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Abstract 

This study investigates the impact of dams on local conflict across the world with georeferenced 

location information on dams and conflict events for the years 1989 to 2016. The identification 

strategy exploits exogenous variation in the river gradient to instrument for endogenous dam 

placement. The results document strong and robust evidence for an increase in intrastate conflict in 

the immediate vicinity of newly-built dams, but no robust effect for interstate conflict can be 

identified. Examining the mechanisms, ethnically polarized and fractionalized regions are more likely 

to experience the negative economic consequences as well as a surge in violence associated with 

dams. Further, countries with low levels of political competition are subject to more violence, 

suggesting that an institutional failure to account for local preferences may lead to violent 

confrontations. Finally, the policy analysis reveals that organizations providing the funding for dams, 

usually international financial institutions, have effective tools such as transboundary water treaties to 

prevent an outbreak of violence by enforcing regulation and monitoring during the implementation 

phases of dams. 
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1 Introduction

Economic development is strongly associated with infrastructure investment. Wealth gener-

ated from infrastructure projects is however not necessarily evenly spread across space and

tends to disadvantage communities in their immediate vicinity. In many instances, directly

affected communities oppose planned projects, as they fear displacement, economic hardship,

environmental degradation and other negative externalities caused by a new dam, highway

or airport. Dams are a particularly frequent source of disputes, with numerous cases of

peaceful protests escalating into violent confrontations with government forces. Despite con-

troversies, the world economy heavily relies on dams. By 2015, dams produced 16 percent

of the global electricity and 35 countries derived at least half of their energy supply from

this renewable source (World Bank, 2019). Dams further accounted for an estimated 12 to

16 percent of the global food production, with one third of the global irrigated agriculture

relying on water from reservoirs in the year 2000 (World Commission on Dams, 2000). The

dependency on dams is expected to increase in the future, as the world faces the beginning

of a global dam building boom, with two trillion USD investments in hydropower projects

alone over the next decade (Zarfl et al., 2015).

Although their overall importance is undeniable, dams can put severe pressure on di-

rectly affected communities through physical displacement and income losses. The ongoing

trend towards ever larger projects is a reason for particular concern (c.f. Figure A1 in the

Appendix). For example the Chinese Three Gorges Dam completed in 2016, the largest

hydropower project in the world, alone displaced at least 1.2 million people (Exchange on

Environment Conflict and Cooperation, 2019). A growing body of qualitative research ac-

cuses dams of fueling intrastate conflict and soaring interstate tensions, with displacement

and inadequate compensation of economic losses at the core of the problem. For instance,

during the construction of the Chixoy dam in Guatemala in the early 1980s, 444 Maya Achi

minorities were massacred by army and paramilitary forces, because they refused to evacuate

their homes located in the planned catchment area of the dam. The villagers, mainly women

and children, feared to lose their livelihoods, inadequate compensation by the government

and resettlement to arid highlands (ICTA-UAB, 2019). While the Chixoy dam exhibits an
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extreme degree of brutality it is by far not an isolated incident of dam-related violence, but

rather exemplifies numerous anecdotal evidence along similar lines. To determine whether a

general pattern of dam-induced violence can be observed, quantitative evidence is necessary

to assess the underlying mechanisms and preventive policies.

This paper is, to the best of my knowledge, the first global empirical investigation into

the impact of dams on conflict, aiming at providing causal evidence and a profound under-

standing of the role of political and ethnic power relations. Dams are an especially suitable

type of infrastructure for empirical analyses, because unlike most of the benefits, the negative

externalities of dams are highly localized and mostly bound to their immediate vicinity. The

empirical strategy is based on a panel dataset covering most parts of the world for the years

1989 to 2016. Dam data is from the Global Reservoir and Dam database, a high-quality

data monitoring the exact location, type, size and completion date of large dams worldwide

and conflict data comes from the Uppsala Conflict Data Program - Georeferenced Event

Dataset, depicting the exact location, year and type of conflict incidents (Lehner and Grill,

2013; Sundberg and Melander, 2013). The impact of dams is analyzed at the subnational

level, with each country further split into drainage basins, a spatial unit based on elevation

data which allows to define watershed boundaries and evaluate the impact of dams.1

One major difficulty in identifying the causal effect of dams on conflict is that governments

may not allocate dams randomly within their countries, but rather prefer to locate them in

peaceful and economically thriving regions. To overcome this potential source of endogeneity,

I employ an instrumental variable strategy in the fashion of Duflo and Pande (2007), which

exploits the fact that it is cost efficient - from an engineering point of view - to place dams

in areas with a favorable river gradient. Natural concerns about the exclusion restriction are

addressed with the empirical specification accounting for a set of controls, drainage basin

fixed effects and country-year fixed effects. In addition, several robustness checks and placebo

tests are performed to further assess the validity of the instrument.

The first part of the empirical analysis investigates the impact of dams on local conflict in

the instrumental variable setting. The results show an substantial increase in conflict, espe-

cially in intrastate conflict incidents involving up to 50 casualties. The results remain robust

1Please consult Section 4 for an extended discussion of drainage basins.
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when controlling for potentially confounding geographic factors, the distance to national

borders, as well as when accounting for the lagged dependent variable and basin-specific

time trends. Quantifying the baseline effect shows that currently planned dams are pro-

jected to increase the frequency of global conflict incidents by up to 5.3 percent by 2030. To

study the timing of conflict onset, I perform a synthetic control method. Results confirm

the baseline findings and further show that conflict may already start during the final years

of dam construction, with an escalation of violence after the opening of dams. Analyzing

the involved fighting parties, I find no statistically significant association between dams and

interstate conflict. This does not preclude an increase in geopolitical tensions due to dams,

but rather rules out an escalation of transboundary disputes. Consistent with the domestic

nature of violence, the analysis further documents that conflict does not appear to diffuse

to other upstream or downstream regions. Heterogeneity can be identified with respect to

certain country characteristics: violence stems from countries with large agricultural sectors,

whereas neither the average per capita income nor the degree of democratization in a country

appears to matter.

The second part of the analysis studies the channels of transmission of violence. The

economic impact of dams is assessed with disaggregated GDP data and satellite night-time

lights data (Nordhaus, 2006; National Oceanic and Atmospheric Administration, 2013). Re-

sults show some evidence for a sizable, negative effect to the local economy in regions with

new dams. A large shock to the local economy appears plausible, because affected economic

centers, usually located along rivers banks, are now replaced by reservoirs. This finding may

suggest that income losses reduce the opportunity costs for individuals to join rebel forces,

which would provide a plausible explanation for the surge in violence. Next, I test institu-

tional characteristics likely to result in the mismanagement of dams and find that conflict is

more pronounced in countries with low levels of political competition. Those countries are

less likely to represent the preferences of affected communities, which I argue could lead to an

escalation of violence. Further, the role of ethnic grievances is addressed at the basin-level.

The estimates document that new dams cause larger economic damages and at the same

time amplify conflict frequency in highly polarized and fractionalized regions.

The final part of the analysis considers institutional features and policy interventions
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likely to mitigate conflict. I first test whether strong judicial systems may help to enforce the

rights of affected communities and results show some evidence for a reduction in conflict in

countries with independent judiciaries. Moreover, international financial institutions which

usually provide the funding of dams, have regulatory tools such as transboundary water

treaties that can effectively prevent an outbreak of violence.

This paper contributes to the literature in several ways. It is, to the best of my knowledge,

the first paper empirically studying the link between dams and conflict - or even more broadly

between infrastructure and conflict - at a highly disaggregated level, considering all types

of large dams. Covering most parts of the world ensures the external validity of the results

and also allows the analysis of cross-national heterogeneity in the sensitivity to conflict. The

findings are in line with the qualitative literature and further provide novel insights that

open new avenues to understand the implications of infrastructure spending and to prevent

conflict in the future.

The remainder of the paper is organized as follows: The next section surveys the related

literature. Section 3 provides background information and Section 4 presents the data and

descriptive statistics. Section 5 introduces the identification strategy and presents the main

results. Sections 6 and 7 report further sensitivity checks and heterogeneous effects, before

moving on to the analysis of the mechanisms in Section 8. Section 9 addresses policies

mitigating conflict and Section 10 concludes.

2 Literature Review and Conceptual Framework

This paper contributes to two main strands of literature. The first strand evaluates the

local economic impact of dams and other infrastructures. Duflo and Pande (2007) study

the distributional effects of large irrigation dams in India. This landmark paper pioneers

an instrumental variable approach exploiting the predictive power of the river gradient to

instrument for dams placement. They find an increase in agricultural productivity and a de-

crease in poverty in districts downstream of dams. In districts containing dams, poverty and

productivity increase, whereby the latter being statistically insignificant. Strobl and Strobl

(2011) repeat the exercise at the drainage basin level for African irrigation dams and em-
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ploy a similar identification strategy. They confirm the increase in agricultural productivity

downstream of dams, but find a decrease in productivity in the vicinity of dams. Their study

is limited the regions subject to transboundary water treaties, which I show in Section 9 are

less likely to experience conflict.

More distantly related is the literature evaluating other types of infrastructure, such as

highways (Chandra and Thompson, 2000; Michaels, 2008) and railroads (Atack et al., 2010;

Banerjee, Duflo and Qian, 2012). Further, indirectly related is the literature analyzing the

effect of electrification on a number of outcome variables. For instance, Dinkelman (2011)

demonstrates how electrification increases female employment in South Africa. Lipscomb,

Mobarak and Barham (2013) find an overall positive effect of electrification on economic

development in Brazil. On the local level, agricultural productivity initially drops before the

effect reverses in counties where hydropower dams have been placed.

The second strand of literature studies conflict. The empirical strategy of this paper

is closely related to the recent series of work studying the causes of conflict at a highly-

disaggregated level (E.g. Michalopoulos and Papaioannou, 2013; Berman et al., 2017; Harari

and La Ferrara, 2018; Eberle, Rohner and Thoenig, 2019). These papers frequently employ

panel data at the grid cell level, in order to analyze the dynamics of conflict at the subnational

level. The disaggregated nature of these studies is appealing from an identification point-

of-view, as it allows for more complex fixed effect structures capturing not only omitted

variables across countries, but also time-invariant heterogeneity within countries.

This paper is conceptually closely related to a large body of work investigating drivers

of conflict. Dams and their associated reservoirs eliminate parts of the local economy, by re-

ducing the supply of crop land and displacing affected communities. Conflict theory predicts

two possible outcomes: income losses of affected communities could lower the opportunity

costs of rebellion. In other words, the likelihood of conflict may increase when individuals

have now “less to lose” when exchanging farm labor for joining rebel forces. Conversely,

if dams cause incomes from agriculture to fall, the potential gains from appropriating farm

land are reduced, which in turn could lead to a reduction in violence (Miguel, Satyanath and

Sergenti, 2004; Bazzi and Blattman, 2014). The above logic can be reversed in case crop

land becomes more valuable, e.g. through better access to water from irrigation facilities. In
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addition, dams frequently degrade soil and endanger biodiversity, which may fuel anti-state

grievances (Berman et al., 2017).

One could argue that violence is not caused by dams per se, but rather by fragile in-

stitutions. Weak states are notoriously associated with conflict (Fearon, 2005; Besley and

Persson, 2011). Notably, extractive institutions could lead to an unequal distribution of

wealth generated by dams. Duflo and Pande (2007) argue that Indian states with extractive

institutions may be responsible for an increase in poverty after dam completion, because

those states fail to redistribute the gains from dams. Further, Besley, Persson and Sturm

(2010) show theoretically and empirically, for the US, that a lack in political competition

can lead to growth-suppressing policy outcomes. In the light of this paper, constraints to the

democratic decision-making process could result in dams failing to represent the preferences

of affected communities. As a result, inadequate compensation for economic losses could di-

rectly reduce a government’s ability to mitigate conflict (Berman, Shapiro and Felter, 2011).

Finally, this paper contributes to the literature studying the impact of ethnic grievances

on economic development, public good provision and conflict (Montalvo and Reynal-Querol,

2005; Alesina and Zhuravskaya, 2011; Esteban, Mayoral and Ray, 2012; Alesina, Michalopou-

los and Papaioannou, 2016).

The existing literature has focused on evaluating the economic impact of dams, but ne-

glected to consider conflict as a key outcome variable, despite numerous qualitative evidence.

Further, this paper is the first work evaluating the local impact of dams worldwide, studying

the precise timing of conflict onset. Finally, the role of institutional characteristics and eth-

nic grievances as a cause of mismanaged infrastructure projects have been widely overlooked

and are discussed in detail in this paper. The next section discusses the existing case study

literature on the link between dams and violence.

3 Background: Dam Construction in Past Decades

For decades, dams have been built and funded without much consideration for effectiveness

and impact, despite their high costs. With the start of the dam building boom in the

1950s, an opposition to dams has begun to form, arguing that the mostly macroeconomic
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benefits are overshadowed by disruptive and lasting interventions into local ecological and

human systems (World Commission on Dams, 2000). By 2015, 43 percent of the global

river flow had already been regulated by man-made structures. Currently constructed and

planned dams are likely to double river fragmentation by 2030 (Grill et al., 2015). This is

problematic because dams block sediments, nutrients and the migration of aquatic organisms,

which can severely reduce fish stocks and the soil quality of the surrounding farm land (World

Commission on Dams, 2000). Regulated water flows further shift the availability of water,

reduce the local water supply and disrupt traditional flood recession agriculture which relies

on seasonal floodplains and wetlands. Beyond the supply of water, the supply of agricultural

land is also affected because a considerable amount is lost to the command area, irrigation

facilities and the reservoirs, frequently inundating the economic and cultural centers located

along the river banks.2 The average reservoir alone covers 65 km2 of land in my data. As

a result, stress put on the environment and society can translate into the displacement of

people and their livelihoods.

According to the World Commission on Dams, at least 40 million people have been

physically displaced as a consequence of dams by the year 2000. Displacement is observed in

more than half of the studied cases, regularly accompanied by a lack or a delay in adequate

compensation.3 And in cases where relief schemes are installed, they tend to favor directly,

physically displaced people and land owners with resettlement schemes and cash, but often

neglect to compensate indirect economic losses and minorities. In several cases, indigenous,

landless and undocumented people did not qualify for compensation schemes, as marginalized

groups tend to receive less public recognition and support for their interests, despite being

disproportionally exposed to dams. For instance in India, ethnic minorities account for 40

to 50 percent of all physical displacement by dams, while only representing eight percent

2The Gilgel Gibe III Dam (Ethiopia): disputes over the impact on traditional flood recession agriculture
caused local dispute; The Kalabagh Dam (Pakistan): one of many examples where shifting water resources
caused conflict in neighboring regions; Hasankeyf (Turkey) and Lake Turkana (Ethiopia): examples where
dams threaten to destroy world heritage sites (Exchange on Environment Conflict and Cooperation, 2019;
The Economist, 2019).

3Bargi dam (India): 90 percent of the displaced were not resettled and 162 villages were inundated
without warning; Yacyreta project (Argentina, Paraguay): 70 percent of the displaced were not resettled
2 years prior to completion; Tarbela dam (Pakistan): 30 percent of the local population, or 20,000 people,
remained without compensation (World Commission on Dams, 2000).
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of the total population (World Commission on Dams, 2000). All those existential threats

to physical, mental and economic well-being may translate into despair, grievances and

violence. A majority of violence associated with dams can be classified as intrastate conflict,

with government forces fighting against rebels, protesters and civilians.4 Interstate tensions

on the other hand may also rise, when dams planned on transboundary rivers threaten to

reduce downstream water supplies.5

Dams are notoriously associated with environmental and social issues, it is however im-

portant to recognize that dams could contribute to a reduction in conflict. Irrigation and

hydropower dams have positive, macroeconomic effects, with hydropower contributing 75

percent to the global renewable energy supply by 2015 (World Bank, 2019). Further, flood

and drought control dams are constructed with the purpose to stabilize regions exposed to

erratic weather patterns. While their benefits are well-known, the most central issue remains:

dams unevenly distribute benefits and negative externalities, resulting in spatial inequality,

with populations in the vicinity of dams bearing the majority of the burden.

Timing: Dam construction and local violence

This section consults qualitative evidence from around the world to identify generalizable

patterns relating to the onset of violence along the life cycle of dams.6

Dam construction: With the start of the construction of a dam, the magnitude and full

environmental and social impact becomes apparent. People learn to which extent they will

be displaced and local leaders negotiate with the central government over compensating

economic losses of affected communities, if not already done. In some cases, grievances exac-

4There are numerous examples of disputes and conflict over dams around the world. Recent incidents
include the Santa Rita Dam in Guatemala, the Barro Blanco Dam in Panama and several projects in
Myanmar. Myanmar exhibits a long list of mismanaged dams and related violence. One example is the
recently commissioned Upper Paunlaung Dam. Another example is the when in 2011, violent protests broke
out over the Hatgyi Dam and further government’s plans to construct six hydro-electric dams along the
Salween River in 2013 (Exchange on Environment Conflict and Cooperation, 2019; ICTA-UAB, 2019).

5Examples include increasing tensions among multiple nations sharing access to the Mekong river; the
Grand Ethiopian Renaissance Dam, which triggered an diplomatic crisis with Egypt located further down-
stream on the Nile; water disputes between Afghanistan and Iran along the Helmand River; and between
Kyrgyzstan and Uzbekistan over the construction of the Kambar-Ata-1 Dam on the Naryn River in central
Kyrgyzstan (The Economist, 2016; Exchange on Environment Conflict and Cooperation, 2019).

6Case study evidence mainly stems from three sources: World Commission on Dams (2000), Exchange
on Environment Conflict and Cooperation (2019) and ICTA-UAB (2019). Section 6.2 empirically assesses
the onset of violence.
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erbate and peaceful protests already turn violent, as reservoirs may already start to be filled,

affecting the local supply of water and land.7 First relief schemes, if installed, compensate

and resettle affected groups. The economic impact still remains somewhat limited, because

the dam construction site frequently absorbs a large number of unskilled local workers.8

Dam completion: The full economic impact unfolds at this stage. Affected groups located

in the catchment area of dams lose not only their land and homes, but also their day laboring

jobs at the construction site. Further compensation schemes, if installed, are designed to ab-

sorb some of the economic shock. Further, shifting local water supplies start to permanently

transform communities beyond the dams catchment area.

4 Data and Descriptive Statistics

4.1 Spatial unit of observation: drainage basins

Given the apparent local nature of conflict associated with dams and to be able to exploit

within country variation, it is necessary to subdivide countries further into smaller geographic

units. One major drawback of using subnational administrative boundaries such as state

borders is that they frequently coincide with rivers. Consequently, a correct assignment of

dams to a single state may be ambiguous (Strobl and Strobl, 2011). Further, subnational

boundaries should be treated with caution, because state fragmentation might be a direct

result of, and hence potentially is endogeneous to, conflict.9

To overcome the aforementioned issues, I subdivide countries into drainage basins, a glob-

ally consistent geospatial unit frequently employed in environmental and hydrology studies.

A basin can be best imagined as the land area that collects and drains off precipitation,

7For instance in 1978, police forces shot 4 protesters opposing the Chandil dam in India; in 1980, at
least 23 protesters opposing the Bakolori dam were killed (World Commission on Dams, 2000, p.18). More
recently, the Upper Paunglaung Dam hydroelectricity project completed in 2015 in Myanmar faced strong
local resistance from farmers and indigenous groups during the implementation phase over issues of misin-
formation, mismanagement and inadequate compensation. The 61 km2 large reservoir submerged 23 villages
and displaced 10,000 people (ICTA-UAB, 2019).

8For instance during the construction of the Kariba dam on the Zambezi river, 10,000 local unskilled
laborer were hired (World Commission on Dams, 2000).

9Recent contributions studying the effects of subnational boundary changes include Lipscomb and Mo-
barak (2011); Swee (2015); Grossman, Pierskalla and Boswell Dean (2017).
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such as a valley. Drainage basin data is from the HydroBASINS dataset by the Conser-

vation Science Program of the World Wildlife Fund and USGS (Lehner and Grill, 2013).

The data is part of the HydroSHEDS environment and can seamlessly be combined with

further useful information on elevation and the river network, which is used throughout this

paper. Drainage basins are generated with an elevation-based algorithm that breaks out

sub-watersheds from larger river basins. One useful by-product is that rivers are usually

located towards the center of drainage basins, enabling an unambiguous assignment of dams

to a single basin. Panel A of Figure A2 in the Appendix shows an example of a basin con-

taining the Upper Paunlaung gravity dam on the Paunlaung river in Myanmar. My sample

consists of 15,923 drainage basins, covering the world below 60 degrees latitude.10 The Hy-

droBASIN algorithm generates drainage basins that are comparable in size and the average

basin measures an area of 6,903 km2, which appears to be a usable size to analyze local

conflict. Countries with a single drainage basin are excluded from the sample, since those

observations would be absorbed by the country-year fixed effects. The average (median)

country consists of 104 (35) drainage basins and in cases where basins range across national

borders, the basins are split along the border to avoid an incorrect assignment of dams or

conflict to the wrong country. Finally, it is important to mention that each drainage basin

records the upstream and downstream neighboring basins, allowing to empirically address

whether dams diffuse violence.

4.2 Conflict data

Conflict outcome variables are drawn from the Uppsala Conflict Data Program - Georefer-

enced Event Dataset (UCDP - GED), a geocoded conflict dataset for the years 1989 to 2016

(Sundberg and Melander, 2013). The data is particularly suitable for the study at hand,

because it covers almost the entire world and is available for a relatively long period.11 Con-

10Data above 60 degrees latitude is not available from a single data source in HydroSHEDS, because of
increasing distortions towards the poles. It turns out the omitted areas contain only 12 dams built since 1989
(most of them located in Norway and Russia) and less than .5 percent of the global conflict, hence unlikely
to impair the external validity of this study. Drainage basin data is available on 12 aggregation levels. I
follow Strobl and Strobl (2011) and use level 6, usually corresponding to subsections of larger river basins.
For instance, the more than 4,000 km along the Mekong river are divided into 65 basins.

11Syria is the only country not covered by UCDP GED, because no reliable data could be collected.
Alternative georeferenced datasets include Armed Conflict Location and Event Data Project (ACLED) and
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flict event information is collected from multiple sources such as global news, local media

monitored by the BBC and secondary sources such as NGOs and field reports. The data

collection process is subject to multiple quality checks and validation protocols to minimize

misreporting. Coverage may still vary across countries and time, due to differences in cen-

sorship, the freedom of press or media interest in specific conflicts, underlining the necessity

of country-year fixed effects in the empirical strategy. The data registers conflict events with

a minimum of one fatality. In addition, only conflict events of armed groups are considered

if the group is associated to a minimum of 25 deaths in at least one of the sample years. For

each event, the exact location, along further useful variables such as the involved fighting

parties, the number of deaths and the type of conflict, is documented. Events are geocoded

with high precision and location information is accurate to the village level, hence sufficient

to assign each event to a drainage basin.

Measurement error may occur when events remain unreported or imprecisely recorded

with respect to their location (König et al., 2017). Unlike ACLED, UCDP - GED focuses on

established perpetrators, which minimizes the likelihood of missing or poorly documented

events. Further, different types of conflict may be recorded with different precision (e.g.

media coverage of large-scale battles tends to be better documented than smaller, localized

disputes). The sensitivity analysis section exploits information on the type of conflict and

the involved fighting groups and finds that the results are consistent throughout. In most

specifications, I aggregate conflict events to the basin-year level and define a binary outcome

variable taking the value one if at least one event occurs in a basin in a given year, zero

otherwise. Conflict dummies are a conventional way to minimize a potential non-classical

measurement error stemming from over-reporting of larger battles.

4.3 Dam data

Data on dams is taken from the third version of the Global Reservoir and Dam Database

(GRanD) (Lehner et al., 2011). GRanD combines, harmonizes and cross-validates multiple

existing national and continental dam registers into a single, globally consistent product.

Global Data on Events, Language, and Tone (GDELT). ACLED is available for Africa from 1997 onward
and other regions of the world are available for recent years only.
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Unlike alternative global dam data, GRanD is the only data providing the precise geocoding

of dams and their reservoirs in addition to a detailed list of attributes, making it the optimal

candidate for this study.12 The list of attributes include specifications for each dam (height,

length, main and secondary use) and the according reservoir (capacity, surface, upstream

catchment capacity). Most importantly, the year of dam completion is recorded, which allows

to observe conflict before and after the presence of dams in a basin.13 The completion year

is reported for 95 percent of all dams, and I additionally collected data on the construction

start year. The average (median) dam in my sample takes 7.5 (5) years to be built. It

is important to note that, due to limitation of some of the underlying national registers,

GRanD only records relatively large dams with a reservoir size of at least 0.1 km3. This may

limit the external validity of the analysis, but at the same time avoids putting too much

weight on very small dams. Finally, manual inspection shows a high degree spatial precision,

as depicted for the aforementioned Paunlaung Dam in Myanmar in Figure A2, Panel B in

the Appendix.

4.4 Descriptive statistics

A total of 922 large dams across 77 countries have been built between 1989 and 2016,

providing sufficient variation during the sample period. The majority of dams is located in

Asia (553), followed by Europe (118), North America (92), South America (90), Africa (62)

and Oceania (7), as shown in Figure A3 and A5. Notice, while the annual number of dams

completed globally has slowed down over the years, dams have become increasingly larger in

size, c.f. Figure A1. The two most common types of dams by primary use are hydroelectric

(44.48 percent) and irrigation dams (25.94 percent), as depicted in Figure 1 and Figure 4.

Switching the focus to the drainage basin level: recently dammed basins contain an average

(median) of 1.48 (1) dams, with a dam height of 81 (73) meters and a reservoir capacity of

12Alternative global datasets include the World Register of Dams by the International Commission on Large
Dams used by Duflo and Pande (2007), no geolocation only the nearest city is reported. Global georeferenced
Database of Dams (GOOD2) and Future Hydropower Reservoirs and Dams (FHReD) are both geocoded
but no sufficient attribute information available. Global Dam Tracker (GDAT) will be available in 2020 and
have both geolocation and some statistics, it however appears that no size threshold will be imposed.

13According to the author of the data, the specified year variable usually refers to the construction com-
pletion or commissioning date. I manually checked all dams after 1988 and it turns out that the year variable
almost always refers to the completion year. In cases where it does not, appropriate corrections are made.
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1.31 (.22) cubic kilometers.

Figure 1: Dams by Primary Use
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Notes: Dams are displayed by their primary use since 1900 with data from GRanD. The vertical dashed
black line indicates the start of the sample, 1989.

Figure A4 in the Appendix depicts the spatial distribution of violence, with darker shad-

ings indicating basins with a higher share of sample years with conflict. Conflict occurs in

123 out of 153 countries, with 43.59 percent of all conflict incidents taking place in Asia,

followed by Africa with 40.61 percent. Panel A of Table 1 reports that 625, or 3.9 percent

of all 15,923 drainage basins contain at least one newly constructed dam since 1989 and half

of the treated basins contain more than one new dam. All treated basins (i.e. those with

dams built after 1989) account for 8.9 percent of global conflict incidents in 1989 to 2016,

as documented in the last column of Panel A. Extending the view to all basins with dams

since 1900, similar proportions can be observed: dams are built in 15 percent of all basins,

with a share of 30 percent of all conflict incidents. The first column of Panel B of Table 1

shows the unconditional probability of observing a conflict event in a basin in a given year

of 3.40 percent. Observing the same probability in basins with dams is more than double,

with 7.3 percent. Interestingly, this increase in conflict exposure seem to persist over time,

as dams built before 1989 still show a close to 50 percent higher probability of conflict than
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basins without any dams. Overall, basin with dams experience on average more violence.

This is of course not more than a first clue to a possible, positive association between dams

and conflict, as multiple sources of potential biases prevent making any causal statements.

Table 1: Descriptive Statistics

Basins without dams Basins with dams Total

Pre-sample Within-sample

Panel A. General Information

Number of basins 13,626 1,672 625 15,923

Share of basins 0.856 0.105 0.039 1

Number of dams since 1900 0 4,206 2,495 6,701

Number of dams since 1989 0 0 922 922

Share of conflict incidents 0.696 0.215 0.089 1

Panel B. Conflict and Dam Data (Basin-level)

Pr(Conflict > 0) 0.031 0.046 0.073 0.034

(0.173) (0.210) (0.259) (0.181)

Rebels vs. State 0.021 0.029 0.056 0.024

(0.145) (0.169) (0.230) (0.152)

Rebels vs. Civilians 0.009 0.016 0.023 0.010

(0.093) (0.124) (0.149) (0.100)

State vs. Civilians 0.006 0.009 0.008 0.006

(0.077) (0.094) (0.089) (0.080)

State vs. State 0.000 0.001 0.001 0.000

(0.019) (0.024) (0.039) (0.020)

Pr(New dam completed > 0) 0.000 0.000 0.053 0.002

(0.000) (0.000) (0.236) (0.048)

Notes: The sample includes 15,923 basins for the years 1989-2016. “Pre-sample” refers to all drainage basins
with at least one dam completed prior to 1989 and none thereafter. “Within-sample” indicates basins with
at least one dam completed since 1989, regardless of any pre-existing dams. Panel A: values refer to the
number/share within each of the four categories. Panel B: the unit of observation is a drainage basin and a
year. Standard deviations in parentheses, where applicable.
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5 Empirical Strategy and Main Results

5.1 Identification Challenges

The main challenge in estimating the causal effect of dams on conflict is reverse causality, as

regions subject to violence may receive less investments in new infrastructure. If a govern-

ment anticipates a rise in conflict in a certain region, it may reduce infrastructure spending

into that regions today, because battles could severely damage or completely destroy dams

and flood downstream communities. In addition, rebels groups operating in conflict-prone

regions could attempt to seize strategic control over infrastructure located in conflict-prone

regions (Berman et al., 2017). Therefore, dam placement might be endogenous to conflict

as governments potentially prefer to allocate dams to peaceful, state-controlled regions. The

existing literature has argued along similar lines for the case of irrigation dams, which tend

to be placed in wealthy regions with high anticipated agricultural growth (Duflo and Pande,

2007; Strobl and Strobl, 2011). In either scenario, regressing conflict on dams would cause

a downward bias in the OLS estimation. In other words, a positive causal effect of dams on

conflict is likely to be underestimated in the OLS. In addition, classical measurement error

could further attenuate coefficients towards zero.

5.2 Instrumental variable strategy

To address these issues, Duflo and Pande (2007) developed an instrumental variable strategy

exploiting the fact that dams require a certain river gradient. The river gradient measures the

change in elevation and is hence determined by natural conditions, and not man-made. The

incurred costs of a dam site crucially depend on how well-suited the geographic conditions,

such as the gradient are. The engineering literature defines a non-monotonic relationship

between the river gradient and the suitability of a site for dam construction. A moderate

river gradient (1.5-3 percent) ideally facilitates the command area of dams, as it allows

water to run through the canal system and irrigation facilities in a controlled manner. In

addition, a steep river gradient (> 6 percent) favors hydropower facilities, allowing the

maximal amount of water to flow through the turbines of the power plant in the shortest
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amount of time (Lipscomb, Mobarak and Barham, 2013).14

On the other hand, neither a flat nor an intermediately steep gradient offer optimal conditions

for dams. A flat river gradient (< 1.5 percent) is generally unsuitable, because it prevents

water from flowing and in addition flat landscapes usually do not provide the necessary

geography for natural reservoirs. Finally, with an intermediately steep gradient (3-6 percent)

the control over water flows is reduced as the water flows rather fast through the canal system,

which additionally erodes the system.

The ideal drainage basin therefore features a combination of moderate and steep gradients

along different sections of rivers. I exploit this non-linearity in the river gradient’s suitability

for dam placement and calculate the fraction of moderate (1.5% to 3%) and steep (> 6

percent) river gradient RGi for each basin i. The lower bound of RGi is zero, if none of the

rivers of a basin fall within moderate or steep gradients. The upper bound of RGi is one,

if all rivers of a basin lay within moderate or steep gradients. A first look at the summary

statistics reveals that basins with dams indeed have on average a higher RGi, c.f. Table A1

in the Appendix. Figure 2 confirms a positive relationship between a higher fraction of

suitable river gradient RGi (darker shading) and dam placement (purple dots).

Note that RGi is constant over time. To achieve a time-variant instrument usable for

panel analysis, I interact each basin’s suitable gradient share with the total number of dams

Dct in country c and year t. That gives an interacted instrument RGi ×Dct, with variation

across basins and years. The rationale behind the instrument follows a two-step procedure:

In a first step, a government decides how many dams it wants to complete by a certain

year, based on the expected national demand for e.g. electricity or agricultural goods.15 In

a second step, the government assigns the new dams to basins offering the best geographic

conditions, i.e. basins with favourable river gradients. In other words, the government

chooses basins with cost-efficient geographic conditions.16 To summarize, the interaction

14Hydropower dams are the most common type by primary purpose in my sample since 1989 (c.f. Sec-
tion 4.4). In addition, many dams have hydropower generation reported as their secondary purpose. For
instance, 40 percent of dams stating irrigation as primary purpose also generate hydropower as secondary
purpose.

15For instance, if a country completes five new dams in year t, then Dct increases by five, compared to the
previous period. Similar to Lipscomb, Mobarak and Barham (2013), a change in Dct can best understood
as a country’s annual national budget for dams for that year.

16Duflo and Pande (2007) point out that in India the number of dams built in a year is determined on
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Figure 2: First-Stage: Gradient Instrument and Dam Placement (Basin-level)

Fraction - suitable river gradient
High : 1
Low : 0

Dams

Notes: The map depicts the relationship between the suitable river gradient share in a basin and dam
placement. The map zooms into parts of Asia for presentation purposes. “Fraction - suitable river gradient” is
equal to RGi, which is defined as the river share with a moderate (1.5-3%) and steep (> 6%) gradient. Within
a country, drainage basins with a higher share of suitable river gradient (darker shading) are favored for dam
placement, whereas unsuitable regions (lighter shading) are less frequently subject to dam placements.

term allows for an empirical specification in which the number of dams per basin and year

can be instrumented. The next section first outlines the empirical specification, before

moving on to discuss the baseline results.

the state level and dams are then assigned to districts with suitable river gradient within a state. However,
the Indian state-to-district allocation rule may not hold for all countries, as political hierarchies differ across
countries. For instance, more centrist or smaller nations may decide the number of dams directly on national
level. To design an instrument that can be applied to the whole world without loss of generality, I assume
that the overall number of planned dams in a country is driven to some extent by a country-wide demand
function for electricity or agricultural goods.
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5.3 Econometric specification

Consider the following 2SLS system of equations:

Yict = βDict + ZictΓ + υi + µct + εict (1)

Dict = α(RGi ×Dct) + ZictΓ + υi + µct + ωict (2)

Equation (1) is the second stage equation with i, c and t indexing the basin, country and

year, respectively. The dependent variable Yict is in most specifications a conflict dummy,

which takes the value one if at least one conflict event is reported per basin and year, zero

otherwise. υi denotes basin fixed effects and controls for time-invariant omitted variable

bias. Country-year fixed effects µct control for time-variant between-country heterogeneity.

Conditional on the fixed effects structure, the estimation specification still allows for basin-

year variation. Dict is the endogenous variable of interest recording for each year and basin

the total number of dams since 1900. Basins without dams are coded as zero. Conditional

on basin fixed effects, Dict only adds variation if a new dam had been built in a basin

between 1989 and 2016. In other words, a basin’s pre-sample stock of dams does not add

any variation to Dict. The empirical strategy is designed to capture the local nature of

conflict and has some conceptual similarity with a difference-in-difference estimation. The

coefficient of interest β estimates the basin-wide effect of a new dam on conflict, relative to

untreated basins in the same country. Zict corresponds to a vector of geographic controls

interacted with Dct. Note that any time-invariant control variables on their own are absorbed

by the basin fixed effects.

In order to estimate the causal effect, it is necessary to instrument for the earlier discussed

endogeneity in Dict with the proposed river gradient instrument RGi × Dct. Equation (2)

depicts the first-stage, whereby the river gradient interaction term predicts each year the

number of dams in a basin. The remaining terms are defined as above.
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5.4 Identifying assumptions

In order to recover the causal effect, the exclusion restriction requires the interaction term

RGi×Dct to be exogenous, conditional on controls and fixed effects. A natural concern about

the exclusion restriction is that the river gradient instrument could correlate with conflict

through a channel different than dam construction. Basin fixed effects account for time-

invariant omitted variables, such as elevation or ruggedness. Another concern is that the

time-varying part of the instrument, Dct, correlates with country characteristics over time,

such as changes in a country’s military strategy. For instance, if a government anticipates

civil war in the coming years, it may start reducing infrastructure spending today. A battery

of country-year fixed effects µct control for such a potential threat.

The final concern is that the interaction term itself could violate the exclusion restriction.

Since the instrument’s interaction term varies by basin-year, a bias could stem from some

basin-induced time variation. For instance, a country’s investment in dams could trigger

an inflow of international aid into the same region, targeting populations in the highlands.

Elevation positively correlates with the gradient and conflict, and hence could result in a

bias. I address such potential issue in two ways. First, I control for the following basin-level

covariates in Zict: average elevation, average basin gradient, river length and basin area, all

interacted with Dct. Second and unlike existing papers, I only consider the river gradient

along rivers and not across the whole basin.17 My strategy minimizes the risk of drawing

gradient information from parts of the basin far away from rivers (e.g. arid highlands).

Limiting the gradient information to the river center line captures the relevant river features,

without including information potentially harming the identification. The relevance of the

instrument is demonstrated in the next section.

As with any instrumental variable estimate, I measure the local average treatment effect

(Imbens and Angrist, 1994). The coefficient β measures the average effect among compliers,

i.e. basins only containing dams because of favorable gradient conditions. Interestingly, dams

built today seem to be placed in basins with a higher RGi (c.f. first row Table A1). That

could be due to a host of reasons, including stricter rules from funding bodies and better

technical understanding of dams today. In any case, a higher rate of compliers appears to

17The gradient is calculated with 1× 1 km elevation data from HydroSHEDS (Lehner and Grill, 2013).

19



play in the favor of this paper as it improves the external validity.

5.5 Baseline results

5.5.1 First-Stage

The predictive power of the river gradient for dam placement is tested in columns 1 to 3

of Table A2 of the Appendix. In detail, I regress a binary variable indicating whether any

dam has been completed during the sample period on the area share of the different river

gradient classes: 1.5-3 percent, 3-6 percent, > 6 percent, with < 1.5 percent being the refer-

ence group. The specification controls for country fixed effects, which means the estimations

rely on within-country comparisons of basins, eliminating between-country differences. Note,

columns 1 to 3 solely serve the purpose of demonstrating the relationship between river gra-

dient and dam occurrence, but is different from (and less demanding than) the actual first

stage presented in column 4. First, the outcome variable focuses on hydropower dams and

results in column 1 confirm the aforementioned predictions from the engineering literature:

a high fraction of moderate (1.5-3 percent) and steep (> 6 percent) river gradients favor

dams, both with positive and highly significant coefficients for those two categories. A steep

gradient appears ideal to facilitate hydropower dams with a point estimate of 0.12, corre-

sponding to more than a half standard deviation increase in hydropower dam occurrence.

On the other hand, the suitability of a mid range river gradient (3-6 percent) is not statis-

tically different from a flat gradient (< 1.5 percent). Column 2 considers all types of dams

and the results remain comparable, although the coefficient of the mid range river gradient

(3-6 percent) is now statistically significant, which is likely to be driven by non-commercial

dams (e.g. flood control and recreational dams). The steep river gradient maintains a posi-

tive correlation with dam occurrence, because the majority of dams in my sample produces

hydropower either as primary or secondary purpose.

These results emphasize that the optimal basin offers a combination of the two favorable

gradient classes. That is why the time-invariant part of the earlier discussed instrument RGi

is defined as the fraction of moderate plus steep river gradient. Results in column 3 strikingly

confirm that the optimal river basin requires both, moderate (1.5-3 percent) and steep (>
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6 percent) gradients, with a highly significant coefficient. The magnitude of the coefficient

suggests that moving from an entirely unsuitable to a perfectly suitable river basin increases

the likelihood of observing a dam by 9.36 percentage points. Finally, column 5 moves to the

panel setting and estimates the first-stage of the baseline specification, with the dependent

variable Dict on the LHS and the instrument RGi ×Dct on the RHS. In addition, baseline

controls and basin and country-year fixed effects are accounted for. The first stage regression

documents a strong and positive correlation between the river gradient instrument and the

number of dams in a basin and year. The F-statistic for the excluded instrument, conditional

on controls, is 25.41 and hence is sufficiently strong to ensure relevance of the instrument. In

other words, a bias caused by a weak instrument is highly unlikely. Section C of the Appendix

demonstrates the robustness of the instrumental variable strategy. The magnitude of the

highly significant coefficient can be interpreted at the average drainage basin: If a country

builds a single dam in a given year, an increase in the suitable river gradient by one standard

deviation (0.259) increases the probability of dam placement in that basin by 26 percent,

given likelihood of observing a newly-completed dam in a basin is 0.002 (c.f. Table 1).

5.5.2 OLS, Reduced Form and 2SLS

Table 2 reports the baseline results of the OLS, reduced form and the 2SLS estimations.

Standard errors allow for a spatial correlation within a 400 km radius of a basin’s centroid

and infinite serial correlation, for the remainder of the paper.18 All estimations are based on

the unrestricted world sample and account for baseline controls and basin and country-year

fixed effects, as specified in Section 5.3. The result of the OLS is reported in column 1 of

Table 2 and shows a negative association between dams and conflicts, small in magnitude

and weakly significant. The reduced form in column 2 displays a positive effect of the river

gradient instrument on conflict, which would be the expected direction in the case of a

positive causal relationship between dams and conflict. Column 3 depicts the 2SLS results

of the second stage in Equation (1), with the excluded river gradient instrument accounting

for endogeneity in the number of dams per basin. The baseline coefficient measures the

18400 kilometers spatial clustering is chosen, because it is the median of the minimum distances between
all basins’ centroids and the nearest capital.
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Table 2: Baseline Results

Estimation: OLS Reduced F. 2SLS 2SLS 2SLS

Dependent variable: Conflict Conflict Conflict Intrastate State vs. Rebels

(1) (2) (3) (4) (5)

Dams -0.007c 0.032b 0.031b 0.029a

(0.004) (0.013) (0.013) (0.011)

RGi ×Dct (× 1000 *) 0.083a

(0.029)

Basins 15923 15923 15923 15923 15923

Observations 445844 445844 445844 445844 445844

Kleibergen-Paap F-statistic . . 26.089 26.089 26.089

Mean dep. var. .034 .034 .034 .034 .024

Basin FE X X X X X

Country-year FE X X X X X

Geographic controls X X X X X

Notes: The unit of observation is a drainage basin and a year. The sample includes 15,923 basins for the
years 1989-2016. Column 1: OLS estimation. Column 2: reduced form estimation, with the coefficient and
standard error multiplied by 1,000 (*). Columns 3-5: 2SLS estimations, with the first-stage Kleibergen-Paap
F-statistics reported. The dependent variables indicate conflict incidence and are equal one if at least one
conflict event occurs in a basin and year. “Conflict” considers all conflict events; “Intrastate” excludes events
involving two state actors; “State vs. Rebels” only includes conflict events in which government forces fight
against rebel groups. “Dams” specifies the stock of dams in a basin and year. RGi ×Dct is the instrument,
where RGi is a basin’s combined river fraction with a gradient of 1.5-3% or >6%; Dct is the number dams
in a country and year. Geographic controls: basin size, elevation, average basin gradient and river length,
interacted with Dct. The regressions control for basin and country-year fixed effects. Coefficients are reported
with spatially clustered standard errors in parentheses, allowing for a spatial correlation within a 400 km
radius of a basin’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b significant
at 5%; a significant at 1%.

basin-wide change in conflict after dam completion, relative to untreated basins in the same

country. The coefficient corresponds to a 3.2 percentage points increase in conflict frequency

and is statistically significant at the five percent level. The direction of the effect is in

line with the earlier discussed policy reports and case studies. Further, dams tend to be

build in peaceful, economically prospering regions, as hypothesized earlier, implying that

the effect of dams on conflict in the OLS may seem less gloomy than the actual effect. When

comparing 2SLS and OLS results, the OLS indeed appears to suffer from a downward bias

stemming from endogeneity in dam placement. The next two columns focus on subtypes

of violence. First, intrastate violence is considered in column 4, with a dependent variable

that ignores all cases in which two state forces fight each other. Column 5 restricts the
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dependent variable to events between government forces and rebel groups. In both cases, the

coefficients are comparable in magnitude and significance to the one in column 3, suggesting

that dam-induced violence may be closely related to intrastate insurgencies. Section C of

the Appendix performs multiple robustness checks to ensure the validity of the instrument,

including alternative specifications of RGi and Dct, controlling for basin-specific time trends

and river-specific variables, a cross-sectional analysis and placebo tests.

5.6 Quantification

This section quantifies the magnitude of the baseline coefficient reported in column 3 of

Table 2. Evaluated at the sample mean, a new dam increases the probability of conflict in a

basin from 0.034 to 0.066, which is equivalent to a 94 percent increase in frequency of conflict

incidence. During the 28 year of panel data, 922 dams have been built. Studies expect a spike

in the number of new dams over the next decades, and I assume a maximum (minimum)

of 6727 (1143) new dams the 15 year period following 2015.19 Provided these numbers and

evaluated at the sample mean, the total of new dams constructed by 2030 is projected to

increase global conflict frequency by a maximum of 5.30 (minimum of 0.90) percent. It is

important to mention, that these calculations are based on the average of conflict incidents

and do not consider other factors such as conflict intensity, which are discussed further below.

There are reasons to believe these predictions are rather conservative. First, dams have

steadily increased in size over the years, as pointed out earlier. Larger dams and reservoirs

destroy a larger share of the local economy, which I will show later, may be a key driver of

violence. Second, the global supply of rivers is limited and a growing number of dams will

inevitably lead to dams placed in closer proximity to each other. As a direct result, negative

externalities caused by dams could multiply, as it is the case along the Mekong river where

a multitude of dam facilities harm fisheries, promote land erosion and amplify the impact of

19An estimated 3,700 hydropower dams were planned or under construction in 2015, which provides a
upper bound for this exercise (Grill et al., 2015; Zarfl et al., 2015). Of those, 17 percent, or 629 dams, were
already under construction and are expected to be completed by 2030, providing a lower bound for this
exercise.Reliable predictions for other types of dams are sparse. Based on the last five sample years, 55 out
of 100 dams were hydropower dams. Assuming similar proportions in the future, a maximum (minimum)
of 6727 (1143) can be expected over the 15 year period following the sample period. Further, I make the
assumption that these new dams will be completed evenly across years, hence the unconditional probability
of observing a new dam in a basin and year is 0.056 (0.010).

23



climate change, hence putting additional pressures on the local communities (Exchange on

Environment Conflict and Cooperation, 2019; Financial Times, 2020).

6 Sensitivity Analysis

6.1 Conflict scale and intensity

To effectively mitigate the sources of violence, it is important to understand what type of

violence is associated with new dams. This section addresses first the role of transboundary

conflicts and then studies the severity of dam-induced violence.

6.1.1 Intrastate versus interstate conflict

Anecdotal evidence from the Nile to the Mekong suggest that dams catalyze interstate

tensions. The role of interstate conflict is assessed in two ways. The first part considers

only interstate conflict events, by constructing an interstate conflict indicator variable solely

recording events between government forces. Direct violent confrontations between military

forces have decreased in recent decades and only account for 1.2 percent of events in the

sample. Results reported in column 1 of Table A3 show no evidence of an increase in conflict

between government forces. Measuring interstate conflict solely based on direct confronta-

tions between military forces ignores the possibility of indirect, state-backed violence. Proxy

wars often involve third parties acting on behalf of governments, usually in return for finan-

cial and political support.

Since it seems impossible to accurately match armed groups to allied government forces di-

rectly, the second part of this section does not address interstate conflict via the dependent

variable, but rather tests if dams are more likely to spark conflict in the proximity of national

borders. If a dam is placed just upstream of a national border, the downstream neighbor

may have an incentive to prevent or attack the dam. Columns 2 and 3 of Table A3 exclude

all drainage basins shared by two nations and the coefficients are similar in magnitude to

the full sample, although the standard errors are larger.20 Interestingly, however, is that

20It is reassuring that splitting the drainage basins along national border did not introduce some sort of
bias. An alternative to splitting drainage basins along national borders is the assignment of border basins
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excluding basins within 100 km distance to national borders increases the magnitude of the

coefficient, as shown in columns 4 and 5. In other words, inland dams appear more prone to

conflict than those close to national borders, which further emphasizes the domestic nature

of dams-related violence.

6.1.2 Conflict intensity

The indicator outcome variables seen thus far measure the occurrence, or the extensive

margin of violence. Next, the conflict intensity is investigated by considering the ln(1+x) of

the number of events and fatalities as outcome variables. Coefficients reported in Table A4

are throughout positive and statistically significant at the five percent level. To further

understand the intensity of violence, I next split conflict incidents by the number of deaths

observed, in the same spirit as Nunn and Qian (2014). In detail, events are ranked by their

number of associated deaths and then divided into four bins with cut-offs at the 25th, 50th

and 75th percentile, corresponding to 4, 13 and 50 fatalities per basin and year. Results

reported in Table A5 and columns 1 to 3 highlight that dams primarily cause low to high

intensity incidents, as shown by the coefficients, significant at the five and ten percent level.

Note that the reduced magnitude of the point estimates is in line with the baseline, because

dividing conflict incidents into quantiles reduces the unconditional probability of observing

each intensity type to around one-fourth. Further, no statistical relationship appears to

exist between dams and the most violent battles (> 50 fatalities). Overall, the coefficients’

responsiveness to combats involving up to 50 fatalities is generally in line with the case study

evidence and further underlines the relevance of dam-induced conflict for policy makers.

6.2 Persistence and timing of violence

To address the persistence of conflict over time, I additionally control for the lagged depen-

dent variable in the baseline specification. Results are reported in Table A6 and show that

the OLS in column 1 remains comparable to the baseline. The reduced form coefficient in

colum 2 and the 2SLS coefficients in columns 3 to 5 are again significant at the five percent

to the country with the majority area basin share. Regressions following this procedure yield similar results,
but run the risk of falsely assigning dams and conflict event to the wrong country.
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level, although their magnitudes are reduced by one-third. The first stage remains strong

and the long-run effect of an additional dam on conflict is comparable to the baseline.21

Performing a dynamic regression may entail the risk of the Nickell Bias (Nickell, 1981). The

bias in the lagged dependent variable coefficient could be substantial and amount to 0.026,

hence to avoid such bias the rest of the paper does not control for the lagged dependent

variable.

The remainder of this section studies the timing of conflict onset. Understanding at which

stage of a dam’s life cycle conflict occurs for the first time has important implications for the

general understanding of the dynamics of violence and for the resource allocation of policy

makers. Section 3 discusses the onset of violence along different stages of dam construction

and finds - based on case study evidence - that local conflict appears more likely right after the

dams are commissioned, i.e. when their economic impact fully unfolds. There are however

documented cases in which an outbreak of violence is already observable towards the end of

the construction period. To assess this observation quantitatively, I collected information on

the construction start year for the dams in my sample, based on industry data, national and

international dam registers and general internet searches. Only dams with a construction

start within the sample are considered. A construction start year could be identified for 305

dams. The average (median) dam required 7.5 (5) years of construction. Regression results

are depicted in Table A7. First, I rerun the baseline regression for the hand-collected sub-

sample to achieve a benchmark and results in column 1 report a coefficient that exceeds the

baseline, significant at the five percent level. Basins with dams for which no construction date

could be identified are excluded from the sample. Note that so far construction years have

been assigned to the pre-treatment period and the data recorded a new dam from the year of

dam completion and thereafter. Column 2 repeats the exercise, with the difference that the

construction years are excluded from the sample. This only changes the composition of the

pool of pre-treatment observations, whereby the pool of treated units remains unaltered. The

increase in the point estimate suggests that conflict might be already triggered during the

construction period, as construction years appear to be on average more violent than earlier

21I follow Nunn and Qian (2014) and compare the full effect of a single dam (0.032) to the full effect in
the dynamic regression (0.028). The latter is defined as β̃/(1− γ), with the direct effect of a new dam β̃ and
the indirect effect γ via the lagged dependent variable.
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pre-treatment observations. Column 3 now reintroduces construction years to the sample,

but reassigns them to the treatment periods. In other words, the data now records a new

dam from the construction start inwards. The magnitude of the coefficient is now between

the ones of column 1 and 2, which could suggest that construction years are more violent

than the average pre-treatment observation, but less violent than the average treatment

unit. Columns 4 to 6 repeat the exercise for intrastate conflict events and results are in

line with previous columns. To summarize, these results suggest that the onset of violence

might already occur during the construction year, but an escalation of violence can only be

observed post completion. The next section performs synthetic controls to further investigate

the timing of conflict and to verify the robustness of previous findings with an alternative

identification strategy.

6.3 Synthetic Control Method

In recent years, synthetic controls have gained popularity among impact studies (e.g. Abadie

and Gardeazabal (2003); Abadie, Diamond and Hainmueller (2010); Cavallo et al. (2013);

Acemoglu et al. (2016)). The method is especially suitable for event studies with multi-

ple treatments scattered across time, because it does not require to explicitly pre-define

counterfactual observations. Instead, a data-driven process generates the counterfactual

from a weighted combination of control units that matches the treated unit’s pre-treatment

trend. Synthetic control method may be a useful tool for policy makers who are interested

in analyzing the impact of dams in sub-regions, without the need to impose parallel trend

assumptions. Further, an advantage of this method over e.g. propensity score matching is

that generating the counterfactual based on the pre-treated outcome variable implicitly cap-

tures all observable and unobservable determinants. The analysis in this section focuses on

India, a country with one of the highest numbers of dams worldwide and subject to previous

empirical work.22 Rather than using a conflict dummy, the outcome variable is defined as

22I study a country rather than the whole world to keep observations in the donor pool comparable with
respect to institutional characteristics, because cross-country heterogeneity may crucially affect the impact
of dams on conflict, as shown later on. In addition, the world sample consists of more than 15,000 drainage
basins and the literature commonly restricts the donor pool to 5,000 observations for reasons of computability.
Selecting a sub-sample from the donor pool could introduce a selection bias.
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the running sum of the number of conflict incidents per basin over time, which favors the

convergence properties of synthetic controls (Rohner and Saia, 2019). To understand the

timing of violence, an appropriate number of periods before and after the dam completion

year is required. Therefore, the sample is restricted to dams built within the time window

1999 to 2010. In addition, only basins without preexising dams are considered, to avoid

falsely capturing the effect of a previously constructed dam. In cases of multiple new dams

in the same basin across different periods, the outcome variable is coded as missing from the

year onwards the second dam is completed, following Cavallo et al. (2013).23

Figure 3: Synthetic Control Method for India

1

2

3

4

5

In
ci

de
nt

s 
(a

cc
um

ul
at

ed
)

-10 -8 -6 -4 -2 0 2 4
Period

Treated units Synthetic control units

0

1

2

In
ci

de
nt

s 
(a

cc
um

ul
at

ed
)

-10 -8 -6 -4 -2 0 2 4
Period

Net Treatment Effect P values

Notes: Synthetic Control Method for India. Dam completion is centered at period zero (black solid line)
and pre-sample trends of the synthetic controls are matched to treated units up to four years prior to dam
completion, i.e. left of the vertical dashed blue line. Left Panel: The red line depicts the average running sum
of conflict of treated basins and the dashed gray line depicts the corresponding average of synthetic controls.
Right Panel: The black line corresponds to the average net treatment effect, i.e. the difference between
treated units and synthetic controls. The gray-shaded area corresponds to the probability of observing the
net treatment effect by pure chance, standardized, from period -4 onward.

This gives an Indian sub-sample consisting of nine new dams and 267 potential control

basins in the donor pool, with the latter being matched onto the pre-treatment running

sum of conflict incidents of each treated basin to construct the counterfactual. To capture a

23Although unlikely, untreated basins surrounding a dam are excluded from the pool of donor observations
to avoid capturing spillovers of the treatment effect. The pool of control basins is further restricted to those
with a high matching quality of less than

√
3 times the average pre-treatment root mean squared predictive

error, following Acemoglu et al. (2016).
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potential surge in conflict in the years prior to dam completion, pre-trends are not matched up

to the year of dam completion (black line Figure 3), but up to four years prior to completion

(i.e. left of dashed blue line). The left panel of Figure 3 depicts the average running sum of

conflict events of treated basins (red line) and the average of synthetic control units (gray

line). The trends of treatment and controls align well during the matching period ten to four

years prior to dam completion. Conflict in treated basins starts to depart from the control

trend one year before dam completion and continues to increase in the years following dam

completion. The right panel of Figure 3 depicts the difference between treated and control

trends, with a positive net treatment effect starting just before dam completion. The graph

further plots the probability of observing this increase in conflict in treated basins by pure

chance, which is initially close to zero and then increases over time. Although this analysis

is limited to India, the results are in line with the 2SLS results and the earlier discussed case

studies arguing that the filling of reservoirs in some cases pre-dates dam completion.24

6.4 Spatial diffusion of violence

The analysis so far has focused on assessing the effect of dams on conflict within basins.

Yet, dams transform downstream water flows and potentially affect regions beyond a treated

drainage basin’s boundaries. Whether to expect conflict to increase or decrease in down-

stream regions of dams is a priori not clear. This sections assesses the role of spatial spillovers

by controlling for the upstream drainage basin.25 Drainage basins are especially useful for

this purpose, because they are constructed in a way that allows to identify adjacent basins.

I follow Duflo and Pande (2007) and extend the framework of Section 5.3 by instrumenting

for the number of dams in the upstream and downstream basin:

Yict = β1Dict + β2D
U
ict + ZictΓ1 + ZU

ictΓ2 + υi + µct + εict (3)

∆ict = α1(RGi ×Dct) + α2(RG
U
i ×D

U

ct) + ZictΓ1 + ZU
ictΓ2 + υi + µct + ωict (4)

24The data collected for Section 6.2 include information on the reservoir filling year (where available). In
some cases the reservoir is started to be filled already one to two years prior to dam completion.

25This section follows the existing literature and focuses on the impact of dams located within and upstream
of basins, whereas dams located downstream of basins have widely been found to have no effect (Duflo and
Pande, 2007; Strobl and Strobl, 2011).
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Equation (3) appends the baseline second stage equation with the number of dams in the

upstream basin DU
ict and a vector of controls in the upstream basin ZU

ict. Notably, β1 measures

the effect of an additional dam on conflict in basin i and β2 measures the effect of an

additional dam in upstream basin j on conflict in basin i. Recall, the spatial unit is a basin,

hence β1 and β2 measure the effect of different dams on a single basin and not the effect

of a single dam on different basins. Equation (4) signifies the first-stage equation, with the

number of dams in the own basin Dict and in the upstream basin DU
ict, both represented by

∆ict. In addition, controls for the upstream basin are added to maintain the same structure

of controls throughout the 2SLS system of equations.

Before performing the two instrument version, I first estimate the isolated effect of an

additional upstream dam on conflict in my own basin, by omitting Dict, Zict and RGi ×Dct

from the econometric specification. This is essentially the upstream version of the baseline.

Results are depicted in column 1 of Table A8 in the Appendix. The coefficient of an additional

dam in the upstream basin on conflict in the own basin is positive, insignificant and the

instrument is weak. The latter may also be due to a reduced sample size, because 20 percent

of the basins are geographically isolated and do not have an upstream basin.26 Next, I

replicate the baseline regression for the sub-sample at hand, to achieve a benchmark estimate.

Results in column 2 show a coefficient significant at the five percent level and which exceeds

the baseline coefficient of Table 2 by nine percentage points. The next column additionally

controls - without instrumenting - for the number of dams in the upstream basin. Simply

controlling for upstream dams does not however recover the causal effect, because just like

the main basin, upstream basins could suffer from endogenous dam placement. Therefore,

column 4 instruments now for both, dams in your own basins and upstream. The main

effect in the first row is in line with the benchmark in column 2 and the coefficient of an

additional upstream dam in the second row is close to zero and insignificant. The reported

Kleibergen-Paap F-statistic decreases to 7.05, because predicting D̂ict and D̂U
ict from the own

and the upstream basin’s river gradient is more demanding than the baseline first stage.

The regression reported in column 5 additionally accounts for upstream basin controls ZU
ict,

26In addition, tributaries and river head basins are coded as zero, as these units neither have upstream
basins.
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hence estimates the second stage as specified in Equation (3). Including more controls further

reduces the predictive power of the instrument and the Kleibergen-Paap F-statistic drop far

below ten, hence prohibits a causal interpretation of the results.

To summarize, results in columns 2 to 4 show no consistent evidence for spillovers in

conflict from upstream basin. Further, the baseline effect of a new dam in the own basin

appears widely unaffected by dams in the upstream basin, the very weak instrument of the

specification in column 5 does however not allow to dismiss spatial spillovers with certainty.

To further assess whether the main effect in my own basin is potentially influenced by

upstream dams, I exclude jointly-determined basins from the regression, i.e. basins with

new dams that at least one new dam in the upstream basin. Excluding these basins allows

to rule out a potential bias in β1 stemming from dams in the upstream basin. The according

coefficient in column 6 is consistent with and even exceeds the potentially biased result in

column 2. Whether the increase in magnitude is due to sample selection or to conflict-

mitigating spillovers remains unclear. In either case, column 6 accounts for a potential bias

in the main coefficient and finds a positive association between dams and conflict, in line

with the baseline.

6.5 Extensive margin of dams and main dam types

Half of the treated basins receive more than one new dam between 1989 and 2016. To test

whether the first dam causes more conflict than consequent ones, I exclude consequent dams

during the sample period by coding Dict as missing from the year onward a basin receives

a second dam.27 Results in columns 1 to 3 of Table A9 show that the first dam during

the sample period is especially harmful with a point estimate about twice the magnitude

of the baseline. The first dam causing more damage is indeed plausible, because by the

time a second dam is completed, a significant part of the local population has already been

displaced. Note that Dict now only adds variation to a basin’s pre-sample stock of dams via

the first finished dam during the sample period. The ideal regression would further exclude

27Furthermore, to measure the effect of the single first sample dam on conflict, basins with several dams
completed in a single year are excluded from the sample; these basins only account for three percent of all
treated basins in this sub-sample and including them yields similar results.
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all pre-sample dams from the analysis to measure the true extensive margin. This would

however result in a binary Dict and hence be estimated inconsistently. What can be done

is to return to the unrestricted sample and now exclude basins with pre-sample dams, to

test if past experience in dam-building reduces the probability of conflict. Columns 4 to 6

of Table A9 do exactly this and results exceed the baseline, but are smaller than those in

columns 1 to 3. Overall, the results suggests that the first dam causes more local conflict

than consequent ones.

Figure 4: Dams by primary use since 1989
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Notes: Dams are displayed by their primary use and continent. Only dams completed within the sample
period (1989-2016) are considered. Dams without information on primary use (about 20%) are omitted.
Continents are ranked by total of completed dams.

Next, dams are studied along the purpose they serve. The impact on the surrounding

environment and economy can vastly vary by dam type. Especially dam types reducing

the local water supply have been found to impair the local economy and therefore have the

potential to cause more conflict (World Commission on Dams, 2000). I rerun the baseline

specification with the difference that now Dict separately considers the three most com-

mon dams by primary and secondary use, namely hydropower, irrigation and water supply

dams.28 Results are reported in Table A10. All coefficients document a positive association

28Both, primary and secondary dam purposes are considered here, to obtain sufficient variation in the
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between dam placement and conflict, with hydropower dams being less harmful than irriga-

tion and water supply dams. Coefficients are less precisely estimated and just miss the ten

percent significance threshold, likely to be due to the reduced variation in Dict. Differences in

coefficient magnitude across types are in line with case studies arguing that the local impact

of hydropower dams is comparatively small, as water is stored and released according to

the electricity demand, but none of the water is removed from the river system. Contrarily,

water supply dams frequently shift water to other locations such as faraway industrial hubs

and irrigation dams remove water from the river system to nearby irrigation facilities (World

Commission on Dams, 2000).

7 Country Heterogeneous Effects

This section discusses the sensitivity of dam-related violence to several country characteristics

that are frequently associated with conflict. Country heterogeneity is measured for the year

1988, i.e. one year prior to the sample start. Using constant pre-sample values rather than

time-variant panel data may introduce some measurement error, but avoids the greater threat

of reverse causality. In other words, conflict could potentially alter a country’s institutional

and economic conditions, hence directly affect the tested heterogeneity. I define an indicator

variable Ic that takes the value one if a country has an above-median score in the tested

heterogeneity. As measured of 1988 only, the potential heterogeneity enters the equation

only once and is measured via β2:

Yict = β1Dict + β2(Dict × Ic) + ZictΓ + υi + µct + εict (5)

Where Dict×Ic indicates dam in the sub-sample of countries subject to the tested heterogene-

ity. All other variable definitions remain unchanged from Equation (1) and the stand-alone

term Ic is absorbed by the fixed effects. Note, the endogenous variable Dict occurs now twice

in the second-stage equation and to achieve a just-identified 2SLS system, the instrument is

number of newly-completed dams of each sub-type.
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additionally interacted with Ic in the first-stage equation:

∆ict = α1(RGi ×Dct) + α2(RGi ×Dct × Ic) + ZictΓ + υi + µct + ωict (6)

Where ∆ict represents the two instrumented terms Dict and Dict × Ic. The regressor Ic and

interaction terms RGi×Ic and Dct×Ic are absorbed by the fixed effects structure and hence

omitted from the first-stage equation.

Table A11 first considers heterogeneity across the level of democratization with data

from the Polity 4 Project (Marshall, Gurr and Jaggers, 2012). The estimates in column 1

document that highly democratic countries are not statistically differently exposed to conflict

than less democratic countries.29 Next, I test the role of country-wide differences in the level

of ethno-linguistic polarization. Polarization is an established index to approximate inter-

group division and is defined according to Montalvo and Reynal-Querol (2005) and based

on data from the Ethnologue (Lewis, Simons and Fennig, 2018). Results in column 2 show

a positive, although statistically insignificant coefficient of the interaction term, suggesting

that countries with an above-median polarization appear similarily exposed to violence as

less polarized countries.30 Column 3 investigates the role of real income per capita with

data from the Penn World Table (Feenstra, Inklaar and Timmer, 2015). Results document

very weak evidence for a lower conflict exposure of richer nations, with a coefficient of the

interaction term statistically different from zero just above the ten percent level. Next, the

role of the agricultural sector is addressed in more detail. As outlined earlier, dams affect the

local endowment of arable land and water, both essential input factors for farming. Column 4

tests heterogeneity across countries’ agricultural endowment with data by Faostat (Food and

Agriculture Organization, United Nations, 2013). The highly significant coefficient of the

interaction term documents that dams are especially harmful in countries with above-median

agricultural land cover shares, reflected in a coefficient with a magnitude of about twice the

29The democracy variable is a compound of four dimensions: competitiveness of executive recruitment,
openness of executive recruitment, constraint on chief executive and competitiveness of political participation.

30A subnational analysis of ethnic differences and details on the data construction can be found in Sec-
tion 8.2. The ethnic fractionalization index (1 - Herfindahl-Hirschman index) measuring ethnic diversity
yields similar results. The ethnic segregation index measuring the spatial division of groups, as defined in
Alesina and Zhuravskaya (2011), yields inconsistent results across different data sources.
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one of the baseline. In turn, countries with a low dependency on the agricultural sector show

no sign of an elevated exposure to conflict, with a first row coefficient statistically indifferent

from zero. Lastly, to connect agriculture to income, I test whether countries generating a

high share of income from agriculture are more prone to conflict, with data from the World

Development Indicators (World Bank, 2019). The correlation coefficient between real GDP

per capital and share of agricultural income is -.55 and statistically significant at the 1

percent level. The regression coefficient reported in column 5 is positive, significant at the

ten percent level and of similar magnitude as the previous column. While these findings point

towards the central role of agriculture for dam-related violence, country-level heterogeneous

effects could potentially be confounded by many other institutional characteristics. The

next section addresses this shortcoming, by investigating the economic impact of dams at

the local level.

8 Channels and Mechanisms

Thus far, the analysis has focused on the nature of dam-induced violence, whereas the

underlying economic and institutional conditions associated with an outbreak of conflict have

not yet been discussed. Section D of the Appendix investigates the local economic impact

of dams, with disaggregated GDP data, satellite night-time lights and remotely-sensed data

measuring the impact on agricultural productivity. The results are generally in line with

those of Duflo and Pande (2007) who find that Indian irrigation dams are a double-edged

sword with regard to their local economic impact. On the one hand, poverty increases as

dams incisively disrupt economic activity in their vicinity. On the other hand, the remaining

agricultural land may become more productive, as farmers gain access to better irrigation

technologies. Although the direction of effects are equivalent, the coefficients in Section D

are however less precisely estimated. This could be due to a host of reasons, including that

some countries are more prone to adverse local shocks than others (c.f. sections 7 and 8)

and that the economic impact might differ across dam types.31

31Results considering the economic impact of sub-types of dams are not shown, because of weak first-stage
F-statistics.
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8.1 Weak states: constrained political competition

This section spots light on institutional features likely to affect the quality of public poli-

cies and the implementation of dams. The qualitative work discussed in previous sections

frequently argues that governments’ reluctance to account for the preferences of affected

villagers located in the dammed regions is a common element of disputes. Put in a more

structured way, once the decision is made to build a dam, the central planner has to solve

a bargaining process with local communities over the compensation of economic losses.32

This bargaining process may be more likely to fail if a lack of political competition allows

the dominant political regime to suppress or ignore the preferences of local interest groups.

Besley, Persson and Sturm (2010) explore the theoretic and empirical implications of politi-

cal competition and find, for US states, that a low degree of electoral competition results in

non-optimal, growth-restricting policies.

To empirically investigate whether these theoretic considerations are reflected in the data,

I investigate facets of political competition below. In detail, I first test whether countries with

constrained freedom to express oppositional policy preferences results in a higher exposure

to conflict. In detail, I construct a variable that indicates countries in which the political

arena limits oppositional views and alternative political platforms, based on pre-sample

data from the Polity 4 Project (Marshall, Gurr and Jaggers, 2012). Columns 1 and 2

of Table A12 provide a balancing test showing that the instrument appears to have no

systematic association with variables measuring political competition. The main result is

reported in column 1 in Panel A of Table 3 and shows weak evidence for elevated levels

of conflict in countries with restricted competitiveness of participation, with a coefficient

significant at the ten percent level and exceeding the baseline in magnitude. Column 3

further tests whether the negative economic impact of dams is rooted in the sub-sample

of countries with low political competition, a weak first stage however prevents to derive

32In a vast majority of the reviewed case studies, local opposition is unsuccessful in reversing underway
dams projects. One rare example is the Myitsone dam in Myanmar, where violent clashes between govern-
ment and rebel forces lead to halt of the dam construction. When the dam construction started in 2009,
anti-state grievances between the ethnic Kachin Independence Army and government forces exacerbated.
Looming fears among the affected communities, mostly minorities, over agricultural land losses, flooding
and earthquakes translated into an escalation of violence, marking the end of the seventeen year ceasefire be-
tween the rebels and the state. As a consequence, an estimated 20,000 people had been displaced (Exchange
on Environment Conflict and Cooperation, 2019; ICTA-UAB, 2019).
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reliable conclusions.

I repeat the exercise with a second index measuring the electoral competitiveness with

data from DPI (Beck et al., 2001). In this variable, dictatorships with unelected legislatures

receive a low score, whereas highly competitive political systems relying on coalition building

receive a high score. Results are reported in the even columns of Panel A and confirm the

aforementioned findings. This may suggests that governments may be less devoted to the

demands of affected groups, because elections are unfair and hence repercussions at the next

election are unlikely.

8.2 Ethnic grievances

Previous sections showed that wealth generated from dams may be unevenly distributed

within countries, with the directly affected communities being more likely to suffer economic

losses. According to the case study literature, spatial inequalities can be amplified when

compensation schemes lack behind, as it often is the case when ethnic minorities are among

the displaced populations (World Commission on Dams, 2000). This observation is in line

with the quantitative literature that generally finds a negative association between ethnic

fragmentation and public good provision.33 This section takes a granular view at the role of

ethnic grievances and tests how local ethnic power relations affect the local impact of dams.

In detail, I calculate two established indices describing the ethnic composition at the drainage

basin level. The first, ethnic polarization, captures the degree of division of ethnic groups

and further has been found to correlate with conflict. The second, ethnic fractionalization,

measures the degree of ethnic diversity (Montalvo and Reynal-Querol, 2005). To construct

indices at the basin level, I populate the language map of the Ethnologue’s World Language

Mapping System with data from the Global Human Settlement Layer for the year 1975

(Lewis, Simons and Fennig, 2018; Pesaresi et al., 2019), following the procedure prionereed

in Desmet, Gomes and Ortuño-Ort́ın (2019) and refined in Eberle et al. (2020). This results

in a 1 × 1 kilometer gridded dataset with information on the number of speakers of each

33For an overview of the literature on the link between ethnic diversity and public goods, please consult
Desmet, Ortuño-Ort́ın and Wacziarg (2012).
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Table 3: Channel Analysis: Political Competition and Ethnic Grievances

Estimation: 2SLS

Dependent variable: Conflict ln(GDP/area)

(1) (2) (3) (4)

Panel A. Constrained political competition
Dams -0.031 -0.024 -0.407 -0.357

(0.034) (0.036) (1.015) (0.887)
Dams × Low participation comp. 0.073c -0.737

(0.038) (1.193)
Dams × Low elect. competitiveness 0.066c -0.811

(0.039) (1.078)

Basin 13280 13280 1793 1793
Observations 371840 371840 50216 50216
Kleibergen-Paap F-statistic 11.256 12.529 2.270 2.958

Panel B. Ethnic grievances
Dams 0.015 0.020 -0.656 -0.745

(0.013) (0.014) (0.534) (0.581)
Dams × High Polarization (basin) 0.022a -0.452c

(0.008) (0.269)
Dams × High Fractionalization (basin) 0.022a -0.420

(0.008) (0.281)

Basins 12225 12225 1605 1605
Observations 342300 342300 44956 44956
Kleibergen-Paap F-statistic 8.513 8.259 8.197 6.936

Basin FE / Country-year FE / Geographic controls X X X X

Notes: 2SLS estimations. The unit of observation is a drainage basin and a year. The sample sizes vary
with the data availability of the dependent variable. Columns 1-2: The dependent variable indicates conflict
incidence and is equal one if at least one conflict event occurs in a basin and year. Columns 3-4: The
dependent variable measures income per km2 with “Gross Cell Products” data from G-Econ, available for
1990, 1995, 2000 and 2005. Panel A: “Low participation comp.” indicates countries with a below-median
score in competitiveness of participation for the year 1989. “Low elec. competitiveness” indicates countries
with a below-median score in executive electoral competitiveness in 1989. Panel B: “High polarization
(basin)” indicates basins with an above-median ethno-linguistic polarization within a country in 1975. “High
fractionalization (basin)” indicates basins with an above-median ethno-linguistic fractionalization within a
country for the year 1975. Geographic controls: basin size, elevation, average basin gradient and river
length, interacted with Dct. The regressions control for basin and country-year fixed effects. Coefficients
are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation within
a 400 km radius of a basin’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b

significant at 5%; a significant at 1%.

language group worldwide.34 I then construct a binary variable taking a value of one if

34One useful feature of language maps is the global availability of the data. In addition, each language
has a language tree that describes its affiliation to broader language families. I follow Desmet, Ortuño-Ort́ın
and Wacziarg (2012) and calculate ethnicity indices at the different subdivisions along language trees. For
the regression analysis, I choose the second highest aggregation level, because it has been shown that higher
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a basin has an above-median level of polarization within a country. About half of the

dams are located in regions with an above-median level polarization. Columns 3 and 4 of

Table A12 provide a balancing analysis for the tested variables and report no statistically

relevant association with the river gradient instrument. The empirical specification allowing

for basin-level heterogeneity is as follows, with all variables as defined above:35

Yict = β1Dict + β2(Dict × Ii) + ZictΓ + υi + µct + εict (7)

∆ict = α1(RGi ×Dct) + α2(Dct × Ii) + α3(RGi ×Dct × Ii) + ZictΓ + υi + µct + ωict

(8)

The first two columns in Panel B of Table 3 show that dams built in regions with a

relative high degree of ethnic polarization and fractionalization substantially amplify con-

flict. Further, regions with high polarization and fractionalization experience larger negative

shocks to the local economy, as shown in columns 3 and 4. These results are in line with

the hypothesis that complex ethnic ties are linked to a lower provision of public goods (e.g.

in this case a lack of compensation schemes). Consequently, higher economic losses endured

by affected groups may in turn further reduce the opportunity cost of fighting, hence could

explain the surge in violence.

9 Conflict-Mitigating Institutions and Policies

The first part of this section studies institutional features arguably strengthening the bar-

gaining power of affected communities. One key feature to keep a government’s action in

check is an independent, unbiased judicial system. Therefore, the role of the judicial qual-

ity is tested in column 1 of Table 4 with pre-sample data from the Political Constraints

Database (Henisz, 2002). The results show that countries with an above-median degree of

judicial independence are on average less likely to experience conflict. Next, I test the role of

aggregation levels are relevant to capture long-standing cleavages between groups that lead to conflict. The
second highest level is preferred over the highest level, to achieve a more variation at the local level.

35Following Nunn and Qian (2014), the double interaction containing the shift part of the instrument does
not enter Zict. Moving (Dct × Ii) to Zict yields similar coefficients, although of lower significance.
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property rights with data from the Economic Freedom of the World Dataset Lawson, Mur-

phy and Williamson (2016). Secure property rights may constitute hurdles to governments

to nationalize private property in the cases where land owners oppose controversial projects.

Results in column 2 of Table 4 show no sign of a reduction in violence in countries with

protected property rights.

Table 4: Policy Analysis: Institutional Quality and Transboundary Water Treaties

Estimation: 2SLS 2SLS 2SLS 2SLS

Dependent variable: Conflict Conflict Conflict Conflict

(1) (2) (3) (4)

Dams 0.039a 0.038 0.039a 0.043a

(0.013) (0.039) (0.012) (0.016)

Dams × Independent judiciary -0.041b

(0.019)

Dams × Property rights -0.003

(0.044)

Dams × Treaty -0.044a -0.036c

(0.017) (0.020)

Basins 13505 11436 15923 13924

Observations 378140 320208 445844 389872

Kleibergen-Paap F-statistic 9.269 11.66 10.974 7.975

Mean dep. var. .037 .029 .034 .034

Mean dep. var. - interaction group .004 .007 .044 .044

Basin FE X X X X

Country-year FE X X X X

Geographic controls X X X X

Notes: 2SLS estimations. The unit of observation is a drainage basin and a year. The dependent variable
indicates conflict incidence and is equal one if at least one conflict event occurs in a basin and year. Columns
1-2: Countries included in the sample depend on data availability of the tested heterogeneity. Column 1:
“Independent judiciary” indicates countries with an independent judiciary branch in 1988, with data from
the Political Constraints Database. Column 2: “Property rights” indicates countries with an above-median
level in the legal structure and the security of property rights in 1988, with data from the Economic Freedom
of the World Dataset. Column 3: “Treaty” indicates basins subject to a transboundary water treaty in the
pre-sample period. Column 4: Further excludes basins with dams in the pre-sample period. Geographic
controls: basin size, elevation, average basin gradient and river length, interacted with Dct. The regressions
control for basin and country-year fixed effects. Coefficients are reported with spatially clustered standard
errors in parentheses, allowing for a spatial correlation within a 400 km radius of a basin’s centroid and
infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.

These results provide important insights into institutional aspects relevant for conflict

prevention. While interesting, this type of analysis however does not inform policy in an
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effective way, because improving the institutional quality is a long and slow process relying

to a vast extent on a government’s willingness to induce change. The second part of this

section therefore focuses on the role of funding bodies. Like most large-scale infrastructure

projects, dams are commonly funded by development banks and other international funding

bodies. Some creditors, including the World Bank, require dam-building nations to sign

transboundary water treaties as prerequisite to receiving funding (Strobl and Strobl, 2011).

While treaties are primarily designed to prevent transnational disputes between neighboring

nations, they frequently account for local elements, such as a monitoring of the environmental

impact and conflict resolution mechanisms. For instance, more than half of the treaties

signed prior to 1989 account for conflict resolution mechanisms, including the formation of

a permanent judicial organ or a diplomatic channel (Wolf, 1999). To test the effectiveness

of transboundary treaties as conflict-mitigating tool, I employ data from the International

Freshwater Treaties Database and construct a dichotomous variable indicating if a basin

had been subject to a treaty before the sample start in 1989.36 Worldwide 41 percent of

all basin have been subject to a treaty in the past. Treaties usually cover large geographies

within and across countries, such as entire river basins. The econometric specification is

identical to Section 8.2, which allows for within-country variation. Since treaty information

is solely based on the pre-sample period, the variable captures the persisting effect of a

treaty on a region over time. Results are reported in column 3 of Table 4 and show that

basins subject to treaties in the past experience substantially less conflict today. One might

suspect that previous experience in dam building may drive the negative coefficient of the

interaction term. To account for this, column 4 excludes all basins that received a dam

prior to the sample start. Although the coefficient of the interaction term is now smaller

in magnitude and significant only at the ten percent level, the result suggests that past

dam-building expertise may not be the main conflict-mitigating factor, but rather the state

capacity imposed by treaties.

36Conflicted regions may be more likely sign treaties, therefore relying on pre-sample values instead of a
panel version prevents to introduce endogeneity.
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10 Conclusion

Dams play an important role in satisfying the world’s increasing demand for electricity and

food and in the management of erratic climate conditions such as floods and droughts.

However, critics have argued that dams come at the cost of spatially dispersing wealth and

frequently causing conflict in their vicinity. The ongoing trend towards larger sized dams

necessitates a better understanding of the local impact of dams, because larger dams are

likely to put even more pressure on communities directly affected by their construction.

This paper is the first systematic attempt to understand the link between infrastructure

and violence across the world, with the intention to initiate a discussion on how to build

conflict-free infrastructure in the future. The disaggregated nature of the empirical strategy

not only allows to precisely pin down the local character of dam-induced violence, but further

enables to test relevant channels and policies relevant for other types of infrastructure. I

find strong and robust evidence for an increase in conflict in regions with new dams. While

dams on average increase local violence, it does not necessarily imply all dams are harmful.

Violence is conditional on institutional characteristics and the ethnic fabric in the affected

basins. The analysis suggests that a lack of political competition may result in poorly

planned dams that are failing to account for the economic preferences of directly affected

communities.

One powerful stimulus to build better dams are transboundary water treaties. They are

an effective tool to transparently plan and implement dams and other types of infrastructure

and to educate governments, especially in countries without the necessary state capacity to

mediate potential disputes. It is the responsibility of funding organizations to keep govern-

ments accountable for their actions, by making credits conditional on the implementation

of conflict-preventive measures and the assessment of local impact throughout all planning

and construction phases of dams.

This study lays the foundation for future research on the link between infrastructure

and conflict. The first promising avenue of future research is to carefully study smaller-

sized and subtypes of dams, to gain a better understanding of the type-specific impact,

as well as the underlying drivers of endogeneity in OLS estimations. The second is to
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study the relationship of dams with climate change, public health and the environmental

impact, as these aspects are not only important research topics on their own, but further

could contribute to the understanding of the causes of conflict. Finally, the assessment of

other types of infrastructure and civil unrest is needed, in order to promote awareness of a

systematic problem that requires governments to go beyond the paradigm of the cost-benefit

analysis. In conclusion, this study constitutes the first steps towards quantifying the human

toll of infrastructure, and more attention is required to build conflict-free infrastructure in

the future.
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Appendix

A Tables

Table A1: Descriptive Statistics, River Gradient Instrument (Basin-level)

Basins without dams Basins with dams Total

Pre-sample Within-sample

Basin fraction - River gradient IV (RGi) 0.339 0.462 0.607 0.362

(0.273) (0.230) (0.217) (0.274)

Basin fraction - Gradient < 1.5% 0.549 0.379 0.223 0.519

(0.347) (0.285) (0.229) (0.346)

Basin fraction - Gradient 1.5− 3% 0.159 0.186 0.143 0.161

(0.134) (0.115) (0.099) (0.131)

Basin fraction - Gradient 3− 6% 0.112 0.159 0.170 0.119

(0.117) (0.104) (0.098) (0.117)

Basin fraction - Gradient > 6% 0.179 0.276 0.464 0.201

(0.275) (0.275) (0.286) (0.282)

Notes: The sample includes 15,923 basins. “Pre-sample” refers to all drainage basins with at least one
dam completed prior to 1989 and none thereafter. “Within-sample” indicates basins with at least one dam
completed since 1989, regardless of any pre-existing dams. The unit of observation is a drainage basin, as
all variables are time-invariant. The first variable “Basin fraction - River gradient IV (RGi)” is the suitable
basin share for dams RGi, which is defined as a basin’s river fraction with a gradient of 1.5-3% or >6%.
The remaining variables summarize the share of each gradient category along rivers. Standard deviations in
parentheses.
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Table A2: First-Stage Estimates

(1) (2) (3) (4)

Any Hydrop. Dam Any Dam Any Dam Dams

Gradient 1.5− 3% 0.0252a 0.0241b

(0.0077) (0.0107)

Gradient 3− 6% 0.0040 0.0659a

(0.0141) (0.0185)

Gradient > 6% 0.1203a 0.1327a

(0.0174) (0.0201)

RGi 0.0936a

(0.0103)

RGi ×Dct 0.0026a

(0.0005)

Basins 15923 15923 15923 15923

Observations 15923 15923 15923 445844

F-statistic 38.016 52.562 72.071 25.413

Data Cross-section Cross-section Cross-section Panel

Geographic controls X X X X

Country FE X X X X

Basin FE X

Country-year FE X

Notes: OLS estimations. The sample includes 15,923 drainage basins. Columns 1-3: the unit of observation
is a drainage basin (cross-section). The dependent variables indicate if at least one dam has been completed
in a basin between 1989-2016. The dependent variable of column 1 is restricted to hydropower dams (by
main and secondary purpose). The independent variables measure the river fraction within each gradient
category. RGi is the time-invariant part of the instrument and measures a basin’s combined river fraction
with a gradient of 1.5-3% or >6%. Geographic controls: basin size, elevation, average basin gradient and
river length. The regressions control for country fixed effects. Column 4: the unit of observation is a drainage
basin and a year for 1989-2016 (panel). The dependent variable reports for each basin and year the stock of
dams. RGi×Dct is the instrument, with Dct measuring the number dams in a country and year. Geographic
controls: basin size, elevation, average basin gradient and river length, interacted with Dct. The regression
controls for basin and country-year fixed effects. Coefficients are reported with standard errors clustered at
the drainage basin level in parentheses. c significant at 10%; b significant at 5%; a significant at 1%.
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Table A3: Interstate Conflict and Border Regions

Estimation: 2SLS 2SLS 2SLS 2SLS 2SLS

Dependent variable: Interstate Conflict Intrastate Conflict Intrastate

(1) (2) (3) (4) (5)

Dams 0.001 0.028b 0.028b 0.037b 0.036b

(0.001) (0.013) (0.013) (0.016) (0.016)

Basins 15923 13473 13473 10841 10841

Observations 445844 377244 377244 303548 303548

Mean dep. var. 0 .032 .032 .032 .032

Kleibergen-Paap F-statistic 26.089 18.645 18.645 12.917 12.917

Basin FE X X X X X

Country-year FE X X X X X

Geographic controls X X X X X

Exclude border basins X X X X

Exclude basin within 100km to borders X X

Notes: 2SLS estimations. The unit of observation is a drainage basin and a year. Column 1: Only interstate
conflict incidents are considered. Columns 2 and 3: Drainage basins ranging across country borders are
excluded. Columns 4 and 5: Basins with the centroids located within 100 km of national borders are
excluded. The dependent variables indicate conflict incidence and are equal one if at least one conflict event
occurs in a basin and year. “Interstate” considers only conflict events between government military forces;
“Conflict” considers all conflict events; “Intrastate” excludes events involving two state actors. “Dams”
specifies the stock of dams in a basin and year. Geographic controls: elevation, gradient, river length and
basin size, interacted with Dct. The regressions control for basin and country-year fixed effects. Coefficients
are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation within
a 400 km radius of a basin’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b

significant at 5%; a significant at 1%.
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Table A4: Conflict Intensity: The Intensive Margin of Violence

Estimation: 2SLS 2SLS 2SLS 2SLS

Dependent variable: ln

(
Conflict

Events+ 1

)
ln

(
Intrastate

Events+ 1

)
ln

(
State vs. Rebels

Events+ 1

)
ln(Deaths+ 1)

(1) (2) (3) (4)

Dams 0.055b 0.054b 0.040b 0.069b

(0.023) (0.023) (0.018) (0.033)

Basins 15923 15923 15923 15923

Observations 445844 445844 445844 445844

Kleibergen-Paap F-statistic 26.089 26.089 26.089 26.089

Mean dep. var. .052 .051 .036 .091

Basin FE X X X X

Country-year FE X X X X

Geographic controls X X X X

Notes: 2SLS estimations. The unit of observation is a drainage basin and a year. The sample includes
15,923 basins for the years 1989-2016. The dependent variables measure conflict intensity, by taking the
logarithm of the number of conflict events ln(Conflict Events+1). Column 1: “Events” is the sum of the
reported conflict events in a basin and year. Column 2 and 3: the sum of events classified as “Intrastate”
and “State vs. Rebels” are considered. Column 4: the sum of reported fatalities are considered. “Dams”
specifies the stock of dams in a basin and year. Geographic controls: elevation, gradient, river length and
basin size, interacted with Dct. The regressions control for basin and country-year fixed effects. Coefficients
are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation within
a 400 km radius of a basin’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b

significant at 5%; a significant at 1%.
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Table A5: Conflict Intensity: Small Events Versus Large Events

Estimation: 2SLS 2SLS 2SLS 2SLS

Dep. var. - Conflict intensity: (x ≤ P25) (P25 < x ≤ P50) (P50 < x ≤ P75) (x < P75)

(1) (2) (3) (4)

Dams 0.012b 0.012b 0.008c 0.000

(0.006) (0.005) (0.004) (0.004)

Basins 15923 15923 15923 15923

Observations 445844 445844 445844 445844

Kleibergen-Paap F-statistic 26.089 26.089 26.089 26.089

Mean dep. var. .01 .008 .008 .008

Basin FE X X X X

Country-year FE X X X X

Geographic controls X X X X

Notes: 2SLS estimations. The unit of observation is a drainage basin and a year. The sample includes
15,923 basins for the years 1989-2016. The dependent variables indicate conflict incidence and are equal one
if at least one conflict event occurs in a basin and year. In detail, conflict incidents are divided into four
sub-categories by the intensity of battle-related deaths. Categories are separated at the 25th, 50th and 75th
percentile, corresponding to 4, 13 and 50 fatalities. E.g. the dependent variable in column 4 equals one, if
more than 50 casualties are recorded in a basin and year. “Dams” specifies the stock of dams in a basin
and year. Geographic controls: elevation, gradient, river length and basin size, interacted with Dct. The
regressions control for basin and country-year fixed effects. Coefficients are reported with spatially clustered
standard errors in parentheses, allowing for a spatial correlation within a 400 km radius of a basin’s centroid
and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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Table A6: Controlling for Lagged Dependent Variable

Estimation: 2SLS 2SLS 2SLS 2SLS 2SLS

Dependent variable: Conflict Conflict Conflict Intrastate State vs. Rebels

(1) (2) (3) (4) (5)

Lagged dependent variable 0.259a 0.259a 0.259a 0.262a 0.279a

(0.008) (0.008) (0.008) (0.008) (0.009)

Dams -0.005c 0.021b 0.020b 0.018b

(0.003) (0.010) (0.009) (0.008)

RGi ×Dct (× 1000 *) 0.056b

(0.022)

Basins 15923 15923 15923 15923 15923

Observations 429921 429921 429921 429921 429921

Kleibergen-Paap F-statistic . . 25.740 25.740 25.739

Mean dep. var. .034 .034 .034 .034 .024

Basin FE X X X X X

Country-year FE X X X X X

Geographic controls X X X X X

Notes: The unit of observation is a drainage basin and a year. The sample includes 15,923 basins for the
years 1990-2016. Column 1: OLS estimation. Column 2: reduced form estimation, with the coefficient and
standard error multiplied by 1,000 (*). Columns 3-5: 2SLS estimations, with the first-stage Kleibergen-Paap
F-statistics reported. The dependent variables indicate conflict incidence and are equal one if at least one
conflict event occurs in a basin and year. “Conflict” considers all conflict events; “Intrastate” excludes events
involving two state actors; “State vs. Rebels” only includes conflict events in which government forces fight
against rebel groups. “Lagged dependent variable” controls for the conflict incident in period t− 1. “Dams”
specifies the stock of dams in a basin and year. Geographic controls: elevation, gradient, river length and
basin size, interacted with Dct. The regressions control for basin and country-year fixed effects. Coefficients
are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation within
a 400 km radius of a basin’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b

significant at 5%; a significant at 1%.

49



Table A7: The Timing of Violence

Estimation: 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Dependent variable: Conflict Conflict Conflict Intrastate Intrastate Intrastate

(1) (2) (3) (4) (5) (6)

Dams 0.050b 0.048b

(0.023) (0.022)

Dams (construction period excluded) 0.064b 0.062b

(0.029) (0.028)

Dams (construction + post completion) 0.057b 0.055b

(0.028) (0.027)

Basins 15544 15464 15544 15544 15464 15544

Observations 435232 432999 435232 435232 432999 435232

Kleibergen-Paap F-statistic 14.812 14.533 10.426 14.812 14.533 10.426

Mean dep. var. .034 .034 .034 .034 .034 .034

Basin FE X X X X X X

Country-year FE X X X X X X

Geographic controls X X X X X X

Notes: 2SLS estimations. The unit of observation is a drainage basin and a year. The sample includes all
untreated basins and treated basins for which the construction start year could be identified. The dependent
variables indicate conflict incidence and are equal one if at least one conflict event occurs in a basin and
year. “Conflict” considers all conflict events; “Intrastate” excludes events involving two state actors; “State
vs. Rebels” only includes conflict events in which government forces fight against rebel groups. “Dams”
specifies the stock of dams in a basin and year, where dams are considered from the year of completion
onward. “Dams (construction period excluded)” excludes the years of dam construction from the sample.
“Dams (construction + post completion)” reports a new in the data from the first construction year onward.
Geographic controls: elevation, gradient, river length and basin size, interacted with Dct. The regressions
control for basin and country-year fixed effects. Coefficients are reported with spatially clustered standard
errors in parentheses, allowing for a spatial correlation within a 400 km radius of a basin’s centroid and
infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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Table A8: Assessing the Role of Spatial Spillovers

Estimation: 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Dependent variable: Conflict Conflict Conflict Conflict Conflict Conflict

(1) (2) (3) (4) (5) (6)

Dams 0.041b 0.050b 0.046b 0.029 0.049b

(0.018) (0.020) (0.022) (0.069) (0.022)

Dams in upstream basin 0.019 -0.011b -0.006 0.009

(0.044) (0.005) (0.010) (0.066)

Basins 12519 12519 12519 12519 12519 12473

Observations 350532 350532 350532 350532 350532 349244

Kleibergen-Paap F-statistic 6.332 17.417 16.121 7.053 1.291 14.905

Basin FE X X X X X X

Country-year FE X X X X X X

Geographic controls - own basin X X X X X X

Upstream dams instrumented X X X

Geographic controls - upstream X X

Notes: The unit of observation is a drainage basin and a year. The sample includes 12,517 basins for
the years 1989-2016. The dependent variables indicate conflict incidence and are equal one if at least one
conflict event occurs in a basin and year. “Conflict” considers all conflict events; “Intrastate” excludes events
involving two state actors; “State vs. Rebels” only includes conflict events in which government forces fight
against rebel groups. “Dams” specifies the stock of dams in a basin and year and is always instrumented
for. “Dams in upstream basin” specifies the stock of dams in a basin’s upstream basin and year and is
instrumented for where indicated. Geographic controls of a basin (upstream basins): elevation, gradient,

river length and basin size, interacted with Dct (D
U

ct). The regressions control for basin and country-year
fixed effects. Coefficients are reported with spatially clustered standard errors in parentheses, allowing for a
spatial correlation within a 400 km radius of a basin’s centroid and infinite serial correlation (Conley, 1999).
c significant at 10%; b significant at 5%; a significant at 1%.
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Table A9: Extensive Margin and Pre-Sample Treatment

Estimation: 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Dependent variable: Conflict Intrastate State vs. Rebels Conflict Intrastate State vs. Rebels

(1) (2) (3) (4) (5) (6)

First dam 0.070a 0.068a 0.060a

(0.026) (0.026) (0.022)

Dams 0.038b 0.037b 0.032b

(0.017) (0.016) (0.014)

Basins 15832 15832 15832 13926 13926 13926

Observations 443303 443303 443303 389928 389928 389928

Kleibergen-Paap F-statistic 27.883 27.883 27.883 22.667 22.667 22.667

Mean dep. var. .034 .034 .024 .034 .034 .024

Basin FE X X X X X X

Country-year FE X X X X X X

Geographic controls X X X X X X

Notes: 2SLS estimations. The unit of observation is a drainage basin and a year. Columns 1-3: Treated
observations are only considered for the first dam completed during the sample period, indicated by “First
dam” Columns 4-6: Basins with dams in the pre-sample are excluded from the sample and “Dams” specifies
the stock of dams in the remaining basins. The dependent variables indicate conflict incidence and are
equal one if at least one conflict event occurs in a basin and year. “Conflict” considers all conflict events;
“Intrastate” excludes events involving two state actors; “State vs. Rebels” only includes conflict events
in which government forces fight against rebel groups. Geographic controls: basin size, elevation, average
basin gradient and river length, interacted with Dct. The regressions control for basin and country-year
fixed effects. Coefficients are reported with spatially clustered standard errors in parentheses, allowing for a
spatial correlation within a 400 km radius of a basin’s centroid and infinite serial correlation (Conley, 1999).
c significant at 10%; b significant at 5%; a significant at 1%.
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Table A10: The Main Sub-types of Dams

Estimation: 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Dependent variable: Conflict Conflict Conflict Intrastate Intrastate Intrastate

(1) (2) (3) (4) (5) (6)

Hydropower dams 0.010 0.011

(0.007) (0.007)

Irrigation dams 0.041 0.045

(0.029) (0.029)

Water supply dams 0.091 0.099

(0.068) (0.068)

Basins 15923 15923 15923 15923 15923 15923

Observations 445844 445844 445844 445844 445844 445844

Kleibergen-Paap F-statistic 57.432 27.818 11.838 57.432 27.818 11.838

Mean dep. var. .034 .034 .034 .034 .034 .034

Basin FE X X X X X X

Country-year FE X X X X X X

Geographic controls X X X X X X

Notes: 2SLS estimations. The unit of observation is a drainage basin and a year. The sample includes 15,923
basins for the years 1989-2016. The most common sub-categories of dams, by their primary and secondary
use, are considered. Columns 1 and 4 study hydropower dams; columns 2 and 5 irrigation; and columns 3
and 6 water supply dams. The dependent variables indicate conflict incidence and are equal one if at least
one conflict event occurs in a basin and year. “Conflict” considers all conflict events; “Intrastate” excludes
events involving two state actors. “Dams” specifies the stock of dams in a basin and year. RGi × Dct is
the instrument, where RGi is a basin’s combined river fraction with a gradient of 1.5-3% or >6%; Dct is
the number dams in a country and year. Geographic controls: elevation, gradient, river length and basin
size, interacted with Dct. The regressions control for basin and country-year fixed effects. Coefficients are
reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation within a
400 km radius of a basin’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b

significant at 5%; a significant at 1%.
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Table A11: Heterogenous Effects of Dams on Conflict: Country Characteristics

Estimation: 2SLS 2SLS 2SLS 2SLS 2SLS

Dependent variable: Conflict Conflict Conflict Conflict Conflict

(1) (2) (3) (4) (5)

Dams 0.030b 0.029b 0.041a -0.021 -0.019

(0.015) (0.013) (0.015) (0.019) (0.027)

Dams × High democracy 0.017

(0.068)

Dams × High Polarization (country) 0.056

(0.077)

Dams × High income -0.056

(0.039)

Dams × High agricultural land share 0.066a

(0.024)

Dams × High agriculture to GDP share 0.063c

(0.033)

Basins 13543 15923 13365 13688 9624

Observations 379204 445844 374220 383264 269472

Kleibergen-Paap F-statistic 14.001 17.243 14.586 10.278 9.736

Mean dep. var. .034 .034 .034 .037 .044

Mean dep. var. - interaction group .031 .049 .021 .04 .055

Basin FE X X X X X

Country-year FE X X X X X

Geographic controls X X X X X

Notes: 2SLS estimations. The unit of observation is a drainage basin and a year. The table tests country
heterogeneous effects. Countries included in the sample depend on data availability of the tested hetero-
geneity. “High” indicates the sub-sample of countries with an above-median value in 1988 (pre-sample)
of the tested heterogeneity, which is interacted with the number of dams per basin and year. Column 1:
Heterogeneity across the level of democratization, tested with data from the Polity 4 Project. Column 2:
Heterogeneity across the level ethno-linguistic polarization, based on the polarization formula from Montalvo
and Reynal-Querol (2005) and tested with data from the Ethnologue. Column 3: Heterogeneity across the
level of real income per capita, tested with data from the Penn World Table. Column 4: Heterogeneity
across the level of agricultural land share, tested with data from Faostat. Column 5: Heterogeneity across
the level of GDP generated in the agricultural sector, tested with data from the World Development Indi-
cators. The dependent variables indicate conflict incidence and are equal one if at least one conflict event
occurs in a basin and year. “Conflict” considers all conflict events. “Dams” specifies the stock of dams in a
basin and year. “Dams × Heterogeneity” indicates the interaction term between the number of dams and
the country-wide heterogeneity. Geographic controls: basin size, elevation, average basin gradient and river
length, interacted with Dct. The regressions control for basin and country-year fixed effects. Coefficients
are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation within
a 400 km radius of a basin’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b

significant at 5%; a significant at 1%.
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Table A12: Channel Analyis: Balancing Analysis (Cross-section)

Estimation: 2SLS 2SLS 2SLS 2SLS

Dependent variable Low participation comp. Low elect. comp. High Polar. (basin) High Fract. (basin)

(1) (2) (3) (4)

RGi -0.1679 -0.2939b -0.0077 -0.0266

(0.1330) (0.1348) (0.0719) (0.0730)

Basins 13543 13591 12225 12225

Observations 13543 13591 12225 12225

Mean dep. var .628 .524 .458 .478

Country-year FE X X X X

Geographic controls X X X X

Notes: 2SLS estimations. The unit of observation is a drainage basin. The dependent variables indicate
countries with low political competition in 1988 (columns 1-2) and high within-country polarization and
fractionalization in 1975 (columns 3-4). Geographic controls: basin size, elevation, average basin gradient
and river length. The regressions in columns 3-4 control for country fixed effects. Coefficients are reported
with spatially clustered standard errors in parentheses, allowing for a spatial correlation within a 400 km
radius of a basin’s centroid. c significant at 10%; b significant at 5%; a significant at 1%.
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B Figures

Figure A1: Average Size of Newly-Constructed Dams
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Notes: The graph is based on data from the Global Reservoir and Dam (GRanD) Database, depicting all
“large” dams exceeding a reservoir capacity of 0.1 cubic kilometers. The blue solid line indicates the annual
average dam height in meter of newly constructed dams (left scale); the red dots indicate the average annual
reservoir capacity in cubic kilometer of newly constructed dams (right scale). The vertical black dashed line
further indicates the first year of the sample (1989).
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Figure A2: Data example: Upper Paunlaung Dam, Myanmar completed in 2015

Upper Paunglaung Dam

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS,
USDA, USGS, AeroGRID, IGN, and the GIS User Community
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A) Drainage basin of Paunlaung river section.

!Upper Paunglaung Dam

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS,
USDA, USGS, AeroGRID, IGN, and the GIS User Community
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B) Data precision, satellite image from 2018.

Upper Paunglaung Dam
 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS,
USDA, USGS, AeroGRID, IGN, and the GIS User Community
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C) Planned reservoir (blue) and pre-completion

satellite image.

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS,
USDA, USGS, AeroGRID, IGN, and the GIS User Community
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D) Planned reservoir (shaded) and pre-

completion satellite image, magnified.

Notes: The satellite images depict Upper Paunlang Dam in Myanmar, prior and past dam construction.
Data on dam location and reservoir extent is based on data from GranD. The image was produced ArcGIS
(ESRI).
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Figure A3: Spatial Distribution of Dams, 1989-2016
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Notes: This figure depicts the spatial distribution large dams build between 1989-2016, with data from
GRanD. Darker shadings indicate basins with a higher number of dams.

Figure A4: Spatial Distribution of Conflict, 1989-2016
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Notes: This figure depicts the spatial distribution conflict incidents between 1989-2016, with data from
UCDP - GED. Darker shadings indicate basins with a higher share of violent sample years.

58



Figure A5: Dams by Continent

0

500

1000

1500

2000

2500

C
um

ul
at

iv
e 

nu
m

be
r o

f d
am

s

1900 1920 1940 1960 1980 2000 2020
Year of completion

North America
Asia
Europe
Africa
South America
Oceania

Notes: Dams are displayed by continent since 1900 with data from GRanD. The vertical dashed black line
indicates the start of the sample, 1989.
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C Robustness of the instrument

This section addresses potential concerns about the instrument with a battery of robustness

exercises.

C.1 Revisiting Dct

Table A13: Excluding the Smallest 10% of Countries / Basins

Estimation: 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Dependent variable: Conflict Intrastate Conflict Intrastate Conflict Intrastate

(1) (2) (3) (4) (5) (6)

Dams 0.032b 0.031b 0.028b 0.027b 0.028b 0.027b

(0.013) (0.013) (0.012) (0.011) (0.013) (0.012)

Basins 15862 15862 14279 14279 12692 12692

Observations 444136 444136 399812 399812 355376 355376

Kleibergen-Paap F-statistic 26.088 26.088 29.649 29.649 33.308 33.308

Mean dep. var. .034 .034 .034 .034 .034 .034

Basin FE X X X X X X

Country-year FE X X X X X X

Geographic controls X X X X X X

Exclude smallest 10% of countries X X X X X X

Exclude smallest 10% of basins X X X X

Exclude largest 10% of basins X X

Notes: 2SLS estimations. The unit of observation is a drainage basin and a year. Columns 1-2 exclude 10%
of countries with the least number of drainage basins. Columns 3-4 exclude the smallest 10% of drainage
basins by surface and columns 5-6 exclude the largest 10% of drainage basins by surface. The dependent
variables indicate conflict incidence and are equal one if at least one conflict event occurs in a basin and year.
“Conflict” considers all conflict events; “Intrastate” excludes events involving two state actors; “State vs.
Rebels” only includes conflict events in which government forces fight against rebel groups. “Dams” specifies
the stock of dams in a basin and year. Geographic controls: basin size, elevation, average basin gradient and
river length, interacted with Dct. The regression controls for basin and country-year fixed effects. Coefficients
are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation within
a 400 km radius of a basin’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b

significant at 5%; a significant at 1%.

First, the time-variant part of the instrument Dct measuring the stock of dams per country

and year could suffer from endogeneity if the country-wide demand for dams is driven by

a single drainage basin. This issue has been pointed out in previous work and turns out

to be less problematic in the context of this paper. Unlike in existing studies, the “shift”

part of my instrument does not vary at the subnational, but at the national level. Therefore,

variation in Dct stems from all regions of a country, reducing the risk of a single basin driving
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the total demand for dams in a country. Smaller countries with lower numbers of drainage

basins could still cause such bias and I address this potential threat in columns 1 to 2 of

Table A13, by excluding the ten percent of countries with the least number of drainage

basins, i.e. with less than seven drainage basins per country. Results are widely unaffected,

suggesting the estimation coefficients are unlikely to be biased by small countries. Results

neither change when additionally excluding the smallest or largest ten percent of drainage

basins by surface area, as shown in columns 3 to 4, and 5 to 6, respectively.

61



Table A14: Deriving Dct from Past Dam Stocks (Moving Average)

Estimation: 2SLS

Dct bssed on: 5 year moving average 10 year moving average

Dependent variable: Conflict Intrastate State vs. Rebels Conflict Intrastate State vs. Rebels

(1) (2) (3) (4) (5) (6)

Dams 0.044a 0.043a 0.037a 0.051b 0.050b 0.051a

(0.016) (0.016) (0.013) (0.021) (0.021) (0.017)

Basins 15923 15923 15923 15923 15923 15923

Observations 445844 445844 445844 445844 445844 445844

Kleibergen-Paap F-statistic 25.698 25.698 25.698 26.368 26.368 26.368

Mean dep. var. .034 .034 .024 .034 .034 .024

Basin FE X X X X X X

Country-year FE X X X X X X

Geographic controls X X X X X X

Notes: 2SLS estimations. The unit of observation is a drainage basin and a year. The sample includes 15,923
basins for the years 1989-2016. The dependent variables indicate conflict incidence and are equal one if at least
one conflict event occurs in a basin and year. “Conflict” considers all conflict events; “Intrastate” excludes
events involving two state actors; “State vs. Rebels” only includes conflict events in which government forces
fight against rebel groups. “Dams” specifies the stock of dams in a basin and year. The time-variant part of
the instrument of the stock of dams Dct is replaced with the moving average of a country’s dam stock over
the past five and ten periods, in columns 1-3 and 4-6, respectively. Geographic controls: basin size, elevation,
average basin gradient and river length, interacted with the moving average of Dct. The regressions control
for basin and country-year fixed effects. Coefficients are reported with spatially clustered standard errors in
parentheses, allowing for a spatial correlation within a 400 km radius of a basin’s centroid and infinite serial
correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.

Another potential concern is that counting new dams towards Dct from the year of dam

completion onward may over-fit the econometric model. One way to address this issue

is by deriving Dct solely from the past stock of dams, hence excluding new dams from

Dct.
37 Predicting current dams investment from the past appears conceptually valid, because

a country’s know-how in dam construction may reduce the costs of dams in the future.

Columns 1 to 3 and 4 to 6 of Table A14 respectively replace Dct with the five and ten year

moving average of countries’ past dams stocks. The results are in line with the baseline.

37Alternatively, one could base Dct on the number of dams of neighboring states (assuming that states in
proximity follow similar economic trajectories). Such approach does however not yield a sufficiently strong
first stage.
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Table A15: Cross-sectional Analysis

Estimation: OLS Reduced F. 2SLS 2SLS 2SLS

Dependent variable: Conflict share Conflict share Conflict share Intrastate State vs. Rebels

(1) (2) (3) (4) (5)

# Dams 0.0041 0.2401b 0.2457b 0.1920b

(0.0066) (0.1147) (0.1157) (0.0978)

RGi 0.0283b

(0.0120)

Basins 15923 15923 15923 15923 15923

Observations 15923 15923 15923 15923 15923

Kleibergen-Paap F-statistic . . 10.618 10.618 10.618

Mean dep. var. .034 .034 .034 .034 .034

Geographic controls X X X X X

Country FE X X X X X

Notes: The unit of observation is a drainage basin. The sample includes 15,923 basins. Column 1: OLS
estimation. Column 2: reduced form estimation, with the coefficient and standard error multiplied by 1,000
(*). Columns 3-5: 2SLS estimations, with the first-stage Kleibergen-Paap F-statistics reported. The depen-
dent variables indicate the share of years between 1989 to 2016 with at least one conflict incidence. “Conflict
share” considers all conflict events; “Intrastate share” excludes events involving two state actors; “State vs.
Rebels share” only includes conflict events in which government forces fight against rebel groups. “# Dams”
specifies the number of dams built per basin between 1989 to 2016. Geographic controls: basin size, eleva-
tion, average basin gradient and river length. The regression controls for country fixed effects. Coefficients
are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation within
a 400 km radius of a basin’s centroid. c significant at 10%; b significant at 5%; a significant at 1%.

To further address whether issues stem from the time-variant part of the instrument, a cross-

sectional analysis is performed which ignores the time dimension of the analysis, and by this,

omits Dct from the econometric specification. In detail, I instrument the endogenous variable

measuring the total of dams built per basin during 1989 to 2016 with the time-invariant river

gradient part of the instrument, RGi. A dependent variable is constructed that accounts for

the share of periods between 1989 to 2016 with at least one conflict incident per basin, a

standard definition in the conflict literature. The regressions further account for country fixed

effects. Results are reported in Table A15 with positive and weakly significant coefficients for

the 2SLS. While these findings are in line with the panel baseline discussed earlier, a cross-

sectional investigation is less robust compared to the panel, due to the absence of basin

fixed effects which potentially introduces omitted variable bias. Nevertheless, two important

observations can be made: First, the cross-sectional analysis finds a similar association as

the panel. Second, these results do not depend on the construction of Dct.
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Table A16: Predicting Dct from the Pre-Sample Continent Share

Estimation: OLS Reduced F. 2SLS 2SLS 2SLS

Dependent variable: Conflict Conflict Conflict Intrastate State vs. Rebels

(1) (2) (3) (4) (5)

Dams -0.007b 0.050b 0.049b 0.044b

(0.004) (0.023) (0.022) (0.018)

RGi ×Dpredicted
ct (× 1000 *) 0.183b

(0.073)

Basins 15923 15923 15923 15923 15923

Observations 445844 445844 445844 445844 445844

Kleibergen-Paap F-statistic . . 23.168 23.168 23.168

Mean dep. var. .034 .034 .034 .034 .034

Basin FE X X X X X

Country-year FE X X X X X

Geographic controls X X X X X

Notes: The unit of observation is a drainage basin and a year. The sample includes 15,923 basins for the
years 1989-2016. Column 1: OLS estimation. Column 2: reduced form estimation, with the coefficient and
standard error multiplied by 1,000 (*). Columns 3-5: 2SLS estimations, with the first-stage Kleibergen-Paap
F-statistics reported. The dependent variables indicate conflict incidence and are equal one if at least one
conflict event occurs in a basin and year. “Conflict” considers all conflict events; “Intrastate” excludes
events involving two state actors; “State vs. Rebels” only includes conflict events in which government
forces fight against rebel groups. “Dams” specifies the stock of dams in a basin and year. RGi ×Dpredicted

ct

is the instrument, where RGi is a basin’s river fraction with a gradient of 1.5-3% or >6%; Dpredicted
ct is the

predicted number dams in a country and year defined as a country’s pre-sample continent share of dams
multiplied by the actual number of dams per continent each sample year. Geographic controls: basin size,
elevation, average basin gradient and river length, interacted with Dpredicted

ct . The regressions control for
basin and country-year fixed effects. Coefficients are reported with spatially clustered standard errors in
parentheses, allowing for a spatial correlation within a 400 km radius of a basin’s centroid and infinite serial
correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.

Next, I return to the panel and follow Duflo and Pande (2007) who predict the number of

dams per country and year Dpredicted
ct from a country’s pre-sample continent share of dams

multiplied by the actual number of dams per continent each sample year. This gives an

alternative instrument RGi×Dpredicted
ct , with the river gradient multiplied with the predicted

number of dams per country. Constructing the instrument in such fashion rules out a po-

tential bias caused by all dams of a country located a single basin, as well as an over-fitting

of the model. The 2SLS results in Table A16 show positive coefficients throughout, larger in

magnitude than the baseline and significant at the five-percent level. The Kleibergen-Paap

F-Statistic in column 3 reduces to 23.17, since using pre-sample country-variation introduces

some noise. It is important to note that 6 out of 77 treated countries had no dams in the
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pre-sample period, which implies a Dpredicted
ct of zero. In other words, those countries do not

comply with this instrument specification, which reduces the external validity of the findings.

For that reason and the fact that a bias caused by selection of dams to a single basin appears

unlikely, the remainder of the paper employs the actual number of dams Dct, as described

in the baseline specification.
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Table A17: Controlling for Basin-Specific Time Trends

Estimation: OLS Reduced F. 2SLS 2SLS 2SLS

Dependent variable: Conflict Conflict Conflict Intrastate State vs. Rebels

(1) (2) (3) (4) (5)

Dams -0.007c 0.031a 0.030a 0.027a

(0.003) (0.011) (0.011) (0.009)

RGi ×Dct (× 1000 *) 0.084a

(0.025)

Basins 15923 15923 15923 15923 15923

Observations 445844 445844 445844 445844 445844

Kleibergen-Paap F-statistic . . 30.715 30.715 30.715

Mean dep. var. .034 .034 .034 .034 .024

Basin-specific time trends X X X X X

Country-year FE X X X X X

Geographic controls X X X X X

Notes: The unit of observation is a drainage basin and a year. The sample includes 15,923 basins for the
years 1989-2016. Column 1: OLS estimation. Column 2: reduced form estimation, with the coefficient and
standard error multiplied by 1,000 (*). Columns 3-5: 2SLS estimations, with the first-stage Kleibergen-Paap
F-statistics reported. The dependent variables indicate conflict incidence and are equal one if at least one
conflict event occurs in a basin and year. “Conflict” considers all conflict events; “Intrastate” excludes
events involving two state actors; “State vs. Rebels” only includes conflict events in which government
forces fight against rebel groups. “Dams” specifies the stock of dams in a basin and year. RGi ×Dct is the
instrument, where RGi is a basin’s combined river fraction with a gradient of 1.5-3% or > 6%; Dct is the
number dams in a country and year. Geographic controls: basin size, elevation, average basin gradient and
river length, interacted with Dct. The regressions control for basin-specific time trends and country-year
fixed effects. Coefficients are reported with standard errors clustered at the basin level in parentheses due
to computational limitations. c significant at 10%; b significant at 5%; a significant at 1%.

The next exercise aims at addressing endogeneity stemming from differences in the basin-

induced growth over time, by replacing basin fixed effects with linear basin-specific time

trends. Results in Table A17 remain comparable to the baseline results. I believe the

econometric specification of the baseline accounting for basin fixed effects superior, because

of the difference-in-difference character that allows a straightforward interpretation of the

coefficients.
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C.2 Revisiting RGi

Table A18: Alternative RGi and Placebo Tests

Estimation: 2SLS 2SLS 2SLS 2SLS OLS OLS

Dependent variable: Conflict Conflict Conflict Conflict Conflict share Conflict share

(1) (2) (3) (4) (5) (6)

Dams 0.050b 0.032b 0.032b 0.035b

(0.020) (0.013) (0.013) (0.014)

RGi 0.033b -0.010

(0.013) (0.019)

Basins 15923 15923 15923 15923 12167 3756

Observations 445844 445844 445844 429921 12167 3756

Kleibergen-Paap F-statistic 17.117 25.180 25.480 26.471 . .

Mean dep. var. .034 .034 .034 .034 .034 .034

Data Panel Panel Panel Panel Cross-section Cross-section

Geographic controls X X X X X X

Basin FE X X X X

Country-year FE X X X X

Gradient in IV band control X X X

Large rivers control X X

ln(Population+1) control X

Country FE X X

Notes: Columns 1-4: 2SLS estimations. The unit of observation is a drainage basin and a year. The
dependent variable indicates conflict incidence and is equal one if at least one conflict event occurs in a basin
and year. Geographic controls: basin size, elevation, average basin gradient and river length, interacted with
Dct. The regressions control for basin and country-year fixed effects. “Dams” specifies the stock of dams
in a basin and year. Columns 1: RGi is defined as a basin’s area share (instead of the gradient just along
the river center line) with a gradient of 1.5-3% and >6%. Column 2: As baseline, additionally controls
for the average gradient along rivers. Column 3: As column 2, additionally controlling for large rivers
with data from Natural Earth. Column 4: As column 4, additionally controlling for the log of the basin
population plus 1, with data from the Global Human Settlement Layer (for missing years, data is linearly
interpolated). Coefficients are reported with spatially clustered standard errors in parentheses, allowing for a
spatial correlation within a 400 km radius of a basin’s centroid and infinite serial correlation (Conley, 1999).
Columns 4-5: OLS estimations. The unit of observation is a drainage basin. The dependent variable is the
share of years with conflict incidents. Placebo tests performing the reduced form estimations on sub-samples.
Column 5: Sub-sample of countries with at least one new dam (77 countries). Column 6: Sub-sample of
countries without new dams (76 countries). Geographic controls: basin size, elevation, average basin gradient
and river length. The regressions control for country fixed effects. Coefficients are reported with spatially
clustered standard errors in parentheses, allowing for a spatial correlation within a 400 km radius of a basin’s
centroid and, in the panel setting of columns 1-4, infinite serial correlation (Conley, 1999). c significant at
10%; b significant at 5%; a significant at 1%.

In what follows, alternative versions of the time-invariant part of the instrument RGi are

considered. In the baseline specification, RGi is chosen to capture the gradient just along

the river line. Defining a wider band could run the risk to violate the exclusion restriction
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by introducing faraway gradient characteristics irrelevant for dams, but not for conflict.

Nevertheless, previous papers have defined the river gradient across complete spatial units

(e.g. basin or districts). In column 1 of Table A18, I follow this procedure and define RGi

across the whole basin surface. The pairwise correlation with the baseline river gradient

is 0.98 and the correlation coefficient statistically significant at the 1 percent level. The

coefficient of 0.05 exceeds the baseline and is significant at the 5 percent level. Further, a

reduction in Kleibergen-Paap F-Statistics might be due to additional noise introduced via

geographic features irrelevant for predicting dam placement.

Returning to the baseline specification, a set of additional robustness exercises is performed.

Column 2 of Table A18 controls for the average gradient along a basin’s river lines, to capture

potential confounding factors on the same geographic extent on which RGi is based on. And

to address a potential bias from differently-sized rivers, column 3 further controls for length

of large rivers in a basin, with data on the world’s 1000 largest from Natural Earth (National

Geographic, 2019). The additional controls in columns 2 and 3 are interacted with Dct, and

the reported results remain widely unchanged. Next, I additionally control for the basin

population, with data from the Global Human Settlement Layer available for the years 1975,

1990, 2000 and 2015 (Schiavina, Freire and Mac Manus, 2019). Data is linearly interpolated

for missing years, and the year 2016 is coded as missing. The robustness exercises on RGi

conclude with a set of placebo tests to demonstrate that the instrument is unrelated to

conflict in places where dams have not been built. In detail, I split the sample into countries

with at least one new dam (77 countries) and untreated countries (76 countries) and run

for each sub-sample reduced form regressions in columns 5 and 6, respectively. Untreated

basins have no variation in the number of dams, I therefore move to the cross-section and

regress a basin’s share of sample years with conflict on RGi. While the river gradient shows

a five percent significant and positive association with the conflict share in treated countries,

the effect in basins of untreated countries is statistically insignificant. It is reassuring to

yield results in line with the expected, having in mind that the fixed effect structure in this

cross-sectional setting only accounts for country fixed effects and is hence less restrictive

than the baseline.38

38The sample is split by treated countries rather than treated basins, because spatial spillovers within
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Table A19: Three Excluded Instruments

Estimation: OLS Reduced F. 2SLS 2SLS 2SLS

Dependent variable: Conflict Conflict Conflict Intrastate State vs. Rebels

(1) (2) (3) (4) (5)

Dams -0.007c 0.024b 0.023b 0.022b

(0.004) (0.012) (0.011) (0.010)

Gradient 1.5− 3% ×Dct (× 1000 *) 0.102a

(0.038)

Gradient 3− 6% ×Dct (× 1000 *) 0.009

(0.037)

Gradient > 6% ×Dct (× 1000 *) 0.053

(0.043)

Basins 15923 15923 15923 15923 15923

Observations 445844 445844 445844 445844 445844

Kleibergen-Paap F-statistic . . 12.208 12.208 12.208

Mean dep. var. .034 .034 .034 .034 .024

Basin FE X X X X X

Country-year FE X X X X X

Geographic controls X X X X X

Notes: The unit of observation is a drainage basin and a year. The sample includes 15,923 basins for the
years 1989-2016. Column 1: OLS estimation. Column 2: reduced form estimation, with the coefficient and
standard error multiplied by 1,000 (*). Columns 3-5: 2SLS estimations, with the first-stage Kleibergen-Paap
F-statistics reported. The dependent variables indicate conflict incidence and are equal one if at least one
conflict event occurs in a basin and year. “Conflict” considers all conflict events; “Intrastate” excludes events
involving two state actors; “State vs. Rebels” only includes conflict events in which government forces fight
against rebel groups. “Dams” specifies the stock of dams in a basin and year. The first-stage includes three
instruments, one for each river gradient category’s surface share, each interacted with Dct is the number
dams in a country and year. Geographic controls: basin size, elevation, average basin gradient and river
length, interacted with Dct. The regressions control for basin and country-year fixed effects. Coefficients
are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation within
a 400 km radius of a basin’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b

significant at 5%; a significant at 1%.

Next, the baseline is performed with three excluded instruments, one accounting for each

of the river gradient classes discussed earlier. Results are depicted in Table A19 with a

Kleibergen-Paap F-statistic of 12.21 and positive coefficients, just short of the baseline and

significant at the five percent level. One shortcoming of this approach is that it does not

necessarily capture the dual requirement of moderate and at the same time steep gradients

countries cannot fully be ruled out (c.f. Section 6.4), whereas a spread of violence across country borders is
rather unlikely (c.f. Section 6.1.1). Further, the regression controls for un-interacted geographic controls.
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for multi-purpose dams.39

39In addition, the just-identified baseline setting can be estimated efficiently with OLS, which allows to
make use of the acreg Stata command to spatially clusters standard errors in the instrumental variable
specification (Colella et al., 2019)
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D The local economic impact of dams

Table A20: Local Economic Impact of Dams

Estimation: 2SLS 2SLS 2SLS 2SLS

Dependent variable: ln(GDP/area) ln(light/area) ln(max{light/area,ε}) ln(Agriculture/area)

(1) (2) (3) (4)

Dams -0.963 -0.675 -0.148 0.194

(0.623) (0.808) (1.388) (0.177)

Basins 2076 8468 12173 13999

Observations 58148 237114 340868 391987

Mean dep. var. 3.458 -.808 -3.813 -1.819

K.-P. F-stat. 19.932 18.906 26.813 24.930

Basin FE X X X X

Country-year FE X X X X

Geographic controls X X X X

Notes: 2SLS estimations. The unit of observation is a drainage basin and a year. The sample sizes vary with
the data availability of the dependent variable. Column 1: The dependent variable measures the income
per km2 with “Gross Cell Products” data from G-Econ, available for 1990, 1995, 2000 and 2005. Column
2-3: Dependent variables measure the night light density per km2 with data from NOAA, available for 1992-
2013. Column 3 replaces zero-observations with ε = 0.000023 (the smallest positive value in the sample.).
Column 4: Dependent variable measures agricultural productivity per km2 via the Normalized Difference
Vegetation Index with data from NOAA. To proxy agricultural productivity, the data is limited regions with
agricultural land. “Dams” specifies the stock of dams in a basin and year. Geographic controls: basin size,
elevation, average basin gradient and river length, interacted with Dct. The regressions control for basin and
country-year fixed effects. Coefficients are reported with spatially clustered standard errors in parentheses,
allowing for a spatial correlation within a 400 km radius of a basin’s centroid and infinite serial correlation
(Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.

To empirically assess the effect of dams on the local economy across the world, I rely on two

main data sources. The first source is the “Gross Cell Product” from the G-Econ database,

a dataset at the 1×1 decimal degree spatial resolution, or about 110×110 km at the equator

(Nordhaus, 2006). This data is derived from regional income and employment registers and

available for the years 1990, 1995, 2000 and 2005. Column 1 of Table A20 performs the 2SLS

specification with the logarithm of the mean income per square kilometer as the dependent

variable. The negative, although insignificant coefficient depicted in column 1 may hint

towards a sizable, negative economic impact of dams in their direct surroundings, compared

to counterfactual observations. The magnitude of the coefficient might be surprising at first,

but a closer look reveals that frequently a sizable part of the local economy clustered along

a river is submerged by the reservoir. For example, when the Upper Paunlaung dam in
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Myanmar started operations in 2015, the reservoir eradicated most of the local economy,

including 23 villages centered along the Paunlaung river banks and displaced around 10,000

people, as shown in Panel C and D of Figure A2 in the Appendix. Overall, the spatial

resolution and frequency of the appear far from ideal to measure fine-grained year-to-year

changes in the local economy.

The second data source, satellite night lights from NOAA (National Oceanic and Atmo-

spheric Administration, 2013), is available for the years 1992 to 2013 with a comparatively

high spatial resolution of 1× 1 km. Night time satellite data have been used to approximate

economic activity and electrification. In detail, the logarithm of the average light density

per area has been shown to correlate linearily with the logarithm of total GDP (Henderson,

Storeygard and Weil, 2012).40 I calculate the logarithm of the average light density of each

basin and year and results are shown in column 2 of Table A20. The coefficient measuring

the effect of dams on local light density is also negative and insignificant.41 The existing

literature employing satellite nighttime lights commonly replaces observations with a zero

light density by some small, positive number, because regions with a low - but non-zero - eco-

nomic activity often have a reported zero light density, an issue known as bottom censoring.

I follow Henderson et al. (2017) and replace all observations with zero light density with the

smallest, positive amount in the sample, ε = 0.000023. The coefficient reported in column 3

remains negative and insignificant.42 Having in mind the limitations of the both data, the

findings indicate that dams may tend to negatively impact their surrounding economies.

The last part of this section focuses on the effect of dams on agricultural productivity.

Agriculture is a key economic sector in dammed basins, with an average of 41 percent of

the basins covered with agricultural land, compared to 25 percent in the rest of the sample

(Latham et al., 2014). The major challenge in quantitatively assessing the impact of dams

on land productivity is the absence of globally consistent land survey panel data. Instead, I

rely on Normalized Difference Vegetation Index (NDVI), a remotely-sensed data measuring

40Recent papers using these data include Henderson, Storeygard and Weil (2012); Hodler and Raschky
(2014); Michalopoulos and Papaioannou (2014) and (Storeygard, 2016).

41To capture the effect of dams on the traditional economy, a 1 km buffer around dams is omitted from
the analysis, because large dam construction sites may emit enough light be visible on satellite images.

42It turns out that the magnitude of the coefficient is sensitive to the choice of ε, suggesting that bottom
censoring may be a serious concern when measuring the economic impact of dams via night lights in less
developed areas.
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local vegetational strength (Vermote et al., 2014). To approximately measure the evolution

of agricultural land productivity, I restrict the data to regions classified as agricultural land

as of 2014, i.e. close towards the end of the sample. Column 4 of Table A20 shows a

statistically insignificant increase in vegetational productivity in the remaining farm land

after dam completion.

A possible increase in agricultural productivity is plausible, because the presence of more

water from the reservoir and from irrigation facilities ensures steady water supplies and allows

for the cultivation of water intensive crops. A higher agricultural productivity associated

with dams has been argued to distort local crop markets and potentially contribute to local

income inequality, because it allows farmers to switch from food to exportable cash crops

(Duflo and Pande, 2007). Contrarily, it could be possible that an increase in agricultural

productivity mitigates the loss of farm land caused by the reservoir. To determine which

of the two cases is true, more detailed poverty data would be required, which is however

unavailable at the global scale. To summarize, these results appear to be in line with

previous work, arguing that communities directly affected by dams are more likely to suffer

economic losses. Conceptually speaking, negative income shocks could lower opportunity

costs to join rebel forces, hence provide a plausible explanation for a surge in violence.
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