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Abstract 
The US suffers from persistent regional disparities in employment rates. In principle, these disparities 
should be eliminated by population mobility. Can immigration fulfill this role? Remarkably, since 
1960, I show that new migrants from abroad account for 40% of the average population response to 
these disparities - which vastly exceeds their historic share of gross migratory flows. But despite this, 
immigration does not significantly accelerate local population adjustment (or reduce local 
employment rate disparities), as it crowds out the contribution from internal mobility. Indeed, this 
crowd-out can help account for the concurrent decline in internal mobility. Finally, I attribute the 
“excess” foreign contribution to a local snowballing effect, driven by persistent local shocks and the 
dynamics of migrant enclaves. This mechanism raises challenges to the (pervasive) application of 
migrant enclaves as an instrument for foreign inflows. But rather than abandoning the instrument, I 
offer an empirical strategy (motivated by my model) to overcome these challenges; and I demonstrate 
its efficacy. 
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1 Introduction

The US suffers from large regional disparities in employment-population ratios (“employ-

ment rates”) which have persisted for many decades (Amior and Manning, 2018). These

inequities have been exacerbated by the collapse of manufacturing employment (Charles,

Hurst and Notowidigdo, 2016), whose impact is heavily concentrated geographically (Au-

tor, Dorn and Hanson, 2013). In principle, these disparities should be eliminated by

regional mobility, as in Blanchard and Katz (1992). But given strong local persistence in

labor demand shocks, even a large population response is insufficient (Amior and Man-

ning, 2018). And troublingly, as Panel A of Figure 1 shows, regional mobility (the solid

line) has declined markedly in recent decades (Molloy, Smith and Wozniak, 2011).

In the face of these challenges, Borjas (2001) famously argues that new (footloose)

immigrants can “grease the wheels” of the labor market: that is, they accelerate the

adjustment of local population.1 But though the rate of immigration has grown rapidly

since the 1960s, just 17% of migratory flows to US states originate from abroad (Panel B).

Given this, can immigration make a substantive difference to local disparities? One might

focus on immigrants’ contribution to internal mobility after arrival: they do initially

make more cross-state moves than natives, but this gap largely disappears after five

years in the US (see Appendix D). Alternatively, foreign-born residents may contribute

to local adjustment through selective emigration: Cadena and Kovak (2016) find this is

an important mechanism during the Great Recession, though the effect is confined to

low educated Mexicans. But either way, despite the large expansion of immigration in

recent decades, Dao, Furceri and Loungani (2017) and Amior and Manning (2018) find

no evidence of speedier adjustment of local labor markets.

In this paper, I attempt to resolve these puzzles and study the broader implications. I

make four contributions. (1) I quantify the foreign contribution to population adjustment

across 722 commuting zones (CZs) over 50 years of US history. Remarkably, new im-

migrants alone account for 40% of the average population response to local employment

shocks. This vastly exceeds their share of gross migratory flows over the same period,

which is about 10%.2 Unlike in Cadena and Kovak (2016), longer-term immigrants con-

1Card and Lewis (2007), Jaeger (2007), Kerr (2010), Cadena (2013, 2014), Beerli, Indergand and
Kunz (2017), Albert and Monras (2018) and Basso, D’Amuri and Peri (2019) confirm that new mi-
grants’ location decisions respond strongly to local economic conditions. Basso, Peri and Rahman (2017)
extend the hypothesis of “greasing the wheels” beyond geography: immigration attenuates the impact
of technical change on local skill differentials. And the hypothesis is not only limited to immigration:
Dustmann, Schoenberg and Stuhler (2017) find that older workers (who supply labor elastically) protect
the employment of younger workers (who supply labor inelastically) in the event of adverse shocks.

2The mean share of gross annual flows to US states over 1964-2010 is 12%: see Panel of B of Figure
1. But the share for CZs will be smaller, because there is more mobility across CZs than states. See
Section 3.2 for further discussion.
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tribute little (whether through internal mobility or selective emigration); and the effects

are also very general: I estimate large contributions across education groups, and from

immigrants of diverse origins. (2) Unlike Borjas (2001), I argue this is entirely uncon-

nected with any mobility advantages of immigrants. Rather, it is driven by their strong

preference to settle in migrant enclaves, which are disproportionately located in high-

employment areas. I attribute this spatial correlation to a local snowballing effect, driven

by persistent local shocks and the dynamics of migrant enclaves. I confirm the quanti-

tative importance of this mechanism through calibration. (3) Despite this, I show that

new foreign arrivals do not significantly accelerate local population adjustment (or reduce

local employment rate disparities), as they crowd out the contribution from internal mo-

bility. I show this effect is too large to be driven by the labor market alone. (4) Finally,

my results indicate that instrumenting foreign inflows with local migrant enclaves (as is

common in the literature) will likely violate the exclusion restriction, given the enclaves’

spatial correlation with persistent labor demand shocks. However, I offer an empirical

strategy (motivated by my model) to overcome both this challenge and that of serially

correlated foreign inflows (as in Jaeger, Ruist and Stuhler, 2018); and I demonstrate its

efficacy.

How do these results affect the interpretation of Figure 1? Though gross migratory

flows have declined on aggregate, this need not imply more sluggish local adjustment:

this is because the flows of new immigrants (which have expanded markedly) are more

strongly directed to high-employment areas. Moreover, the acceleration of immigration

likely contributed to the decline in regional mobility: based on my estimates of crowd-out,

increases in foreign inflows since 1960 will have caused a 40% decline (all else equal) in

the internal response to employment shocks. This insight casts a more positive light on

the phenomenon: the vast foreign contribution to local adjustment saves US residents

from having to make (potentially costly) long-distance moves themselves. And it raises

concerns about policies, common in Europe, which restrict asylum seekers’ choice of

residence.

Beyond studying the implications for regional mobility, a key innovation here is to ac-

count for local labor market dynamics. Amior and Manning (2018) show these dynamics

are crucial to understanding the contribution of internal mobility to local labor market

adjustment, even over decadal census intervals. I argue here they are also indispens-

able for an analysis of the foreign contribution, both for understanding (theoretically)

its origin and identifying (empirically) its impact. Indeed, I show in Appendix H that

accounting for dynamics in Cadena and Kovak’s data can help reconcile our findings.

My model of local adjustment extends that of Amior and Manning (2018). Workers

move to higher-utility areas, but this process takes time; and new to this paper, I distin-

guish between the contributions of foreign and internal migration. This yields an “error

correction” empirical specification, where decadal changes in log population depend on
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contemporaneous changes in log employment and the initial log employment rate (the lo-

cal deviation from steady-state). The employment rate can serve as a “sufficient statistic”

for local economic opportunity, as an alternative to the more common real consumption

wage (which is notoriously difficult to measure for detailed local geographies). In an effort

to exclude supply shocks, I instrument the employment change and lagged employment

rate with current and lagged Bartik (1991) industry shift-shares.

The model fits the data well: I estimate large but incomplete population adjustment

over decadal intervals to local employment shocks. Remarkably, new immigrants (arriv-

ing within these intervals) account for 40% this response, and the contribution is even

larger among college graduates. The residual effect is almost entirely driven by natives:

foreign-born residents contribute little to the population response (whether through in-

ternal mobility or selective emigration). I show that the “excess” of the 40% foreign

contribution (over its 10% share of gross flows) can be explained statistically by spatial

correlation between migrant enclaves and local employment conditions. I attribute this

correlation to a local snowballing effect, driven by the dynamics of migrant enclaves.

Intuitively, new immigrants are drawn to places enjoying positive employment shocks.

This causes local enclaves (which follow a unit root) to permanently expand, which at-

tracts further immigrants - given their strong preference to settle in large enclaves. But

since the shocks themselves are heavily serially correlated (due in part to secular shifts

in industrial composition), this preference for enclaves will amplify the foreign response

to current shocks. Importantly, a dynamic model (disciplined by the data) can quanti-

tatively account for this effect.

What are the implications for local adjustment? The model shows a larger supply

of new immigrants should narrow local utility differentials. But if internal flows are

themselves elastic, this will discourage existing residents from themselves relocating -

thus “crowding out” their contribution. In the data, I cannot reject perfect crowd-out:

population is not significantly more responsive in CZs which are better supplied by new

immigrants, as predicted by the enclave shift-share of Altonji and Card (1991) and Card

(2001). The larger foreign contribution to adjustment in these areas is almost entirely

offset by a reduced contribution from internal mobility - and specifically from natives.

Given I am controlling here for dynamics, accounting for local heterogeneity is empirically

demanding. But I also derive a more tractable “semi-structural” crowd-out specification,

which assumes the enclave shift-share enters the system exclusively through realized for-

eign inflows: the result is the same, but now with remarkable precision.3 This crowd-out

3Since I condition on employment (as directed by my model), this crowd-out effect is not comparable
to others in the literature. I choose this approach because I seek to estimate the internal response for a
given employment shock. In contrast, other papers (most famously, Card, 2001, and Borjas, 2006, and
more recently e.g. Dustmann, Schoenberg and Stuhler, 2017, and Monras, forthcoming) seek to estimate
the unconditional impact of foreign inflows, for which employment may be an important margin of
adjustment. I elaborate on this point in Section 2.5. See Amior (2020) for unconditional estimates using
identical data and a discussion of the broader literature.
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effect is too large to be driven by the labor market alone: the internal response to for-

eign inflows significantly exceeds its response to employment shocks. Native distaste for

migrant enclaves may play a role, as in Card, Dustmann and Preston (2012).

Of course, the dynamics present a formidable challenge to identifying crowd-out and

the local impact of immigration more generally. Foreign inflows are traditionally in-

strumented with historic migrant enclaves, but my results suggest these enclaves cannot

credibly exclude demand shocks (confirming the fears of Borjas, 1999). Indeed, it is the

very violation of this exclusion restriction which accounts for the excess foreign response.

Persistence in the enclave instrument also makes it difficult to disentangle the impact of

current and historical foreign inflows (Jaeger, Ruist and Stuhler, 2018). But rather than

abandoning the instrument, I offer a strategy to overcome both these challenges. Based

on my model, controlling for the lagged employment rate (suitably instrumented) allows

me to partial out the entire history of demand and migration shocks. Further exploration

of the dynamics (including tests of pre-trends) suggests the employment rate performs

this function well. One might alternatively impose heavier structural assumptions (as in

Colas, 2018) or exploit natural experiments (e.g. Cohen-Goldner and Paserman, 2011;

Edo, forthcoming; Monras, forthcoming), but such experiments restrict analysis to spe-

cific historical episodes. In contrast, my approach is applicable to very general settings.

I set out the model in Section 2 and describe the data in Section 3. Section 4 estimates

the mean foreign contribution to adjustment, and Section 5 the extent of crowd-out and

the implications for internal mobility. In Section 6, I simulate the dynamic response to

local employment shocks and quantify the “snowballing” mechanism for the excess foreign

contribution. The Appendices contain theoretical extensions and numerous empirical

sensitivity tests, as well as a reconciliation with Cadena and Kovak (2016).4

2 Model of local population adjustment

2.1 Local equilibrium conditional on population

In line with Amior and Manning (2018), the model has two components: (1) a character-

ization of local equilibrium conditional on population (based on Roback, 1982) and (2)

dynamic equations describing population adjustment. New to this paper, I distinguish

4Cadena and Kovak find the (low educated) native population is insensitive to labor demand, which
rules out the possibility of large crowd-out. Monras (2015) attributes this result to unobserved divergent
trends in local native and Mexican populations. But in Appendix H, I show that by controlling for
observable local dynamics (as summarized by the initial employment rate), I identify a large native
response in Cadena and Kovak’s data. The effect of dynamics is intuitive: as Cadena and Kovak note,
those cities which suffered larger downturns during their Great Recession sample had enjoyed larger
upturns earlier in the decade; and if adjustment is sluggish, local population movements during the crisis
will reflect responses to both. The data reject the hypothesis that these dynamics are unimportant, just
as in my 50-year dataset.
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between foreign and internal mobility. In what follows, I derive empirical specifications

for the crowding out effect (both “reduced form” and more tractable “semi-structural”

versions), and I study the determinants of the foreign contribution to adjustment.

To simplify the theoretical exposition, I will assume that native and migrant labor are

identical and perfect substitutes in production. This can be motivated by the existing

literature, which typically finds they are close substitutes.5 To the extent this is false,

the model will overstate any impact of immigration on native outcomes. But I do not

exclude a role for imperfect substitutability in my empirical specifications. Instead, I

estimate the relationships described in the model empirically, and I test the validity of

the assumptions ex post - in line with the methodology of Beaudry, Green and Sand

(2012). As it happens, native and migrant employment rates do respond similarly to

both immigration and employment shocks - as these assumptions predict. In a similar

spirit, I do not account for skill heterogeneity (see Amior, 2020, for such an extension);

but as I explain below, the sufficient statistic result allows me to estimate the model

separately by education.

There are two goods: a traded good priced at P everywhere, and a non-traded good

(housing) priced at P h
r in area r. Assuming homothetic preferences, one can derive a

unique local price index:

Pr = Q
(

P, P h
r

)

(1)

I assume labor supply is somewhat elastic to the real consumption wage:

nr = lr + ǫs (wr − pr) + zs
r (2)

where lower case denotes logs: nr is employment, lr is population, wr is the nominal

wage, and zs
r is a local supply shifter. Labor demand is given by:

nr = −ǫd (wr − p) + zd
r (3)

where zd
r is a local demand shifter. Using (2) and (3), I can solve for employment in terms

of population and local prices. And a specification for housing supply and demand (as

in Amior and Manning, 2018) will then be sufficient to solve for all endogenous variables

in terms of population alone.

I write indirect utility in terms of the real consumption wage wr − pr and the value

of local amenities ar:

vr = wr − pr + ar (4)

5Within skill cells, Ottaviano and Peri (2012) estimate an elasticity of substitution between natives
and migrants of about 20. Card (2009) finds even larger numbers, and Borjas, Grogger and Hanson
(2012) and Ruist (2013) are unable to reject perfect substitutability. At the aggregate level (the relevant
context here), differences in skill composition will also matter. But in the US, natives and migrants have
similar college shares, which is the crucial margin of skill if high school dropouts and graduates are close
substitutes (as in e.g. Card, 2009; Ottaviano and Peri, 2012).
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Crucially, the real wage can be replaced by labor supply (2). So the employment rate can

serve as a sufficient statistic for local labor market conditions, conditional on the supply

and amenity effects:

vr =
1

ǫs
(nr − lr − zs

r) + ar (5)

In practice, this interpretation of the local employment rate may be compromised by

heterogeneous preferences for leisure. But as I argue in Section 3.3, this may be ad-

dressed by adjusting employment rates for demographic composition. A related concern

is heterogeneous preferences over local consumption (Albert and Monras, 2018), but this

should not affect the validity of the sufficient statistic result.6 Beyond this, Amior and

Manning (2018) show the result is robust to numerous model variants: multiple traded

and non-traded sectors7, agglomeration, endogenous amenities and market frictions; and

Amior and Manning (2019) show it is robust to cross-area commuting.

2.2 Local dynamics

In the long run, the model is closed by imposing spatial invariance in vr, as in Roback

(1982). This determines steady-state population in each area. But I allow for dynamic

adjustment to this state, with population lr responding sluggishly to local utility differ-

entials. New to this paper, I distinguish between the contributions of internal and foreign

migration:

dlr = λI
r + λF

r (6)

where λI
r is the instantaneous rate of net internal inflows (from within the US) to area r,

and λF
r is the foreign inflow rate, relative to local population. In principle, foreign outflows

may also play a role: Akee and Jones (2019) find that immigrants emigrate in response

to negative earnings shocks. However, my estimates suggest emigration contributes little

to local adjustment to employment shocks, so I have chosen not to account for it here.

Using a logit model of residential choice (as in Monras, 2015, or Diamond, 2016), λI
r

and λF
r can be written as linear functions of utility vr. As Appendix A shows, the net

internal flow λI
r is given by:

λI
r

µI
= γI (nr − lr − zsa

r ) (7)

where zsa
r ≡ zs

r − ǫsar denotes the combined supply and amenity effects; γI ≥ 0 is the

elasticity of net flows; and µI is the (spatially invariant) steady-state rate of internal

mobility, i.e. in the absence of local differentials. As I show in Appendix A, the spatial

invariance of µI can be motivated with a concept of network size: in spatial equilibrium,

6Suppose natives and migrants place different weight on local prices. Their labor supplies will then
depend on their respective price indices. So, the real consumption wage in both natives’ and migrants’
utility can still be replaced by the employment rate, at least after adjusting for demographic composition.

7Borjas (2013) and Hong and McLaren (2015) emphasize that migrants support local demand through
consumption. In my model, this is observationally equivalent to a flatter labor demand curve.
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the total inflow to each area r will then be proportional to local population. There is

no national intercept in (7), but zsa
r may be redefined to include one. Agents in (7) are

implicitly myopic: their behavior depends only on current conditions. But as Amior and

Manning (2018) show, one can write an equivalent equation for forward-looking agents,

where the elasticity γI depends both on workers’ mobility and the persistence of shocks.

Turning now to foreign inflows:

λF
r − µF

r

µF
r

= γF (nr − lr − zsa
r ) (8)

where µF
r is the local “foreign intensity”, i.e. the foreign inflow in the absence of local

differentials. Unlike µI , I permit µF
r to vary with r: e.g. absorption into the US is

facilitated by co-patriot networks (due to language or job market access) whose strength

varies regionally. For now, I take µF
r as given. But I study its evolution empirically in

Section 4: this process is crucial to interpreting the foreign contribution to adjustment.

I assume that, after entry, immigrants behave identically to natives. The intent

is merely to simplify the theoretical analysis. I do not impose this restriction on the

empirical estimates (where I distinguish between the migratory responses of natives and

longer-term migrants), but these estimates offer no compelling reason (ex post) to reject

it. The assumption can also be motivated ex ante by the evidence in Appendix D: though

the newest migrants do make more internal moves than natives, the gap becomes small

after five years of entry - and turns negative within ten.

Summing (7) and (8), aggregate population growth is given by:

dlr = µF
r + γr (nr − lr − zsa

r ) (9)

where γr is the (heterogeneous) aggregate population elasticity in area r:

γr ≡ γIµI + γFµF
r (10)

2.3 Discrete-time specification

To estimate the population response, I need a discrete-time expression for (9). Assuming

the supply/amenity effect zsa
r and employment nr change at constant rates within discrete

intervals, and that foreign intensity µF
r is constant within intervals, Appendix B.1 shows:

∆lrt =

(

1 − e−γrt

γrt

)

µF
rt+

(

1 −
1 − e−γrt

γrt

)

(∆nrt − ∆zsa
rt )+

(

1 − e−γrt

) (

nrt−1 − lrt−1 − zsa
rt−1

)

(11)

where µF
rt denotes foreign intensity between t−1 and t, and γrt is the aggregate population

elasticity in this interval. (11) is an error correction model (ECM) in population lrt
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and employment nrt: population growth ∆lrt depends on current ∆nrt and the lagged

employment rate (nrt−1 − lrt−1), which accounts for initial conditions. The effect of each

expands from 0 to 1 as γrt increases from 0 to ∞. A coefficient of 1 on ∆nrt indicates full

population adjustment to contemporaneous shocks, and a coefficient of 1 on (nrt−1 − lrt−1)

indicates that any initial steady-state deviation is eliminated in the subsequent period.

Conversely, coefficients closer to zero indicate sluggish adjustment.

Crucially, employment growth and the lagged employment rate fully account for the

dynamics of local utility, conditional on the supply/amenity shocks. As a result, the

demand shifter zd
r does not appear in this equation; and this makes it easier to identify

the impact of immigration. This is true of all the empirical specifications I study, and it

motivates an important methodological contribution which I describe below.

2.4 Crowding out effect

Equation (11) conceals the interactions between foreign and internal mobility. In partic-

ular, a larger foreign response to employment shocks (elicited by larger foreign intensity,

µF
rt) crowds out the internal response. To see this, notice the coefficients on ∆nrt and

(nrt−1 − lrt−1) in (11) are concave in γrt. As a result, doubling the aggregate elasticity

γrt (by raising µF
rt in (10)) will not double the discrete-time responses. Intuitively, a

larger foreign response makes utility less sensitive to local shocks; and narrower utility

differentials discourage existing residents themselves from relocating.

To estimate these crowd-out effects, I linearize the empirical specification. Let λF
rt ≡

∫ t
t−1 λ

F
r (τ) dτ denote the discrete-time foreign contribution to local population. Using

(7), (8) and (11), I show in Appendix B.2 that:

λF
rt ≈ µF

rt +
γF µF

rt

γIµI

[(

1 −
1 − e−γIµI

γIµI

)

(∆nrt − ∆zsa
rt ) +

(

1 − e−γI µI
)

(

nrt−1 − lrt−1 − zsa
rt−1

)

]

(12)

after linearizing around µF
rt = 0. In areas with larger foreign intensity µF

rt, the foreign

contribution λF
rt is both larger independently of shocks (a “direct” effect of µF

rt) and more

responsive to shocks (an “indirect” effect). In Appendix B.4, I also linearize the aggregate

population response (11):

∆lrt ≈
1 − e−γI µI

γIµI
µF

rt +

(

1 +
γF µF

rt

γIµI
·

1 − e−γI µI

γIµI

)(

1 −
1 − e−γIµI

γIµI

)

(∆nrt − ∆zsa
rt )

+

(

1 +
γF µF

rt

γIµI
·

1 − e−γIµI

γIµI

)

(

1 − e−γI µI
)

(

nrt−1 − lrt−1 − zsa
rt−1

)

(13)

Notice that the direct (i.e. independent) effect of µF
rt is smaller in (13) than (12), and the

same is true of the indirect effect (on the response to shocks). This reflects the offsetting

reduction in the internal response. In fact, as the internal elasticity γI becomes large, the
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effect of µF
rt on aggregate population dynamics goes to zero: i.e. there is perfect crowd-

out. Intuitively, new immigrants do not “grease the wheels” if the wheels are already

“greased”, i.e. if the internal flows are already elastic.8

2.5 “Semi-structural” specification for crowding out

Estimation of (13), which accounts for local heterogeneity (along µF
rt) in population ad-

justment, is empirically demanding: I need to interact µF
rt with both current and lagged

shocks. However, (7) and (8) imply a restriction which can reduce dimensionality: foreign

intensity, µF
rt, enters the system exclusively through realized foreign inflows, λF

rt. A spec-

ification which imposes this restriction can be interpreted as “semi-structural”; whereas

(12)-(13) are “reduced form” in that they collapse the impact of foreign inflows to the

original µF
rt shock. I begin by writing a new expression for instantaneous population

growth (in place of (9)), but now taking foreign inflows λF
r as given:

dlr = λF
r + γIµI (nr − lr − zsa

r ) (14)

Crucially, the response to shocks no longer varies with r: holding the realized λF
rt fixed,

changes in foreign intensity µF
rt have no effect on population adjustment. For small shocks,

I show in Appendix B.3 that the discrete-time internal response λI
rt ≡

∫ t
t−1 λ

I
r (τ) dτ can

then be approximated as:

λI
rt ≈

(

1 −
1 − e−γI µI

γIµI

)

(

∆nrt − λF
rt − ∆zsa

rt

)

+
(

1 − e−γI µI
)

(

nrt−1 − lrt−1 − zsa
rt−1

)

(15)

For a given employment shock ∆nrt and initial conditions, (15) describes the extent to

which foreign inflows λF
rt crowd out the internal contribution to adjustment. Crowd-out

increases from 0 to -1 as the internal response becomes elastic (γI → ∞). Notice the

coefficients on ∆nrt and λF
rt are identical (up to their sign): this yields an overidentifying

restriction which I exploit in the empirical analysis. Intuitively, these effects represent

pure mobility responses to an equal change in local utility, as summarized by the lo-

cal employment rate. Notice also that substituting (12) for λF
rt in the semi-structural

specification (15) yields the “reduced form” specification described above.

Since I seek to identify crowd-out of the internal response to a given employment

shock, the ∆nrt control is crucial. But this means the coefficient on λF
rt in (15) does

not describe the unconditional effect of foreign inflows: local employment may be an

important margin of adjustment. To derive the unconditional effect, it is necessary to

reduce ∆nrt to its exogenous components. This is beyond the scope of this paper, but

see Amior (2020) for such an analysis using the same dynamic framework.

8There is no corresponding crowd-out of the foreign response in this approximation, because I am
linearizing around µF

rt = 0.
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Crowd-out in this model is driven entirely by the labor market. But natives’ amenity

valuations (which I have taken as given) may also play a role. Card, Dustmann and

Preston (2012) show that hostility to immigration (at least in Europe) is largely motivated

by concern over the composition of neighbors. On the other hand, natives may be able to

escape migrant enclaves by moving within CZs (as in Saiz and Wachter, 2011; Fernandez-

Huertas Moraga, Ferrer-i Carbonell and Saiz, 2017) rather than between them. In the

context of (15), a disamenity effect can be represented by a negative correlation between

the foreign inflow λF
rt and amenity change ∆art = − 1

ǫs ∆zsa
rt .

2.6 Foreign share of local population response

I now assess the foreign contribution to adjustment. It is useful to first define the time

t “composite” employment shock, accounting for both current changes and initial devia-

tions:

xrt ≡

(

1 −
1 − e−γI µI

γIµI

)

∆nrt +
(

1 − e−γI µI
)

(nrt−1 − lrt−1) (16)

In Appendix B.5, using (12) and (15), I show the mean foreign share of the population

response to xrt can be approximated (for small employment shocks) as:

E





Cov
(

λF
rt, xrt

)

Cov (∆lrt, xrt)



 ≈











γF µ̄F

γIµI
+
Cov

(

µF
rt, xrt

)

V ar (xrt)





−1

+
1 − e−γI µI

γIµI







−1

(17)

where µ̄F is the mean foreign intensity. For equal foreign and internal elasticities (γF =

γI) and in the absence of spatial correlation, the foreign share of the population response

(17) collapses to (approximately9) its share µ̄F

µ̄F +µI of migratory flows, which has averaged

about 10% since the 1960s (see Figure 1). Any “excess” of the foreign response over 10%

must be explained by either (i) relatively elastic foreign inflows (i.e. γF > γI) or (ii)

spatial correlation between foreign intensity µF
rt and local shocks xrt, i.e. Cov

(

µF
rt, xrt

)

>

0. In Section 4, I show the observed spatial correlation can account empirically for the

excess foreign response (without recourse to large γF ); and in Section 6, I show a dynamic

model for µF
rt (disciplined by the data) can generate a correlation of sufficient size.

3 Data

3.1 Population

I identify foreign and (net) internal flows using decadal changes in local population stocks.

To this end, I rely on decadal census data on individuals aged 16-64, for 722 Commuting

9This approximation works for small µ̄F

µI , since the 1−e−γI µI

γIµI term is bounded between 0 and 1.
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Zones (CZs) in the Continental US, over 1960-2010.10

The model disaggregates changes in log population ∆lrt into contributions from foreign

and internal migration, i.e. λF
rt and λI

rt. Since I only observe population at discrete

intervals, I cannot precisely identify λF
rt and λI

rt - though I can offer a close approximation.

Let LF
rt be the foreign-born population in area r at time t who arrived in the US in the

previous ten years (i.e. since t − 1). The total population change ∆Lrt can then be

disaggregated into LF
rt and a residual, ∆Lrt −LF

rt. And the log change can be written as:

∆lrt ≡ log

(

Lrt

Lrt−1

)

≡ log

(

Lrt−1 + LF
rt

Lrt−1

)

+ log

(

Lrt − LF
rt

Lrt−1

)

− log

(

1 +
LF

rt

Lrt
·

∆Lrt − LF
rt

Lrt−1

)

(18)

Motivated by (18), I approximate λF
rt with λ̂F

rt, and λI
rt with λ̂I

rt, where:

λ̂F
rt ≡ log

(

Lrt−1 + LF
rt

Lrt−1

)

(19)

λ̂I
rt ≡ log

(

Lrt − LF
rt

Lrt−1

)

(20)

which leaves the final term of (18) as the approximation error. One might alternatively

take first order approximations, i.e. λF
rt ≈

LF
rt

Lrt−1

and λI
rt ≈

∆Lrt−LF
rt

Lrt−1

. These converge to

λF
rt and λI

rt as they individually become small. However, convergence in the case of (19)

and (20) merely requires that the product
LF

rt

Lrt
·

∆Lrt−LF
rt

Lrt−1

becomes small.

Of course, the residual contribution λ̂I
rt does not just consist of internal flows. It

accounts for the entire contribution of natives and “old” migrants (i.e. those who arrived

in the US before t − 1), part of which is “natural” growth and emigration from the US.

Emigration is more relevant for the foreign-born (see e.g. Dustmann and Görlach, 2016),

so it is useful to additionally study the component of λ̂I
rt which is driven by natives alone:

λ̂
I,N
rt ≡ log

(

Lrt−1 + ∆LN
rt

Lrt−1

)

(21)

where LN
rt is the local stock of natives at time t.

10CZs are county groups, developed by Tolbert and Sizer (1996) to approximate local labor markets,
and popularized by Autor and Dorn (2013). Where possible, I use published census county-level ag-
gregates from the National Historical Geographic Information System (Manson et al., 2017). Where
necessary, like Amior and Manning (2018), I supplement this with data from microdata census extracts
and (for the 2010 cross-section) American Community Survey samples of 2009-11, using the Integrated
Public Use Microdata Series (Ruggles et al., 2017). See Appendix C.1 for further details. I begin the
analysis in 1960: this is because I do not observe migrants’ year of arrival in that year, so I cannot
identify the foreign contribution to local population in the 1950s.

11



3.2 Comparability with Figure 1

A crucial insight of my paper is that the foreign contribution to local population ad-

justment vastly exceeds its share of gross migratory flows; and I reconcile this “excess”

response using equation (17). Since I estimate adjustment using decadal CZ-level popu-

lation changes, I would ideally compare these against ten-year migratory flows to CZs.

However, I do not observe these flows because of data limitations. Instead, I have

motivated the paper (in Figure 1) using evidence from annual flows to states: this enables

me to construct a consistent historical series. The mean foreign share of these flows over

1964-2010 in Panel B is 12%. Note this must exceed the foreign share of flows to CZs,

because there is (mechanically) more mobility across CZs than states. But, it is not

immediately obvious what difference the time horizon should make to the foreign share.

Though I cannot observe ten-year flows, I can construct five-year flows across CZs in

some years. For example, in the 2000 census, respondents were asked where they lived

five years previously. In my sample of working-age individuals, the foreign share (i.e. the

fraction originating from abroad) of five-year flows is equal to 15.1%.11 Reassuringly, this

is similar to the foreign share of annual flows to states over 1996-2000 (in Figure 1), which

is 15.5%. I conclude from this that annual state flows offer a reasonable benchmark.

3.3 Employment

In a contribution beyond Amior and Manning (2018), I adjust employment for local de-

mographics. I have argued the employment rate is a sufficient statistic for local economic

opportunity. But if different worker types value leisure differently, it will be conflated

with local demographic composition. Though the model does not explicitly account for

such heterogeneity, it may be represented by the local supply shifter zs
r . This variation

is not a problem if the Bartik instruments can exclude it. But the exclusion restriction

may be violated if high-employment groups (such as the high-educated or foreign-born

men: see Borjas, 2017) differ systematically in mobility.

I run probit regressions on each census microdata cross-section to purge local employ-

ment rates of detailed characteristics12: see Appendix C.2 for details. The composition-

adjusted rate, ẼRr, can be expressed as:

log ẼRr ≡ nr − lr − z̃sa
r (22)

11I compute the five-year inflow of foreign-born individuals from abroad (i.e. the numerator) using
the 2000 census microdata. And I compute the gross five-year inflows to CZs (the denominator) using
published statistics on migratory flows between US county pairs (which I aggregate to CZ-level). I take
this data from the C2 A1 and B4 A1 tables on the Census 2000 Migration DVD, kindly made available
by Kin Koerber: see https://www.census.gov/population/www/cen2000/migration/mig_dvd.html.

12Age, age squared, education (five categories), ethnicity (black, Asian, Hispanic), gender, foreign-
born status, and where available, years in US and its square for immigrants, together with a rich set of
interactions. See Appendix C.2.
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where z̃sa
r is the component of the supply/amenity shifter zsa

r attributable to observable

local composition. I can then define ñr as the composition-adjusted employment level:

ñr ≡ nr − z̃sa
r ≡ log ẼRr + lr (23)

and the instantaneous population response dlr in (9) can be rewritten as:

dlr = µF
r + γr [ñr − lr − (zsa

r − z̃sa
r )] (24)

where (zsa
r − z̃sa

r ) is the residual component of supply (which is not attributed to local

composition). In discrete time, by symmetry with (11), local population changes ∆lrt

will then depend on (i) composition-adjusted employment growth, ∆ñrt ≡ ∆ log ẼRrt +

∆lrt, and (ii) the lagged composition-adjusted rate (ñrt−1 − lrt−1) ≡ log ẼRrt−1. The

identifying conditions are now weaker: the Bartik instruments need only exclude the

residual supply/amenity effect (zsa
r − z̃sa

r ).

3.4 Shift-share variables

I identify demand shocks using Bartik (1991) shift-shares, brt. This predicts local employ-

ment growth, conditional on initial industrial composition, by assuming each industry i

grows at the same rate as elsewhere in the US:

brt =
∑

i

φi
rt−1∆ni(−r)t (25)

where φi
rt−1 is the share of area r workers employed in 2-digit industry i (there are 57

categories) in t − 1; and ∆ni(−r)t is the national log employment change in industry i,

excluding area r.13 The instrument is intended to exclude unobserved supply and amenity

effects in zsa
r .

Similarly, I proxy foreign intensity µF
rt with an enclave shift-share, popularized by

Altonji and Card (1991) and Card (2001). I motivate this shift-share theoretically in

Appendix A.2. New migrants are known to cluster in established co-patriot communities,

whether because of family ties, language or job networks. The shift-share predicts the

local supply of new migrants by allocating them proportionately to community size. To

express this predicted supply (which I denote µ̂F
rt) in terms of its contribution to the log

population change ∆lrt, I use an identical functional form to (19):

µ̂F
rt = log

(

Lt−1 +
∑

o φ
o
rt−1L

F
o(−r)t

Lrt−1

)

(26)

13Goldsmith-Pinkham, Sorkin and Swift (2018) recommend this exclusion to address concerns about
endogeneity to local supply shocks.
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where φo
rt−1 is the share of origin o migrants (I study 77 countries) residing in area r at

time t − 1, and LF
o(−r)t is the number of new origin o migrants (again excluding area r

residents) who arrived in the US between t− 1 and t.

Traditionally, the enclave shift-share µ̂F
rt is used to exclude local demand shocks zd

rt.

But I make no such claim: indeed, their correlation is crucial to generating the excess

foreign response. I am able to relax this assumption by virtue of the sufficient statistic

result: demand shocks zd
r do not appear in the estimating equations (11), (12), (13) and

(15), so I need only assume that µ̂F
rt excludes supply and amenity effects.

I construct the Bartik and enclave shift-shares using census microdata: see Appendix

C.3 for further details. In Figure 2, I map the spatial distributions of composition-

adjusted employment growth ∆ñrt, foreign inflows λ̂F
rt, and both the Bartik and enclave

shift-shares, averaged over all decades. All variables are typically larger in the North East,

West, Texas and Florida. This speaks to the spatial correlation between employment

conditions and migrant enclaves, which is crucial to my argument.

3.5 Amenity controls

Throughout, I control for the same observable amenity effects as Amior and Manning

(2018): (i) presence of coastline14 (ocean or Great Lakes); (ii) climate indicators15, specif-

ically maximum January and July temperatures and mean July relative humidity; (iii)

log population density in 1900; and (iv) an index of CZ isolation (log distance to closest

CZ, where distance is measured between population-weighted centroids). As their impact

may vary with time, I interact each with a full set of year effects.

I do not control for time-varying amenities (such as crime), which may be endoge-

nous to local conditions (Diamond, 2016). As such, the estimated population responses

to employment shocks will account for both their direct (labor market) effect and any

amenity-driven indirect effects.

4 Estimates of mean foreign contribution

4.1 Basic estimates

I begin by estimating the mean contribution of immigration to local population adjust-

ment over the period, abstracting from heterogeneity in foreign intensity µF
rt. In line with

14The coastline data was borrowed from Rappaport and Sachs (2003).
15Rappaport (2007) shows that Americans have been moving to better weather.
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(11), I estimate the following error correction model:

∆lrt = β0t + β1∆ñrt + β2 (ñrt−1 − lrt−1) + ArβAt + εrt (27)

where t denotes decadal census year. I regress the log population change ∆lrt on the

the (composition-adjusted) log employment change ∆ñrt and the lagged (composition-

adjusted) employment rate (ñrt−1 − lrt−1), i.e. the initial conditions. The β0t allow for

year effects, and the vector Ar contains amenity controls (i.e. observable components of

the zsa
r terms in (11)), which themselves are interacted with year effects (in βAt). The

error εrt contains any unobserved supply/amenity effects. I weight observations by lagged

local population share and cluster standard errors by state.16

OLS estimates of (27) cannot be interpreted causally: unobserved supply shocks will

bias β1 estimates upwards, and β2 will be biased down if these shocks are persistent (e.g.

a positive supply shock will raise population growth but reduce the employment rate).

To address this, I instrument ∆ñrt and (ñrt−1 − lrt−1) with current and lagged Bartiks,

i.e. brt and brt−1. In theory, the lagged employment rate will depend on a distributed lag

of Bartiks; but the first lag alone has sufficient power for the first stage. I set out the first

stage estimates in columns 1-2 of Table 1. The current Bartik picks up the bulk of the

effect on ∆ñrt, and the lagged Bartik the effect on (ñrt−1 − lrt−1), with large Sanderson-

Windmeijer (2016) F-statistics (which account for multiple endogenous variables).

I set out estimates of β1 and β2 in Panel A of Table 2. The OLS effects are 0.86

and 0.25 respectively (column 1), and the IV effects 0.75 and 0.55 (with small standard

errors: column 2); so the OLS bias is in the expected direction. These numbers indicate

large but incomplete population adjustment over one decade to contemporaneous shocks

and initial conditions. Interestingly, they are somewhat larger than estimates based on

raw (i.e. non-adjusted) employment variables: see Appendix Table A5.17 Note that the

null hypothesis of no dynamic effects (i.e. that the initial employment rate has no effect)

is consistently rejected with considerable power, despite the long decadal time horizons.

Column 3 replaces the dependent variable with the approximate foreign contribu-

tion λ̂F
rt (as defined by (19)), and column 4 with the residual contribution λ̂I

rt. The

approximation appears reasonable: β1 in columns 3 and 4 sum to 0.76, and β2 to 0.58

- very close to the column 2 estimates. Remarkably, new migrants account for 32%

16CZs are allocated to the state which accounts for the largest population share.
17Using raw employment, I estimate β1 as 0.63 and β2 as 0.39. The difference is intuitive. The

college educated population is known to respond more strongly (see below), but these individuals also
have higher employment rates. As a result, the change in raw employment, ∆nrt, will exceed the
composition-adjusted change, ∆ñrt; so the population response to the latter will be larger.

15



of the overall population response to contemporaneous shocks (β1) and 57% of the re-

sponse to the lagged employment rate (β2).
18 What is the foreign contribution over the

long run? To answer this, consider a one-off employment shock. Foreign inflows con-

tribute 32% of the initial 0.748 population response; and they contribute 57% of the

remaining (1 − 0.748) = 0.252 response. Taking a weighted average of the two gives:

(0.748 × 32%) + (0.252 × 57%) = 38%.

I also report the contribution of natives alone, i.e. λ̂
I,N
rt from (21). The numbers

are similar to column 4: this indicates that old migrants (those already in the US in

t − 1) contribute little to the population response, unlike in Cadena and Kovak (2016)

where they are dominant. Note this implies that selective emigration (of old migrants)

does not play an important role in local adjustment. One concern is that the estimated

contribution of old migrants may be conflated with generational shifts (from foreign-born

residents to their native children), but I show in Appendix F.4 that accounting for this

makes little difference. I also show in Appendix Table A9 that the foreign contribution

is not dominated by any particular origin group - again, unlike in Cadena and Kovak.

4.2 What explains the foreign contribution?

The foreign contribution greatly exceeds the foreign share of gross flows, µ̄F

µ̄F +µI , which

has averaged about 10% since the 1960s: see Section 3.2. Based on (17), there are two

possible explanations: a larger foreign sensitivity (γF > γI) or spatial correlation between

foreign intensity µF
rt and employment shocks.

In Panel B, I attempt to disentangle these empirically by controlling for the en-

clave shift-share µ̂F
rt (which proxies the foreign intensity). Of course, to the extent

that µ̂F
rt measures the foreign intensity µF

rt with error, this will understate the true ef-

fect. Still, this wipes away much of the foreign response to local shocks (column 3).

Relative to the overall population response (in column 2), the foreign share declines

to 7% of the β1 effect and 28% of β2. Over the long run, these numbers imply a

(0.735 × 7%) + ((1 − 0.735) × 28%) = 13% foreign contribution. This is remarkably

close to the 10% share of gross flows. That is, statistically at least, the excess foreign

response is almost entirely explained by spatial correlation between shocks and enclaves

- without any recourse to a larger foreign sensitivity. In Section 6 below, I attribute this

spatial correlation to a local snowballing effect, driven by the dynamics of enclaves and

persistent local shocks. A dynamic model (disciplined by the data) shows this persistence

is quantitatively sufficient to account for the effect.

Interestingly, the overall population response is unaffected by the µ̂F
rt control (column

18The mean foreign contributions to β1 and β2 are smaller once I omit population weights (Appendix
Table A7), since new migrants cluster in larger CZs. They are also smaller in OLS (Appendix Table
A1): 5 and 36% respectively. In the same table, I offer (genuine) reduced form estimates (regressing
population changes directly on the Bartik shift-shares): these offer a similar picture to the IV estimates.
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2): the now smaller foreign contribution to adjustment is offset by a larger residual

contribution (column 4). This speaks to the “indirect” crowding out effect of foreign

intensity µF
rt (see Section 2.4), and I estimate this more explicitly below. Notice also

there is clear “direct” crowd-out: µ̂F
rt raises the foreign contribution one-for-one (column

3), offset by a similar decline in the residual (column 4).

4.3 Native and migrant employment rate responses

For convenience, the model treats natives and migrants as perfect substitutes. But local

employment shocks (and the associated population responses) may affect natives and

migrants differently. To study this, in columns 6-8 of Table 2, I replace the dependent

variable of (27) with log employment rate changes: first, the aggregate rate ∆ (ñrt − lrt),

and then the native and migrant-specific rates. The latter two are adjusted using the same

procedure outlined in Section 3.3, but with the sample restricted to natives or migrants.19

The column 6 estimates are merely transformations of those in column 2: the effect of

employment growth is equal to 1 − β1 in (27), while that of the lagged employment rate

is −β2. In words, a larger population response implies a smaller employment rate effect.

But, notice the responses of the native and migrant employment rates (columns 7-8) are

similar - both to employment shocks and the enclave shift-share µ̂F
rt.

4.4 Foreign contribution by education

I now show that the foreign contribution is substantial among both high and low education

groups. The model above does not account for such heterogeneity. But as Amior and

Manning (2018) note, the sufficient statistic result can be applied more generally. One can

write labor supply functions like (2) and utility functions like (4) for individual education

groups. And combining the two, the education-specific employment rate can serve as a

sufficient statistic for each group’s employment opportunities. The ECM equation (11)

can then legitimately be estimated separately for distinct education groups - irrespective

of the productive relationship between these groups.

With this in mind, I replace all variables of interest in (27) with college graduate

and non-graduate equivalents. Again following the procedure of Section 3.3, I adjust

employment for demographic composition, but this time using education-specific samples;

and I also construct new Bartik and enclave shift-shares using these samples.

1911 small CZs in the 1960s are omitted from column 8: they do not offer a sufficient migrant sample to
deliver fixed effect estimates in the probit regressions, so I cannot compute migrant-specific composition-
adjusted employment rates.
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Table 3 presents the IV estimates. Comparing columns 1 and 5, the aggregate pop-

ulation response is significantly larger for college graduates (as in Amior and Manning,

2018): the graduate response to current employment growth, β1, is now 1-for-1. The

standard error on the graduate β2 is very large, but this is not surprising: the large β1

implies little deviation in local employment rates. I leave the first stage estimates to

Appendix Table A3: as before, each instrument picks up the bulk of the variation for

the corresponding endogenous variable. The F-statistics are very large for non-graduates

(in excess of 50), but below 10 for graduates: this reflects the difficulty of identifying the

lagged employment rate effect.

The foreign contribution is large for both groups - and especially for graduates. For-

eign migration accounts for 60% of the graduate β1 response (compare columns 1 and

2), and 33% for non-graduates (columns 5-6). Indeed, the larger foreign contribution

for graduates accounts for the entire difference in aggregate responses across education

groups: the residual responses are similar. Finally, similarly to Table 2, the enclave

control µ̂F
rt eliminates the bulk of the foreign response for both education groups.

5 Estimates of crowding out

5.1 Local heterogeneity in population responses

The estimates above reveal a substantial foreign contribution to local population adjust-

ment. What are the implications for adjustment overall? As the model shows, this will

depend on the extent to which the foreign contribution crowds out internal mobility. To

address this question, I study how population responses vary (over space and time) with

the enclave shift-share µ̂F
rt. I base my specification on (13):

∆lrt = βh
0t + βh

1 ∆ñrt + βh
2 (ñrt−1 − lrt−1) + Arβ

h
At (28)

+
[

βh
0µ + βh

1µ∆ñrt + βh
2µ (ñrt−1 − lrt−1) + Arβ

h
Aµ

]

µ̂F
rt + εrt

where µ̂F
rt is now interacted with employment growth ∆ñrt, the lagged employment rate

(ñrt−1 − lrt−1) and the amenity effects Ar, in line with (13). This allows for heterogeneous

foreign responses to both employment and amenity differentials. I have recentered all

variables interacted with µ̂F
rt to zero, so βh

0µ describes the impact of µ̂F
rt for the average

CZ. This specification is similar in spirit to Cadena and Kovak (2016); but they do not

account for local dynamics, and they study heterogeneity along the support of the initial

Mexican population share (rather than the enclave shift-share). My focus on the shift-

share is motivated by my model: I am interested in how population adjustment differs

in places with better access to new immigrants (given their remarkable contribution to

local adjustment in Table 2); and this is precisely what the shift-share predicts.
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I have introduced two new endogenous variables, so I need two additional instruments:

I use interactions between µ̂F
rt and the current and lagged Bartiks. Table 4 reports the first

stage estimates: each instrument has a large positive effect (with small standard error) on

its corresponding endogenous variable. Identification requires only that the instruments

are independent of unobserved supply/amenity effects. This is because the employment

change and lagged employment rate fully summarize labor market opportunities, so the

error εrt should in principle contain no demand effects: see equation (13).

Table 5 reports estimates of (28). I begin with OLS in column 1. The interactions are

insignificant for the contemporaneous shock and positive for the lagged employment rate

- though endogeneity is clearly a problem. When I apply IV in column 2, the interactions

are statistically insignificant for both the current shock and initial conditions, and the

direct effect of µ̂F
rt is also insignificant. That is, the aggregate population response is not

significantly different in areas with a larger foreign supply of migrants.

I now disaggregate the aggregate population response into its components. In column

3, I replace the dependent variable with the foreign contribution λ̂F
rt. Consistent with (12)

in the model, the interactions pick up the entire effect. In CZs with µ̂F
rt = 0, employment

shocks draw no foreign inflows. But at µ̂F
rt = 0.1, which is the 98th percentile of µ̂F

rt (the

maximum is 0.29: the distribution is heavily skewed), the foreign responses to ∆ñrt and

(ñrt−1 − lrt−1) are a remarkable 0.49 and 0.74 respectively.

As the model predicts, these larger foreign contributions are offset by significantly

lower internal mobility. Moving from µ̂F
rt = 0 to 0.1, the residual contribution (column 4)

declines from 0.81 to 0.28 for the ∆ñrt response, and from 0.60 to -0.06 for (ñrt−1 − lrt−1).

It also fully offsets the direct effect of µ̂F
rt (i.e. without the interactions) on local popu-

lation. Though I cannot reject perfect crowd-out, the estimates do admit the possibility

of incomplete crowd-out: the standard errors on the offsetting residual response (column

4) are close to 40% of the βh
2µ coefficient, though they are much smaller for βh

0µ and βh
1µ.

Column 5 reports the contribution of natives alone. The interaction effects exceed

those of column 4, implying that old migrants amplify the foreign contribution in high-µ̂F
rt

areas (despite contributing little on average in Table 2), while natives account for (more

than) the entire crowding out effect. This can be interpreted as a mechanical composition

effect: old migrants disproportionately reside in high-µ̂F
rt CZs, so they should contribute

a larger share (and natives a smaller share) of population adjustment in these places.

In the final three columns, I replace the dependent variable with changes in log em-

ployment rates. As in Table 2, the coefficients in column 6 are merely transformations of

those in column 2. Given the insignificant interaction effects, these results fail to confirm

Borjas’ (2001) hypothesis that new immigrants eliminate local labor market disparities
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(which I summarize here by local employment rates); and the same applies to the native

and migrant employment rates individually.20

In Appendix Table A2, I offer OLS and reduced form estimates corresponding to Table

5: these also point to large crowd-out. In Appendix F (and the corresponding Tables

A5-A7), I study the sensitivity of the IV estimates in Tables 2 and 5. The crowding

out effects are robust to including CZ fixed effects, which pick up (supply-driven) local

population trends: this is a demanding test in such a short panel. They are also robust to

omitting the lagged employment rate and to using raw (instead of composition-adjusted)

employment variables. Since adjusting local employment for observable demographics

makes little difference to the result, one may be less concerned about the influence of

unobservables. Omitting the amenity-µ̂F
rt interacted controls makes little difference to

the coefficients, but the standard errors do become larger. One may be concerned that

the crowding out effects are driven by outliers with very large µ̂F
rt (given the skew in this

variable), but dropping observations with µ̂F
rt > 0.1 makes little difference. The crowding

out result is also robust to removing the population weights, at least after restricting the

sample to CZs with population exceeding 50,000.

5.2 Implications for trends in regional mobility

This crowd-out may help account for the contemporaneous decline in regional mobility.

Since the 1960s, the rate of cross-state migration has approximately halved (Figure 1).

Numerous explanations have been proposed, including declining location-specific occu-

pational returns (Kaplan and Schulhofer-Wohl, 2017), greater barriers to mobility (Dao,

Furceri and Loungani, 2017) and a declining rate of job transitions (Molloy, Smith and

Wozniak, 2017). But it may also reflect accelerating immigration: to the extent that new

immigrants respond to local employment disparities, this obviates the need for existing

US residents to move (at potentially great cost) themselves. Molloy, Smith and Wozniak

themselves raise this possibility, but they are dubious for two reasons. First, they find

that internal flows to low (as well as high) immigration states fell noticeably; but this may

reflect (omitted) weak demand conditions. And second, at the national level, they find

internal mobility declined among high and low educated natives alike. This undermined

their confidence in the hypothesis, because they expected immigration to be more salient

among the low educated - but the results in Table 3 suggest otherwise.

To quantify the impact on internal mobility, note that the mean enclave shift-share µ̂F
rt

(which predicts foreign inflows) has grown from 0.010 in the 1960s to 0.056 in the 2000s.

As a result of this change, the estimates of Table 5 (column 4) predict that the mean

internal response to contemporaneous employment shocks ∆ñrt will have fallen from 0.76

20Cadena and Kovak (2016) argue that Mexican-born US residents help smooth local employment
rates. But I find no evidence in Table 2 that longer-term migrants contribute substantially to local labor
market adjustment. See also the reconciliation in Appendix H.
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to 0.51 (a 33% decline), and the mean response to initial deviations (ñrt−1 − lrt−1) from

0.53 to 0.23 (a 57% decline). Aggregating these numbers, the long-run internal response

to a one-off employment shock will then have fallen by 39%.21 Of course, other factors

may well be contributing to the decline in regional mobility. But these numbers suggest

that immigration likely played an important role.

5.3 “Semi-structural” estimates

The analysis above offers a “reduced form” perspective on the impact of the enclave

shift-share, µ̂F
rt. Conditional on employment, the results suggest µ̂F

rt has no significant

effect on local population: foreign inflows crowd out the contribution of internal mobility,

both directly and in response to employment shocks. But accounting simultaneously for

dynamics and local heterogeneity is empirically demanding, and this makes the standard

errors larger. I now estimate the more tractable “semi-structural” specification, which

imposes that the entire effect of µ̂F
rt in Table 5 comes through realized foreign inflows.

The question then becomes: for a given employment shock ∆ñrt and initial conditions,

how do foreign inflows (in response to the shock or otherwise) affect internal mobility?

In line with equation (15), I estimate the following specification:

λ̂I
rt = δ0t + δ1λ̂

F
rt + δ2∆ñrt + δ3 (ñrt−1 − lrt−1) + ArδAt + εrt (29)

where λ̂I
rt and λ̂F

rt are the approximate residual and foreign contributions. As I have

stressed above, δ1 is a “conditional” crowding out effect: employment may be an im-

portant margin of adjustment to foreign inflows, but its contribution is partialled out in

(29). Given my focus is the migratory adjustment to a given employment shock, this

“conditional” effect is the relevant one for my research question.

Conditional on the employment controls (and given the sufficient statistic result),

equation (15) shows that the εrt error in (29) should only contain unobserved sup-

ply/amenity effects. In an effort to exclude these, I instrument the three endogenous

variables (λ̂F
rt , ∆ñrt and ñrt−1 − lrt−1) with the enclave shift-share µ̂rt and the current

and lagged Bartiks, brt and brt−1. Table 6 reports first stage estimates, corresponding to

the specifications of Table 7: these have substantial power.

I present estimates of (29) in Table 7. These reveal substantial crowd-out, consistent

with the results above. The OLS estimate of δ1 in column 1 is -0.88: i.e. conditional on

local employment, a foreign inflow raising local population by 1 log point is associated

21Following a one-off employment shock, a fraction 0.748 of the overall population response occurs
contemporaneously (see column 2 of Table 2), and the remaining 0.252 comes in response to initial
deviations. Therefore, the long-run response will have declined by (0.748 × 33%)+(0.252 × 57%) = 39%.
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with a net outflow (of natives and earlier migrants) of 0.88. But this may be conflated

with omitted supply shocks, which influence both foreign inflows and employment.

Column 2 applies the instruments. δ1 is a little larger than OLS (0.91), with a standard

error of just 0.07. The estimate is not driven by outliers, as I show in scatter plots of

partialled variables in Appendix Figure A2. The small gap between the OLS and IV

estimates is perhaps not surprising: conditional on the employment controls, equation

(15) suggests that any bias can only be due to omitted supply (and not demand) shocks.

The response to employment shocks is also worthy of comment. Conditional on λ̂F
rt,

the coefficients on the employment variables effectively describe the internal response in

the absence of foreign inflows. Notice the coefficients in column 2 (0.74 and 0.56) are

almost identical to the aggregate population responses in column 3 of Table 2 (0.75 and

0.55). This is consistent with perfect crowd-out of the internal response.

In columns 3-4, I re-estimate the semi-structural equation but replacing the key vari-

ables (foreign and residual contributions and employment shocks) and their instruments

with education-specific equivalents. Crowd-out is larger for non-graduates, with a δ1 of

-0.98, compared to -0.68 for graduates. I leave the first stages to Appendix Table A4: the

F-statistics all exceed 70 for non-graduates, but are below 10 for graduates. As before,

this reflects the difficulty of identifying the latter’s lagged employment rate effect.

In Appendix Table A10, I study the sensitivity of my basic IV estimate of δ1 (in column

2) to controls, sample and weighting. Without any employment or amenity controls, δ1

varies substantially over time. This reflects the concerns of Borjas, Freeman and Katz

(1997) on the instability of spatial correlations, and it offers strong motivation for pooling

many decades. But reassuringly, δ1 becomes much more stable (and larger) when I control

for employment effects: the average δ1 increases from -0.53 to -0.75. And with the amenity

controls, it increases to -0.91. Once all controls are included, the estimates are also robust

to dropping the population weights. This suggests crowd-out is not markedly different

in larger CZs. The stability of these estimates is remarkable, and it offers strong ex post

support for the empirical specification.

5.4 Challenges to identification

The enclave instrument’s validity depends on the exogeneity of the initial (origin-specific)

migrant population shares (Goldsmith-Pinkham, Sorkin and Swift, 2018). But Table 2

shows these shares are correlated with local demand shocks, confirming the fears of Bor-

jas (1999). This is a consequence of local dynamics: the initial migrant shares are them-

selves an outcome of historical demand shocks, which predict current internal mobility -

both because of sluggish adjustment and also serial correlation in the shocks themselves.

(Indeed, it is this very correlation which generates the excess foreign response to local

shocks.) Persistence in the enclave instrument also makes it difficult to disentangle the
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impact of current and historical foreign inflows, as Jaeger, Ruist and Stuhler (2018) have

emphasized in important work. To address the latter challenge, Jaeger, Ruist and Stuhler

propose controlling for historical foreign inflows or its lagged enclave instrument - but

this leaves the problem of omitted demand shocks unsolved.

I instead impose more structure. In principle, the lagged employment rate is a suf-

ficient statistic for the impact of all historical demand and migration shocks (i.e. up to

the period when the enclaves are measured), whether these shocks are observed or not.

This offers a theoretical rationale for Pischke and Velling’s (1997) proposal to control

for the lagged unemployment rate. Since the current employment growth control ∆ñrt

does the same for contemporaneous demand shocks, I need only assume that the enclave

instrument µ̂F
rt excludes unobserved supply and amenity effects: see equation (15). Even

without the ∆ñrt control though (i.e. in an “unconditional” specification: see Amior,

2020), new innovations to demand should not pose a major threat: as I have argued, the

endogeneity of historical enclaves is a consequence of the foreign response to historical

shocks, and the lagged employment rate already partials out this history. See Section 6

for a more formal exposition of these dynamics.

To test whether this “sufficient statistic” is performing its function effectively, I now

control for the lagged enclave shift-share µ̂F
rt−1. As column 8 of Table 6 shows, µ̂F

rt−1 does

adversely affect the initial employment rate in the first stage - as one might expect. But

reassuringly, conditional on the initial employment rate (which is intended to summarize

all historical shocks), µ̂F
rt−1 has no effect on internal flows in the second stage: see column

5 of Table 7. In contrast, when I drop the lagged employment rate in column 6 (and

replace it with its lagged Bartik instrument), µ̂F
rt−1 picks up much of the negative effect.

Thus, though internal flows do respond sluggishly to immigration, the lagged employment

rate accounts fully for these dynamics.

Notice also that column 6 identifies less crowd-out: δ1 falls from -0.90 to -0.71. This

likely reflects a positive correlation between the enclave instrument and omitted historical

demand shocks, which are partialled out in column 5 by the lagged employment rate.

Finally, Peri (2016) emphasizes the importance of checking for pre-trends. In column

7, I replace the dependent variable (the internal contribution, λ̂I
rt) with its lag, λ̂I

rt−1.

Remarkably, this is entirely picked up by the lagged enclave shift-share µ̂F
rt−1 and Bartik

brt−1. In contrast, the current foreign contribution λ̂F
rt and Bartik brt are statistically

insignificant. This suggests I can empirically disentangle current from historical shocks.

Certainly, this endeavor is aided by pooling multiple decades of data.

5.5 Why is the crowding out effect so large?

Based on the model, the crowding out effect is too large to be driven by the labor market

alone. According to (15), λI
rt should respond equally to foreign inflows and employment
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shocks: i.e. δ1 = −δ2 in the empirical specification (29). The intuition is that both

elasticities represent (in principle) pure mobility responses to changes in local employment

opportunities - as summarized by the local employment rate (the sufficient statistic). At

the bottom of each column, I test this hypothesis more formally. It cannot be rejected for

OLS in column 1, but it is rejected for IV in column 2 - with a p-value of 0.013. In that

specification, δ1 is estimated as -0.91 and δ2 as 0.74. The gap is entirely driven by the low

educated: compare columns 3 and 4. Note that any imperfect substitutability between

natives and migrants should moderate the δ1 effect (relative to the model’s predictions),

so it would make the result even harder to explain.

What accounts for these differences? I offer three explanations. First, at least in the

semi-structural specification, my δ1 estimate may be conflated with (return) emigration

of earlier migrants.22 CZs with larger enclaves can mechanically expect more such emi-

gration. Indeed, though earlier migrants contribute little to the response to employment

shocks, they account for 40% of the crowding out effect (compare columns 2 and 8 of

Table 7). To address this point, I replace the foreign contribution λ̂F
rt on the right-hand

side with the total migrant contribution23 (though this will neglect any internal response

from earlier migrants). Column 9 reports a crowding out effect of -0.82, which is now

insignificantly different from the employment response.

A second factor is undercoverage of undocumented migrants: if foreign inflows are

systematically underreported, this may may bias upward their estimated impact. How-

ever, Amior (2020) shows that the employment control ∆ñrt eliminates most of this bias:

it can only account for about 30% of the gap between δ1 and δ2.

Third, native distaste for migrant enclaves may play a role: see Section 2.5. Given

this effect falls outside the labor market, it can cause δ1 to exceed δ2. And it can also

account for the larger crowd-out among non-graduates (columns 3-4): Card, Dustmann

and Preston (2012) and Langella and Manning (2016) find that lower educated natives

care more about compositional amenities. And Saiz and Wachter (2011) show that lower

educated migrants trigger more “native flight” across local neighborhoods.

6 Dynamic response to employment shocks

Using my estimates, I now simulate the impulse response to local employment shocks - to

assess whether the model’s dynamics can quantitatively account for the “excess” foreign

population response. Table 2 shows the excess response is almost entirely explained

(at least statistically) by spatial correlation between local employment conditions and

22Comparing cohort sizes across census observations, Ahmed and Robinson (1994) estimate that about
10% of foreign-born residents emigrate in the subsequent decade.

23Analogously to (21), I define this as log
(

Lrt−1+∆LM
rt

Lrt−1

)

, where LM
rt is the local stock of all foreign-born

individuals (both new immigrants and longer-term residents).
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migrant enclaves. My claim is that this correlation is driven by the dynamics of migrant

enclaves, in the face of persistent local shocks. I begin this section by estimating an

evolutionary process for the enclave shift-share µ̂F
rt, and I then study the quantitative

implications for the foreign response to local shocks.

I have chosen to take employment as given in this exercise. One might alternatively

simulate the response to a demand shock (i.e. zd
r in (3)), allowing employment to adjust

endogenously to local population. However, accounting for this feedback would distract

from my main goal: to understand the foreign share of the population response. In any

case, Blanchard and Katz (1992) and Amior and Manning (2018) find that employment

contributes little to local adjustment: population bears almost the entire burden.

Of course, there may be other ways to explain the spatial correlation between enclaves

and employment rates. In particular, strong employment conditions may themselves be a

consequence of foreign inflows.24 This would require an elasticity of local employment to

foreign inflows which exceeds one - implying that immigration amplifies local employment

shocks, rather than “greasing the wheels”. However, Table 2 rejects this hypothesis: the

enclave shift-share µ̂F
rt (which predicts foreign inflows) has a small negative effect on

employment rates (columns 6-8). This negative effect is also consistent with Card (2001),

Smith (2012), Edo and Rapoport (2017), Gould (2019) and Amior (2020).

6.1 Local evolution of enclave shift-share

In the model in Section 2, I take the foreign intensity µF
rt as given. But I now build

a simple empirical model for its evolution. I begin, in the first column of Table 8, by

regressing the enclave shift-share µ̂F
rt (which proxies for foreign intensity) on its lag. This

yields a precisely estimated 1: µ̂F
rt has a unit root. Consequently, local enclaves will be

permanently shaped by historical shocks. As Jaeger, Ruist and Stuhler (2018) note, the

persistence in µ̂F
rt reflects stickiness in migrant settlement patterns (the φo

rt−1 in equation

(26)) and persistence in aggregate-level foreign inflows by country of origin (the LF
o(−r)t).

Since µ̂F
rt is based on t − 1 enclaves, changes between µ̂F

rt−1 and µ̂F
rt will reflect local

demographic changes between t − 2 and t − 1. This will of course depend on foreign

inflows λ̂F
rt−1 between t− 2 and t− 1. Including λ̂F

rt−1 deprives me of one decade of data,

but this does not affect the unit root (column 2). As expected, λ̂F
rt−1 enters positively

in column 3. The effect is less than one (about 0.5), which reflects diffusion of earlier

migrants. Notice also the coefficient on µ̂F
rt−1 falls to about 0.5: this is because µ̂F

rt−1

enters λ̂F
rt−1 with a coefficient of about 1 (see column 3 of Table 2). Column 4 controls

24For example, Peri (2012) finds that immigration boosts local TFP growth.
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additionally for the lagged internal contribution, λ̂I
rt−1. This has no effect, which suggests

internal flows typically have a balanced composition of native and foreign-born workers.

6.2 Impulse response

To see how this amplifies the foreign response, I study the following four-equation system:

λF
rt = µF

rt

[

1 + βF
1µ∆ñrt + βF

2µ (ñt−1 − lt−1)
]

(30)

λI
rt = δ1λ

F
rt + δ2∆ñrt + δ3 (ñrt−1 − lrt−1) (31)

lrt = lrt−1 + λF
rt + λI

rt (32)

∆µF
rt = θ

(

λF
rt−1 − µF

rt−1

)

(33)

Equation (30) describes the foreign response to local employment shocks: based on the

IV estimates of Table 5 (column 3), βF
1 = 4.908 and βF

2µ = 7.407. (31) is the semi-

structural equation for the internal response: based on column 2 of Table 7, δ1 = −0.913,

δ2 = 0.743 and δ3 = 0.556. (32) updates local population lrt, based on the foreign and

internal contributions. And (33) describes the evolution of µF
rt: based on column 3 of

Table 8, I impose a unit root and calibrate θ to 0.469.

Persistence in the local employment shocks is crucial to understanding the excess

foreign response. I illustrate this in Figure 3, which traces out the impulse responses

to exogenous ∆ñrt shocks - both temporary and permanent. At time 0, I normalize

log employment and population to zero, and I set foreign intensity µF
rt to the sample

mean, 0.033. In Panel A, I study a temporary 0.1 shock to ∆ñrt at time (decade) 1:

that is, ∆ñrt = 0.1 at t = 1, and zero thereafter. The log employment rate initially

grows by just 0.02, mainly because of a large internal response. The foreign response is

initially small; but unlike the internal response, it persists - despite the swift elimination

of the employment shock. In this sense, the foreign inflow “overshoots”. In response, the

internal flows eventually turns negative - though not sufficiently to prevent a slight dip

in the employment rate.25

However, if the shock persists, there is no such “overshooting”: foreign inflows are

strongly directed to high-employment areas, where they are most needed. This is clear

from Panel B, which simulates a permanent 0.1 shock to local employment growth: i.e.

∆ñrt = 0.1 for all t > 0. It is a well known feature of ECMs that permanent shocks cause

permanent deviations in outcomes: the employment rate eventually stabilizes at about

0.03.26 This permanent deviation elicits an explosive foreign inflow, driven by feedback

25This dip occurs because crowd-out is not quite one-for-one: i.e. δ1 < 1.
26The employment rate does begin to contract (very slowly) by the fourth decade, due to the over-

shooting foreign response and incomplete crowd-out.
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between λF
rt and burgeoning local enclaves µF

rt, which helps to satisfy the ever-expanding

demand. By decade 4, the internal contribution is almost fully crowded out - and the

foreign contribution accounts for almost the entire population response. Thus, the more

persistent are local shocks, the greater the foreign response.

6.3 Accounting for the excess foreign contribution

Panel B shows that persistent shocks amplify the foreign response, due to the enclave

dynamics. Can the model quantitatively account for the “excess” contribution observed

in Table 2? Equation (17) above sets out an expression for the mean foreign share

of the population response to xrt, a “composite” employment shock (defined in (16))

which accounts for both the contemporaneous shock and lagged employment rate. This

expression depends on the linear projection of foreign intensity µF
rt on xrt. Using the four-

equation system above, I show in Appendix B.6 that this projection can theoretically be

approximated by:

Cov
(

µF
rt, xrt

)

V ar (xrt)
≈ θ

γF µ̄F

γIµI

∑

i>0

Cov (xrt, xrt−i)

V ar (xrt)
(34)

This is increasing in (i) the elasticity θ of migrant enclaves to foreign inflows and (ii) the

persistence of local shocks, where
∑

i>0
Cov(x̃rt,x̃rt−i)

V ar(x̃rt)
is the infinite sum of xrt autocorrela-

tions. Plugging (34) into (17), and imposing full crowd-out (i.e. 1−e−γI µI

γIµI = 0), the mean

foreign share of the response to xrt can then be approximated as:

E





Cov
(

λF
rt, xrt

)

Cov (∆lrt, xrt)



 ≈
γF µ̄F

γIµI

[

1 + θ
∑

i>0

Cov (xrt, xrt−i)

V ar (xrt)

]

(35)

Recall the Table 2 estimates imply a mean foreign share of 38%, much larger than the

10% share of gross migratory flows µ̄F

µI . Can persistence in xrt quantitatively account for

the excess, without resorting to a large foreign elasticity, γF ?

I only observe a short panel, so I impute the sum of autocorrelations of xrt using

estimated autoregressive processes. Since the coefficients on the employment variables in

(16) are identical to those in the semi-structural equation (15), I can impute values for

xrt using:

xrt = δ2∆ñrt + δ3 (ñrt−1 − lrt−1) (36)

where I set δ2 = 0.743 and δ3 = 0.556, based on column 2 of Table 7. In Table 9,

I then estimate AR(1) and AR(2) processes for my imputed xrt values, controlling for

the amenity and year effects. Variation in xrt may of course be conflated with omitted

supply shocks. In an attempt to exclude these effects, I also offer IV estimates - where

I instrument xrt−1 and xrt−2 with once and twice lagged Bartiks respectively. Since

xrt contains a dynamic term, even i.i.d. ∆ñrt shocks will generate some persistence.
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But given the large population response (Panel A of Figure 3), this persistence will be

relatively weak. So, serial correlation in ∆ñrt itself will be crucial.

Columns 5-6 suggest that xrt follows a higher order process - unsurprisingly, given

the dynamic term in (36). For AR(2), the implied sum of autocorrelations (reported in

the table) is about 4 for OLS and 10 for IV. See Appendix B.7 for derivations of these

sums. Calibrating θ to 0.469 (based on Table 8) and assuming equal foreign and internal

elasticities (γF = γI), equation (35) then yields foreign shares of the population response

of 32% (based on the OLS estimate) and 62% (based on IV). This suggests the estimated

persistence in local shocks is sufficient to generate the observed 38% foreign share.

7 Conclusion

The US suffers from large and persistent local disparities in employment rates. Can

immigration offer a remedy? Remarkably, I find that new immigrants account for 40% of

the local population response to employment shocks. The effect is very general: I estimate

a substantial foreign contribution in both high and low educated markets, driven by

immigrants from diverse origins. However, it greatly exceeds their contribution to gross

migratory flows (just 10%). Empirically, the excess response is almost entirely explained

by spatial correlation between migrant enclaves and strong employment conditions. I

attribute this correlation to a local snowballing effect, driven by persistent local shocks

and the dynamics of migrant enclaves. I confirm the quantitative importance of this

mechanism through calibration.

Despite this, foreign inflows do not significantly accelerate population adjustment, as

they crowd out the contribution of internal mobility. Based on the model, this effect is

too large to be driven by the labor market alone: the internal response to foreign inflows

is significantly larger than its response to local employment shocks. Native distaste for

migrant enclaves may play a role. Still, irrespective of the extent of crowd-out, a large

foreign response will benefit natives (conditional on the overall level of immigration) if

it saves them from incurring moving costs themselves. This can also help account for

the secular decline in regional mobility in recent decades. And it raises concerns about

policies which restrict asylum seekers’ region of residence.

These results raise challenges to the (pervasive) application of enclaves as instru-

ments for local migration shocks. But rather than abandoning the instrument, I offer

an empirical strategy to overcome these challenges in general settings - in the absence

of well-defined natural experiments. Based on my model, controlling for the initial em-

ployment rate (itself suitably instrumented) allows me to partial out the full history of
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both local demand and migration shocks. I present evidence that this “sufficient statis-

tic” approach can address some of the principal threats to identification discussed in the

migration literature.



References

Ahmed, Bashir, and J. Gregory Robinson. 1994. “Estimates of Emigration of the

Foreign-Born Population: 1980-1990.” Census Bureau Population Division No. 9.

Akee, Randall, and Maggie R. Jones. 2019. “Immigrants’ Earnings Growth and

Return Migration from the US: Examining their Determinants Using Linked Survey

and Administrative Data.” NBER Working Paper No. 25639.

Albert, Christoph, and Joan Monras. 2018. “Immigrants’ Residential Choices and

their Consequences.” CEPR Discussion Paper No. 12842.

Altonji, Joseph G., and David Card. 1991. “The Effects of Immigration on the

Labor Market Outcomes of Less-Skilled Natives.” In Immigration, Trade, and the Labor

Market. , ed. John M. Abowd and Richard B. Freeman, 201–234. Chicago: University

of Chicago Press.

Amior, Michael. 2020. “Immigration, Local Crowd-Out and Undercoverage Bias.” CEP

Discussion Paper No. 1669.

Amior, Michael, and Alan Manning. 2018. “The Persistence of Local Joblessness.”

American Economic Review, 108(7): 1942–70.

Amior, Michael, and Alan Manning. 2019. “Commuting, Migration and Local Job-

lessness.” CEP Discussion Paper No. 1623.

Autor, David H., and David Dorn. 2013. “The Growth of Low-Skill Service Jobs and

the Polarization of the US Labor Market.” American Economic Review, 103(5): 1553–

1597.

Autor, David H., David Dorn, and Gordon H. Hanson. 2013. “The China Syn-

drome: Local Labor Market Effects of Import Competition in the United States.”

American Economic Review, 103(6): 2121–2168.

Bartik, Timothy J. 1991. Who Benefits from State and Local Economic Development

Policies? WE Upjohn Institute for Employment Research.

Basso, Gaetano, Francesco D’Amuri, and Giovanni Peri. 2019. “Immigrants,

Labor Market Dynamics and Adjustment to Shocks in the Euro Area.” IMF Economic

Review, 67(3): 528–572.

Basso, Gaetano, Giovanni Peri, and Ahmed Rahman. 2017. “Computerization and

Immigration: Theory and Evidence from the United States.” NBER Working Paper No.

23935.

Beaudry, Paul, David A. Green, and Benjamin M. Sand. 2012. “Does Industrial

Composition Matter for Wages? A Test of Search and Bargaining Theory.” Economet-

29



rica, 80(3): 1063–1104.

Beerli, Andreas, Ronald Indergand, and Johannes Kunz. 2017. “The Supply of

Foreign Talent: How Skill-Biased Technology drives the Skill Mix of Immigrants.” KOF

No. 436.

Blanchard, Olivier J., and Lawrence F. Katz. 1992. “Regional Evolutions.” Brook-

ings Papers on Economic Activity, 23(1): 1–76.

Borjas, George J. 1985. “Assimilation, Changes in Cohort Quality, and the Earnings

of Immigrants.” Journal of Labor Economics, 3(4): 463–489.

Borjas, George J. 1999. “Immigration and Welfare Magnets.” Journal of Labor Eco-

nomics, 17(4): 607–637.

Borjas, George J. 2001. “Does Immigration Grease the Wheels of the Labor Market?”

Brookings Papers on Economic Activity, 2001(1): 69–133.

Borjas, George J. 2006. “Native Internal Migration and the Labor Market Impact of

Immigration.” Journal of Human Resources, 41(2): 221–258.

Borjas, George J. 2013. “The Analytics of the Wage Effect of Immigration.” IZA Jour-

nal of Migration, 2(1): 22.

Borjas, George J. 2017. “The Labor Supply of Undocumented Immigrants.” Labour

Economics, 46: 1–13.

Borjas, George J., Jeffrey Grogger, and Gordon H. Hanson. 2012. “Comment:

On Estimating Elasticities Of Substition.” Journal of the European Economic Associ-

ation, 10(1): 198–210.

Borjas, George J., Richard B. Freeman, and Lawrence F. Katz. 1997. “How

Much Do Immigration and Trade Affect Labor Market Outcomes?” Brookings Papers

on Economic Activity, 1997(1): 1–90.

Cadena, Brian C. 2013. “Native Competition and Low-Skilled Immigrant Inflows.”

Journal of Human Resources, 48(4): 910–944.

Cadena, Brian C. 2014. “Recent Immigrants as Labor Market Arbitrageurs: Evidence

from the Minimum Wage.” Journal of Urban Economics, 80: 1–12.

Cadena, Brian C., and Brian K. Kovak. 2016. “Immigrants Equilibrate Local Labor

Markets: Evidence from the Great Recession.” American Economic Journal: Applied

Economics, 8(1): 257–290.

Card, David. 2001. “Immigrant Inflows, Native Outflows, and the Local Labor Market

Impacts of Higher Immigration.” Journal of Labor Economics, 19(1): 22–64.

Card, David. 2009. “Immigration and Inequality.” American Economic Review, 99(2): 1–

21.

Card, David, and Ethan G. Lewis. 2007. “The Diffusion of Mexican Immigrants

during the 1990s: Explanations and Impacts.” In Mexican Immigration to the United

States. , ed. George J. Borjas, 193–228. Chicago: University of Chicago Press.

Card, David, Christian Dustmann, and Ian Preston. 2012. “Immigration,

30



Wages, and Compositional Amenities.” Journal of the European Economic Association,

10(1): 78–119.

Charles, Kerwin Kofi, Erik Hurst, and Matthew J Notowidigdo. 2016. “The

Masking of the Decline in Manufacturing Employment by the Housing Bubble.” Journal

of Economic Perspectives, 30(2): 179–200.

Coen-Pirani, Daniele. 2010. “Understanding Gross Worker Flows across US States.”

Journal of Monetary Economics, 57(7): 769–784.

Cohen-Goldner, Sarit, and M. Daniele Paserman. 2011. “The Dynamic Impact

of Immigration on Natives’ Labor Market Outcomes: Evidence from Israel.” European

Economic Review, 55(8): 1027–1045.

Colas, Mark. 2018. “Dynamic Responses to Immigration.” FRB Minneapolis, OIGI

Working Paper No. 6.

Dao, Mai, Davide Furceri, and Prakash Loungani. 2017. “Regional Labor Mar-

ket Adjustment in the United States: Trend and Cycle.” Review of Economics and

Statistics, 99(2): 243–257.

Diamond, Rebecca. 2016. “The Determinants and Welfare Implications of US Work-

ers’ Diverging Location Choices by Skill: 1980-2000.” American Economic Review,

106(3): 479–524.

Dustmann, Christian, and Joseph-Simon Görlach. 2016. “The Economics of Tem-

porary Migrations.” Journal of Economic Literature, 54(1): 98–136.

Dustmann, Christian, Uta Schoenberg, and Jan Stuhler. 2017. “Labor Supply

Shocks, Native Wages, and the Adjustment of Local Employment.” Quarterly Journal

of Economics, 123(1): 435–483.

Edo, Anthony. forthcoming. “The Impact of Immigration on Wage Dynamics: Evidence

from the Algerian Independence War.” Journal of the European Economic Association.

Edo, Anthony, and Hillel Rapoport. 2017. “Minimum Wages and the Labor Market

Effects of Immigration.” CESifo Working Paper No. 6547.

Fernandez-Huertas Moraga, Jesus, Ada Ferrer-i Carbonell, and Albert Saiz.

2017. “Immigrant Locations and Native Residential Preferences: Emerging Ghettos or

New Communities?” IZA Discussion Paper No. 11143.

Flood, Sarah, Miriam King, Renae Rodgers, Steven Ruggles, and J. Robert

Warren. 2018. “Integrated Public Use Microdata Series, Current Population Survey:

Version 6.0 [dataset].” Minneapolis: University of Minnesota.

Fuller, Wayner A. 1996. Introduction to Statistical Time Series. . Second ed., New

York: John Wiley.

Goldsmith-Pinkham, Paul, Isaac Sorkin, and Henry Swift. 2018. “Bartik Instru-

ments: What, When, Why, and How.” NBER Working Paper No. 24408.

Gould, Eric. 2019. “Explaining the Unexplained: Residual Wage Inequality, Manufac-

turing Decline, and Low-Skilled Immigration.” Economic Journal, 129(619): 1281–1326.

31



Hong, Gihoon, and John McLaren. 2015. “Are Immigrants a Shot in the Arm for

the Local Economy?” NBER Working Paper No. 21123.

Jaeger, David A. 2007. “Green Cards and the Location Choices of Immigrants in

the United States, 1971–2000.” In Immigration. 131–183. Emerald Group Publishing

Limited.

Jaeger, David A., Joakim Ruist, and Jan Stuhler. 2018. “Shift-Share Instruments

and the Impact of Immigration.” NBER Working Paper No. 24285.

Kaplan, Greg, and Sam Schulhofer-Wohl. 2012. “Interstate Migration has Fallen

Less than you Think: Consequences of Hot Deck Imputation in the Current Population

Survey.” Demography, 49(3): 1061–1074.

Kaplan, Greg, and Sam Schulhofer-Wohl. 2017. “Understanding the Long-Run

Decline in Interstate Migration.” International Economic Review, 58(1): 57–94.

Kerr, William R. 2010. “Breakthrough Inventions and Migrating Clusters of Innova-

tion.” Journal of Urban Economics, 67(1): 46–60.

Langella, Monica, and Alan Manning. 2016. “Diversity and Neighbourhood Satis-

faction.” CEP Discussion Paper No. 1459.

Manson, Steven, Jonathan Schroeder, David Van Riper, and Steven Ruggles.

2017. “IPUMS National Historical Geographic Information System: Version 12.0.” Min-

neapolis: University of Minnesota.

McFadden, Daniel. 1978. “Modeling the Choice of Residential Location.” In Spatial

Interaction Theory and Planning Models. , ed. Anders Karlqvist, Lars Lundqvist, Folke

Snickars and Jorgen Weibul, 75–96. Amsterdam: North Holland.

Molloy, Raven, Christopher L. Smith, and Abigail Wozniak. 2011. “Internal

Migration in the United States.” Journal of Economic Perspectives, 25(3): 173–96.

Molloy, Raven, Christopher L. Smith, and Abigail Wozniak. 2017. “Job Chang-

ing and the Decline in Long-Distance Migration in the United States.” Demography,

54(2): 631–653.

Monras, Joan. 2015. “Economic Shocks and Internal Migration.” IZA Discussion Paper

No. 8840.

Monras, Joan. forthcoming. “Immigration and Wage Dynamics: Evidence from the

Mexican Peso Crisis.” Journal of Political Economy.

Ottaviano, Gianmarco I.P., and Giovanni Peri. 2012. “Rethinking the Effect of

Immigration on Wages.” Journal of the European Economic Association, 10(1): 152–

197.

Peri, Giovanni. 2012. “The Effect of Immigration on Productivity: Evidence from US

States.” Review of Economics and Statistics, 94(1): 348–358.

Peri, Giovanni. 2016. “Immigrants, Productivity, and Labor Markets.” Journal of Eco-

nomic Perspectives, 30(4): 3–30.

Pischke, Jorn-Steffen, and Johannes Velling. 1997. “Employment Effects of Immi-

32



gration to Germany: An Analysis Based on Local Labor Markets.” Review of Economics

and Statistics, 79(4): 594–604.

Rappaport, Jordan. 2007. “Moving to Nice Weather.” Regional Science and Urban

Economics, 37(3): 375–398.

Rappaport, Jordan, and Jeffrey D. Sachs. 2003. “The United States as a Coastal

Nation.” Journal of Economic Growth, 8(1): 5–46.

Roback, Jennifer. 1982. “Wages, Rents, and the Quality of Life.” Journal of Political

Economy, 90(6): 1257–1278.

Ruggles, Steven, Katie Genadek, Ronald Goeken, Josiah Grover, and

Matthew Sobek. 2017. “Integrated Public Use Microdata Series: Version 7.0.” Min-

neapolis: University of Minnesota.

Ruist, Joakim. 2013. “Immigrant-Native Wage Gaps in Time Series: Complementarities

or Composition Effects?” Economics Letters, 119(2): 154–156.

Saiz, Albert, and Susan Wachter. 2011. “Immigration and the Neighborhood.” Amer-

ican Economic Journal: Economic Policy, 169–188.

Sanderson, Eleanor, and Frank Windmeijer. 2016. “A Weak Instrument F-test

in Linear IV models with Multiple Endogenous Variables.” Journal of Econometrics,

190(2): 212–221.

Smith, Christopher L. 2012. “The Impact of Low-Skilled Immigration on the Youth

Labor Market.” Journal of Labor Economics, 30(1): 55–89.

Tolbert, Charles M., and Molly Sizer. 1996. “U.S. Commuting Zones and Labor

Market Areas: A 1990 Update.” ERS No. 9614.

33



Appendices

1 Introduction 1

2 Model of local population adjustment 4

2.1 Local equilibrium conditional on population . . . . . . . . . . . . . . . . . . . . . 4

2.2 Local dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Discrete-time specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Crowding out effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 “Semi-structural” specification for crowding out . . . . . . . . . . . . . . . . . . . 9

2.6 Foreign share of local population response . . . . . . . . . . . . . . . . . . . . . . 10

3 Data 10

3.1 Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Comparability with Figure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Employment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Shift-share variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Amenity controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Estimates of mean foreign contribution 14

4.1 Basic estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 What explains the foreign contribution? . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Native and migrant employment rate responses . . . . . . . . . . . . . . . . . . . 17

4.4 Foreign contribution by education . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Estimates of crowding out 18

5.1 Local heterogeneity in population responses . . . . . . . . . . . . . . . . . . . . . 18

5.2 Implications for trends in regional mobility . . . . . . . . . . . . . . . . . . . . . 20

5.3 “Semi-structural” estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4 Challenges to identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.5 Why is the crowding out effect so large? . . . . . . . . . . . . . . . . . . . . . . . 23

6 Dynamic response to employment shocks 24

6.1 Local evolution of enclave shift-share . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Impulse response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 Accounting for the excess foreign contribution . . . . . . . . . . . . . . . . . . . . 27

7 Conclusion 28

34



A Logit model of residential choice

A.1 Internal migratory flows

In this appendix, I set out a logit model of residential choice with idiosyncratic local

preferences (building on e.g. McFadden, 1978, Monras, 2015, and Diamond, 2016). The

intent is to motivate the equations for the rate of net internal inflows, λI
r, and foreign

inflows, λI
r: i.e. (7) and (8) respectively. I begin by studying internal migratory flows,

and I turn to foreign inflows in the next section.

For worker i, the value of living in area r is:

vir = γIvr + εir (A1)

where vr is a local fixed effect common to all workers (which will include the wage); and

εir is a logistically distributed i.i.d. taste shock. With arrival rate ζI , workers draw πLs

independent taste shocks from every area s (where Ls is local population) and choose

their most preferred match. Thus, εir in area r can be interpreted as the maximum of

πLs independent ε draws. This assumption can be motivated by a concept of network

size: workers are more likely to meet a contact (offering a good local match) in larger

areas.

Relative to local population, the net internal flow of workers to area r is then:

λI
r = ζI

(

Lr exp γIvr
∑

s Ls exp γIvs

·

∑

s 6=r Ls

Lr

−

∑

s 6=r Ls exp γIvs
∑

s Ls exp γIvs

)

(A2)

= ζI

∑

s 6=r Ls

(

exp γIvr − exp γIvs

)

∑

s Ls exp γIvs

In the first line, the first term represents the inflow to area r, and the second term

represents the outflow. The inflow term is multiplied by
∑

s 6=r Ls (as workers arrive from

multiple locations) and divided by Lr (to express it relative to local population). Now,

taking a first order approximation of λI
r around a long run equilibrium with vs = v̄ in all

areas s:

λI
r ≈

dλI
r

dvr

|vs=v̄ (vr − v̄) (A3)

= γIµI
r (vr − v̄)

where µI
r is the steady-state migration rate out of area r:

µI
r = ζI

(

1 −
Lr

∑

s Ls

)

(A4)

In an economy with many areas, µI
r will vary little with r. So, (A3) will then approximate

35



to equation (7) in the main text, with µI ≈ ζI .

As an aside, if there are indeed many areas (such that µI ≈ ζI), the bulk of local

adjustment is driven by changes in migratory inflows rather than outflows. This is in fact

consistent with existing evidence (see e.g. Coen-Pirani, 2010; Monras, 2015; Dustmann,

Schoenberg and Stuhler, 2017; Amior and Manning, 2018; Amior, 2020); and Monras

(2015) uses the same assumptions to derive this result theoretically.

A.2 Foreign inflows

Suppose there is a constant inflow ζF o of workers to the US from origin country o. On

arrival, workers choose their most preferred location. Similarly to internal migrants, they

sample multiple taste shocks from each area. But in this case, the sampling is proportional

to the number of co-patriots (of origin o) in each area, Lor. As before, this assumption

can be motivated by network size: origin o migrants are more likely to have contacts

(who can help with absorption or job search) in areas with larger Lor. Utility in area r

is given by:

vF
ir = γFvr + εir (A5)

where εir is the maximum draw in each area r. Relative to local population, the total

foreign inflow is then:

λF
r =

∑

0

(

Lor exp γF vr
∑

s Los exp γFvs

·
ζF o

Lr

)

(A6)

where I have summed over all origin groups o. Consider a long run equilibrium with

vs = v̄ in all areas s. Relative to local population, the steady-state foreign inflow to area

r (i.e. the “foreign intensity”) is then:

µF
r =

1

Lr

∑

0

Lor
∑

s Los

ζF o (A7)

Notice this is approximately equal to the enclave shift-share instrument described in

equation (26), which I use to proxy the foreign intensity.

Finally, taking a first order approximation of λF
r around this long run equilibrium

with vs = v̄:

λF
r ≈ µF

r +
dλF

r

dvr

|vs=v̄ (vr − v̄) (A8)

= µF
r +

γF

Lr

∑

0

(

1 −
Lor

∑

s Los

)

Lor
∑

s Los

ζF o (vr − v̄)

And if Lor is small compared to
∑

s Los, this can be approximated by:

λF
r ≈ µF

r

[

1 + γF (vr − v̄)
]

(A9)
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which yields equation (8) in the main text. Once migrants enter the US, I assume they

behave identically to existing residents - as described in the previous section. That is,

the utility weight on vr in (A5) changes from γF to γI , and they sample taste shocks

identically to existing residents - that is, proportional to total (rather than co-patriot)

local population.

B Theoretical derivations

B.1 Moving to discrete time: Derivation of (11)

Here, I show how equation (9) can be discretized to yield (11). I assume the foreign

intensity µF
r to area r is constant within discrete time intervals, and I denote µF

rt as the

foreign intensity in the interval (t− 1, t]. Similarly, γrt is the aggregate elasticity in area

r in the interval (t− 1, t], where:

γrt = γIµI + γFµF
rt (A10)

Now, let xr (τ) denote the value of some variable x in area r at time τ . Notice that (9)

can be written as:

∂eγrttlr (τ)

∂τ
|τ=t = eγrttµF

rt + γrte
γrtt [nr (t) − zsa

r (t)] (A11)

This has as a solution:

eγrttlr (t) = lr (t− 1) +
∫ t

t−1
eγrtτ

[

µF
rt + γrtnr (τ) − γrtz

τa
r (τ)

]

dτ (A12)

Rearranging:

lr (t) − lr (t− 1) =
∫ t

t−1
e−γrt(t−τ)

[

µF
rt + γrtnr (τ) − γrtnr (t− 1) − γrtz

τa
r (τ)

]

dτ

+
(

1 − e−γrtt
)

[nr (t− 1) − lr (t− 1)] (A13)

and again:

lr (t) − lr (t− 1) =
∫ t

t−1
e−γrt(t−τ)dτ · µF

rt + [nr (t) − nr (t− 1)] (A14)

− [zsa
r (t) − zsa

r (t− 1)] −
∫ t

t−1
eγrt(τ−t) [ṅr (τ) − żsa

r (τ)] dτ

+
(

1 − e−γrtt
)

[nr (t− 1) − lr (t− 1) − zsa
r (t− 1)]
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Assuming employment nr and the supply/amenity shifter zsa
r change at a constant rate

over the interval, this yields:

lr (t) − lr (t− 1) =

(

1 − e−γrt

γrt

)

µF
rt (A15)

+

(

1 −
1 − e−γrt

γrt

)

[nr (t) − nr (t− 1) − zsa
r (t) + zsa

r (t− 1)]

+
(

1 − e−γrtt
)

[nr (t− 1) − lr (t− 1) − zsa
r (t− 1)]

which is (11).

B.2 Linearized foreign response to µF
rt: Derivation of (12)

Using (7) and (8), the discrete-time foreign contribution, λF
rt, can be expressed as:

λF
rt =

γFµF
rt

γrt

(

∆lrt − µF
rt

)

(A16)

and after substituting (11) for ∆lrt:

λF
rt = µF

rt +
γF µF

rt

γrt

[(

1 −
1 − e−γrt

γrt

)

(

∆nrt − ∆zsa
rt − µF

rt

)

+
(

1 − e−γrt
) (

nrt−1 − lrt−1 − zsa
rt−1

)

]

(A17)

I now characterize this as a function f of µF
rt:

f
(

µF
rt

)

= µF
rt +

γF µF
rt

γIµI + γF µF
rt

(

1 −
1 − e−γIµI

−γF µF
rt

γIµI + γF µF
rt

)

(

∆nrt − ∆zs
rt − µF

rt

)

(A18)

+
γF µF

rt

γIµI + γF µF
rt

(

1 − e−γIµI
−γF µF

rt

)

(

nt−1 − lt−1 − zs
rt−1

)

where I have replaced the aggregate elasticity γrt with γIµI + γFµF
rt. Taking a first order

approximation around µF
rt = 0 gives:

f
(

µF
rt

)

≈ f (0) + µrtf
′ (0) (A19)

which yields:

λF
rt ≈ µF

rt +
γFµF

rt

γIµI

[(

1 −
1 − e−γI µI

γIµI

)

(∆nrt − ∆zsa
rt ) +

(

1 − γIµI
) (

nrt−1 − lrt−1 − zsa
rt−1

)

]

(A20)

which is equation (12) in the main text.
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B.3 Derivation of semi-structural equation (15)

Assuming foreign intensity µF
rt is constant within the (t− 1, t] interval, the same must be

approximately true of the foreign contribution λF
rt if employment shocks are small: see

equation (A17). Following the procedure outlined in Appendix B.1, (14) can then be

discretized to yield:

∆lrt ≈ λF
rt +

(

1 −
1 − e−γIµI

γIµI

)

(

∆nrt − λF
rt − ∆zsa

rt

)

+
(

1 − e−γIµI
) (

nrt−1 − lrt−1 − zsa
rt−1

)

(A21)

Equation (15) then follows after subtracting the foreign contribution λF
rt on both sides:

λI
rt ≈

(

1 −
1 − e−γIµI

γIµI

)

(

∆nrt − λF
rt − ∆zsa

rt

)

+
(

1 − e−γI µI
) (

nrt−1 − lrt−1 − zsa
rt−1

)

(A22)

B.4 Linearized population response to µF
rt: Derivation of (13)

Substituting (A20) for λF
rt in the semi-structural equation (A22) gives:

λI
rt ≈ −

(

1 −
1 − e−γIµI

γIµI

)

µF
rt +

[

1 −
γFµF

rt

γIµI

(

1 −
1 − e−γI µI

γIµI

)](

1 −
1 − e−γI µI

γIµI

)

(∆nrt − ∆zsa
rt )

+

[

1 −
γFµF

rt

γIµI

(

1 −
1 − e−γI µI

γIµI

)]

(

1 − e−γIµI
) (

nrt−1 − lrt−1 − zsa
rt−1

)

(A23)

To derived a linearized expression for the aggregate population change (i.e. (13) in the

main text), I then take the sum of (A20) and (A23):

∆lrt ≈
1 − e−γI µI

γIµI
µF

rt +

(

1 +
γFµF

rt

γIµI
·

1 − e−γIµI

γIµI

)(

1 −
1 − e−γI µI

γIµI

)

(∆nrt − ∆zsa
rt )

+

(

1 +
γFµF

rt

γIµI
·

1 − e−γIµI

γIµI

)

(

1 − e−γIµI
) (

nrt−1 − lrt−1 − zsa
rt−1

)

(A24)

B.5 Foreign share of local adjustment: Derivation of (17)

Equation (17) is the foreign share of local population adjustment to composite employ-

ment shocks (as summarized by xrt in (16)), taking the foreign intensity µF
rt as given.

The foreign response to xrt can be expressed as
Cov(λF

rt,xrt)
V ar(xrt)

and the aggregate popula-

tion response as Cov(∆lrt,xrt)
V ar(xrt)

. So, the foreign share of the aggregate response is the ratio
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Cov(λF
rt,xrt)

Cov(∆lrt,xrt)
. Using (A20) and (A24), this can be expressed as:

Cov
(

λF
rt, xrt

)

Cov (∆lrt, xrt)
=

γF µF
rt

γI µI V ar (xrt) +
(

1 + γF

γIµI xrt

)

Cov
(

µF
rt, xrt

)

(

1 +
γF µF

rt

γI µI · 1−e−γI µI

γIµI

)

V ar (xrt) +
(

1−e−γI µI

γIµI + 1−e−γI µI

γIµI · γF

γI µI xrt

)

Cov (µF
rt, xrt)

(A25)

For small employment shocks xrt, this can be approximated as:

Cov
(

λF
rt, xrt

)

Cov (∆lrt, xrt)
≈

γF µF
rt

γI µI V ar (xrt) + Cov
(

µF
rt, xrt

)

(

1 +
γF µF

rt

γI µI · 1−e−γI µI

γI µI

)

V ar (xrt) + 1−e−γI µI

γI µI Cov (µF
rt, xrt)

(A26)

And taking expectations over space and time:

E





Cov
(

λF
rt, xrt

)

Cov (∆lrt, xrt)



 ≈

γF µ̄F

γI µI V ar (xrt) + Cov
(

µF
rt, xrt

)

(

1 + γF µ̄F

γIµI · 1−e−γI µI

γI µI

)

V ar (xrt) + 1−e−γI µI

γIµI Cov (µF
rt, xrt)

=











γF µ̄F

γIµI
+
Cov

(

µF
rt, xrt

)

V ar (xrt)





−1

+
1 − e−γI µI

γIµI







−1

(A27)

where µ̄F is the mean foreign intensity. This is equation (17) in the main text.

B.6 Projection of foreign intensity on xrt: Derivation of (34)

I now derive an expression for
Cov(µF

rt,xrt)
V ar(xrt)

, the linear projection of foreign intensity µF
rt on

the composite employment shock xrt. Substituting the linearized foreign response (A20)

for λF
rt−1 into the equation for foreign intensity (33), I can write the evolution of µF

rt as:

µF
rt = µF

rt−1+θ
γFµF

rt−1

γIµI

[(

1 −
1 − e−γI µI

γIµI

)

(

∆nrt−1 − ∆zsa
rt−1

)

+
(

1 − eγI µI
) (

nrt−2 − lrt−2 − zsa
rt−2

)

]

(A28)

where the expression in square brackets is the lagged composite employment shock, xrt−1,

as defined by (16):

µF
rt = µF

rt−1

(

1 + θ
γF

γIµI
xrt−1

)

(A29)

Given its unit root, employment shocks have a permanent effect on µF
rt. Simulating

backward:

µF
rt = µ̄F

∞
∏

i=1

(

1 + θ
γF

γIµI
xrt−i

)

(A30)

and taking a linear approximation for small employment shocks xrt:

µF
rt ≈ µ̄F

[

1 + θ
γF

γIµI

(

L+ L2 + ...
)

xrt

]

(A31)
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where L is the lag operator, and µ̄F is the mean foreign intensity. A linear projection of

foreign intensity µF
rt on the current composite employment shock xrt then gives:

Cov
(

µF
rt, xrt

)

V ar (xrt)
≈ θ

γF µ̄F

γIµI

∑

i>0

Cov (xrt, xrt−i)

V ar (xrt)
(A32)

which is equation (34).

B.7 Sum of autocorrelations for Table 9

In Table 9, I impute the infinite sum of autocorrelations of composition-adjusted employ-

ment shocks xrt, based on the estimates of AR(1) and AR(2). In this appendix, I show

how this is done.

Consider first an AR(1) process:

xrt = ψxrt−1 + urt (A33)

where the error urt is i.i.d. The ith autocorrelation is simply ψi, so the sum of autocor-

relations is:
∑

i>0

Cov (xrt, xrt−i)

V ar (xrt)
=

ψ

1 − ψ
(A34)

Now consider an AR(2) process:

xrt = ψ1xrt−1 + ψ2xrt−2 + urt (A35)

Let m−1
1 and m−1

2 be the two roots of the associated characteristic equation, 1 − ψ1L −

ψ2L
2 = 0. Stationarity is ensured by the condition: |mk| < 1 for k = 1, 2, where the mk

are inverses of the roots. Fuller (1996, p. 56) shows that the ith autocorrelation is given

by:
Cov (xrt, xrt−i)

V ar (xrt)
=

(1 −m2
2)m

i+1
1 − (1 −m2

1)mi+1
2

(m1 −m2) (1 +m1m2)
(A36)

so the sum of autocorrelations is:

∑

i>0

Cov (xrt, xrt−i)

V ar (xrt)
=

(1 −m2
2)m

2
1 (1 −m1)

−1 − (1 −m2
1)m2

2 (1 −m2)−1

(m1 −m2) (1 +m1m2)
(A37)

C Data manipulation

C.1 Population

I take local population counts of individuals aged 16-64 from published county-level census

statistics (based on 100% samples), extracted from the National Historical Geographic
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Information System (NHGIS: Manson et al., 2017). See Table A1 of the Online Appendix

of Amior and Manning (2018) for table references. Commuting Zones (CZs) are composed

of groups of counties, in line with Tolbert and Sizer (1996). I make one modification to

the Tolbert-Sizer scheme to facilitate construction of consistent geographies over time: I

move La Paz County (AZ) to the same CZ as Yuma County (AZ). These counties only

separated in 1983, but Tolbert and Sizer’s 1990 scheme allocates them to different CZs.

I disaggregate the total population of 16-64s into native and foreign-born components

using local shares computed from the Integrated Public Use Microdata Series (IPUMS:

Ruggles et al., 2017) samples. I use this procedure to compute local counts for other

demographic cells also: specifically, recent foreign-born arrivals (in the US for 10 years

or less), longer term migrants, and these in turn (together with the native-born) dis-

aggregated by education. In practice, the sub-state geographical identifiers included in

the IPUMS microdata do not coincide with CZ boundaries, and these identifiers vary by

census year.27 Similarly to Autor and Dorn (2013) and Autor, Dorn and Hanson (2013),

I estimate population counts at the intersection of the available geographical identifiers

and CZs28, and I impute CZ-level data using these counts as weights.

I use the following IPUMS samples for this exercise: the American Community Sur-

veys (ACS) of 2009, 2010 and 2011 (pooled together) for the 2010 cross-section; the 5 per

cent census extracts for 2000, 1990, 1980 and 1960; and the (pooled) forms 1 and 2 metro

samples of 1970 (each of which are 1 per cent extracts). Regarding 1970, information on

years in the US is only available in the form 1 sample.

C.2 Employment

In this section, I describe in greater detail how I construct composition-adjusted local

employment rates. I begin by running probit regressions of individual employment on

detailed demographic characteristics (see below) and area fixed effects, separately for each

census cross-section (1960, 1970, 1980, 1990 and 2000) and the pooled ACS cross-sections

of 2009-11. For the fixed effects, I use the finest indicators for local geographies available

27The 1950 census extract (which I require for the lagged instruments) divides the continental US into
467 State Economic Areas, the 1960 extract uses 2,287 “Mini” Public Use Microdata Areas (PUMAs),
the 1970 extracts (the forms 1 and 2 metro samples) use 405 county groups, 1980 uses 1,148 county
groups, 1990 uses 1,713 PUMAs, and the 2000 census extract and American Community Survey (until
2011) use 2,057 PUMAs.

28Following Amior and Manning (2018), I use county-SEA lookup tables from IPUMS
(https://usa.ipums.org/usa/resources/volii/ sea_county_components.xls) for 1950 (which
I require for the lagged instruments); and I use county group lookup tables from
IPUMS for 1970 and 1980 (https://usa.ipums.org/usa/resources/volii/1970cgcc.xls and
https://usa.ipums.org/usa/resources/volii/cg98stat.xls). For 1960, I rely on a preliminary lookup
table linking Mini PUMAs to counties (with population counts at the intersections), kindly
shared by Joe Grover at IPUMS. And for the 1990 and 2000 PUMAs, I generate popu-
lation counts using the MABLE/Geocorr applications at the Missouri Census Data Center:
http://mcdc.missouri.edu/websas/geocorr_index.shtml.
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in each census year (see Section C.1). These are demanding specifications: to reduce the

number of fixed effects in the probit regressions as much as possible, I aggregate together

geographical units which are subsumed within the same CZs.

I then compute composition-adjusted employment rates, ẼRrt, by taking the mean

predicted employment rate in each area r for a distribution of local demographics identical

to the full national sample:

ẼRrt =
∫

i
Ω
(

Xitθ̂t + θ̂rt

)

g (Xit) di (A38)

where Ω is the normal c.d.f., θ̂t is the vector of estimated probit coefficients on the

individual characteristics, θ̂rt are the probit area fixed effects, and g (Xit) is the national-

level density of individuals with characteristics Xit. I then impute composition-adjusted

employment rates at the CZ level by taking weighted averages (across the available geo-

graphical units), using the population weights described in Section C.1.

The individual controls in the probit regressions consist of: age and age squared;

four education indicators29, each interacted with age and age squared; a gender dummy,

interacted with all previously-mentioned variables; black/Asian/Hispanic indicators, in-

teracted with all previously-mentioned variables; and a foreign-born indicator, interacted

with all previously-mentioned variables. And finally, to the extent that it is possible in

each cross-section, I control for years in the US (among the foreign-born), again interacted

with all previously-mentioned variables. This information is not consistently reported in

each cross-section, so the variables I use vary by year:

ACS 2009-11: Years in US, years in US squared.

Census 2000: Years in US, years in US squared.

Census 1990: The census only reports years in US as a categorical variable. I

take the mid-point of each category (and its square), and I also include a dummy for

top-category cases.

Census 1980: Same as 1990. Except those who were citizens at birth do not report

years in US: I code all these cases with a dummy variable.

Census 1970: Same as 1980. Except some respondents do not report years in US:

I code all these non-response cases with a dummy variable. I also include an additional

binary indicator for migrants who report living abroad five years previously (based on a

different census question), which is available for the full sample.

Census 1960: No information on years in US is available.

All these variables (relating to years in US) are interacted with all previously-mentioned

variables in the probit specification. For the 1970 specification, I exclude foreign-born

29High school graduate (12 years of education), some college education (1 to 3 years of college),
undergraduate degree (4 years of college) and postgraduate degree (more than 4 years of college). High
school dropouts (less than 12 years of education) are the omitted category.
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individuals in the form 2 sample, since these do not report years in the US.

C.3 Shift-share variables

The sample for the Bartik industry shift-shares is based on employed individuals aged

16-64 in the IPUMS census extracts and ACS samples. I identify industries using the

IPUMS consistent classification based on the 1950 census scheme30, aggregated to the

2-digit level31 (with 57 codes). As with the population counts (see above), I impute

CZ-level employment counts (by industry) by weighting data from the corresponding

sub-state geographical identifiers.

Similarly, in the construction of the enclave shift-share µ̂F
rt, I impute CZ-level migrant

population counts (across 77 origin countries) by weighting across these same identifiers.

A key input to µ̂F
rt is the number of new migrants (by origin o) arriving in the US in the

previous ten years (and residing outside area r): i.e. LF
o(−r)t in equation (26) in Section

3.4. This information is available in all census years from 1970 inclusive, thus covering

foreign inflows from the 1960s onward. However, for columns 5-7 of Table 7, I require

values of µ̂F
rt for 1960 (covering the 1950s inflow). For that decade, I impute foreign

inflows using cohort changes: I compute the difference between (i) the stock of migrants

of origin o in 1960 (outside area r) and (ii) the stock of migrants of origin o in 1950 aged

6-54 (again, outside r).

C.4 Data for Figure 1

This section describes the data I use to put together Figure 1. The estimates are mostly

based on the March waves of the IPUMS Current Population Survey (Flood et al., 2018).

The sample consists of individuals aged 16 to 64 between 1964 and 2018. Following the

recommendation of Kaplan and Schulhofer-Wohl (2012), I also exclude observations with

imputed migration status: there are inconsistencies in the CPS’s imputation procedure.

Panel A describes trends in annual gross migratory flows to US states. The “internal”

flow is the share of individuals living in a different state (within the US) 12 months

previously. The “foreign” flow is the share of individuals who are (i) foreign-born and

(ii) living abroad 12 months previously. The “recent immigrant” flow is the share of

individuals who are (i) foreign-born with no more than five years in the US and (ii)

living outside their current state 12 months previously (either in a different state or

abroad). Panel B reports the share of total gross flows to US states (i.e. all individuals

living outside their current state 12 months previously) which are due to foreign-born

individuals coming from abroad: i.e. the ratio of “foreign” to total inflows.

30See https://usa.ipums.org/usa/volii/occ_ind.shtml.
31I further aggregate all wholesale sectors to a single category to address inconsistencies between census

extracts, and similarly for public administration and finance/insurance/real estate. I also omit the “Not
specified manufacturing industries” code.
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Migration status is not reported in certain years of the March CPS (specifically 1972-

5, 1977-80, 1985 and 1995), and I interpolate linearly in these cases. This is sufficient to

produce my internal flow series in Panel A.

However, the foreign inflow presents greater challenges. Unfortunately, country of

birth is not reported before 1994 - so I cannot distinguish between native and foreign-

born status in these years. An alternative data source is the US census, but it only

provides information on place of residence 5 years (and not 12 months) previously. My

strategy is to impute the annual foreign inflow using the 5-year foreign inflow (i.e. the

share of individuals who are foreign-born and living abroad 5 years previously), estimated

at decadal intervals in the census. I proceed with the following steps. (1) I compute the

mean annual foreign inflow in the CPS over 1996-2000, and I also compute the 5-year

foreign inflow in the 2000 census. (2) I compute the ratio of these: the latter is 5.3

times the former.32 (3) I then impute the annual foreign inflow in 1988 (the mid-point

of 1986-1990) by dividing the 5-year inflow in the 1990 census by 5.3. And in the same

way, I impute the 1978 annual foreign inflow using the 1980 census, and the 1968 foreign

inflow using the 1970 census. (4) Finally, I linearly interpolate all missing observations,

and I assume the foreign inflow over 1964-7 is the same as 1968.

D Years in US and geographical mobility

In this appendix, I offer some evidence on the gross mobility of natives and migrants

within the US, based on American Community Survey (ACS) samples between 2000 and

2018. I have chosen to use the ACS for this exercise instead of the CPS because of larger

samples and greater consistency (across survey years) in the categorization of years in

the US (among foreign-born individuals).

In my ACS sample, 2.8% of native-born individuals aged 16-64 report living in a dif-

ferent state 12 months previously (conditional on living in the US at that time), compared

to 2.4% of the foreign born. However, the foreign-born share masks some important het-

erogeneity by years in the US. In what follows, I show that new migrants are in fact more

mobile across states than natives, but this differential is eliminated within five years.

To identify the effect of years in the US, it is important to control for entry cohort

effects (Borjas, 1985) and observation year effects. To this end, I estimate complemen-

tary log-log models for the annual incidence of cross-state migration. Let MigRate (Xi)

denote the instantaneous cross-state migration rate conditional on a vector of individual

characteristics Xi. An individual i moves between states over a time horizon τ with

32Theoretically, one would expect this ratio to be less than 5, to the extent that previous immigrants
return home. But in practice, differences in sampling procedures (and response rates) are likely to play
a role also. The advantage of my imputation method is that it accounts for any such (time-invariant)
differences between CPS and census sampling.
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probability:

Pr (Migτ
i = 1) = 1 − exp (−MigRate (Xi) τ) (A39)

This gives rise to a complementary log-log model:

Pr (Migτ
i = 1) = 1 − exp (− exp (π′Xi) τ) (A40)

where the π parameters (to be estimated) are elasticities of the instantaneous migration

rate MigRate (Xi) with respect to the characteristics in Xi. Assuming a constant hazard,

this interpretation of the π parameters is independent of the time horizon τ associated

with the data. I define a cross-state migrant as somebody living in a different state 12

months previously (as reported by the ACS), so I normalize τ to one year. The Xi vector

includes the following variables:

π′Xi =
20
∑

k=1

πY RS
k Y rsUSk +

2017
∑

k=1981

πY RI
k Y rImmigk +

2018
∑

k=2000

πY RI
k Y rObsk (A41)

The sample for this exercise consists of (i) natives aged 16-64 living in the US one year

previously (22.6m observations) and (ii) foreign-born individuals aged 16-64 with between

1 and 20 years in the US (2.8m). Thus, there are 21 demographic groups: natives, mi-

grants with 1 years in US, migrants with 2 years, ..., migrants with 20 years. The Y rsUSk

are binary indicators for the final 20 groups (for k between 1 and 20), so natives are the

omitted category. I also control for a full set of entry year cohort effects, Y rImmigk

(ranging from 1980 to 2017 in my sample; the omitted category is the 1980 cohort, as

well as natives), and a full set of observation year effects, Y rObsk.

Panel A of Figure A1 reports the basic coefficient estimates on the years in US dum-

mies, together with the 95% confidence intervals. The estimates can be interpreted as the

log point difference in cross-state mobility between migrants (with given years in US) and

natives, controlling for entry cohort and observation year effects. Migrants are initially

more mobile than natives: the deviation at the entry year is 1.1 log points. But the gap

becomes small after five years of entry, turns negative within ten, and drops to -0.3 log

points by year 20.

It turns out that these patterns can partly be explained by differences in age: newer

immigrants are typically younger, and younger people are more mobile. But even within

age groups, the patterns look qualitatively similar. I present these results in Panel B,

where I estimate the same empirical model - but this time controlling for a full set of

single-year age effects. The deviation at year 1 is now much smaller (0.6 log points), and

it reaches zero by year 5.
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E Supplementary OLS, reduced form and first stage

estimates

In this section, I present OLS and reduced form estimates corresponding to various tables

in the main text.

Table A1 reports OLS and reduced form estimates for the average contributions to

local population adjustment (corresponding to Table 2 in the main text). Table A2

repeats this exercise for the heterogeneity estimates (corresponding to Table 5).

Table A3 offers first stage estimates for the education-specific average contributions

(corresponding to the IV estimates in Table 3). And Table A4 reports first stage estimates

for the education-specific semi-structural specifications (i.e. columns 3-4 of Table 7).

F Robustness of IV contributions to local adjust-

ment (Tables 2 and 5)

F.1 Robustness to specification

In Tables A5, A6 and A7, I study the robustness of my IV estimates of the foreign

contribution to local adjustment. In columns 1-4 of each tables, I consider the robustness

of the average contributions - corresponding to Table 2 in the main text. And in columns

5-8, I consider the heterogeneity in these contributions (and the crowd-out effect) along

the enclave shift-share - corresponding to Table 5.

Table A5 focuses on the robustness to specification choices. For reference, Panel A

reproduces the estimates from the main text: i.e. the average contributions in columns

2-5 of Table 2 (without the enclave shift-share control, µ̂F
rt) and the heterogeneous con-

tributions in columns 2-5 of Table 5.

In Panel B, in an effort to account for time-invariant unobserved components of sup-

ply/amenity effects in ∆zsa
rt and zsa

rt−1 in equation (11), I control for CZ fixed effects -

which effectively partial out CZ-specific linear trends in population. The aggregate pop-

ulation response is larger, at least to the lagged employment rate (column 1); but the

average foreign contribution to this response is almost entirely eliminated (column 2).

This is perhaps to be expected: the fixed effects pick up much of the same variation as

the enclave shift-share µ̂F
rt (which is locally very persistent); and Table 2 in the main text
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shows that controlling for µ̂F
rt also eliminates much of the foreign contribution. Having

said that, the heterogeneous effects in columns 5-8 are not substantially affected: there

remains a large foreign response in high-µ̂F
rt areas, which is (more than) fully crowded out

by the residual contribution; though there is little crowd-out of the direct effect of µ̂F
rt. It

should be emphasized that this is a very demanding specification, given the short panel

length (just five periods) and the four endogenous variables.

In Panel C of Table A5, I omit the lagged employment rate and its associated (lagged

Bartik) instrument - together with their interactions with the enclave shift-share in

columns 5-8. As one would expect (given serial correlation in the Bartik instrument),

the response to the contemporaneous employment change (column 1) is now larger. The

difference is substantial: compared to Panel A, the gap between the β1 coefficient (on the

change in current employment) and 1 (i.e. full adjustment) is halved. But the foreign

contribution (column 2) is proportionately similar. And in columns 5-8, the foreign con-

tribution continues to fully crowd out the internal contribution, at least in the response

to employment shocks (i.e. the “indirect” effect).

Finally, Panel D uses raw instead of composition-adjusted employment variables, for

both the contemporaneous change and the lagged rate. The aggregate population re-

sponse in column 1 is now somewhat smaller. This result is intuitive. The local popula-

tion of better educated workers is known to respond more strongly (see e.g. Amior and

Manning, 2018), and these individuals also have higher employment rates. As a result,

the change in raw employment (on the right hand side) overstates the true change in

employment for an individual of fixed characteristics; and the population response to this

change must therefore be smaller. Still, the foreign contribution in column 2 is propor-

tionately similar; and columns 5-8 show a similar crowding out effect. This result should

be reassuring: since adjusting local employment for observable demographic characteris-

tics makes little difference to the results, one may be less concerned about the influence

of unobservables.

F.2 Robustness to amenity controls

In Table A6, I study the robustness of my estimates to the right hand side controls. In

Panel A, I control only for the full set of year effects - and exclude all amenity controls.

The aggregate population response (column 1) is similar to the main text, and the foreign

contribution (column 2) is proportionately larger - especially in response to the lagged

employment rate, where it actually exceeds the aggregate response. The coefficients

on the interaction terms in columns 5-8 continue to point to total crowd-out of the

employment responses, though the standard errors are now very large: the interactions

effects are statistically insignificant.
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The same is true of Panel B, where I control for the basic amenity effects - but omit the

interactions between the amenity effects and the enclave shift-share, µ̂F
rt. The interactions

with the employment effects in columns 5-8 are larger in magnitude, and the standard

errors are smaller - but the effects are still insignificant at the 5% level. However, it

should be emphasized that the omission of the amenity-µ̂F
rt controls is a misspecification:

see equation (13) in the main text.

Panel C controls additionally for the amenity-µ̂F
rt interactions. Columns 5-8 are now

identical to columns 2-5 of Table 5 in the main text, and the foreign contribution to the

average response in column 2 is a little smaller than before. This reflects what happens

in Table 2 in the main text when I control for the enclave shift-share, µ̂F
rt.

F.3 Robustness to sample and weights

In Table A7, I vary the sample and weighting. Until now, I have studied local heterogene-

ity along the enclave shift-share, µ̂F
rt: this follows the first order approximation imposed

in equation (12) in the model. But as I note in the main text, the µ̂F
rt distribution is

heavily skewed: the 98th percentile is 0.1, and the maximum is 0.29. In Panel A, I

consider the implications of omitting observations with µ̂F
rt exceeding 0.1. As one would

expect, the average foreign contribution in column 2 is somewhat smaller - at least in

response to the lagged employment rate. But the heterogeneous effects in columns 5-8

are similar: we continue to see perfect crowd-out. This suggests the results are not driven

by a small number of outlying observations of µ̂F
rt, and the linear approximation may not

be so unreasonable.

All the estimates in the main text are weighted by lagged population share. In Panel

B of Table A7, I study unweighted estimates. This places more emphasis on smaller CZs

which typically admit fewer immigrants. Unsurprisingly, the average foreign contribution

is now substantially lower. Column 6 shows the foreign contribution is increasing with

µ̂F
rt, but the effect is smaller than before. However, there is now no crowd-out of the

employment response in column 7. It turns out this result is driven by some small towns

close to the Mexican border with unusually large migrant enclaves (which contribute

little to the weighted estimates). Once I exclude CZs with 1960 population (of 16-64s)

below 25,000 (which account for 2% of the national population), column 7 now shows

evidence of crowd-out (though with very large standard errors). And the crowding out

effect becomes effectively one-for-one (and much more precise) once I exclude CZs with

1960 population below 50,000. This exclusion removes the majority of CZs (387 out of

722), but these account for just 7% of the national population.
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F.4 Isolating the mobility response of foreign-born residents

Columns 4-5 of Table 2 show that the total residual contribution, λ̂I
rt, to local adjustment

is very similar to that of natives alone, λ̂I,N
rt . This indicates that “old” migrants (those

living in the US since at least t − 1) contribute little to adjustment. However, one may

be concerned that this does not reflect their mobility response (whether internally or

through emigration), but rather generational shifts between foreign-born residents and

their native children. I now address this by studying within-cohort changes in population

stocks.

In line with equations (19)-(21), I approximate the overall contribution of “old mi-

grants” as:

λ̂
I,OM
rt ≡ log

(

Lrt−1 + LM
rt − LM

rt−1 − LF
rt

Lrt−1

)

(A42)

where LM
rt is the population of all migrants (i.e. foreign-born individuals) aged 16-64 living

in area r and period t; and LF
rt is the foreign inflow, i.e. the stock of “new” immigrants

in t (who arrived in the US in the previous ten years). I also define the within-cohort

contribution of old migrants as:

λ̂
I,OM,cohort
rt ≡ log

(

Lrt−1 + LM
rt − L

M,5−54
rt−1 − LF

rt

Lrt−1

)

(A43)

where LM,5−54
rt−1 is the stock of migrants in t− 1 aged 5-54. This latter variable keeps the

cohort of migrants fixed, so changes in the area r stock can only be driven by internal

mobility or emigration.

In Table A8, I re-estimate the IV regressions in Panels A and B of Table 2, but

alternately replacing the dependent variable with the overall contribution of old migrants

λ̂
I,OM
rt and the within-cohort contribution λ̂

I,OM,cohort
rt . The results look very similar in

each case: the response to employment shocks is small and statistically insignificant. This

indicates that there is indeed little mobility response to employment shocks, whether

through internal migration or emigration.

F.5 Average contributions by region of origin

One may be interested in whether the large foreign contribution identified in the main text

is driven by migrants of particular origins. I address this question in Table A9. Column 1

reports the average IV foreign contribution (among all origins groups) - which is identical

to column 3 of Table 2 in the main text, based on the empirical specification (27).

And in the remaining columns, I replace the dependent variable with the (approximate)
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contribution from various origin groups: specifically λ̂F o
rt ≡ log

(

Lrt−1+LF o
rt

Lrt−1

)

, where LF o
rt is

the stock of new migrants of origin o in area r at time t, who arrived in the US in the

previous ten years.

All the origin groups contribute significantly to the overall foreign response. And none

can be said to be particularly dominant, especially given the associated standard errors.

G Robustness of semi-structural estimates (Table 7)

G.1 Graphical illustration of crowding out estimates

I now consider the robustness of my “semi-structural” crowding out estimates in Table

7 (Section 5.3). One concern is that my estimates of the coefficient of interest, δ1, in

equation (29) may be driven by outliers. To address this point, Figure A2 graphically

illustrates the basic OLS and IV estimates of δ1, i.e. those of columns 1 and 2 of Table 7.

These plots follow the logic of the Frisch-Waugh theorem. For OLS, I compute resid-

uals from regressions of both the residual and foreign contributions (λ̂I
rt and λ̂F

rt respec-

tively) on the remaining controls: the employment change, lagged employment rate, year

effects and the amenity variables (interacted with year effects). And I then plot the λ̂I
rt

residuals against the λ̂F
rt residuals.

For the IV plot, I apply the Frisch-Waugh logic to two-stage least squares. I begin

by generating predictions of the three endogenous variables (the foreign contribution λ̂F
rt,

the employment change ∆ñrt, and the lagged employment rate ñrt−1 − lrt−1), based on

the first stage regressions (using the enclave shift-share µ̂F
rt and current and lagged Bartik

instruments, brt and brt−1). I then compute residuals from regressions of both λ̂I
rt and the

predicted λ̂F
rt on the remaining controls: the predicted employment change, the predicted

lagged employment rate, year effects and the amenity variables (interacted with year

effects). And as before, I plot the λ̂I
rt residuals against the λ̂F

rt residuals.

The marker size in the plots correspond to the lagged population share weights. The

(weighted) slopes of the fit lines are identical to the δ1 estimates in columns 1 and 2 in

Table 7. Note the standard errors (of course) do not match: I do not account for state

clustering in Figure A2; and for IV, the naive two stage estimator does not account for

sampling error in the first stage. In any case, it is clear from inspection that the δ1

estimates are not driven by outliers.
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G.2 Robustness to sample, controls and weighting

In Table A10, I study the sensitivity of my basic IV estimate of δ1 (in column 2 of Table 7)

to the choice of controls, decadal sample and weighting. I begin, in Panel A, by weighting

observations by lagged local population share - as I do in the main text. Without any

controls, the estimates vary substantially over time: there is little crowd-out before 1990,

but much more thereafter. This reflects the concerns of Borjas, Freeman and Katz (1997)

on the instability of spatial correlations, and it offers a strong motivation for pooling

many decades of data. As one might expect, the average δ1 increases (from -0.53 to

-0.75) when I control for the employment change and lagged employment rate (column

6); and it becomes much more stable across time. Controlling for the amenity effects

raises the average effect further still (from -0.75 to -0.91), though there is now insufficient

power to identify anything meaningful in the 1990s.

In Panel B, I repeat the exercise without observation weights. Interestingly, I now

identify very positive values for δ1 without controls. But once the full set of controls are

included, the estimates become remarkably similar to those of Panel A. In particular,

the pooled effect is 0.884 (without weights) compared to 0.913 (with weights), both with

standard errors below 0.1. At least conditional on the employment and amenity controls,

this suggests the crowding out effect is not markedly different in larger CZs. And it offers

support for my empirical specification.

H Reconciliation with Cadena and Kovak (2016)

H.1 Summary

In important work, Cadena and Kovak (2016) study the contribution of (specifically Mex-

ican) immigrants to local labor market adjustment; and like me, they exploit variation in

historical settlement patterns. But, their results diverge from mine in three ways. (1) Ca-

dena and Kovak find that low educated natives contribute negligibly to local adjustment

- in contrast to Mexican-born workers. (2) They find that Mexicans respond heavily even

after arriving in the US - while in my paper, the immigrant response is entirely driven

by new arrivals. (3) They find that Mexicans substantially smooth local fluctuations in

employment rates (more than halving the effect of local demand shocks), which appears

to imply little crowd-out. Based on the intuition from my model, notice that the final

claim follows theoretically from the first: migrants will only “grease the wheels” if the

wheels are not already greased, i.e. if natives themselves contribute little to adjustment.
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There are some differences in empirical setting. While Cadena and Kovak focus on

the contribution of Mexican-born immigrants to local adjustment between 2006 and 2010

(during the Great Recession) across 94 Metropolitan Statistical Areas (MSAs)33, I study

the contribution of all immigrants across 722 CZs over a longer period (1960-2010).

But, I argue here that differences in empirical specification alone can account for

the divergent results: once I account for dynamics, I find that the low educated native

population does respond strongly to local shocks. Monras (2015) has also challenged

the results of Cadena and Kovak: he attributes the weak native response to unobserved

divergent trends in local native and Mexican populations. But I find that controlling for

the initial employment rate (fully observed in the data), as my model requires, is sufficient

to generate a much larger native response. The effect of dynamics is intuitive: as Cadena

and Kovak note, those cities which suffered larger downturns during their Great Recession

sample had enjoyed larger upturns earlier in the decade; and if adjustment is sluggish,

local population movements over 2006-10 will reflect responses to both. The data reject

the hypothesis that these dynamics are unimportant, just as in my 50-year dataset.

H.2 Empirical model

Cadena and Kovak base their main analysis on the following specification:

∆lgr = ω0g + ω1gIndShockgr +XrωXg + εgr (A44)

See equation (1) of their paper, though I have altered notation to match my own. The

equation is estimated separately for nativity groups g: natives, Mexican migrants and

non-Mexican migrants. The dependent variable ∆lgr is the 2006-10 change in log local

population in a given nativity group, and IndShockgr is the contemporaneous within-

industry employment shock experienced by that group. This is the weighted average of

industry-specific employment changes:

IndShockgr ≡
∑

i

φi
gr∆nir (A45)

where the weights φi
gr are initial group-specific shares of local workers employed in in-

dustry i. I focus specifically on their Table 4: there, Cadena and Kovak instrument

IndShockgrt using a contemporaneous Bartik industry shift-share (common to all nativ-

ity groups), akin to that described in equation (25) in the main text. The coefficient

ω1g is interpreted as the group-specific elasticity of population to a local group-specific

demand shock. Two right-hand side controls are included in the vector Xr: the Mexican

population share in 2000 and indicators for MSAs in states that enacted anti-migrant

33They restrict attention to MSAs with adult population exceeding 100,000, Mexican-born sample
exceeding 60, and non-zero samples for all other studied demographic groups.
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employment legislation. Like Cadena and Kovak, I weight all estimates using inverse

sample variances.

Notice the conceptual framework here is different to mine. My approach, motivated

by my model, is to study the overall population response to an aggregate-level shock,

and I disaggregate this response into the contributions from various groups (new mi-

grants, natives, old migrants). In contrast, equation (A44) estimates the elasticity of

group-specific population stocks to group-specific employment shocks. Cadena and Ko-

vak estimate that ω1g is statistically insignificant for low educated natives, but large and

positive for equivalently educated Mexican-born individuals. Given this, they argue that

the aggregate low educated population will respond more strongly to a given employment

shock in cities with larger Mexican enclaves; and therefore, these cities will suffer weaker

fluctuations in local employment rates.

Beyond this, there are two further differences in the empirical specification. First,

(A44) studies the response to a within-industry employment shock IndShockgr, rather

than a change in overall employment ∆ngr which accounts additionally for between-

industry shifts. And most importantly, (A44) does not account for local dynamics.

H.3 Estimates

I explore the implications of the employment shock definition and dynamics in Table

A11, relying on data and programs published alongside Cadena and Kovak’s article. I

restrict attention to non-college workers (and specifically men) - who account for Cadena

and Kovak’s headline results. Columns 1-4 of Panel A in Table A11 replicate Panel A

of Table 4 in their paper. The response of non-college natives to local demand shocks

(instrumented by a Bartik shift-share) is negligible, while the Mexican-born population

responds heavily (with a one-for-one effect). The response of non-Mexican migrants is

large and negative, offsetting much of the Mexican response. The overall population

response (column 1) is positive but statistically insignificant.

In Panel B, I replace the within-industry employment shock IndShockgr with a simple

change in (group-specific) log employment ∆ngr - though I continue to use the same

Bartik instrument. The estimates are mostly unchanged, except we now see a large

positive response from non-Mexican migrants.

In Panel C, I control additionally for the initial group-specific employment rate (i.e.

in 2006), which I instrument using a Bartik industry shift-share for 2000-6.34 The spec-

ification now has the form of an error correction model (ECM), regressing the change

34Cadena and Kovak construct this lagged Bartik for some robustness exercises in their own paper, so
I take it from their dataset.
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in (group-specific) log population on the change in (group-specific) log employment and

the initial (group-specific) log employment rate. Since column 1 is based on the full

population, it is essentially identical to my ECM specification in equation (11). But as

I have already described, the group-specific responses (in the remaining columns) are

not comparable: these represent group-specific elasticities, rather than contributions to

aggregate adjustment.

Notice first that the effect of the initial employment rate is large (the elasticity of

the overall population is 0.68) and statistically significant: that is, the data reject the

hypothesis that the dynamics are unimportant. Also, the responses of the overall popu-

lation (column 1) and natives (column 2) to the contemporaneous employment shock are

now substantially larger, with elasticities of 0.65 and 0.87 respectively. (That the native

response is larger than the aggregate is unexpected, but the standard errors are too large

to conclude anything from this.) The impact of controlling for dynamics is intuitive. As

Cadena and Kovak note, those MSAs that suffered larger downturns over 2006-10 had

enjoyed larger upturns earlier in the decade. And therefore, the small native response in

the first row of Table A11 may reflect a mixture between a (somewhat sluggish) response

to a historic upturn and a contemporaneous downturn.

The fit in columns 1 and 2 of Panel C appears remarkably good, given the small

sample of 94 MSAs - though this comes with the caveat of weak instruments. I report

the associated first stage estimates in Panels D and E, for the employment change and

initial employment rate respectively. In columns 1 and 2, each instrument has a strong

positive effect (with a small standard error) on its corresponding endogenous variable

- and no positive effect on the other. However, the Sanderson-Windmeijer (2016) F-

statistics (which account for multiple endogenous variables) are small: between 5 and 6

in each case. Identification is especially weak in columns 3 and 4 (Mexicans and other

migrants respectively), with F-statistics below 1; and furthermore, the instruments have

counterintuitive effects in these two columns. This highlights the importance of pooling

multiple decades of data, as I do in my own paper.

To summarize, once I account for dynamics, I estimate large native responses to local

shocks - though weak instruments may be a problem. On the other hand, I do not have

sufficient power to successfully identify the migrant elasticities (using the dynamic model)

in this data.
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Tables and figures

Table 1: First stage for average contributions

∆ log emp Lagged log ∆ log emp Lagged log

emp rate emp rate

(1) (2) (3) (4)

Current Bartik, brt 0.823*** -0.135* 0.839*** -0.134*

(0.130) (0.072) (0.124) (0.069)

Lagged Bartik, brt−1 0.102 0.369*** 0.122* 0.371***

(0.068) (0.061) (0.068) (0.063)

Enclave shift-share, µ̂F
rt -0.233** -0.022

(0.113) (0.122)

SW F-stat 51.65 37.67 52.83 38.06

Amenity×yr controls Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610

These are first stage estimates for IV specifications of Table 2. Columns 1-2 correspond
to the Panel A specifications, and columns 3-4 to Panel B. The Sanderson-Windmeijer
(2016) F-statistics account for multiple endogenous variables. All specifications con-
trol for year effects and the amenity variables (interacted with year effects) described
in Section 3.5. Robust standard errors, clustered by state, are in parentheses. Ob-
servations are weighted by lagged local population share. *** p<0.01, ** p<0.05, *
p<0.1.

Table 2: Average contributions to local population adjustment

Population responses Log emp rate responses

Aggregate Aggregate Foreign Residual All indiv Native Migrant

response response contrib contribution

∆lrt ∆lrt λ̂F
rt All: λ̂I

rt Natives: λ̂
I,N
rt

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: No µ̂F
rt control

∆ log emp 0.857*** 0.748*** 0.237** 0.527*** 0.571*** 0.252*** 0.251*** 0.167*

(0.013) (0.043) (0.093) (0.090) (0.054) (0.043) (0.045) (0.098)

Lagged log emp rate 0.246*** 0.551*** 0.313*** 0.270* 0.258** -0.551*** -0.560*** -0.609***

(0.020) (0.097) (0.119) (0.150) (0.110) (0.097) (0.099) (0.216)

Panel B: Controlling for µ̂F
rt

∆ log emp 0.858*** 0.735*** 0.130*** 0.624*** 0.629*** 0.265*** 0.266*** 0.187**

(0.014) (0.040) (0.039) (0.049) (0.042) (0.040) (0.042) (0.094)

Lagged log emp rate 0.243*** 0.530*** 0.126* 0.441*** 0.360*** -0.530*** -0.534*** -0.574***

(0.019) (0.096) (0.065) (0.123) (0.096) (0.096) (0.098) (0.221)

Enclave shift-share, µ̂F
rt 0.133*** 0.110* 0.952*** -0.870*** -0.517*** -0.110* -0.134** -0.176***

(0.040) (0.060) (0.085) (0.108) (0.082) (0.060) (0.061) (0.058)

Specification OLS IV IV IV IV IV IV IV

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,599

This table reports OLS and IV estimates of β1 and β2 in (27), across 722 CZs and five (decadal) time periods, for the aggregate change in log
population, its (approximate) components, and changes in residualized log employment rates. Panel B controls additionally for the enclave
shift-share, µ̂F

rt. Robust standard errors, clustered by state, are in parentheses. Observations are weighted by lagged local population share.
*** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Average IV contributions by education

College graduates Non-graduates

Aggregate Foreign Aggregate Foreign Aggregate Foreign Aggregate Foreign

response contrib response contrib response contrib response contrib

∆lrt λ̂F
rt ∆lrt λ̂F

rt ∆lrt λ̂F
rt ∆lrt λ̂F

rt

(1) (2) (3) (4) (5) (6) (7) (8)

∆ log emp 0.974*** 0.585** 0.900*** 0.191*** 0.663*** 0.217** 0.653*** 0.128***

(0.096) (0.261) (0.069) (0.051) (0.051) (0.096) (0.048) (0.043)

Lagged log ER 2.819 3.864 2.128* 0.202 0.475*** 0.322*** 0.458*** 0.157***

(1.803) (2.720) (1.139) (0.524) (0.092) (0.098) (0.091) (0.057)

Enclave shift-share, µ̂F
rt 0.189* 0.999*** 0.097 0.945***

(0.108) (0.078) (0.070) (0.094)

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

This table reports education-specific IV estimates of (27), using education-specific population changes, employment changes, lagged
employment rates, enclave shift-shares, and also education-specific Bartik instruments. See Appendix Table A3 for first stage estimates.
Robust standard errors, clustered by state, are in parentheses. Observations are weighted by lagged local population share. *** p<0.01,
** p<0.05, * p<0.1.

Table 4: First stage estimates for heterogeneous contributions

∆ log emp ∆ log emp Lagged Lagged log

* λ̂F
rt log ER ER * λ̂F

rt

(1) (2) (3) (4)

Current Bartik 0.993*** -0.007 -0.175*** 0.004

(0.123) (0.006) (0.065) (0.003)

Current Bartik * µ̂F
rt -4.543 1.302*** 1.440 -0.556***

(3.110) (0.173) (1.025) (0.074)

Lagged Bartik 0.095* 0.012*** 0.337*** -0.004**

(0.056) (0.002) (0.061) (0.002)

Lagged Bartik * µ̂F
rt 0.928 -0.245** -0.434 0.446***

(2.038) (0.106) (1.416) (0.095)

µ̂F
rt -2.429 -0.216* -0.691 -0.900***

(2.012) (0.111) (1.815) (0.167)

SW F-stat 72.13 25.74 30.61 15.37

Amenity×yr controls Yes Yes Yes Yes

Amenity×µ̂F
rt controls Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610

These first stage estimates correspond to the IV specifications in Table 5. The
Sanderson-Windmeijer (2016) F-statistics account for multiple endogenous vari-
ables. All specifications control for year effects, the amenity variables of Section
3.5 interacted with year effects, and interactions between the amenity variables
and the enclave shift-share. Robust standard errors, clustered by state, are in
parentheses. Observations are weighted by lagged local population share. ***
p<0.01, ** p<0.05, * p<0.1.
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Table 5: Heterogeneity in contributions to population adjustment

Population responses ER responses

Aggregate Aggregate Foreign Residual All indiv Native Migrant

response response contrib contribution

∆lrt ∆lrt λ̂F
rt All: λ̂I

rt Natives: λ̂
I,N
rt

(1) (2) (3) (4) (5) (6) (7) (8)

∆ log emp 0.852*** 0.791*** -0.006 0.809*** 0.825*** 0.209*** 0.200*** 0.193**

(0.015) (0.036) (0.028) (0.046) (0.043) (0.036) (0.038) (0.089)

∆ log emp * µ̂F
rt 0.169 -0.689 4.908*** -5.326*** -8.410*** 0.689 1.159 -1.551

(0.247) (0.804) (1.180) (1.127) (1.325) (0.804) (0.773) (1.502)

Lagged log ER 0.224*** 0.560*** 0.007 0.595*** 0.579*** -0.560*** -0.577*** -0.577**

(0.019) (0.114) (0.055) (0.131) (0.126) (0.114) (0.119) (0.253)

Lagged log ER * µ̂F
rt 1.842*** 1.693 7.407*** -6.551*** -11.857*** -1.693 -1.168 -2.405

(0.653) (1.938) (2.203) (2.482) (3.542) (1.938) (1.772) (4.192)

µ̂F
rt 0.138** -0.039 1.016*** -1.038*** -0.593*** 0.039 0.032 -0.093

(0.068) (0.143) (0.123) (0.191) (0.174) (0.143) (0.138) (0.257)

Specification OLS IV IV IV IV IV IV IV

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

Amenity×µ̂F
rt controls Yes Yes Yes Yes Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,599

This table reports OLS and IV estimates of equation (28), across 722 CZs and five (decadal) time periods. As in Table 2, I estimate
this equation for the change in log population and its (approximate) components. All specifications control for year effects, the amenity
variables described in Section in Section 3.5, interactions between the amenity variables and year effects, and interactions between the
amenity variables and the enclave shift-share. Robust standard errors, clustered by state, are in parentheses. Observations are weighted
by lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.

Table 6: First stage for semi-structural estimates

Foreign contribution: λ̂F
rt ∆ log emp Lagged log ER

(1) (2) (3) (4) (5) (6) (7) (8)

Current Bartik, brt 0.092*** 0.078*** 0.121*** 0.839*** 0.835*** 0.866*** -0.134* -0.156**

(0.025) (0.026) (0.034) (0.124) (0.123) (0.146) (0.069) (0.067)

Lagged Bartik, brt−1 0.063*** 0.064*** 0.160*** 0.122* 0.122* 0.139* 0.371*** 0.373***

(0.019) (0.019) (0.028) (0.068) (0.068) (0.079) (0.063) (0.062)

Current enclave, µ̂F
rt 0.919*** 1.229*** 1.173*** -0.233** -0.162 -0.201 -0.022 0.475***

(0.084) (0.119) (0.105) (0.113) (0.171) (0.174) (0.122) (0.175)

Lagged enclave, µ̂F
rt−1 -0.399*** -0.377*** -0.091 -0.009 -0.640***

(0.056) (0.053) (0.160) (0.153) (0.139)

SW F-test: 3 endog vars 93.68 50.69 84.09 97.40 56.93 66.49

SW F-test: 2 endog vars 117.72 134.14 53.90 38.88

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

Year sample 60-10 60-10 70-10 60-10 60-10 70-10 60-10 60-10

Observations 3,610 3,610 2,888 3,610 3,610 2,888 3,610 3,610

This table reports first stage estimates corresponding to the semi-structural specifications in Table 7. I report Sanderson-Windmeijer
F-statistics which account for multiple endogenous variables, both for those Table 7 specifications with two endogenous variables
(i.e. λ̂F

rt and the lagged employment rate) and those with three (the former two, plus the current change in log employment). Robust
standard errors, clustered by state, are in parentheses. Observations are weighted by lagged local population share. *** p<0.01, **
p<0.05, * p<0.1.
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Table 7: Semi-structural estimates of crowding out

Basic estimates Edu-specific variables Robustness to dynamics Native crowd-out

λ̂I
rt λ̂I

rt Grad λ̂I
rt Non-grad λ̂I

rt λ̂I
rt λ̂I

rt λ̂I
rt−1 λ̂

I,N
rt λ̂

I,N
rt

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Foreign contrib: λ̂F
rt -0.883*** -0.913*** -0.677*** -0.983*** -0.904*** -0.705*** -0.249 -0.543***

(0.048) (0.065) (0.093) (0.078) (0.085) (0.094) (0.233) (0.079)

∆ log emp 0.882*** 0.743*** 0.935*** 0.658*** 0.741*** 0.619*** -0.0810 0.699*** 0.737***

(0.017) (0.043) (0.067) (0.051) (0.040) (0.064) (0.201) (0.039) (0.044)

Lagged log ER 0.251*** 0.556*** 1.800* 0.482*** 0.555*** 0.428*** 0.524***

(0.021) (0.105) (0.922) (0.100) (0.109) (0.094) (0.103)

Lagged Bartik, brt−1 0.209*** 0.921***

(0.031) (0.106)

Lagged enclave, µ̂F
rt−1 -0.012 -0.299*** -0.990***

(0.072) (0.073) (0.173)

Total migrant contrib -0.818***

(0.104)

Specification OLS IV IV IV IV IV IV IV IV

Instruments
- µ̂F

rt, brt, µ̂F
rt, brt, µ̂F

rt, brt, µ̂F
rt, brt, µ̂F

rt, brt µ̂F
rt, brt µ̂F

rt, brt, µ̂F
rt, brt,

brt−1 brt−1 brt−1 brt−1 brt−1 brt−1

p-value: δ1 = −δ2 0.974 0.013 0.001 0.000 0.075 0.391 0.270 0.087 0.421

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year sample 60-10 60-10 60-10 60-10 60-10 60-10 70-10 60-10 60-10

Observations 3,610 3,610 3,610 3,610 3,610 3,610 2,888 3,610 3,610

This table reports variants of the semi-structural equation (29). There are (up to) three endogenous variables: the foreign contribution to population

growth, λ̂F
rt, the log employment change, and the lagged log employment rate. The corresponding instruments are the enclave shift-share µ̂F

rt and the
current and lagged Bartiks. Columns 3-4 use education-specific variables, as described in the text. Column 7 replaces the dependent variable with its lag,
so it omits the initial decade. Columns 8-9 replaces the dependent with the native contribution alone, and column 9 replaces the foreign contribution with
the total migrant contribution (i.e. including old migrants). Robust standard errors, clustered by state, are in parentheses. Observations are weighted
by lagged local population share. *** p<0.01, ** p<0.05, * p<0.1. P-values test the hypothesis that δ1 = −δ2, i.e. that the coefficients in the first two
rows sum to zero.

Table 8: Evolution of enclave shift-share, µ̂F
rt

(1) (2) (3) (4)

µ̂F
rt−1 1.007*** 1.000*** 0.543*** 0.531***

(0.039) (0.040) (0.051) (0.056)

Lagged foreign contrib: λ̂F
rt−1 0.469*** 0.472***

(0.072) (0.075)

Lagged internal contrib: λ̂I
rt−1 -0.009

(0.007)

Amenity×yr controls Yes Yes Yes Yes

Year sample 60-10 70-10 70-10 70-10

Observations 3,610 2,888 2,888 2,888

This table estimates OLS models for the enclave shift-share, µ̂F
rt. All specific-

ations control for year effects and the amenity variables (interacted with year
effects) described in Section 3.5. Robust standard errors, clustered by state, are
in parentheses. Observations are weighted by lagged local population share. ***
p<0.01, ** p<0.05, * p<0.1.
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Table 9: Autoregressive models for composite employment shock, xrt

(1) (2) (3) (4) (5) (6)

xrt−1 0.635*** 0.561*** 0.661*** 0.852*** 0.353*** 0.579***

(0.025) (0.054) (0.033) (0.068) (0.018) (0.155)

xrt−2 0.400*** 0.307***

(0.016) (0.117)

Specification OLS IV OLS IV OLS IV

Instruments - brt−1 - brt−1 - brt−1, brt−2

F-tests - 37.79 15.91 - 30.77, 53.83

Implied sum of autocorrelations 1.74 1.28 1.95 5.77 3.99 9.95

Implied foreign contribution (%) 20.0 17.6 21.1 40.7 31.6 62.3

Amenity×yr controls Yes Yes Yes Yes Yes Yes

Year sample 70-10 70-10 80-10 80-10 80-10 80-10

Observations 2,888 2,888 2,166 2,166 2,166 2,166

This table presents OLS and IV estimates of AR(1) and AR(2) processes for the composite employment shock,
xrt, whose values I impute using (36). Column 6 reports Sanderson-Windmeijer F-statistics which account for

multiple endogenous variables. The sum of autocorrelations,
∑

i>0
Cov(xrt,xrt−i)

V ar(xrt) , is computed using the coeffi-

cient estimates, as described in Appendix B.6. The implied foreign contribution E

[

Cov(λF
rt,xrt)

Cov(∆lrt,xrt)

]

is computed

according to equation (35), assuming the foreign share of gross flows µ̄F

µI = 0.11, θ = 0.469, and γF = γI , i.e.

equal foreign and internal elasticities. All specifications control for year effects and the amenity variables (inter-
acted with year effects) described in Section 3.5. Robust standard errors, clustered by state, are in parentheses.
Observations are weighted by lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.

Table A1: Average contributions to local adjustment: OLS, RF

Population responses Emp rate responses

Aggregate Foreign Residual All indiv Native Migrant

response contrib contribution

∆lrt λ̂F
rt All: λ̂I

rt Natives: λ̂
I,N
rt

(1) (2) (3) (4) (5) (6) (7)

Panel A: OLS

∆ log emp 0.857*** 0.050*** 0.838*** 0.781*** 0.143*** 0.139*** 0.166***

(0.013) (0.017) (0.024) (0.019) (0.013) (0.014) (0.023)

Lagged log ER 0.246*** 0.089* 0.172*** 0.131*** -0.246*** -0.238*** -0.264***

(0.020) (0.052) (0.053) (0.040) (0.020) (0.021) (0.039)

Panel B: Reduced form

Current Bartik 0.541*** 0.152*** 0.397** 0.435*** 0.282*** 0.282*** 0.218**

(0.116) (0.055) (0.154) (0.120) (0.038) (0.040) (0.093)

Lagged Bartik 0.280*** 0.140*** 0.154* 0.154** -0.178*** -0.181*** -0.205***

(0.062) (0.033) (0.079) (0.066) (0.025) (0.026) (0.066)

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,599

This table reports OLS and reduced form estimates of the average contributions to local adjustment, corresponding to the
IV estimates in Table 2 of the main text. See notes under Table 2 for further details. Robust standard errors, clustered
by state, are in parentheses. Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, *
p<0.1.
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Table A2: Heterogeneity in contributions to local adjustment: OLS, RF

Population responses Emp rate responses

Aggregate Foreign Residual All indiv Native Migrant

response contrib contribution

∆lrt λ̂F
rt All: λ̂I

rt Natives: λ̂
I,N
rt

(1) (2) (3) (4) (5) (6) (7)

Panel A: OLS

∆ log emp 0.852*** 0.004 0.859*** 0.852*** 0.148*** 0.145*** 0.195***

(0.015) (0.012) (0.015) (0.018) (0.015) (0.015) (0.027)

∆ log emp * µ̂F
rt 0.169 1.930*** -1.030*** -2.877*** -0.169 -0.184 -1.128**

(0.247) (0.376) (0.379) (0.515) (0.247) (0.258) (0.527)

Lagged log ER 0.224*** 0.021 0.211*** 0.211*** -0.224*** -0.224*** -0.194***

(0.019) (0.012) (0.020) (0.021) (0.019) (0.019) (0.040)

Lagged log ER * µ̂F
rt 1.842*** 1.757*** 0.501 -2.384*** -1.842*** -1.328** -4.274***

(0.653) (0.647) (0.535) (0.377) (0.653) (0.621) (1.145)

µ̂F
rt 0.138** 1.108*** -0.969*** -0.569*** -0.138** -0.182*** -0.165**

(0.068) (0.056) (0.074) (0.063) (0.068) (0.066) (0.074)

Panel B: Reduced form

Current Bartik 0.700*** -0.007 0.706*** 0.722*** 0.293*** 0.287*** 0.291**

(0.113) (0.023) (0.112) (0.104) (0.043) (0.045) (0.110)

Current Bartik * µ̂F
rt -4.627** 2.310*** -6.112** -7.275*** 0.084 0.416 -2.384

(2.104) (0.605) (2.384) (1.969) (1.177) (1.203) (1.563)

Lagged Bartik 0.248*** 0.028*** 0.243*** 0.225*** -0.153*** -0.156*** -0.181**

(0.042) (0.010) (0.044) (0.041) (0.027) (0.026) (0.070)

Lagged Bartik * µ̂F
rt 1.415 2.092*** -1.124 -2.712* -0.487 -0.368 -0.285

(1.636) (0.313) (1.520) (1.363) (1.046) (0.951) (1.743)

µ̂F
rt 0.041 1.044*** -0.999*** -0.594** -0.271*** -0.284*** -0.358***

(0.366) (0.087) (0.344) (0.263) (0.075) (0.077) (0.102)

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes

Amenity×µ̂F
rt controls Yes Yes Yes Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,599

This table reports OLS and reduced form estimates of the contributions to local adjustment, allowing for heterogeneity by
the enclave shift-share µ̂F

rt. These estimates correspond to the IV estimates in Table 5 of the main text. See notes under
Table 5 for further details. Robust standard errors, clustered by state, are in parentheses. Each observation is weighted by
the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.

61



Table A3: First stage for education-specific average contributions

College graduates Non-graduates

∆ log emp Lagged ∆ log emp Lagged ∆ log emp Lagged ∆ log emp Lagged

log ER log ER log ER log ER

(1) (2) (3) (4) (5) (6) (7) (8)

Current Bartik 0.760*** -0.028 0.829*** -0.006 0.795*** -0.148* 0.809*** -0.147*

(0.224) (0.029) (0.193) (0.028) (0.105) (0.081) (0.100) (0.078)

Lagged Bartik 0.196** 0.019 0.247*** 0.035** 0.014 0.443*** 0.038 0.445***

(0.086) (0.015) (0.087) (0.016) (0.064) (0.070) (0.062) (0.071)

µ̂F
rt -0.349* -0.109*** -0.295** -0.016

(0.193) (0.026) (0.116) (0.139)

SW F-stat 5.39 2.51 9.35 3.86 100.39 69.45 113.42 70.61

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

Amenity×µ̂F
rt controls No No No No No No No No

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

This table presents first stage estimates corresponding to the education-specific IV specifications in Table 3. I construct employment
changes, lagged employment rates, enclaved shift-shares and Bartik instruments using education-specific data, as I describe in Section
4.4. The Sanderson-Windmeijer (2016) F-statistics account for multiple endogenous variables. See notes under Table 3 for further details.
Robust standard errors, clustered by state, are in parentheses. Each observation is weighted by the lagged local population share. ***
p<0.01, ** p<0.05, * p<0.1.

Table A4: First stage for education-specific semi-structural estimates

College graduates Non-graduates

Foreign ∆ log Lagged Foreign ∆ log Lagged

contrib λ̂F
rt emp log ER contrib λ̂F

rt emp log ER

(1) (2) (3) (4) (5) (6)

Current Bartik 0.157*** 0.829*** -0.006 0.080*** 0.809*** -0.147*

(0.026) (0.193) (0.028) (0.026) (0.100) (0.078)

Lagged Bartik 0.054** 0.247*** 0.035** 0.075*** 0.038 0.445***

(0.022) (0.087) (0.016) (0.021) (0.062) (0.071)

µ̂F
rt 0.910*** -0.349* -0.109*** 0.905*** -0.295** -0.016

(0.099) (0.193) (0.026) (0.088) (0.116) (0.139)

SW F-test 6.19 4.91 4.25 85.08 120.54 71.32

Amenity×yr controls Yes Yes Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610

This table presents first stage estimates corresponding to the education-specific semi-structural IV spe-
cifications in columns 6-7 of Table 7. I construct employment changes, lagged employment rates, en-
claved shift-shares and Bartik instruments using education-specific data, as I describe in Section 4.4.
The Sanderson-Windmeijer (2016) F-statistics account for multiple endogenous variables. See notes
under Table 7 for further details. Robust standard errors, clustered by state, are in parentheses. Each
observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A5: Robustness of IV contributions: Specification choices

Aggregate Foreign Residual Aggregate Foreign Residual

response contribution contribution response contribution contribution

∆lrt λ̂F
rt All: λ̂I

rt Natives: λ̂
I,N
rt ∆lrt λ̂F

rt All: λ̂I
rt Natives: λ̂

I,N
rt

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Original specification

∆ log emp 0.748*** 0.237** 0.527*** 0.571*** 0.791*** -0.006 0.809*** 0.825***

(0.043) (0.093) (0.090) (0.054) (0.036) (0.028) (0.046) (0.043)

∆ log emp * µ̂F
rt -0.689 4.908*** -5.326*** -8.410***

(0.804) (1.180) (1.127) (1.325)

Lagged log ER 0.551*** 0.313*** 0.270* 0.258** 0.560*** 0.007 0.595*** 0.579***

(0.097) (0.119) (0.150) (0.110) (0.114) (0.055) (0.131) (0.126)

Lagged log ER * µ̂F
rt 1.693 7.407*** -6.551*** -11.857***

(1.938) (2.203) (2.482) (3.542)

µ̂F
rt -0.039 1.016*** -1.038*** -0.593***

(0.143) (0.123) (0.191) (0.174)

Panel B: Controlling for CZ fixed effects

∆ log emp 0.653*** -0.054** 0.727*** 0.650*** 0.719*** -0.014 0.728*** 0.723***

(0.058) (0.021) (0.059) (0.054) (0.049) (0.029) (0.046) (0.046)

∆ log emp * µ̂F
rt -1.473* 2.882*** -4.013*** -7.052***

(0.806) (0.309) (0.814) (0.736)

Lagged log ER 1.178*** 0.185 1.033*** 0.852*** 0.997*** 0.356** 0.634** 0.410

(0.329) (0.229) (0.217) (0.245) (0.194) (0.150) (0.279) (0.363)

Lagged log ER * µ̂F
rt -1.039 7.299*** -9.201*** -15.586***

(2.092) (2.133) (1.920) (2.849)

µ̂F
rt 0.438** 0.602*** -0.142 0.308

(0.215) (0.172) (0.250) (0.343)

Panel C: Excluding lagged employment rate

∆ log emp 0.870*** 0.306*** 0.587*** 0.628*** 0.855*** 0.000 0.872*** 0.883***

(0.028) (0.076) (0.089) (0.057) (0.032) (0.033) (0.034) (0.030)

∆ log emp * µ̂F
rt -0.468 3.175*** -3.127*** -4.982***

(0.396) (0.787) (0.643) (0.672)

µ̂F
rt 0.296*** 1.271*** -0.965*** -0.709***

(0.112) (0.101) (0.136) (0.106)

Panel D: Raw employment variables

∆ log emp 0.630*** 0.185** 0.457*** 0.499*** 0.680*** 0.013 0.672*** 0.674***

(0.039) (0.085) (0.097) (0.058) (0.034) (0.032) (0.037) (0.038)

∆ log emp * µ̂F
rt -0.236 4.257*** -3.977*** -6.442***

(0.752) (1.403) (1.306) (1.405)

Lagged log ER 0.388*** 0.217*** 0.193* 0.185** 0.397*** -0.024 0.449*** 0.454***

(0.076) (0.073) (0.115) (0.086) (0.091) (0.043) (0.109) (0.105)

Lagged log ER * µ̂F
rt 2.328 6.291*** -4.309*** -8.509***

(2.012) (1.718) (1.526) (1.827)

µ̂F
rt 0.933 3.033*** -2.310*** -3.272***

(0.776) (0.641) (0.647) (0.745)

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

Amenity×µ̂F
rt controls No No No No Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

This table replicates the IV estimates from columns 2-5 (Panel A) of Table 2 and columns 2-5 of Table 5, subject to various changes of specification.
Employment variables are composition-adjusted in all specifications except in Panel D. Robust standard errors, clustered by state, are in parentheses.
Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1. See Appendix F.1 for discussion of the estimates.
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Table A6: Robustness of IV contributions: Amenity controls

Aggregate Foreign Residual Aggregate Foreign Residual

response contribution contribution response contribution contribution

∆lrt λ̂F
rt All: λ̂I

rt Natives: λ̂
I,N
rt ∆lrt λ̂F

rt All: λ̂I
rt Natives: λ̂

I,N
rt

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Year effects only

∆ log emp 0.851*** 0.399* 0.468* 0.581*** 0.799*** 0.068 0.741*** 0.813***

(0.052) (0.229) (0.240) (0.092) (0.057) (0.114) (0.158) (0.127)

∆ log emp * µ̂F
rt -0.616 7.248 -8.208 -11.165

(0.759) (8.017) (9.829) (9.260)

Lagged log ER 0.394*** 0.841** -0.426 -0.048 0.234*** 0.380 -0.138 0.007

(0.086) (0.428) (0.401) (0.185) (0.070) (0.362) (0.452) (0.390)

Lagged log ER * µ̂F
rt -0.027 11.284 -13.054 -16.914

(1.237) (13.308) (15.582) (15.559)

µ̂F
rt 0.227*** 0.771*** -0.510** -0.190

(0.052) (0.211) (0.254) (0.274)

Panel B: ... + amenity * year interactions

∆ log emp 0.748*** 0.237** 0.527*** 0.571*** 0.752*** 0.027 0.738*** 0.782***

(0.043) (0.093) (0.090) (0.054) (0.039) (0.054) (0.067) (0.068)

∆ log emp * µ̂F
rt -0.107 8.972 -9.258* -12.188**

(2.092) (5.796) (4.814) (5.079)

Lagged log ER 0.551*** 0.313*** 0.270* 0.258** 0.487*** -0.172 0.725*** 0.725***

(0.097) (0.119) (0.150) (0.110) (0.110) (0.277) (0.266) (0.256)

Lagged log ER * µ̂F
rt 2.174 16.061 -15.370* -19.784**

(4.261) (10.327) (8.908) (10.076)

µ̂F
rt 0.054 0.767*** -0.708*** -0.316

(0.077) (0.195) (0.244) (0.240)

Panel C: ... + amenity * µ̂F
rt interactions

∆ log emp 0.764*** 0.195*** 0.592*** 0.597*** 0.791*** -0.006 0.809*** 0.825***

(0.043) (0.050) (0.057) (0.051) (0.036) (0.028) (0.046) (0.043)

∆ log emp * µ̂F
rt -0.689 4.908*** -5.326*** -8.410***

(0.804) (1.180) (1.127) (1.325)

Lagged log ER 0.585*** 0.286*** 0.329** 0.322*** 0.560*** 0.007 0.595*** 0.579***

(0.107) (0.085) (0.129) (0.108) (0.114) (0.055) (0.131) (0.126)

Lagged log ER * µ̂F
rt 1.693 7.407*** -6.551*** -11.857***

(1.938) (2.203) (2.482) (3.542)

µ̂F
rt -0.039 1.016*** -1.038*** -0.593***

(0.143) (0.123) (0.191) (0.174)

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

This table replicates the IV estimates from columns 2-5 (Panel A) of Table 2 and columns 2-5 of Table 5, subject to various combinations of right
hand side controls. Robust standard errors, clustered by state, are in parentheses. Each observation is weighted by the lagged local population
share. *** p<0.01, ** p<0.05, * p<0.1. See Appendix F.2 for discussion of the estimates.
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Table A7: Robustness of IV contributions: Sample and weights

Aggregate Foreign Residual Aggregate Foreign Residual

response contribution contribution response contribution contribution

∆lrt λ̂F
rt All: λ̂I

rt Natives: λ̂
I,N
rt ∆lrt λ̂F

rt All: λ̂I
rt Natives: λ̂

I,N
rt

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Weighted + Excluding observations with µ̂F
rt > 0.1 (N = 3,544; 88% of pop)

∆ log emp 0.761*** 0.265*** 0.510*** 0.575*** 0.834*** -0.044 0.898*** 0.913***

(0.043) (0.084) (0.085) (0.058) (0.053) (0.028) (0.070) (0.072)

∆ log emp * µ̂F
rt -3.077 8.488** -12.478* -15.216**

(3.623) (3.714) (6.995) (7.545)

Lagged log ER 0.501*** 0.142 0.406*** 0.313*** 0.540*** -0.036 0.608*** 0.576***

(0.093) (0.116) (0.144) (0.113) (0.105) (0.062) (0.135) (0.139)

Lagged log ER * µ̂F
rt -0.230 6.510* -7.763 -11.487

(3.367) (3.712) (7.486) (7.667)

µ̂F
rt 0.037 0.893*** -0.750 -0.273

(0.244) (0.265) (0.516) (0.507)

Panel B: Unweighted (N = 3,610; 100% of pop)

∆ log emp 0.759*** 0.098*** 0.677*** 0.686*** 0.780*** 0.016** 0.773*** 0.798***

(0.038) (0.017) (0.042) (0.040) (0.040) (0.007) (0.042) (0.042)

∆ log emp * µ̂F
rt 1.607* 1.968*** 0.078 -4.457***

(0.854) (0.475) (1.097) (1.132)

Lagged log ER 0.444*** 0.129*** 0.333*** 0.315*** 0.455*** 0.029** 0.443*** 0.444***

(0.067) (0.031) (0.059) (0.060) (0.080) (0.013) (0.082) (0.074)

Lagged log ER * µ̂F
rt 4.565*** 3.592*** 1.091 -7.071***

(1.708) (0.783) (2.057) (1.908)

µ̂F
rt -0.352* 0.930*** -1.288*** -0.670***

(0.182) (0.045) (0.184) (0.152)

Panel C: Unweighted + Excluding CZs with 1960 population of 16-64s < 25,000 (N = 2,425; 98% of pop)

∆ log emp 0.765*** 0.102*** 0.679*** 0.690*** 0.791*** 0.015*** 0.785*** 0.801***

(0.038) (0.019) (0.041) (0.040) (0.042) (0.006) (0.043) (0.042)

∆ log emp * µ̂F
rt -0.001 1.989*** -1.570 -5.041***

(0.752) (0.501) (1.010) (1.209)

Lagged log ER 0.434*** 0.139*** 0.315*** 0.303*** 0.454*** 0.034*** 0.437*** 0.425***

(0.067) (0.034) (0.066) (0.066) (0.077) (0.013) (0.080) (0.076)

Lagged log ER * µ̂F
rt 1.699 4.171*** -2.456 -8.771***

(1.496) (0.618) (1.616) (1.478)

µ̂F
rt -0.038 0.897*** -0.918*** -0.441***

(0.125) (0.049) (0.121) (0.149)

Panel D: Unweighted + Excluding CZs with 1960 population of 16-64s < 50,000 (N = 1,675; 93% of pop)

∆ log emp 0.749*** 0.105*** 0.661*** 0.669*** 0.769*** 0.011 0.767*** 0.785***

(0.034) (0.023) (0.038) (0.035) (0.039) (0.008) (0.039) (0.039)

∆ log emp * µ̂F
rt -0.335 2.257*** -2.143* -5.521***

(0.802) (0.598) (1.094) (1.376)

Lagged log ER 0.427*** 0.143*** 0.303*** 0.308*** 0.442*** 0.033** 0.425*** 0.421***

(0.052) (0.041) (0.051) (0.048) (0.054) (0.014) (0.058) (0.057)

Lagged log ER * µ̂F
rt 0.875 5.051*** -4.108** -10.391***

(1.999) (0.866) (1.796) (1.791)

µ̂F
rt 0.067 0.878*** -0.792*** -0.331**

(0.097) (0.068) (0.095) (0.131)

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

Amenity×µ̂F
rt controls No No No No Yes Yes Yes Yes

This table replicates the IV estimates from columns 2-5 (Panel A) of Table 2 and columns 2-5 of Table 5, subject to various weighting choices (i.e.
with or without lagged local population share weights) and sample choices. Robust standard errors, clustered by state, are in parentheses. ***
p<0.01, ** p<0.05, * p<0.1. See Appendix F.3 for discussion of the estimates.
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Table A8: Contribution of old migrants to local population adjustment

Overall: Within-cohort: Overall: Within-cohort:

λ̂
I,OM
rt λ̂

I,OM,cohort
rt λ̂

I,OM
rt λ̂

I,OM,cohort
rt

(1) (2) (3) (4)

∆ log emp -0.039 0.002 0.002 0.032*

(0.050) (0.031) (0.026) (0.018)

Lagged log ER 0.011 -0.008 0.082 0.045

(0.061) (0.038) (0.054) (0.031)

Enclave shift-share, µ̂F
rt -0.363*** -0.273***

(0.061) (0.038)

Amenity×yr controls Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610

This table re-estimates the IV regressions in Panels A and B of Table 2, but replacing the
dependent variable with the overall contribution of old migrants (i.e. those living in the
US since period t − 1) and the within-cohort contribution, as defind by equations (A42)
and (A43) in Appendix F.4. Otherwise, the specifications are identical to Table 2. Robust
standard errors, clustered by state, are in parentheses. Each observation is weighted by the
lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.

Table A9: Average IV foreign contributions by country/region of origin

Total foreign Mexico Other Latin Europe and Asia Other

contribution America former USSR

(1) (2) (3) (4) (5) (6)

∆ log emp 0.237** -0.010 0.127*** 0.042*** 0.045** 0.041***

(0.093) (0.020) (0.047) (0.012) (0.022) (0.013)

Lagged log ER 0.313*** 0.089*** 0.094 0.033** 0.105** 0.009

(0.119) (0.034) (0.065) (0.014) (0.042) (0.014)

% foreign inflows 100 26.9 23.8 14.6 26.6 8.1

Amenity×yr controls Yes Yes Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610

This table breaks down the foreign contribution in column 3 (Panel A) of Table 2 into approximate contri-
butions from origin country groups. For each origin group o, I replace the dependent variable of equation

(27) with λ̂F o
rt ≡ log

(

Lrt−1+LF o
rt

Lrt−1

)

. Otherwise, the specifications are identical to Table 2. Robust standard

errors, clustered by state, are in parentheses. Each observation is weighted by the lagged local population
share. *** p<0.01, ** p<0.05, * p<0.1. See Appendix F.5 for discussion of the estimates.
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Table A10: Robustness of IV semi-structural crowding out estimates

1960s 1970s 1980s 1990s 2000s All years

(1) (2) (3) (4) (5) (6)

Panel A: Weighted estimates

Year effects 0.273 -0.726 -0.041 -0.943*** -0.538** -0.526**

(0.944) (0.635) (0.250) (0.225) (0.252) (0.246)

+ ∆ log emp (instrumented) -0.370 -1.090*** -0.663*** -1.068 -0.686*** -0.775***

(0.231) (0.154) (0.080) (0.724) (0.216) (0.060)

+ Lagged log ER (instrumented) -0.401* -1.081*** -0.698*** -0.601*** -0.669*** -0.746***

(0.238) (0.126) (0.129) (0.118) (0.186) (0.073)

+ Climate controls -0.651*** -1.567* -1.624 0.237 -0.884*** -0.948***

(0.223) (0.800) (15.570) (2.153) (0.136) (0.065)

+ Coastline dummy -0.654*** -1.560* -1.125 1.968 -0.788*** -0.897***

(0.245) (0.810) (6.460) (24.446) (0.171) (0.075)

+ Log pop density 1900 -0.578** -1.090*** -0.818*** -3.113 -0.734*** -0.841***

(0.282) (0.114) (0.311) (20.892) (0.188) (0.068)

+ Log distance to closest CZ -0.631** -1.158*** -0.689*** 23.645 -0.807*** -0.893***

(0.261) (0.128) (0.244) (1886.724) (0.199) (0.068)

+ Amenity×yr effects -0.631** -1.158*** -0.689*** 23.645 -0.807*** -0.913***

(0.261) (0.128) (0.244) (1886.724) (0.199) (0.065)

Panel B: Unweighted estimates

Year effects 2.794** 0.912 1.193*** -0.030 0.395** 0.775***

(1.173) (0.564) (0.307) (0.214) (0.194) (0.270)

+ ∆ log emp (instrumented) 0.431 -0.286 0.314 -0.177 1.353* -0.329***

(0.344) (0.384) (0.351) (0.268) (0.822) (0.104)

+ Lagged log ER (instrumented) 0.263 -1.127*** 0.517 0.553 1.132* -0.183

(0.349) (0.311) (1.033) (0.920) (0.675) (0.168)

+ Climate controls -0.215 -0.704*** -0.535* -1.122*** -0.818** -0.753***

(0.366) (0.177) (0.301) (0.147) (0.343) (0.138)

+ Coastline dummy -0.198 -0.645*** -0.534* -1.048*** -0.796** -0.712***

(0.394) (0.180) (0.276) (0.144) (0.335) (0.147)

+ Log pop density 1900 -0.226 -0.632*** -0.570** -1.075*** -0.765** -0.714***

(0.397) (0.180) (0.265) (0.166) (0.305) (0.146)

+ Log distance to closest CZ -0.364 -0.761*** -0.549** -1.151*** -0.870*** -0.791***

(0.358) (0.187) (0.236) (0.167) (0.287) (0.132)

+ Amenity×yr effects -0.364 -0.761*** -0.549** -1.151*** -0.870*** -0.884***

(0.358) (0.187) (0.236) (0.167) (0.287) (0.097)

Observations 722 722 722 722 722 3,610

This table tests the robustness of my IV crowding out estimate δ1 (in column 2 of Table 7) to the choice of controls
and decadal sample. The various columns report estimates of δ1 separately for each decade, and for all decades
together. Moving down the rows of the table, I show how my δ1 estimate changes as progressively more controls
are included. All specifications include the foreign contribution λ̂F

rt (instrumented with the enclave shift-share,
µ̂F

rt) and year effects. The second row controls additionally for the (endogenous) employment change (together
with its current Bartik instrument, brt); the third row includes the (endogenous) lagged employment rate (with its
lagged Bartik instrument, brt−1); and the various amenities are then progressively added - until the final row, which
includes the full set of controls I use in Table 7. Panel B repeats the exercise without the lagged local population
share weights. Robust standard errors, clustered by state, are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. See
Appendix G.2 for discussion of the estimates.
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Table A11: Reconciliation with IV population responses from Cadena and Kovak (2016)

All Natives Mexican Other

migrants migrants

(1) (2) (3) (4)

Panel A: Cadena and Kovak’s Panel A, Table 4

W/i-industry shock: group-specific 0.223 0.007 0.992** -0.675**

(0.166) (0.090) (0.468) (0.278)

Panel B: As above, but replace IndShockgr with ∆ngr

∆ log emp: group-specific 0.301* 0.013 0.771*** 1.413***

(0.170) (0.159) (0.104) (0.356)

Panel C: Control for dynamics

∆ log emp: group-specific 0.654*** 0.871** 0.380 1.470***

(0.199) (0.441) (0.413) (0.552)

Log ER in 2006: group-specific 0.680** 0.745*** -2.429 -0.519

(0.305) (0.284) (2.651) (2.753)

Panel D: First stage for ∆ log emp in Panel C specification

Bartik 2006-10 2.928*** 1.789** 7.805*** -3.342*

(0.763) (0.734) (1.661) (1.814)

Bartik 2000-06 0.223 0.558 -2.013* 1.387

(0.575) (0.548) (1.208) (1.337)

Panel E: First stage for log ER in 2006 in Panel C specification

Bartik 2006-10 -2.777*** -3.936*** -1.075** -0.643

(0.625) (1.352) (0.501) (0.812)

Bartik 2000-06 1.402*** 1.507*** 0.029 0.506

(0.485) (0.513) (0.303) (0.697)

SW F-stats for Panel C

∆ log emp 5.30 5.54 1.05 0.62

Log ER in 2006 4.94 5.42 0.97 0.32

Amenity controls No No No No

Observations 94 94 94 94

This table offers a reconciliation with Panel A of Cadena and Kovak’s (2016) Table
4. The reported coefficients are estimates of ω1 in various specifications of equation
(A44). All estimates correspond to men with no college education. Throughout, I use
Cadena and Kovak’s sample of 94 MSAs over the period 2006-10. Panel A reproduces
Cadena and Kovak’s own estimates of ω1g, instrumenting the within-industry shock with
a Bartik shift-share. Panel B replaces the within-industry shock with the overall change
in employment, but retaining the same instrument. Panel C controls additionally for
the lagged employment rate in 2006, which I instrument with a lagged Bartik shift-share
(predicting employment changes in the period 2000-6). Panels D and E report the first
stage estimates (for the two endogenous variables) for the dynamic specification (i.e.
with the lagged employment rate). The associated Sanderson-Windmeijer (2016) F-
statistics account for multiple endogenous variables. In line with Cadena and Kovak, all
specifications control for the Mexican population share in 2000 and indicators for MSAs
in states that enacted anti-migrant employment legislation. *** p<0.01, ** p<0.05, *
p<0.1. See Appendix H for discussion of the estimates.

68



0
.0

1
.0

2
.0

3
.0

4
.0

5
G

ro
ss

 fl
ow

1960 1980 2000 2020
Year

Internal Foreign

A. Gross flows to US states

.0
5

.1
.1

5
.2

.2
5

F
or

ei
gn

 s
ha

re

1960 1980 2000 2020
Year

B. Foreign share of gross flows

Figure 1: Annual gross flows to US states

Panel A describes trends in annual gross migratory flows to US states. The “internal” flow is the share of individuals
living in a different state (within the US) 12 months previously. The “foreign” flow is the share of individuals who are (i)
foreign-born and (ii) living abroad 12 months previously. Panel B reports the share of gross flows to US states (i.e. all
individuals living outside their current state 12 months previously) which are due to foreign-born individuals coming from
abroad: i.e. the ratio of “foreign” to total flows. Data is based on the the Current Population Survey and US census. See
Appendix C.4 for further details.
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Figure 2: Mean variables of interest by CZ: 1960-2010
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Figure 3: Impulse responses to employment growth shocks

This figure illustrates the impulse response to exogenous employment shocks, ∆ñrt. Panel A traces the response to a
temporary 0.1 shock at time (decade) 1: i.e. ∆ñrt = 0.1 at t = 1, and zero otherwise. And in Panel B, I study a permanent
0.1 shock: ∆ñrt = 0.1 for all t > 0.
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Figure A1: Effect of years in US on cross-state mobility

This figure plots estimates of the log point difference in cross-state mobility between migrants (with given years in the US)
and natives. Estimates are based on complementary log-log models, controlling for a full set of entry cohort effects and
observation year effects. The model in Panel B controls additionally for a full set of single-year age effects. The sample
consists of individuals aged 16-64 in ACS waves between 2000 and 2018. See Appendix D for further details.
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Figure A2: Graphical illustration of crowding out estimates

This figure presents Frisch-Waugh type plots for the δ1 estimates in columns 1 and 2 of Table 7. Marker size corresponds
to lagged population share weights. See Appendix G.1 for details.
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