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Abstract 
Conventional wisdom suggests that pollution damages are high in less-developed countries because 
they are highly polluted. Using administrative data on the universe of births and deaths, we explore 
the morbidity and mortality effects of gestational particulate matter exposure in high-pollution yet 
highly-developed Hong Kong. The effects of particulates on birthweight are large. We estimate no 
effect of particulates on neonatal mortality. We interpret our stark mortality results in a comparative 
analysis of pollution-mortality relationships across well-known studies. We provide evidence that 
mortality damages may be high in less-developed countries because they are less developed, not 
because they are more polluted. 
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1 Introduction

Between 4 and 9 million premature deaths are attributed to pollution each year, twice as

many as those from war, all other forms of violence, HIV/AIDS, tuberculosis, and malaria

combined (Ladrigan et al., 2018). Particulate matter air pollution is associated with espe-

cially high economic damages, having deleterious effects on infant mortality, life expectancy,

physical health, mental health, and health costs (Dockery et al., 1993; Pope et al., 2002;

Chay and Greenstone, 2003; Pope and Dockery, 2006; Bishop et al., 2019; Deryugina et al.,

2019). Particulate matter has been shown to affect property values, criminal behavior, labor

productivity, and educational attainment (Chay and Greenstone, 2005; Graff Zivin, J. and

Neidell, M., 2012; Chang et al., 2016; Ebenstein et al., 2016; Herrnstadt et al., 2019).

The best available evidence suggests that marginal damages from pollutants like par-

ticulate matter are higher in developing countries (Bharadwaj and Eberhard, 2008; Jay-

achandran, 2009; Chen et al., 2013; Greenstone and Hanna, 2014; Arceo et al., 2016; Cesur

et al., 2016; He et al., 2016; Barwick et al., 2018; Heft-Neal et al., 2018; Adhvaryu et al.,

Forthcoming; Chang et al., 2019; Heft-Neal et al., 2019). However, the mechanisms are not

well understood. Existing scholarship has largely focused on establishing empirical regu-

larities while remaining agnostic on the mechanisms. On the one hand, greater marginal

damages in developing countries could be explained by higher levels of pollution. It is well-

documented that current particulate concentrations are many times higher in urban areas of

India, China, Pakistan, Ghana, etc. than in urban areas of North America and Europe (Cur-

rie and Vogl, 2013; Greenstone and Hanna, 2014). Under this logic, cost-effectively reducing

marginal damages involves reducing pollution levels. On the other hand, higher marginal

damages in developing countries may instead be due to the limited ability of exposed popu-

lations to manage the consequences of pollution exposure. If differences in marginal damages

across populations are due to institutional and economic differences rather than differences

in baseline pollution levels, then efforts to improve environmental quality by directly reduc-

ing pollution may have a limited impact. Following this logic, incremental investments in
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population health and human capital, health care, and other infrastructure may be more

cost-effective.

Here, we inform the debate over the channels explaining lower marginal pollution dam-

ages in developed countries by re-examining the relationship between particulate matter and

infant health in Hong Kong. Hong Kong offers the unusual combination of both high pollu-

tion and high income. Hong Kong’s particulate matter levels are close to those in mainland

China, India, and Pakistan, and exceed levels in many other developing countries. Hong

Kong’s per capita income levels compare to the United States. The population has excellent

baseline health and universal access to free high-quality health care. Life expectancy ranks

in the top-10 worldwide.

We combine administrative data on the universe of births and deaths in Hong Kong be-

tween 2001 and 2014 with detailed location-specific daily particulate matter (PM10) levels.

We construct individual-level gestational exposure to PM10 using monitor-by-day concentra-

tions. To identify the effects of endogenous pollution exposure on birthweight and neonatal

mortality, we exploit plausibly exogenous variation in thermal inversions (Arceo et al., 2016;

Chen et al., 2017, 2018). We also explore robustness to alternative sources of variation. We

focus on birthweight because it is an important indicator of infant health that has been

shown to have persistent effects on later life outcomes (Almond et al., 2005; Currie and

Moretti, 2007; Almond et al., 2010; Bharadwaj et al., 2013; Isen et al., 2017). We focus on

mortality because death is the dominant contributor to the benefits of pollution policy. We

focus on neonatal mortality, in particular, because the vast majority of infant deaths arise

within the first few weeks of birth, both in our data and more generally (WHO, 2019). We

explore mortality and morbidity together in the same study because these outcomes may be

differentially affected by the economic and policy environment.

We find that higher gestational particulate matter exposure is associated with significant

reductions in birthweight yet has no effect on neonatal mortality.1 Effects on birthweight

1Cheung et al. (2019) explore the effect of contemporaneous pollution exposure on mortality across the
age distribution in Hong Kong.
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are substantial – a 10 µg/m3 increase in particulate matter is associated with an 76-gram

reduction in birthweight. This is equivalent to the estimated effects of smoking 15 cigarettes

per day during pregnancy (Currie et al., 2009). Despite very high levels of particulate

matter, pollution effects on neonatal mortality are statistically insignificant and small both in

absolute terms and relative to the existing literature. We fail to reject the null hypothesis that

there is no effect of gestational pollution exposure on neonatal mortality in all specifications.

One interpretation of our morbidity results is that marginal pollution-birthweight rela-

tionships are not strongly affected by the economic and policy environment. Hong Kong is

rich, with excellent healthcare and baseline health, and yet marginal changes in pollution

have large effects on morbidity. By contrast, our mortality results suggest that marginal

pollution-neonatal death effects may be moderated by the economic and policy environ-

ment. Despite very high pollution levels, the marginal effects of pollution on neonatal death

are minimal, suggesting that Hong Kong’s wealth, health, and institutions swamp marginal

pollution-mortality damages. To explore this latter conjecture, we perform an interpreta-

tion exercise where we compare marginal pollution-mortality damages from several studies

in the literature, including our own. We find that marginal mortality effects are sharply

decreasing in GDP per capita and baseline health. As such, investments in economic de-

velopment may be important for reducing pollution-induced infant deaths. Conventional

wisdom suggests that pollution damages are high in less-developed countries because they

are highly polluted. Here we provide suggestive evidence that mortality damages are high

in less-developed countries because they are less developed.

We make three contributions. First, our unique context helps illuminate the potential

mechanisms that drive differences in pollution-mortality relationships across contexts. Our

results from high-income, high-pollution Hong Kong are novel on their own and as part of

a broader cross-institutional exercise. Second, we provide early evidence on the effects of

pollution on birthweight in a high-pollution setting. Existing pollution-morbidity studies

focus on low-pollution settings in the developed world, largely due to data limitations in
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other contexts. Third, the free, high quality healthcare system in Hong Kong affords access

to excellent data for an entire population. Free universal healthcare offers compelling data

on vulnerable populations, who may be especially served by the institutions that come with

economic development.

2 Conceptual Framework

To fix ideas, following Hsiang et al. (2019) , we conceptualize marginal damages as a function

of exposure, e, and a vector of attributes, x.2 Attributes can be considered a measure of

an individual’s vulnerability to damages from pollution. Vulnerability is defined as the

rate at which exposure to pollution generates damages given economic and environmental

conditions. For example, population differences in access to health care, housing quality,

baseline health, education, etc. could all lead to differences in the translation of exposure,

e, into economic costs.

The key feature of this framework is that exposure is only converted into economic

costs through a function that describes the vulnerability of an individual or population.

Consequently, higher marginal damages in developing countries – as observed in the existing

literature – may be attributable to higher e, different x’s, or some combination.

Even in a stylized model there are competing explanations for the same empirical ob-

servation. For illustration, we describe the limiting cases. On the one hand, differences in

marginal damages may be lower in developed countries because levels of pollution are lower.

If the dose response function is non-linear with respect to exposure, e, then two populations

facing different levels of pollution will experience different marginal damages, even if they

are identical with regards to all other factors that could influence vulnerability, x:

∂2Damages

∂e2
=
∂2f(e, x)

∂e2
> 0

2We do not claim new modeling contributions. This section simply serves to highlight potential mecha-
nisms influencing marginal pollution damages.
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On the other hand, differences in marginal damages may arise from differences in the fac-

tors that translate pollution exposure into marginal damages. For example, two populations

may be exposed to the same level of pollution but have differential access to high quality

health care, xj. Assuming that access to high quality health care mitigates the marginal

damages associated with pollution, populations with restricted access to health care will

experience greater marginal damages, holding all else constant.

∂2Damages

∂e∂xj
=
∂2f(e, xj)

∂e∂xj
< 0

3 Data

Administrative Birth and Death Records We obtain birth and death records between

January 1st 2001 and December 31st 2014 from the Census and Statistics department of Hong

Kong. The birth records data set provides detailed information on 942,687 births, including

data on birth characteristics (e.g., date of birth, sex, type of birth, hospital, etc.), parental

characteristics (e.g., mother’s and father’s age, occupation, education, etc.), as well as the

location of the mother’s residence at the Tertiary-Planning-Unit (TPU) level.3 We retain all

birth records from mothers who report Hong Kong as their residence. We retain observations

with complete information on sex, birthweight, exact date of birth, and location of birth.4

Our mortality records data set includes date of death, age of death, and cause of death.

For analysis we focus on the 1,058 neonatal deaths, deaths that occur in the first 28 days.

90% of infant deaths in our sample occur in the first 15 days of life. Moreover, age measured

in days is not available beyond 28 days. For each neonatal death, we locate and match an

individual birth record using the date of birth, date of death, age at death, sex, and TPU

of residence. A practical challenge is that our datasets do not provide unique identifiers

3In 2011 there were 289 TPUs in Hong Kong and 7.072 million residents, resulting in an average popu-
lation density of 24,470 people per TPU. The average area each TPU is 3.83km2.

4Transient births represent roughly one-third of births. Most of these are babies born to parents from
mainland China. Only 0.05% of birth records are dropped due to missing data.
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across birth and death records. For cases in which there are multiple births and deaths

within a given date of birth, date of death, sex and TPU cell, we have to use probabilistic

matching. For example, if there are 2 deaths matched to 2 birth cells then a probability of 1

is assigned. However, if there is only 1 death matched to 2 birth cells then a probability of

0.5 is assigned. Probabilistic matching is common when working with administrative data

when unique identifiers are not available (Wagner and Layne, 2014).5

Pollution Data We collect hourly pollution concentrations for several criteria pollutants

from the Environmental Protection Department of Hong Kong. Our pollutant of interest,

PM10, includes all suspended solids and liquids that are 10 micrometers in diameter or less.

The largest sources of PM10 in Hong Kong are boat traffic, road transport, and electric-

ity generation. We focus on particulate matter (PM10) due to its importance for human

health and economic damages, its consistency in reporting over the sample period, and its

comparability to the existing literature (Dockery et al., 1993; Pope et al., 2002; Chay and

Greenstone, 2003, 2005; Pope and Dockery, 2006; Graff Zivin, J. and Neidell, M., 2012; Cen-

sus and Statistics Department, 2014a,b; Chang et al., 2016; Ebenstein et al., 2016; Bishop

et al., 2019; Deryugina et al., 2019; Herrnstadt et al., 2019).

We construct measures of individual-level PM10 exposure. First, we assign daily pollu-

tion levels to each TPU, interpolating the station-level data to population-weighted TPU-

centroids using inverse distance weighting applied to all pollution monitors within a 10km

buffer.6 Second, we reconstruct individual level gestational exposure by mapping pollution

at the TPU-level to each individual birth based on mother’s TPU of residence and the child’s

5Of the 1,058 neonatal deaths in the final sample, 331 are assigned a probability of 1. In the analysis
data set the mean number of births per cell is 1.74, the median number of births is 1, and the maximum
number of births is 12. As long as any measurement error is orthogonal to pollution exposure our estimate
of the treatment effect will be unbiased and consistent. The impact on inference is harder to predict but
likely small because the occurrence of infant deaths are rare in this population. An alternative approach is
to construct a selected sample using unique birth-death pairs. Our results are not sensitive to using this
sample (Table A10).

6If during gestation a mother lives further than 10km from a monitoring station, we do not construct
a measure of pollution exposure for that pregnancy. Results are robust to using alternative distance radii
(Table A7).
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date-of-birth. We define gestational exposure to be the average of the daily mean of pollution

exposure over the 270 days prior to the date-of-birth.7

Our data document high PM10 concentrations in Hong Kong between 2001 and 2014.

The World Health Organization guidelines suggest that the annual average of PM10 should

not exceed 20µg/m3/day. During our study period, average gestational exposure to PM10

levels in Hong Kong was 53µg/m3/day. The minimum gestational exposure to PM10 in our

sample is 30µg/m3/day. The maximum is 94µg/m3/day.

Weather Data We collect weather data from two sources. First, we observe daily data

on surface-level temperature, precipitation, humidity, and air pressure from 43 Hong Kong

Observatory weather stations. Second, we collect data on air temperature at two atmospheric

levels from the ERA-Interim Reanalysis archive. Reanalysis data combines observations

from ground stations and remote-sensing products with global climate models to provide

a consistent best estimate of atmospheric parameters over time and space (Auffhammer et

al., 2013). The data are provided every 6 hours and are measured on a 0.12◦ × 0.12◦ grid

(13 × 13 km). We aggregate reanalysis data to the daily level. We construct measures of

individual exposure to weather and thermal inversions using the same procedures applied to

pollution. Our final weather data contain measures of temperature, precipitation, humidity,

air pressure, and thermal inversion exposure.

Final Sample Combining all data sources, we obtain a final analysis sample of 532,726

births between 2001 and 2014. Each birth is matched to weather exposure, individual mortal-

ity information, and gestational pollution exposure. Appendix A considers contemporaneous

exposure. The unit of observation is a birth.

7It is possible that, during a mother’s gestation period, there are days without valid readings for some
pollutants. In our analysis sample 96% of births have valid readings for all days, and 99.83% of births have
valid readings for at least 266 days.
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4 Research Design

Our objective is to estimate the effect of gestational pollution exposure, Pijt, on birthweight

and the probability of mortality and for individual i born in location j at time t. For

birthweight and mortality outcomes, Yijt,

Yijt = α + βPijt + εijt. (1)

To identify the effects of pollution on our outcome of interest, β, it must be the case that

pollution is orthogonal to εijt. The main threat to identification is omitted variable bias.

First, exposure to pollution and birth outcomes may be correlated via changes over time

across years and seasonal variation within years. If birth outcomes are worse during the

winter and gestational pollution exposure is also higher for babies born in the winter, then

mortality estimates are biased upward and morbidity estimates are biased downward. De-

terministic trends may also arise due to changes in economic activity. If PM10 is higher

when economic activity is higher and birth outcomes are positively correlated with economic

activity (conditional on pollution) then the pollution-mortality relationship will be biased

upwards and the pollution-birthweight will be biased downward. Second, exposure to pollu-

tion and birth outcomes may be correlated with avoidance behavior. In the long run people

choose where to live and so exposure to pollution and birth outcomes may be associated

with residential sorting. In the short run, individual decision-making may affect exposure

to pollution, e.g., staying indoors on high pollution days or wearing face masks. If infor-

mation about, or opportunities to avoid, pollution damages are correlated with other health

and human capital investments then the relationship between pollution exposure and birth

outcomes may be confounded. Other omitted variable concersn are also possible.

One approach to address omitted variable bias is to use covariates and/or fixed effects.

We control for differences in socio-economic characteristics, changes in economic conditions,

equilibrium avoidance behaviors such as residential sorting, and seasonality. We estimate the
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relationship between birth outcomes and pollution exposure using the following specification,

Yijmt = α + βPijmt + γXijmt + δjt + φjm + εijmt. (2)

γjt is a vector of TPU-by-year fixed effects that control for time-invariant characteristics

at the local level, addressing location-specific equilibrium endogenous exposure, such as res-

idential sorting, as well as controlling for annual shocks that are common across everyone

within a TPU, such as changes in economic conditions. We include TPU-by-month, φjm,

fixed effects that control for TPU-specific seasonality in births, deaths, and disease transmis-

sion that may also be correlated with pollution exposure. Xijmt includes surface gestational

weather conditions, parental characteristics, and birth characteristics.

The approach in equation 2 addresses several threats to identification but cannot help

us to address time-varying omitted variables like those associated with short-run individual-

level avoidance behavior. It is likely that the population is aware of pollution levels (Moretti

and Neidell, 2011; Chang et al., 2018; Barwick et al., 2019). Pollution forecasts are widely

disseminated to the public during our sample period. In Appendix B we provide evidence

that this is the case, showing that a 10 µg/m3 increase in PM10 on the day of professional

football (soccer) matches in Hong Kong is associated with a 17-20% reduction in attendance.

Another concern is measurement error in the assignment of ambient pollution to individual

level exposure.

To address these residual concerns we also employ instrumental variable strategies. The

primary instrumental variable approach exploits a meteorological phenomenon known as a

thermal inversion, which arises when a mass of hot air settles above a mass of cooler air.

This instrument has been popularized in several papers by Paulina Oliva and co-authors

(Arceo et al., 2016; Hicks et al., 2016; Chen et al., 2017, 2018). Under normal conditions

air temperature in the troposphere (the lowest region of the atmosphere) falls with altitude

at a rate of 6.5◦C per 1,000 meters. Under these conditions emissions are released into the

atmosphere, then naturally rise and dissipate. However, in the case of a thermal inversion air
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temperature in the troposphere can rise with altitude. Under these circumstances a ceiling

effect can trap pollution at the ground level. It is only after the sun’s energy eventually

equates the non-standard arrangement of hot and cold air masses, that the thermal inversion

dissipates and the concentrated pollutants are able to rise out of the lower atmosphere as

normal.

To construct our instrument for a given day and location, we codify the onset of a thermal

inversion if the difference in average daily temperature between 111 meters and 766 meters

is negative, i.e, temp111 − temp766 < 0. We then calculate the number of thermal inversions

during the 270 days of gestation.

Exogeneity Thermal inversions are not caused by pollution or economic factors. They

are more likely to occur on clear nights when the ground and the air in touch with the

ground are cooled faster than the air layers above, resulting in a relative inversion (Arceo

et al., 2016). As such, they are more frequent in winter – confirmed in our setting – as

cold ground temperatures cause the air that is close to the ground to remain at a lower

temperature than the air above ground that is warmed by earth’s infrared emissions. To

address the seasonality of thermal inversions we control for a vector of season fixed effects

(month-of-year × TPU in our main specification). Conditional on seasonality controls, the

incidence of thermal inversions is plausibly exogenous.

Relevance Other studies have shown that thermal inversions have substantial effects on

particulate matter, which tends to be released during morning rush hours when inversions

typically occur (Kukkonen et al., 2005; Malek et al., 2006; Arceo et al., 2016). In the context

of Hong Kong, Lee and Hills (2003) study seven serious pollution episodes between 1996 and

2002, finding that daily average PM10 levels exceeding 150µg/m3 were all associated with

the existence of thermal inversions.

We directly test the relevance of thermal inversions as a driver of pollution in Hong

Kong. We regress gestational exposure, Pijmt, on the instrument. We control for a vector
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of individual level controls, including gestational exposure to surface weather conditions, a

vector of TPU-by-year fixed effects, and TPU-by-month-of-year fixed effects:

Pijmt = α + δInversionijmt + γXijmt + δjt + φjm + νijmt (3)

Consistent with previous studies we find that there is a strong correlation between the

incidence of thermal inversions and gestational exposure to PM10.8 A one standard deviation

increase in exposure to thermal inversions during gestation (an additional 2.3 inversions) is

associated with a 0.506 µg/m3 increase in average gestational particulate matter exposure.

For context, the extreme case where an individual was exposed to a thermal inversion every

day would more than double gestational exposure to particulate matter relative to the mean.

Exclusion Restriction A key assumption for identification is that thermal inversions only

affect health outcomes through pollution. It is not possible to test this assumption directly.

However, we argue that it is plausible. Thermal inversions do not present a direct health risk

to individuals themselves. Consequently, after controlling for seasonality and surface-level

weather conditions that could be correlated with thermal inversions, pollution, and health

outcomes, we argue that the exclusion restriction is likely satisfied. One argument against

this concern is that thermal inversions could directly affect short-run avoidance behavior if,

on average, Hong Kong residents are aware of thermal inversions when they occur and are

aware that thermal inversions trap pollution. Although we cannot rule out this possibility, it

seems less likely. The existing literature argues that most people are unaware when thermal

inversions occur and even fewer are aware that thermal inversions concentrate particulates

8Thermal inversions are unlikely to have an effect on secondary pollutants such as Ozone. Ozone requires
time to form from the mixture of primary pollutants and so may only appear later in the day when it is likely
that inversions have already dissipated (Jacobson, 2002). Arceo et al. (2016) further argue that inversions
may directly inhibit the formation of these pollutants as the chemical reactions required to form them
require warmth and sunlight. We also regress ozone and carbon monoxide on thermal inversions. We detect
no correlation between gestational exposure to Ozone and thermal inversions as expected. We estimate a
relationship between thermal inversions and carbon monoxide, consistent with the existing literature. A
more detailed discussion of these results, alongside regression results, can be found in Appendix A.2.1.
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(Arceo et al., 2016; Hicks et al., 2016; Chen et al., 2017, 2018). 9

One final caveat is that when we evaluate the effects of thermal inversions on health

through particulate matter (PM10) we are assuming that thermal inversions only affect health

through PM10 and not through other pollutants. This is a common issue associated with

any instrumental variable that affects multiple pollutants. We argue, as others have done

before us, that our identification strategy is sufficient to identify the effects of pollution on

health, rather than a particular pollutant, and that this is sufficient for the exercise at hand

(Chay and Greenstone, 2003; Currie and Neidell, 2005; Arceo et al., 2016; Knittel et al.,

2016; Deryugina et al., 2019). Note also that results are robust to including, or omitting,

controls for ozone and carbon monoxide (Appendix A.2.3).

Estimation Details Our preferred specification is equation 4,

Yijmt = α + βP̂ijmt + γXijmt + δjt + φjm + εijmt (4)

where P̂ijmt is the two-stage least squares prediction of gestational exposure to pollution for

individual i, in TPU j, born in month m of year t. We continue to control for TPU-by-year

fixed effects and TPU-by-month-of-year fixed effects, as well as a vector of individual-level

controls such as gestational exposure to surface weather conditions, parental characteristics,

and birth characteristics.

For robustness, we also consider a second instrumental variable strategy that exploits

variation in air pollution induced by port traffic. Following Moretti and Neidell (2011), we

exploit variation in the log of net registered tonnage of marine traffic to Hong Kong in a

9During an October 2017 seminar presentation of this paper at Hong Kong University of Science and Tech-
nology (HKUST), we conducted an informal poll on the selected sample of seminar participants (economists,
social scientists, and environmental scientists). We asked whether they 1) knew about thermal inversions
(even by a different name) 2) knew thermal inversions were common during Hong Kong winters 3) knew
thermal inversions had large effects on local pollution levels. Only one seminar participant expressed full
awareness of these issues. While clearly this sample is not representative of the population and the poll
was crudely implemented it suggests that even highly educated individuals living in Hong Kong are not
necessarily aware of thermal inversions or their consequences.
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month, interacted with the distance from port to each population-weighted TPU centroid.

The relevance of this instrument is weaker than the thermal inversion instrument.

Across all specifications, standard errors are two-way clustered at the TPU-level to ac-

count for serial correlation over time and at the date-of-birth level to account for spatial

dependence in pollution exposure across all births on a given day.10

5 Results

We present key results in Table 1. Columns (1) and (2) report the effects of gestational

PM10 exposure on birthweight for OLS and IV specifications. Columns (3) and (4) present

the effects of gestational PM10 exposure on neonatal death for OLS and IV specifications.

Birthweight We find large effects of gestational PM10 exposure on birthweight in a high-

pollution context. Using our preferred specification from an instrumental variables approach

we estimate that a 10 µg/m3 increase in PM10 is associated with a 76 gram reduction

in birthweight (Table 1, column (2)).11 This effect is equivalent to Currie et al. (2009)’s

estimated effects of smoking 15 cigarettes per day during gestation. This effect is larger

than estimates in low-pollution settings. The existing literature offers few examinations of

the pollution-birthweight relationship in high-pollution contexts due to data limitations, so

the context and empirical magnitude are new to the literature.

Neonatal Mortality We provide early evidence that gestational PM10 exposure has lim-

ited effects on neonatal mortality in Hong Kong, despite high levels of pollution. For both

OLS and IV specifications we estimate small and statistically insignificant relationship be-

tween gestational PM10 exposure and neonatal mortality. Point estimates from our preferred

10Results are unchanged if we only cluster along one of the dimensions. Standard errors are similar
across all three combinations: one-way clustering by TPU, one-way clustering by date-of-birth, and two-way
clustering by TPU and date-of-birth.

11In specifications without instruments we fail to reject a null of no relationship between gestational PM10

exposure and birthweight (Table 1, column (1)).
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specification using an instrumental variable approach suggest that a 10 µg/m3 increase in

PM10 is associated with 0.02 additional deaths per 1,000 births. This marginal impact is

among the smallest in the literature, including those from the United States (Knittel et al.,

2016). We defer interpretation until the next section, although we reiterate here the novelty

of evidence from a high-pollution setting with high average incomes and excellent health

care.

We acknowledge that pollution-mortality relationships are not precisely estimated. Al-

though our central estimates are extremely small our 95% confidence interval doesn’t rule

out meaningful increases in neonatal mortality. Nevertheless, our point estimates and up-

per confidence limit are small relative to the existing literature in high-pollution settings.12

Moreover, we reject a null using the same data for the effects of PM10 on birthweight.

Additional Results and Robustness Tests In Appendix A we provide supporting evi-

dence. Our results are robust to using an alternative instrument based on port traffic (Table

A3). This instrument is weaker than the thermal inversion instrument, yet we estimate qual-

itatively similar results. Our results are also robust to estimating reduced form relationships

between thermal inversions, birthweight and neonatal mortality (Table A8). We estimate a

statistically significant effect of gestational thermal inversion exposure on birthweight and a

statistically insignificant effect of gestational thermal inversion exposure on neonatal mor-

tality. To address concerns that our estimates of particulate matter are confounded by other

pollutants we show that our results are robust to controlling for carbon monoxide and ozone

(Table A4). We also show our results are robust to alternative measures of particulate mat-

ter like PM2.5 and average daily maximum exposure during gestation (Table A5 and Table

A6). We also explore outcomes defined by specific causes of death (Table A9). We find no

effects on any cause of death. We also confirm that our results are not driven by our specific

choice of distance radii (Table A7).

12For example, our upper confidence limit is similar in magnitude to the central estimate in Arceo et al.
(2016), Heft-Neal et al. (2018), Cesur et al. (2016) and smaller than the central estimate in Heft-Neal et al.
(2019).
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Finally, we do not find any effect of contemporaneous exposure to particulate matter on

neonatal mortality (Table A11). We caution that we do not have a strong instrument largely

due to limited opportunity for post-natal exposure. 50% of neonatal deaths occur within 2

days. 90% of neonatal deaths occur within 2 weeks.

6 Discussion and Conclusion

We find that marginal changes in pollution exposure in high-income, high-pollution Hong

Kong are associated with large changes in birthweight but no change in neonatal mortality.

The analyses and results are novel in two regards. First, we use high quality administrative

data to provide early evidence on the effects of gestational PM10 exposure on morbidity

in a high-pollution context. Morbidity estimates in our setting are considerably larger than

existing evidence from lower pollution settings. Second, we fail to reject a null hypothesis that

gestational PM10 exposure has no effect on neonatal mortality in a high-pollution yet high-

income context. This finding contrasts sharply with existing evidence from high-pollution,

low-income settings.

Extrapolating results in the context of the literature suggests two implications for eco-

nomics and policy. With respect to birthweight, marginal damages may not be particularly

moderated by the economic and policy environment. Hong Kong has free access to excellent

health care and baseline health indicators are among the best in the world. Yet we find very

large effects of particulate matter on birthweight in Hong Kong. Given the magnitude of the

birthweight effects, our results that marginal morbidity damages are high when PM10 is high

suggest that marginal morbidity damages are increasing with pollution. With respect to

neonatal mortality, marginal pollution damages appear to be swamped by the economic and

policy environment. Free access to high-quality health care, good economic conditions, and

other factors that come with economic development appear to overwhelm any convexity in

marginal mortality damages that might arise from exposure to higher levels of particulates.
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A natural question is why the economic and policy environment might matter more for

mortality and less for morbidity. One explanation is that the relationship between pollu-

tion and mortality, a severe and discrete outcome, can be more easily renegotiated through

technology. Evidence from the clinical literature suggests that neonatal mortality is highly

correlated with the quality of health care provision (through neonatal care units, obstetrics,

and delivery room care) (Richardson et al., 1998; Horbar et al., 2001; Noble, 2003; te Pas,

2017; WHO, 2019). Less severe margins such as those associated with morbidity may remain

sensitive to pollution. Anticipating and preventing reductions in birthweight is also difficult

and costly prior to birth.13

To explore the broader relevance of our stark mortality results, we perform back-of-the-

envelope calculations using internally valid estimates from several studies in the literature.14

The literature to date has focused on maximizing internal validity and has established im-

portant empirical regularities. However, the constraints of micro-level identification impede

cross-country and cross-institutional comparisons that may illuminate a broader understand-

ing of economic phenomena (Oster et al., 2016; Meager, 2019). In this spirit, we interpret our

own empirical results by comparing marginal mortality damage estimates from 7 prominent

studies. These studies provide different population characteristics that allow us to explore

the correlates of marginal mortality damages across contexts, providing insight into the

drivers of heterogeneity. Figure 1 summarizes the results of our interpretation exercises. We

find that marginal mortality damages are decreasing in GDP per capita and baseline health.

For perspective, and to highlight the magnitude of economic and institutional differences

across countries, we conduct an extreme non-marginal comparison. Holding levels of pollu-

tion constant, increasing GDP per capita in India ($1,939) to the level of the United States

13We do not measure the effects of PM10 on healthcare costs. Our finding of limited mortality effects may
reflect large changes in healthcare spending. This represents an interesting area for future research. This
reinforces the point that the economic and policy environment is important in affecting the translation of
pollution exposure into damages.

14This exercise is essentially impossible to do for morbidity because there are fewer internally valid
estimates of the pollution-morbidity relationship and all have been estimated in high-income, low-pollution
settings. This reiterates the contribution of this study, providing morbidity estimates in a high-pollution
setting.
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($59,531) would be associated with 5.98 fewer deaths from pollution per 1,000 live births, a

roughly one-quarter reduction in the total neonatal mortality rate.15 By contrast, we find

no relationship between average particulate matter concentrations and marginal mortality

damages. This suggests that vulnerability to pollution exposure may be more important

than pollution exposure itself in explaining differences in marginal mortality damages. We

do not assert that pollution exposure does not matter but rather that marginal mortality

damages may be linear (rather than increasing) in pollution exposure.

Combining insights from our birthweight and neonatal death analyses suggests that im-

proving environmental health entails investments in both pollution abatement and economic

development. Our morbidity results suggest that economic development alone is not suf-

ficient. Reducing health effects such as low birthweight, which has been shown to have

long-run economic consequences, requires investments in pollution abatement irrespective

of a populations wealth and health. However, our mortality results suggest that pollution

abatement alone is not sufficient. A population’s wealth and health can dramatically reduce

mortality from pollution. Conventional wisdom suggests that pollution damages are high in

less-developed countries because they are highly polluted. We provide early evidence that

pollution damages are high in less-developed countries because they are more polluted and

less developed. With respect to mortality, we provide suggestive evidence that damages are

high in less-developed countries because the are less developed.

15The estimated change in mortality is the predicted effect from a multivariate regression of marginal
mortality damages on GDP per capita, the baseline neonatal mortality rate, and average particulate matter
concentrations, multiplied by the difference in GDP per capita between India and the United States.
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Tables and Figures

Table 1: Gestational PM10 Exposure, Birthweight, and Neonatal Mortality in Hong Kong

(1) (2) (3) (4)

Birthweight Birthweight Neonatal Neonatal

(g) (g) Mortality Mortality

Gestational PM10 Exposure 0.754 -7.001 -0.0377 0.00299

(0.450) (3.237) (0.0268) (0.186)

Dependent Variable Mean 3,130 3,130 1.150 1.150

TPU × Year FE Yes Yes Yes Yes

Weather Controls Yes Yes Yes Yes

TPU × Month FE Yes Yes Yes Yes

Individual Controls Yes Yes Yes Yes

Specification OLS IV OLS IV

First Stage F-Stat – 59.838 – 59.838

Observations 532,726 532,726 532,726 532,726

Notes: Weather controls: Avg. gestational max temperature, avg. gestational min

temperature, avg. gestational daily rainfall, avg. gestational humidity, avg. gestational

surface pressure. Individual controls, (included as dummy variables): Mother’s age, Sex

of the Baby, Type of Birth (Single, Twin, Triple), Number of Previous Births. Standard

errors are two-way clustered at the TPU and date-of-birth level.
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Figure 1: The Relationship between Marginal Damages, GDP per Capita, and Pollution
Exposure
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Notes: The purpose of this exercise is to explore the broader relevance of our mortality results. The data points used in these
figures are taken from 7 frontier studies in the literature, including our own analysis of the relationship in Hong Kong. Details
on how comparable estimates were constructed can be found in Appendix C. The figures plot the relationship between the
marginal mortality damages associated with particulate matter exposure and three population characteristics. We focus on
(a) GDP per Capita and (b) the Neonatal Mortality Rate and (c) average particulate matter concentrations. In panel (a) we
estimate that marginal damages are negatively associated with GDP per capita – higher income locations are estimated to
have lower marginal damages. In panel (b) we estimate that there is a positive association between marginal damages and the
neonatal mortality rate of a given population – marginal damages are lower in populations with better health. In panel (c)
we estimate that there is no association between marginal damages and baseline particulate matter concentrations – higher
pollution locations are not associated with higher marginal damages.
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A Tables and Figures

This appendix presents descriptive statistics, as well as the first-stage estimates and a wide
range of robustness tests.

A.1 Descriptive Statistics

Table A1 presents descriptive statistics of our main variables of interest. We observe that the
neonatal mortality rate is very low in Hong Kong, around a quarter of that in the US during
the same period. In addition, average birthweight is slightly lower than the US average, but
similar to the birthweights of individuals born of Asian or Chinese heritage in the US.

Particulate matter levels in Hong Kong are very high. On average, mothers were exposed
to average daily levels of 54.307µg/m3 during gestation. There is also quite a lot of variation
in PM10 across births with a standard deviation in gestational exposure of 8.636µg/m3. By
contrast, levels of carbon monoxide and ozone tend to be lower than levels in the United
States.

In terms of our main instrumental variable, we observe that mothers were exposed to
approximately two thermal inversions, on average, during gestation. There is a reasonable
amount of variation in exposure to thermal inversions across births with a standard deviation
of 2.304 thermal inversions.

Figure A1 plots the average exposure to PM10 and thermal inversions by month of birth
during our sample period, as well as average birthweight and the average neonatal mortality
rate. In the raw data we observe that there is a relationship between PM10 levels, thermal
inversion exposure and birthweight. Seasonality in neonatal mortality appears to mirror the
pattern observed for birthweight.

Figure A2 plots average exposure to PM10 and thermal inversions over our full sample
period, as well as average birthweights, and the average neonatal mortality rate. We see
that PM10 levels fell moderately over the period, that the number of thermal inversions over
time doesn’t follow a particular pattern, and that the average birthweight fell during this
period. We do not see any obvious trends in neonatal mortality during this period; however,
the variance in neonatal mortality rates appears to decline in the second half of the sample
period.
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Table A1: Summary Statistics

(1) (2) (3)
Mean Std. Dev. Observations

Panel A: Outcome Variables

Neonatal Mortality Rate (per 1,000) 1.150 29.113 532,726

Birthweight (grams) 3,130 482 532,726

Panel B: Pollution Variables

PM10 (µg/m3) 54.307 8.636 532,726

Carbon Monoxide (10µg/m3) 97.220 21.426 532,726

Ozone (µg/m3) 33.068 5.661 532,726

Panel C: Instrumental Variables

Thermal Inversions 1.8 2.295 532,726

Net Registered Tonnage 30,486 4,233 532,726

Distance to Port 8.516 6.251 532,726

Panel D:Weather Variables 532,726

Avg. Daily Max Temperature (◦C) 25.637 1.673 532,726

Avg. Daily Min Temperature (◦C) 20.017 1.698 532,726

Avg. Daily Rainfall (mm) 5.619 2.090 532,726

Pressure (hPa) 1,012.819 1.810 532,726

Average Humidity (%) 79.028 3.870 532,726

Notes: Outcome variables are measured at birth (birthweight), and up to the first 28
days after birth (neonatal mortality). All other variables are measured at the individual
level during the 270 days of gestation.
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Figure A1: Within-Year Variation in Pollution, Thermal Inversions, Port Traffic, Neonatal
Mortality and Birthweight
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Notes: These figures plot: (a) average PM10 exposure during gestation (b), average thermal inversion exposure during gestation
(c), average birthweight (d) and the average neonatal mortality rate by month of birth.
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Figure A2: Full Sample Time-Series Variation in Pollution, Thermal Inversions, Port Traffic,
Neonatal Mortality and Birthweight
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Notes: These figures plot: (a) average PM10 exposure during gestation (b), average thermal inversion exposure during gestation
(c), average birthweight (d) and the average neonatal mortality rate for each month of our sample period (2001-2014).
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A.2 Additional Results and Robustness Tests

In this section we present a series of supporting results and robustness tests.

A.2.1 First Stage Relationships for all Pollutants

In Table A2 we present the first stage relationship between our instrumental variables and
the three main pollutants in our data. We estimate strong positive relationships between
thermal inversions and both PM10 and carbon monoxide. We estimate a less significant
relationship between thermal inversions and ozone, consistent with our understanding of
atmospheric science and the existing literature. The first-stage F -stats for thermal inversion
is highest for PM10 and well above 10, a common heuristic. The first-stage F -stat is also
large for carbon monoxide, but very small for Ozone, as expected.

The relationship between port traffic and particulate matter is also significant. We find
that an increase in net registered tonnage is associated with large increases particulate mat-
ter, but that this effect is decreasing in distance from the port. A 1% increase in port traffic
is associated with a 0.09 µg/m3 increase in PM10. For each 1km shift away from the port
this effect diminishes by 0.009µg/m3, (roughly 10%). The same relationship is estimated
for carbon monoxide; however, the interaction term on distance is statistically insignificant.
We also find large effects on ozone; however, the sign of the main coefficient is inconsistent
with previous applications of this instrumental variable (Moretti and Neidell (2011). For
this reason we have less confidence in this secondary IV. Furthermore the first-stage F -stat
between port traffic and PM10 is below 10, indicating that the instrument may be weak.

Table A2: First Stages of Instrumental Variables (All Pollutants)

(1) (2) (3) (4) (5) (6)
PM10 PM10 CO CO O3 O3

Gestational Exposure to Thermal Inversions 0.220∗∗∗ 0.344∗∗∗ -0.0332∗

(0.0284) (0.0777) (0.0201)

Gestational Exposure to Port Traffic 9.606∗∗∗ 37.80∗∗∗ -14.17∗∗∗

(2.410) (6.219) (2.276)
Distance to Port × Exposure -0.923∗∗∗ -0.475 -0.966∗∗∗

(0.230) (0.770) (0.140)

First Stage F-Stat 59.838 9.681 19.672 27.241 2.735 81.355

Fixed Efffects TPU × Year and Month × TPU

Weather Controls Yes Yes Yes Yes Yes Yes

Individual Controls Yes Yes Yes Yes Yes Yes

Dependent Variable Mean 54.307 54.307 97.218 97.218 33.069 33.069
Observations 532,726 532,726 532,726 532,726 532,726 532,726

Notes: Gestational exposure to thermal inversions is defined as the number of thermal inversions that occur during the
9 months of gestation. Gestational exposure to port traffic is defined as the log of Net Registered Tonnage that passed
through Hong Kong Port during the 9 months of gestation. This measure of exposure is interacted with the distance (in
km) between the port and the TPU of residence. Weather controls: Avg. gestational max temperature, avg. gestational
min temperature, avg. gestational daily rainfall, avg. gestational humidity, avg. gestational surface pressure. Individual
controls, (included as dummy variables): Mother’s age, Sex of the Baby, Type of Birth (Single, Twin, Triple), Number
of Previous Births. Standard errors are two-way clustered at the TPU and date-of-birth level.
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A.2.2 Second Stage Effects (Port Traffic IV)

In Table A3 we use our port traffic instrumental variable to explore the robustness of our
findings derived from the use of the thermal inversion instrument. Similar to the thermal
inversion instrument we estimate no statistically significant effect of gestational PM10 on
neonatal mortality. The magnitude of the effect is larger than the estimate derived from the
thermal inversion instrument; however, even the largest effect implying 0.6 additional deaths
per 1,000 live births for a 10 µg/m3 is still one of the smallest in the literature, comparable
in magnitude to recent estimates for the United States (Knittel et al., 2016).

The effect on birthweight is statistically insignificant and around half the size of the
estimate derived from the thermal inversion instrument. However, the magnitude of the
central estimate is still meaningful. Taken at face value a 10 µg/m3 increase in PM10 is
associated with a 31.61 gram reduction in birthweight, equivalent to the estimated effects of
smoking 6.2 cigarettes per day during gestation (Currie et al., 2009).

Table A3: The Relationship between Gestational PM10 Exposure Birthweight and Neonatal
Mortality (Port Traffic IV)

(1) (2)
Birthweight Neonatal
Weight (g) Mortality

Gestational PM10 Exposure -3.161 0.0610
(5.271) (0.402)

Dependent Variable Mean 3,130 1.150

TPU × Year FE Yes Yes

Weather Controls Yes Yes

TPU × Month FE Yes Yes

Individual Controls Yes Yes

First Stage F-Stat 9.681 9.681

Observations 532,726 532,726

Notes: Weather controls: Avg. gestational max temper-
ature, avg. gestational min temperature, avg. gestational
daily rainfall, avg. gestational humidity, avg. gestational
surface pressure. Individual controls, (included as dummy
variables): Mother’s age, Sex of the Baby, Type of Birth
(Single, Twin, Triple), Number of Previous Births. Stan-
dard errors are two-way clustered at the TPU and date-of-
birth level.
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A.2.3 Controlling for Other Pollutants

In Table A4 we explore whether our IV results are affected by controlling for other criteria
pollutants (Carbon Monoxide and Ozone). We find that our estimates are largely unchanged
when controlling for these variables.

Table A4: The Relationship between PM10 Exposure, Birthweight and Neonatal Mortality
(including Pollution Controls)

(1) (2)
Birthweight Neonatal

(g) Mortality

Gestational Max PM10 Exposure -6.694∗∗ 0.00969
(3.236) (0.183)

Dependent Variable Mean 3,130 1.150

TPU × Year FE Yes Yes

Weather Controls Yes Yes

TPU × Month FE Yes Yes

Individual Controls Yes Yes

First Stage F-Stat 67.774 67.774

Observations 532,726 532,726

Notes: Weather controls: Avg. gestational max temperature,
avg. gestational min temperature, avg. gestational daily rainfall,
avg. gestational humidity, avg. gestational surface pressure. In-
dividual controls, (included as dummy variables): Mother’s age,
Sex of the Baby, Type of Birth (Single, Twin, Triple), Number
of Previous Births. Standard errors are two-way clustered at the
TPU and date-of-birth level.

7



A.2.4 Maximum Pollution Exposure

In Table A5 we explore whether there are birthweight or mortality responses arising from
differences in gestational exposure to daily maximum levels of PM10. We find similar effects
to our main estimates that exploit gestational exposure to daily average levels of PM10.

Table A5: The Relationship between Maximum PM10 Exposure, Birthweight and Neonatal
Mortality (Gestational Average Daily Maximum PM10 Exposure)

(1) (2)
Birthweight Neonatal

(g) Mortality

Gestational Max PM10 Exposure -5.905∗∗ 0.00252
(2.723) (0.157)

Dependent Variable Mean 3,130 1.150

TPU × Year FE Yes Yes

Weather Controls Yes Yes

TPU × Month FE Yes Yes

Individual Controls Yes Yes

First Stage F-Stat 54.861 54.861

Observations 532,719 532,719

Notes: Weather controls: Avg. gestational max temperature,
avg. gestational min temperature, avg. gestational daily rainfall,
avg. gestational humidity, avg. gestational surface pressure. In-
dividual controls, (included as dummy variables): Mother’s age,
Sex of the Baby, Type of Birth (Single, Twin, Triple), Number
of Previous Births. Standard errors are two-way clustered at the
TPU and date-of-birth level.
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A.2.5 The Relationship Between Gestational PM2.5 Exposure, Birthweight, and
Neonatal Mortality

The focus of our analysis is PM10 because it is more consistently monitored over our sample
period. However, we do have PM2.5 measures for a sub-sample of the data. In Table A6 we
show that our findings are robust to using PM2.5 in place of PM10. The estimated effects on
neonatal mortality remain very small. A 10 µg/m3 increase in PM2.5 is associated with 0.26
additional deaths per 1,000 live births. The effects on birthweight remain meaningful. A 10
µg/m3 increase in PM2.5 is associated with a 65.35 gram reduction in birthweight.

Table A6: The Relationship between Gestational PM2.5 Exposure, Birthweight, and Neonatal
Mortality

(1) (2)
Birthweight Neonatal

(g) Mortality

Gestational PM2.5 Exposure -6.535∗∗ 0.0212
(2.571) (0.169)

Dependent Variable Mean 3,130 1.150

TPU × Year FE Yes Yes

Weather Controls Yes Yes

TPU × Month FE Yes Yes

Individual Controls Yes Yes

First Stage F-Stat 71.828 71.828

Observations 502,812 502,812

Notes: Weather controls: Avg. gestational max temper-
ature, avg. gestational min temperature, avg. gestational
daily rainfall, avg. gestational humidity, avg. gestational
surface pressure. Individual controls, (included as dummy
variables): Mother’s age, Sex of the Baby, Type of Birth
(Single, Twin, Triple), Number of Previous Births. Standard
errors are two-way clustered at the TPU and date-of-birth
level.
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A.2.6 Adjusting the Sample by Distance to Pollution Monitors

In our main analysis we restrict our sample to locations that are within 10km of a pollution
monitor. A choice about distance has to be made out of necessity due to the fact that there
are fewer monitors than neighborhoods in our context. However, one may be concerned that
distance to monitors introduces non-classical measurement error if monitors are endogenously
placed (Knittel et al., 2016; Grainger et al., 2018; Zou, 2018). We explore the potential for
this by using alternative distance restrictions. We restrict our sample to 8km and 12km
respectively. Across all samples we fail to reject a null that PM10 has no effect on neonatal
mortality (Table A7). Our estimated effects of PM10 on birthweight are also robust across
the different samples (Table A7).

Table A7: The Relationship between PM10 and Neonatal Mortality Using Different Distance
Restrictions (IV)

(1) (2)
Birthweight Neonatal

(g) Mortality

Panel A: 10km
Gestational PM10 Exposure -7.001∗∗ 0.00299

(3.237) (0.186)

First Stage F-Stat 59.838 59.838

Observations 532,726 532,726

Panel B: 8km
Gestational PM10 Exposure -8.292∗∗ 0.00790

(3.766) (0.215)

First Stage F-Stat 44.730 44.730

Observations 432,071 432,071

Panel C: 12km
-7.039∗∗ -0.0272
(3.100) (0.176)

First Stage F-Stat 62.712 62.712

Observations 556,211 556,211

TPU × Year FE Yes Yes

Weather Controls Yes Yes

TPU × Month FE Yes Yes

Individual Controls Yes Yes

Notes: Weather controls: Avg. gestational max temper-
ature, avg. gestational min temperature, avg. gestational
daily rainfall, avg. gestational humidity, avg. gestational
surface pressure. Individual controls, (included as dummy
variables): Mother’s age, Sex of the Baby, Type of Birth
(Single, Twin, Triple), Number of Previous Births. Stan-
dard errors are two-way clustered at the TPU and date-of-
birth level.
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A.2.7 Reduced Form Relationships

In Table A8 we estimate the reduced form relationship between gestational exposure to
thermal inversions and neonatal mortality. We fail to reject a null that the number of
gestational thermal inversions has an effect on neonatal mortality.

We do estimate a strong reduced form relationship between thermal inversions and birth-
weight. We find that exposure to an additional thermal inversion during gestation is associ-
ated with a 1.54 gram reduction in birthweight.

Table A8: The Relationship between Thermal Inversions, Birthweight, and Neonatal Mor-
tality (Reduced Form)

(1) (2)
Birthweight Neonatal

(g) Mortality

Gestational Exposure -1.540∗∗ 0.000657
to Thermal Inversions (0.674) (0.0410)

Dependent Variable Mean 3,130 1.150

TPU × Year FE Yes Yes

Weather Controls Yes Yes

TPU × Month FE Yes Yes

Individual Controls Yes Yes

Observations 532,726 532,726

Notes: Weather controls: Avg. gestational max temper-
ature, avg. gestational min temperature, avg. gestational
daily rainfall, avg. gestational humidity, avg. gestational
surface pressure. Individual controls, (included as dummy
variables): Mother’s age, Sex of the Baby, Type of Birth
(Single, Twin, Triple), Number of Previous Births. Stan-
dard errors are two-way clustered at the TPU and date-
of-birth level.
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A.2.8 The Relationship Between Gestational PM10 Exposure and Neonatal
Mortality, by Cause of Death

In Table A9 we estimate the relationship between PM10 and neonatal mortality, by cause of
death. We look at deaths due to respiratory causes, cardiovascular causes, prenatal causes
and all other causes. A priori one should expect that any mortality response to pollution
should be in the first three categories. We fail to reject a null hypothesis for all categories.

Table A9: The Relationship between Gestational PM10 Exposure and Neonatal Mortality
(Cause of Death)

(1) (2) (3) (4)
Neonatal Neonatal Neonatal Neonatal
Mortality Mortality Mortality Mortality

(Respiratory) (Cardiovascular) (Prenatal) (Other)

Gestational PM10 Exposure 0.0519 -0.0109 0.138 0.0930
(0.0593) (0.0479) (0.134) (0.473)

Dependent Variable Mean 0.176 0.160 0.642 1.539

Fixed Effects TPU × Year, TPU × Month
Controls Weather Controls and Individual Controls

First Stage F-Stat 59.622 59.628 59.609 59.830

Observations 531,807 531,805 532,245 532,487

Notes: Weather controls: Avg. gestational max temperature, avg. gestational min tem-
perature, avg. gestational daily rainfall, avg. gestational humidity, avg. gestational surface
pressure. Individual controls, (included as dummy variables): Mother’s age, Sex of the Baby,
Type of Birth (Single, Twin, Triple), Number of Previous Births. Standard errors are two-way
clustered at the TPU and date-of-birth level.

12



A.2.9 Unique Mortality Sample

In Table A10 we explore the relationship between PM10 and neonatal mortality using the
unique mortality sample. This sample is restricted to only include unique deaths within
each TPU, date of birth, sex cell. This sample reduces measurement error in the dependent
variable but is unlikely to be representative of the Hong Kong population as the data is
based on locations with smaller populations. We estimate marginally larger effects of PM10

on mortality; however, the effects remain statistically insignificant. Taken at face value
the results suggest that a 10 µg/m3 increase in PM10 is associated with an additional 0.6
neonatal deaths per 1,000 births, comparable to recent estimates in the United States where
pollution levels are markedly lower (Knittel et al., 2016).

We also estimate birthweight effects that are similar to the main analysis sample. How-
ever, the estimates are no longer statistically significant, likely due to a substantial reduction
in sample size.

Table A10: The Relationship Between Gestational PM10, Birthweight, and Neonatal Mor-
tality (Unique Mortality Sample)

(1) (2)
Birthweight Neonatal

(g) Mortality

Gestational PM10 Exposure -6.784 0.0605
(4.682) (0.258)

Dependent Variable Mean 3,148 1.093

Fixed Effects TPU × Year, TPU × Month
Controls Weather Controls and Individual Controls

First Stage F-Stat 57.169 57.169
Observations 287,816 287,816

Notes: Weather controls: Avg. gestational max temperature, avg. ges-
tational min temperature, avg. gestational daily rainfall, avg. gestational
humidity, avg. gestational surface pressure. Individual controls, (included
as dummy variables): Mother’s age, Sex of the Baby, Type of Birth (Sin-
gle, Twin, Triple), Number of Previous Births. Standard errors are two-way
clustered at the TPU and date-of-birth level.
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A.2.10 Contemporaneous Exposure

In Table A11 we explore the relationship between post-gestational PM10 exposure and neona-
tal mortality. We measure exposure as the average daily PM10 exposure from the date of
birth until death, or until 28 days after birth. We do this given that the existing literature
has highlighted the relevance of contemporaneous exposure for infant mortality (Currie and
Neidell, 2005; Arceo et al., 2016; Knittel et al., 2016). However, once again we find no effects
of pollution on neonatal mortality. A caveat to this exercise is that we have to depend on
a fixed effect approach because the first stages of our IV strategy are not relevant over this
short time period (a maximum of 28 days).

Across a broad range of fixed effect specifications we find no meaningful relationship
between PM10 and neonatal mortality. Conditional on a neonatal death occurring the median
age of death is 2 days old.16 Consequently, there does not appear to be sufficient opportunity
for post-natal exposure to have a meaningful effect on neonatal mortality in this context.
For this reason, as well as to estimate the effects of comparable measure of exposure for both
neonatal mortality and birthweight, our main analysis focuses on pre-natal exposure.

Figure A3: Age of Death in Days
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Notes: The histogram presents the age of death, conditional on death in the first 28 days. The long dashed
line represents the median (2 days). The medium dashed line represents the mean (4.55 days). The short
dashed line represents the 90th percentile (13 days).

16The distribution of age at death is presented in Figure A3.
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Table A11: The Effects of Air Pollution on Neonatal Mortality – Contemporaneous Exposure
(OLS)

(1) (2)
Neonatal Neonatal
Mortality Mortality

PM10 Exposure -0.0119∗ -0.0124∗

(0.00708) (0.00723)

Dependent Variable Mean 1.150 1.150

TPU × Year FE Yes Yes

Weather Controls Yes Yes

TPU × Month FE Yes Yes

Individual Controls Yes Yes

Prenatal Pollution Controls No Yes

Observations 528,440 528,440

Notes: Weather controls: In column 1 we include avg.
max temperature, avg. min temperature, avg. daily rain-
fall, avg. humidity, avg. surface pressure between birth
and death or birth and 28 days. In column 2 we include
the same controls as column 1 but also include weather
controls for the prenatal period. Individual controls, (in-
cluded as dummy variables): Mother’s age, Sex of the
Baby, Type of Birth (Single, Twin, Triple), Number of
Previous Births. Standard errors are two-way clustered
at the TPU and date-of-birth level.
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B Awareness of Pollution Exposure

The purpose of this exercise is to explore the relevance of individual-level avoidance paper
in our empirical context. To do this we estimate the effects of daily pollution exposure on
the attendance of football matches in the stadiums in Hong Kong.

We collected data on the attendance of 1,002 professional football games played at 15
stadiums in Hong Kong between the 2008/09 and 2013/14 seasons. We combined these data
with pollution exposure at the stadium on the day of the match to explore the degree to
which spectators are aware of pollution levels. The combination of these data sets results in
943 matches. After including date fixed effects we are left with a panel of 560 matches due
to singleton observations.

We regress the log of attendance on pollution exposure for that day, controlling for
stadium (TPU)-year fixed effects, and date fixed effects, and match-type fixed effects, which
control for level differences in the types of match that are played, e.g. international matches,
regular season matches, charity games, etc.

logAttendanceijdt = βPollutionidt + αit + αdt + αj + εijdt

where αit is the stadium-year fixed effect, αdt is the date of match fixed effect, and αj is
the match type fixed effect. We explore the effects of three types of pollution: Particulate
Matter, Ozone and Carbon Monoxide. If awareness of pollution is empirically relevant then
we may find effects for particulate matter, but not for Ozone or Carbon Monoxide, which
are not visible.

The results of our analysis can be found in table B1. We estimate that a 10 µg/m3

increase in PM10 is associated with an 17-20% reduction in match attendance. By contrast,
there is no meaningful effect of Carbon Monoxide (CO) or Ozone (O3) on match attendance.
This findings suggest that awareness about particulate matter appears to be a relevant
consideration in Hong Kong.
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Table B1: The Effects of Air Pollution on Football Game Attendance

(1) (2) (3)
log Attendance log Attendance log Attendance

PM10 Exposure -0.0194∗∗∗ -0.0184∗∗∗ -0.0169∗∗∗

(0.00466) (0.00472) (0.00453)

CO Exposure 0.00750∗∗ 0.00681∗ 0.00587∗

(0.00321) (0.00320) (0.00284)

O3 Exposure 0.00405 0.00301 0.000823
(0.00711) (0.00760) (0.00593)

Stadium TPU × Year FE Yes Yes Yes

Date of Match FE Yes Yes Yes

Match Type FE No Yes Yes

Weather Controls No No Yes

Observations 560 556 556

Notes: Standard errors are two-way clustered at the TPU level. Weather controls include maxi-

mum and minimum temperature, total rainfall, surface pressure, and average humidity.
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C Comparison Studies and Calculations

In this appendix we document the results and characteristics from the studies used in our
cross-institution analysis, as well as the calculations we made to construct comparable esti-
mates.

Heft-Neal et al. (2019)

Sample period: 2001-2015
Context: Sub-Saharan Africa
GDP per capita: $2,880*
Average PM10 Exposure: 35.71 µg/m3 (mean exposure)
Infant mortality rate: 71 deaths per 1,000 births
Neonatal mortality rate: 33.9 deaths per 1,000 births*17

Measure of Exposure: Annual post-natal.

Using an IV strategy the authors estimate that a 10-unit increase in PM2.5 in the year
following birth is associated with an additional 15.62 deaths per 1,000 live births (IMR).
To convert PM2.5 exposure to PM10 exposure we use the ratio PM2.5 = 0.7PM10. Conse-
quently, the effect of a 10-unit increase in PM10 would be associated with an additional 22.3
deaths per 1,000 live births (IMR). Using the average ratio between the neonatal mortality
rate and infant mortality rate for sub-Saharan Africa we attribute 47% of the estimated
deaths to neonatal mortality, resulting in an additional 11.15 deaths per 1,000 live births
(NMR). We then multiply this effect by 0.75 to provide a comparable 9-month measure of
exposure, giving an estimate of 8.36 neonatal deaths per 1,000 live births.

Knittel et al. (2016)

Sample period: 2002-2007
Context: California, USA
GDP per capita: $61,124*
Average PM10 Exposure: 28.94µg/m3

Infant mortality rate: 2.81 deaths per 1,000 births
Neonatal mortality rate: 4.5 deaths per 1,000 births (the U.S. average)*
Measure of Exposure: Weekly Post-Natal.

Using the estimates from their IV strategy we calculate that a 10-unit increase in PM10
is associated with an additional 0.74 deaths per 1,000 live births (IMR).18 Using the US
average ratio between the neonatal mortality rate and infant mortality rate we attribute
66% of the estimated deaths to neonatal mortality, resulting in an additional 0.48 deaths

17Both the infant mortality rates and the neonatal mortality rates in this section come from the original
papers. When such information is not available, we cite numbers from the United Nations Children’s Fund
(UNICEF) and mark the numbers using *.

180.0019×39 weeks×10 units = 0.74 (Table 8, Column 4).
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per 1,000 live births (NMR).

Arceo et al. (2016)

Sample period: 1997-2006
Context: Mexico City
GDP per capita: $11,015 (Mexico)*
Average PM10 Exposure: 66.94µg/m3

Infant mortality rate: 19.87 deaths per 1,000 births
Neonatal mortality rate: 11.83 deaths per 1,000 births
Measure of Exposure: Weekly Post-Natal.

Using an IV strategy they find that a 10-unit increase in PM10 is associated with an
additional 2.97 neonatal deaths per 1,000 live births (NMR).19

Chay and Greenstone (2003a)

Sample period:1969-1974
Context: USA
GDP per capita: $29,843
Average PM10 Exposure: 41.58µg/m3-51.81µg/m3 (annual average)
Infant mortality rate: 17.9 deaths per 1,000 births
Neonatal mortality rate: 13.7 deaths per 1,000 births
Measure of Exposure: Gestational.

Using an IV strategy they find that a 10-unit drop in TSP is associated with 0.7-1.3 fewer
infant deaths per 1,000 live births.20. Following Knittel et al. (2016) we apply a commonly
used conversion metric of 0.55TSP = PM10, a 10-unit increase in PM10 would be associ-
ated with 1.29 - 2.37 more infant deaths per 1,000 live births. Using the ratio between the
neonatal mortality rate and infant mortality rate we attribute 76% of the estimated deaths
to neonatal mortality, resulting in 0.98 - 1.80 fewer neonatal deaths per 1,000 live births.

Chay and Greenstone (2003b)

Sample period:1978-1984
Context: USA
GDP per capita: $33,102
Average PM10 Exposure: 31.02µg/m3-39.11µg/m3 (annual average)
Infant mortality rate: 11.8 deaths per 1,000 births
Neonatal mortality rate: 8.2 deaths per 1,000 births

190.007625×39 weeks×10 units = 2.97 (Table 3, Column 3).
20The coefficients from columns 2 and 5 in Table 6
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Measure of Exposure: Gestational.

Using an IV strategy they find that a 10-unit drop in TSP is associated with 0.4 fewer
neonatal deaths per 1,000 live births. Using the TSP conversion metric this translates into
0.7 fewer neonatal deaths per 1,000 live births per 10 unit reduction in PM10.

Cesur et al. (2016)

Sample period: 2001-2011
Context: Turkey
GDP per capita: $13,455*
Average PM10 Exposure: 66.19µg/m3

Infant mortality rate: 9.2 death per 1,000 births21

Neonatal mortality rate: 13.0 deaths per 1,000 births*
Measure of Exposure: Annual Post-Natal.

Using an IV strategy they estimate that a 10 unit increase in PM10 is associated with
an additional 3.017 infant deaths per 1,000 live births.22 Using the Turkey-wide ratio be-
tween the neonatal mortality rate and infant mortality rate we attribute 72% of the estimated
deaths to neonatal mortality resulting in an additional 2.172 neonatal deaths per 1,000 births.

Our study

Sample period: 2001-2014
Context: Hong Kong
GDP per capita: $41,764
Average PM10 Exposure: 54.31µg/m3

Infant mortality rate: 1.5 deaths per 1,000 births
Neonatal mortality rate: 1.15 deaths per 1,000 births
Measure of Exposure: Gestational.

We find that a 10-unit increase in PM10 is associated with an additional 0.02 neonatal
deaths per 1,000 live births.

21As discussed in Cesur et al. (2016), official statistics on deaths, especially for infants, are incomplete
in most developing countries, including turkey, due to under-reporting. The paper cites the infant mortality
rates from other sources as well. According to WHO, the average mortality rate in the study period is 18.0
deaths per 1,000 births.

22This estimate is calculated as a 1.15% increase in PM10 relative to the mean, resulting in a 1.45%
increase in infant deaths per 1,000 live births. Using the Infant Mortality Rate this corresponds to 4.023
additional deaths. We then multiply this by 0.75 to correspond to 9 months of exposure, resulting in an
estimate of 3.017.
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