Density) 0.220*** 0.191*** 0.148***

(0.014) (0.044) (0.023)
IV F-stat 23.7 110.8
Obs. 1714 1714 1688
B. Share of Pop. Uninsured
Log(Population Density) -0.004*** -0.005 -0.010***

(0.001) (0.003) (0.002)
IV F-stat 24.5 127.2
Obs. 1759 1759 1733
C. Median Houshold Income
Log(Population Density) 4.771*** 7.603*** 2.066***

(0.431) (1.183) (0.774)
IV F-stat 24.5 127.2
Obs. 1759 1759 1733
D. Share of Pop. Above 60 Years
Log(Population Density) -0.016*** 0.001 -0.014***

(0.001) (0.005) (0.003)
IV F-stat 24.5 122.8
Obs. 1759 1759 1733

Notes: Themain explanatory variable in all models is the natural logarithm of population density. In
Panel A, we present the results for primary health care supply measured as the natural logarithm of
the number of primary health care physicians in each county divided by population. Panels B refers
to the share of adults without health insurance. Panel C reports the results on median household
income in 1,000 USD. Panel D features the estimates for the share of population above 60 years of
age. Column (1) corresponds to OLS estimates, column (2) and (3) presents 2SLS estimates using
the Geological and Historical instruments respectively. In all models, we include controls for average
maximum andminimum temperatures, average yearly precipitation, latitude, longitude, distance be-
tween thecounty centroid and the closest sea front and distance to the closest waterfront. The speci-
fications in columns(2) and (3) add state effects. Standard errors in parenthesis are clustered at the
CBSA level. **p<0.01,**p<0.05, p<0.1.
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Table A.4
Robustness: Density and Deaths 45 Days after First Case

OLS IV

A. Controlling for Week of Onset Effects
Log(Population Density) -0.091 -0.075 0.086

(0.056) (0.191) (0.102)
Instrument Geological Historical
F-stat 19.2 69.2
State Effects Yes Yes Yes
Obs. Yes No
N 1197 1197 1175
B. Excluding New York State
Log(Population Density) -0.105 -0.105 0.010

(0.070) (0.146) (0.086)
F-stat 23.5 78.7
Obs. 1197 1197 1175
Instrument Geological Historical
State Effects No Yes Yes

Notes: Robustness tests corresponding to Table 2 Panel C, additionally controlling for the the week
of the onset (Panel A) and excluding New York State (Panel B). The main explanatory variable in all
models is the natural logarithm of population density. The dependent variable is the log of the
number of deaths per 100,000 inhabitants in a county 45 days after the first case. Column (1)
corresponds to OLS estimates, column (2) and (3) refer to 2SLS estimates using the Geological and
Historical instruments respectively. In all models, we include controls for average maximum and
minimum temperatures, average yearly precipitation, latitude, longitude, distance between the
county centroid and the closest sea front and distance to the closest waterfront. The specifications
in columns (2) and (3) add state effects. Standard errors in parenthesis are clustered at the CBSA
level. ***p<0.01, **p<0.05, *p<0.1.
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Table A.5
Robustness: Cases after 45 and 30 Days

OLS IV

A. Log(Cases after 45 Days)
Log(Population Density) 0.094** -0.254* 0.112

(0.043) (0.138) (0.071)
IV F-stat 25.2 117.4
Obs. 1716 1716 1691
B. Log(Cases after 30 Days)
Log(Population Density) 0.027 -0.250* 0.022

(0.045) (0.130) (0.072)
F-stat 23.5 78.7
Obs. 1734 1734 1708
Instrument Geological Historical
State Effects No Yes Yes

Notes: The dependent variables are the log of the number of cases 45 days (Panel A) and 30 days
(Panel B) after the first confirmed case. Column (1) corresponds to OLS estimates, column (2) and
(3) refer to 2SLS estimates using the Geological and Historical instruments respectively. In all
models, we include controls for average maximum and minimum temperatures, average yearly
precipitation, latitude, longitude, distance between the county centroid and the closest sea front and
distance to the closest waterfront. The specifications in columns (2) and (3) add state effects.
Standard errors in parenthesis are clustered at the CBSA level. ***p<0.01, **p<0.05, *p<0.1.
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Table A.6
Robustness: Suggested Mechanisms and Weighted Densities

OLS IV

A. Social Connectedness
Log(Weight. Density) 0.482*** 0.743***

(0.023) (0.085)
IV F-stat 34.5
Obs. 1758 1732
B. ∆ Workplace Activity
Log(Weight. Density) -3.244*** -6.935***

(0.227) (1.011)
IV F-stat 20.4
Obs. 1355 1336
C. ∆ Leisure Time Activity
Log(Weight. Density) -2.844*** -6.884***

(0.541) (1.546)
IV F-stat 16.4
Obs. 1289 1270
D. ∆ Transit Activity
Log(Weight. Density) -7.539*** -9.701***

(0.814) (2.573)
IV F-stat 12.4
Obs. 817 806
E. Republican Vote Share 2016
Log(Weight. Density) -0.053*** -0.150***

(0.004) (0.019)
IV F-stat 34.7
Obs. 1759 1733

Notes: Corresponds to Table 3, using the log of weighted density as the main explanatory variable.
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B. Data Sources

• USAfacts.org COVID-19 Data
The USAFacts is a non-profit civic initiative that provides data on the US popu-
lation and government and works in partnership with the Penn Wharton Bud-
get Model and the Stanford Institute for Economic Policy Research (SIEPR).
The data can be retrieved at: https://usafacts.org/visualizations/
coronavirus-covid-19-spread-map/. [Last visited: June 2nd 2020]

• CDC Official COVID-19 Mortality Rate This database comprises con-
firmed or presumed COVID-19 fatalities and is limited to counties with
at least 10 COVID-19 deaths. It should be noted, the dataset is incom-
plete because of the time lag between the death and the official certifi-
cate submitted to the National Center for Health Statistics (NCHS). For
this reason, we this data corresponds only to 514 counties. Our ver-
sion of the data dates to the 23rd of May. The latest figures can be
downloaded at: https://data.cdc.gov/NCHS/Provisional-COVID-19-
Death-Counts-in-the-United-St/kn79-hsxy. [Last visited: June 1st
2020]

• CDC Excess Mortality Excess mortality corresponds to the deviation of to-
tal deaths to average expected deaths based on the experience in past years
for each state and week from Feburary to May 2020. Our version of the
CDC excess mortality estimate dates to the 27th of May 2020. The latest es-
timates can be downloaded at: https://www.cdc.gov/nchs/nvss/vsrr/
covid19/excess_deaths.htm. [Last visited: June 1st 2020]

• US Census contains information about demographics on the country
level and can be accessed via: https://www.census.gov/data/tables/

time-series/demo/popest/2010s-counties-detail.html. [Last vis-
ited: May 14th 2020]

• ‘COVID-19 Community Mobility Reports’ by Google
This report contains information about the behavioral activity change and so-
cial distancing in response to the COVID outbreak by county and day. For more
detail on this database please visit https://www.google.com/covid19/
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mobility/data_documentation.html?hl=en. [Last visited: June 3rd
2020]

• Social Connectedness Data Obtained after presenting a brief email appli-
cation for the data based on this paper’s outline to Mike Bailey and others at
Facebook. April 6 2020 Release Version.

• Healthcare and Income Data from The County Health Rankings and
Roadmaps program contains information on healthcare access and various
social and economics indicators at the country level and can be accessed via:
https://www.countyhealthrankings.org. [Last visited: July 3rd 2020]
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