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A B S T R A C T   

Infectious diseases generate spatial dependence or contagion not only between individuals but also between 
geographical units. New infections in one local district do not just depend on properties of the district, but also on 
the strength of social ties of its population with populations in other districts and their own degree of infec-
tiousness. We show that SARS-CoV-2 infections during the first wave of the pandemic spread across district 
borders in England as a function of pre-crisis commute to work streams between districts. Crucially, the strength 
of this spatial contagion depends on the phase of the epidemic. In the first pre-lockdown phase, the spread of the 
virus across district borders is high. During the lockdown period, the cross-border spread of new infections slows 
down significantly. Spatial contagion increases again after the lockdown is eased but not statistically significantly 
so.   

1. Introduction 

A virus survives by changing hosts and infectious diseases are 
therefore spatially contagious. Everything else being equal, the more 
interactions a person has with infected people, the more likely the 
person becomes infected. Hamidi’s (2020) analysis of metropolitan 
counties in the United States suggests that connectivity matters more 
than density in the spread of the COVID-19. This very nature of an in-
fectious disease not only holds at the individual level, it also holds at the 
regional level. In an epidemic, regional units are spatially dependent. 
The more people from one region meet and interact with people from 
other regions, the more infected people from the other region can 
potentially spread the infection to the population of the first region, and 
vice versa. As a consequence, the number of people in region i who 
become infected depends not only on the properties of region i but also 
on the interaction between people from region i and those of other re-
gions, call them j. The stronger the social ties are between two regions, 
the easier it becomes for the virus to spread between these two regions 
and therefore, the stronger will be spatial contagion. 

This simple logic of epidemics and pandemics is surprisingly often 
ignored in epidemiological analyses. To be fair, there is a long tradition 
of modelling the spread of epidemics as a spatial process based on 

information regarding the connectedness of places (see, for example, 
Bartlett 1957; Cliff et al. 1981; Elliot and Wartenberg, 2004; Balcan 
et al., 2010; Lawson et al., 2016). Nevertheless, as O’Sullivan et al. 
(2020: 973) point out, “… it is perhaps surprising that fundamental 
geographic processes have largely been excluded from SIR 
[susceptible-infected-recovered] models and their variants”. Notable 
exceptions, besides the simulation analyses cited above, include Klepac, 
Kissler and Gog (2018), who modelled how an influenza outbreak 
spreads across the United Kingdom (UK) based on movement and con-
tact data they collected from custom mobile phones. There also exist 
epidemiological simulations of the spread of COVID-19 in Italy (Gatto 
et al., 2020), New York City (Munshi et al. 2020), and New Zealand 
(O’Sullivan et al., 2020). These models are very useful in modelling a 
pandemic and modelling which global or spatially localized policy in-
terventions can affect the presumed course of a pandemic in what way. 

Our study departs from these models and makes an original contri-
bution by introducing spatial contagion into an econometric model of 
actual observed patterns of the spread of the pandemic. In other words, 
rather than simulating the course of the pandemic, we estimate the 
degree of actual spatial contagion as it occurred in the first wave of the 
pandemic. Our research provides information on the size that relevant 
spatial parameters should have in simulations of the SARS-CoV-2 
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pandemic. However, we also hope that our paper paves the ground for 
more analyses of spatial effects in epidemiological research in the future. 
To the best of our knowledge, with one exception where a spatial 
analysis forms one of many robustness tests (Alipour et al., 2020a,b), the 
econometric analyses of the spread of SARS-CoV-2 in a cross-section of 
geographical units of analysis exclusively regress the number or rates of 
infections or mortality in region i on a number of covariates measured in 
the very same region i. For example, these analyses address the statis-
tical association between health preconditions and COVID-19 mortality 
rates (Notari and Torrerieri, 2020; Likasse, 2020), air pollution and 
mortality (Conticini et al., 2020; Martelletti and Martelletti 2020; 
Travaglio et al., 2020), the ethnic composition of district populations 
and infection rates and mortality (Goldstein and Atherwood 2020; Gross 
et al., 2020; Rentsch et al., 2020; Cohen 2020) and between 
socio-economic covariates and infection rates (Han et al., 2020; Plümper 
and Neumayer 2020). 

These analyses share the strong implicit assumption that infection 
and mortality numbers and rates in one region are independent of 
infection and mortality numbers and rates in other regions. Of course, 
this assumption can be plausible if regional units, for example local 
authority districts, are geographically located far apart and little direct 
interaction takes place between their populations. The virus will spread 
much more easily from Cornwall to West Devon, from Northumberland 
to Carlisle, or from Islington to Camden, which are all geographically 
proximate, than it will spread from Northumberland in the very North- 
East of England to Cornwall in England’s South-West, though trans-
mission across long distances does of course also occur, if less frequently 
than transmission across shorter distances. As many politicians have put 
it, the virus does not stop at borders – at least not, one should add, at 
open borders. We also know that the virus hits people with pre- 
conditions especially hard, and there is evidence that these pre- 
conditions are spatially clustered in the UK (Dearden et al., 2019) and 
the United States (Dobis et al., 2020; Amram et al., 2020). Thus, the 
assumption that infections in districts are spatially independent of each 
other is a stark simplification. 

Our spatial analysis of SARS-CoV-2 adds to our knowledge of the 
spatial processes underpinning the spread of the virus. Previous research 
has demonstrated how the virus spreads on a global scale. It took the 
virus only 19 days from the first known death associated with COVID-19 
on 11 January to the WHO declaring a ‘public health emergency of in-
ternational concern’ on 30 January. The rapid global spread of the virus 
has been facilitated by air travel (Chinazzi et al., 2020). Previous 
research has also spatially modelled or simulated how COVID-19 
spreads across geographical units in Italy (Gatto et al., 2020), New 
York City (Munshi et al., 2020), and New Zealand (O’Sullivan et al., 
2020). Ski tourism spread the virus across Europe from just a few Alpine 
villages (Plümper and Neumayer, 2020; Felbermayer et al., 2020). At 
the same time, it has also been shown that the distribution of infections 
shows local persistency – coronavirus hotspots, often triggered by local 
events, tend to remain fairly stable over time (Plümper and Neumayer, 
2020). 

In this article, we complement these findings about the spatial dy-
namics of Sars-CoV-2 by analyzing the degree to which actual and 
observed infection rates in local authority districts in England spatially 
depend on infection rates in other districts, as a function of historical 
commuter flows between these districts. Naturally, such commuter 
flows are larger in geographically more proximate districts and converge 
to zero between districts that are geographically very distant from each 
other. According to Tobler’s first law of geography, “everything is 
related to everything else, but near things are more related than distant 
things” (Tobler, 1970: 236). We test Tobler’s law based on SARS-CoV-2 
infection rates. With Tobler, we expect to find spatial dependence be-
tween districts as a function of commuter flows between them. This is 
our first major contribution to the emerging literature on COVID-19. 

Our second major contribution relates to the dynamics of spatial 
dependence over time. The lockdown that the UK government imposed 

on March 23, 2020 has significantly reduced human interactions be-
tween districts following the government directive of ‘stay home unless 
your travel is essential’, together with the shutting down of shops, bars, 
restaurants, entertainment venues and many workplaces. We provide 
evidence that the lockdown both substantively and statistically signifi-
cantly reduces spatial contagion among districts. The degree of spatial 
contagion rises again, albeit not statistically significantly so, after the 
lockdown is eased on May 11, 2020 with the ‘stay home unless your 
travel is essential’ directive replaced with a ‘stay alert and work from 
home if you can’ directive, though shops were only reopened on June 
15, 2020, and restaurants, bars, entertainment and hospitality venues 
are all still closed by the end of our estimation period, June 26, 2020, 
only opening again on 4 July with social distancing restrictions in place. 

2. Methodology 

Spatial dependence is typically defined as the theoretically expected 
dependence of outcomes in unit i on outcomes or determinants of out-
comes in unit j. Spatial dependence requires more than spatial clustering 
in outcomes or determinants of outcomes amongst units of analysis. In 
the early days of spatial econometrics, this distinction between spatial 
dependence proper spatial clustering was somewhat blurred by a defi-
nition of spatial dependence as non-zero “correlation across cross- 
sectional units” (Anselin et al., 2008: 627). Spatial clustering only re-
quires that close units are similar in outcomes or the properties that 
influence outcomes, not that the outcome in unit i depends on the 
outcome or the determinants of the outcome in units j. Thus, areas can 
be spatially clustered in the strict absence of proper spatial dependence. 
Just like correlation is not causality, spatial clustering is not spatial 
dependence. 

Spatial econometric models have been developed to account for both 
spatial dependence and spatial clustering. These models can be divided 
into three types. Spatial error models regress the outcome variable in 
one unit on the regression residuals in other units, usually in 
geographically contiguous units. It is typically employed to account for 
spatial clustering amongst units of analysis. So-called spatial autore-
gressive (SAR) or spatial-y models regress the outcome variable in one 
unit on the outcome variable in other units or what is known as the 
spatial lag. And spatial-x models regress the outcome variable in one 
unit on one or more explanatory variables in other units of analysis 
(Cook et al. 2020; Wimpy et al. 2020). A combination of model types is 
also possible. For example, the spatial autoregressive spatial error 
(SARAR) model combines spatial lag with spatial errors (Wang, 2020). 

Pandemics provide a clear example for spatial dependence of the 
spatial autoregressive (spatial lag) type: the number of infections in unit 
i depend on the number of infections in unit j weighted by the strength of 
interactions between these units. Accordingly, modelling pandemics by 
a spatial autoregressive model is the best choice. Yet, this is not to say 
that pandemics are free of spatial clustering in addition to spatial 
dependence. Spatial clustering occurs because everything resembles 
everything else, but near things are more similar than distant things; a 
phenomenon that we have dubbed the second law of geography (Neu-
mayer and Plümper, 2016: 180). This logic applied to pandemics implies 
that two closely related districts are likely to have similar properties that 
cause higher or lower than average infection rates in both districts. For 
example, two neighboring districts may be far away from both the 
population center of a country and the hotspots of the pandemic, and 
therefore both have lower than average infection rates. It is possible to 
capture this similarity by adding the necessary covariates to the 
empirical model, or by controlling for unobserved spatially clustered 
factors via a spatial error model, which includes the spatially weighted 
residuals in districts j. Of course, a combination of both approaches is 
also possible, in which case the spatial-error component of the model 
just controls for the spatial clustering unaccounted for by the substan-
tively interesting explanatory variables. Clearly, if researchers are 
interested in these explanatory variables, this is the preferred 
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specification. 
We therefore contend that pandemic processes are best modelled as a 

spatial autoregressive spatial error, or SARAR model, with additional 
explanatory variables included: infections in units j lead to new in-
fections in unit i as a function of the degree of interaction between i and 
j, but despite modelling, fairly well understood determinants of in-
fections geographically contiguous districts may nevertheless exhibit 
unexplained spatial clustering. 

We estimate the following model: 

yit = ρ
∑

j∕=i

cijyj,t− 1 + μyit− 1 + βXi + Tt + uit  

uit = λ
∑

j∕=i

wijujt + εit  

where yit is the rate of new infections, i.e. new infections per 100,000 
people, in week t in district i with i = 1, 2, ..,N, j = 1,2, ..,N and t = 6,.., 
25 calendar week of 2020, with week 6 the week in which the first in-
fections were registered in the UK. yit− 1 is the lagged dependent variable, 
i.e. new infection rates one week prior in district i. Xi represents vari-
ables explaining new infection rates in district i other than the temporal 
lag and the spatial lag. Tt represents dummy variables for each week 
(week fixed effects) and 

∑
j∕=icijyj,t− 1 represents the spatial lag. For this 

spatial lag, the connectivity matrix cij is based on the census travel to 
work data and measures the historical sum of commuter flows from 
district i to j and from districts j to i since infections can spill over both by 
individuals from district i who commute to other districts j and bring the 
virus back to their home district, and by individuals from district j who 
commute into district i. Formally, we weight infections in districts j by 
commuter flows and we weight populations in district j by commuter 
flows, and then divide the former by the latter to arrive at the spatial lag 
variable. Note that historical means these are commuter flows back in 
2011, the latest available data. There is measurement error to the extent 
that commuter flows have changed since before the lockdown, but note 
it is not a measurement error that commuter flows changed with the 
lockdown since the weighting variable must be exogenous to the policy 
shock (lockdown) studied. 

According to the United States Centers for Disease Control and Pre-
vention (CDC), available scientific evidence suggests that the vast ma-
jority of infected people remain infectious for up to about 7–12 days 
(https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation. 
html). We therefore use a one-week lag for infections in other districts, 
as indicated by t-1. Likewise, we include the temporally lagged (by one 
week) dependent variable to account for the fact that the rate of new 
infections one week prior is a good predictor of the new infection rate in 
week t. If we were to change the definition of both the spatial and 
temporal lags to include the sum of new infections from two weeks prior, 
rather than only one week prior, then the results reported below across 
the three periods of pre-lockdown, during lockdown, and post-lockdown 
ease are qualitatively very similar. 

The week fixed effects Tt flexibly take out the common trend, that is, 
changes in new infection rates that are common to all districts in En-
gland. They can also absorb the effect that changes to the availability of 
testing for SARS-CoV-2 has on reported new infection rates as long as 
these changes affect all English districts approximately equally. Taking 
out the common trend is not innocent as some of this common trend will 
be due to spatial contagion. Our specification choice should therefore be 
regarded as providing a conservative estimate of the degree of spatial 
contagion, with actual spatial contagion likely to be under-estimated. 
The spatial error term uit consists of the error term in spatially contig-
uous districts, as indicated by 

∑

j∕=i
wij, which is the standard weighting 

matrix for spatial error terms (Drukker et al., 2013), plus an error term 
presumed to be identically and independently distributed (εit). 

We estimate this equation with spatial two-stage least squares 
(spatial-2SLS) in which, as is common procedure, the spatial lag 

∑

j∕=i
cijyj,t− 1 is instrumented for with the spatial-X variables 

∑

j∕=i
cijXj and 

∑

j∕=i
wijXj (Drukker et al., 2013). Standard errors are bootstrapped with 

500 replications, given that we have to do the instrumentation by hand 
in order to exclude the temporal lag yit− 1 from entering the first stage of 
the spatial-2SLS estimation, since the temporal lag cannot reasonably be 
argued to be exogenous. 

To account for the characteristics of the districts that one may expect 
to have an effect on infection rates, we include a series of socio- 
economic and demographic control variables in the model. These con-
trols have been found to be associated with SARS-CoV-2 infections in 
other studies. First, we include the proportion of the population that 
lives in rural areas, as defined by the 2011 census. Previous research has 
found that rural areas have lower infection rates. Cohen (2020: 6), for 
example, shows that “rural U.S. counties account for less of the 
COVID-19 outbreak than their share of the population”. He believes that 
these findings reflect “the epidemic’s initial explosion in coastal urban 
areas and the greater propensity for transmission in places with greater 
population density”. In a similar study, Goldstein and Atherwood (2020) 
show that controlling for age and place, on average, Black people have 
an 80 percent and Hispanic people a 54 percent higher risk of dying from 
COVID-19 than White and Asian individuals. These mortality differences 
are higher during the COVID-19 epidemic than in non-epidemic years, 
which Goldstein and Atherwood take as evidence that underlying health 
disparities do not fully account for the COVID-19 mortality differences. 
The authors suggest that factors such as “the differential risk of infection 
related to exposure at work, in transportation and at home as well as 
differential access to healthcare” (Goldstein and Atherwood 2020: 9) 
may also explain the mortality differences along ethnic lines. We concur 
that individuals from ethnic minorities disproportionally suffer from 
health inequalities caused by socio-economic determinants, as high-
lighted again prominently in the recent 10-year revisit of the original 
‘Marmot report’ (Marmot et al., 2020). For example, individuals from 
ethnic minorities are more likely to be living in smaller and more crowed 
accommodation, earning lower wages from possibly multiple jobs that 
render them more exposed to the virus, which also makes it much more 
difficult for them to self-isolate if they or their close contacts exhibit 
symptoms. 

To capture some of the socio-economic determinants of health in-
equalities, we include income per employee and the proportion of 
people in a district that fall into the highest decile of the Index of Mul-
tiple Deprivation (IMD) nationally as control variables (results are very 
similar if we use the alternative Townsend Deprivation Index instead). 
Poorer and more socially deprived people cannot shelter themselves 
from the risk of infection to the same extent as richer people. They are 
less able to work from home offices, depend more on public trans-
portation (Harris 2020), and live in smaller houses and apartments. 
These variables will to some extent capture why Black, Asian and Mi-
nority Ethnic (BAME) people are disproportionately affected. However, 
since it is impossible to comprehensively control for all socio-economic 
determinants of health inequalities simultaneously, we also control for 
the higher risk of infection that ethnic minority groups may suffer from 
beyond what we can control for by directly including as a control var-
iable the population share of Black, Asian and Minority Ethnic (BAME) 
people in the district’s population. By controlling for some 
socio-economic differences across districts, the BAME population share 
variable estimates, an effect that goes beyond the fact that poorer and 
more socially deprived districts are also typically districts with a higher 
share of BAME population. All data for the dependent, spatial and 
explanatory variables were sourced from various official UK government 
websites. Data was collected during May and October 2020 from official 
UK government websites. The 2011 Census information on income and 
ethnic composition of districts were obtained from the Office of National 
Statistics https://www.nomisweb.co.uk/, the Index of Multiple Depri-
vation was obtained from https://www.gov.uk/government/statistics/e 
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nglish-indices-of-deprivation-2019, and the coronavirus case data were 
obtained from the official https://coronavirus.data.gov.uk/website. 
Local Authority Urban-Rural classification was obtained from https 
://www.gov.uk/government/statistics/local-authority-rural-urban-c 
lassification, and commuter data come from http://wicid.ukdataservice. 
ac.uk/. Our sample covers 314 districts, that is, all 317 first-tier local 
authorities in England minus three districts for which we have no data 
on the explanatory variables, namely the City of London, the Isle of 
Scilly and the Isle of Wight. 

3. Results 

Table 1 presents our estimation results. We estimate results for three 
distinct periods: the seven weeks before the lockdown was imposed on 
March 23, 2020 (column 1), the seven weeks during the lockdown 
(column 2) and the seven weeks after the lockdown was eased on May 
11, 2020 (column 3). Focusing first on the period before lockdown, we 
find a high degree of autoregression, as indicated by the coefficient of 
the temporally lagged variable. One more person per 100,000 people 
infected in the week prior is predicted to result in 1.61 more individuals 
infected per 100,000 on average in the week after. With regards to the 
control variables, we find that rates of new infections are lower in richer 
districts and higher in districts with a larger ethnic minority population 
share. Most importantly, we find a substantively large degree of spatial 
dependence amongst districts. Weighted by historic commuter flows 
between districts, we find that one more person per 100,000 people 
newly infected in linked districts is predicted to increase the rate of new 
infections by 0.37 more individuals infected per 100,000 people on 
average in the next week. 

In the strict lockdown period (column 2), we find results much 
altered, as one would expect given the drastic policy intervention that 
came with an unprecedented imposition of restrictions on economic and 
social life. The degree of autoregression more than halves, and reduces 
to one more person per 100,000 people being infected in the prior week 
predicted to increase on average the rate of new infections by 0.74 in-
dividuals per 100,000 people. The difference to the pre-lockdown period 
is highly statistically significant (z-score 7.80, p < 0.01). More impor-
tantly, and in line with Plümper and Neumayer (2020), new infection 
rates after lockdown become differently socially, economically and 
demographically stratified. This is because individuals differ in their 
ability to socially distance themselves and work from home (Alipour 
et al., 2020a,b), which along with path dependency becomes the main 
driver of the pandemic in the second phase. 

We find that richer districts and districts that are predominantly 
rural experience lower rates of new infections during lockdown, whereas 
socially deprived districts, as measured by the population share of social 
welfare benefits claimants, experience higher rates of new infections 
than others. There is no longer a statistically significant association with 
the BAME population share. Crucially, we find that the degree of spatial 
dependence amongst districts, as weighted by historic commuter flows 
between districts, not only more than halves but is also statistically 
significantly lower than before lockdown (z-score 2.24, p < 0.02). 
Lockdown has managed to substantively and statistically significantly 
reduce cross-district spatial contagion, but has not eliminated it, as some 
people still cross district borders for work, shopping in food stores and 
pharmacies and for other purposes. We thus find that one more person 
per 100,000 people newly infected in linked districts is predicted to 
increase in the next week the rate of new infections by 0.19 more in-
dividuals infected per 100,000 people on average, even after lockdown 
was imposed. Lastly, we continue to find statistically significant residual 
spatial clustering amongst geographically contiguous districts. 

In the third period of our estimations after lockdown was eased on 11 
May, we find that the coefficient of the temporal lag, which indicates 
how infections within a district results in more new infections the week 
after, continues to fall. Now, one more infected person per 100,000 
people is predicted to result in 0.56 newly infected individuals per 
100,000 people the week after (results reported in column 3). The de-
gree of spatial contagion rises again after the lockdown has been eased 
and people start being more mobile again. Having dropped from 0.37 to 
0.19 from pre-lockdown to the period during lockdown, it goes back up 
again slightly to 0.21. Even after lockdown has been eased, the degree of 
spatial dependence is statistically significantly lower compared to the 
pre-lockdown period (z-score 1.71, p < 0.05). The difference between 
the lockdown period and the post-lockdown period is, however, not 
statistically significant, suggesting that lockdowns have a lasting effect. 

4. Discussion 

We have tested how infections are auto-regressive within districts, as 
approximated by the coefficient of the temporally lagged variable, but 
also spatially auto-regressive, as indicated by the coefficient of the 
spatial lag variable. A lagged dependent variable with a positive coef-
ficient increases the long-term effect of the substantively interesting 
variables included in the model. The differences between immediate 
effects and long-term effects become larger the larger the coefficient of 
the lagged dependent variable. Positive coefficients of the temporal lag 
variable indicate that path dependency exists within districts and a 
value of the temporally lagged variable above 1.0 indicates that new 
infections are exponentially increasing, which is often the case during 
the early phase of a pandemic when neither individuals nor govern-
ments have adequately responded to the danger posed by a hitherto 
unknown and highly infectious disease. Our estimates suggest that even 
with the week fixed effects taking out the common temporal trend, the 
pandemic was indeed explosive in phase 1, before the lockdown, but 
became stationary once people adjusted their behavior and the lock-
down was implemented. 

If the coefficient of the lagged dependent variable is larger than 1, as 
was the case in the early weeks of the epidemic in the UK, the effect of all 
variables goes to infinity in the very long run. Clearly, this is not 
possible. No epidemic can follow an exponential path ad infinitum. 
Eventually, the majority of people are either immune or dead and the 
infectious disease runs out of steam. Exponential growth is, however, 
possible in the early phase of a pandemic during the seven weeks pre- 
lockdown. Moreover, the cross-district spatial contagion adds a very 
important additional amplifier to a temporally autoregressive process 
that is close to one or above one (explosive), since new infections move 
backwards and forwards between related districts. Thus, one additional 
individual per 100,000 people infected in other districts, to which the 
district under observation is linked via historical commuter flows, raises 

Table 1 
Estimation results.   

Pre-lockdown 
03/02 to 22/ 
03 

During 
lockdown 
23/03 to 10/05 

Post-lockdown 
ease 
11/05 to 25/06 

Rate of new infections (t-1) 1.625** 
(0.112) 

0.730** 
(0.0122) 

0.558** 
(0.0328) 

% population in rural areas 0.000685 
(0.00282) 

− 0.0263** 
(0.0102) 

− 0.00243 
(0.00330) 

Per capita income − 5.73e-05** 
(2.01e-05) 

− 3.35e-05 
(3.49e-05) 

2.23e-05 
(1.24e-05) 

% population who claim 
benefits 

0.152 
(0.0780) 

2.255** 
(0.486) 

0.359* 
(0.156) 

% population who are 
BAME 

0.0456** 
(0.0129) 

− 0.0244 
(0.0290) 

0.0139 
(0.0146) 

Spatial lag (t-1) 0.408** 
(0.0749) 

0.140** 
(0.0314) 

0.213** 
(0.0586) 

Spatial error 0.754** 
(0.0954) 

0.698** 
(0.0552) 

0.377** 
(0.0819) 

Observations 2121 2121 2121 
Number of districts 303 303 303 

Note: All estimations include week fixed effects. Bootstrapped standard errors 
with 500 replications in parentheses. *, ** statistically significant at 0.05 and 
0.01 level, respectively. 
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new infections by a staggering total of 241 newly infected individuals 
per 100,000 people on average by week 7 at the end of the pre-lockdown 
period. Counterfactually, in the absence of any spatial contagion one 
additional newly infected person would only result in 72 newly infected 
individuals per 100,000 people by week 7. In other words, the high 
degree of spatial contagion during the pre-lockdown period roughly 
triples the pandemic’s dynamics relative to a counterfactual scenario 
with assumed absence of spatial dependence – such is the power of 
exponential growth feeding back and forth across district borders. 

Our results show that the coefficient of the lagged dependent vari-
able fell below 1.0 in what we call the second phase, that is, after in-
dividuals reduced their social interactions and the government 
implemented a lockdown. Not only does this new temporal dynamic 
break the exponential within-district growth; together with a much 
smaller coefficient of the spatial lag variable, it also means that once the 
self-reinforcing effect of new infections moving backwards and forwards 
between related districts is taken into account, the long-run spatial 
contagion effect of 5.2 more newly infected individuals per 100,000 
people by week 7, the end of the lockdown period, is not dramatically 
larger in absolute terms than the short-run spatial contagion effect of 
0.19 more individuals per 100,000 people infected. Qualitatively similar 
results apply to the third phase after lock-down has been eased. Spatial 
contagion rises again, but together with the again lower degree of 
temporal auto-regression within districts, the long-run spatial contagion 
effect of 2.2 is not that much higher than the short-term spatial conta-
gion effect of 0.21. 

Interestingly, the ethnic minority population share is no longer a 
variable with a statistically significant effect after lockdown has been 
imposed, but one should not forget that this variable is moderately 
positively correlated with social deprivation (r = 0.16) and highly 
negatively correlated with the rural population share within a district (r 
= − 0.53). A detailed and comprehensive analysis with regards to 
whether ethnic minorities suffer more from COVID-19 above and 
beyond any socio-economic and demographic factors is beyond our 
analysis. A study that perhaps gets closest to identifying these structures 
analyzes mortality differences across ethnicities amongst US veterans 
(Rentsch et al., 2020). Their findings suggest that socioeconomic factors 
play a major role in these mortality differences across different ethnic-
ities in the US, but ethnicity adds very little. The authors warn, however, 
against generalizing from veterans to the broader society. In the UK, a 
careful analysis by Rose et al. (2020: 1) finds that after controlling for 
income and socioeconomic differences across English districts, a one 
percentage point increase “in the proportion of the population from 
BAME backgrounds was associated with a 1% increase in the COVID-19 
mortality rate”. Accordingly, evidence suggests that controlling for 
socio-economic factors is insufficient and ethnicity influences infection 
rates for reasons others than socio-economic and demographic differ-
ences between ethnicities. 

5. Conclusion 

Our analysis was motivated by the conspicuous absence of econo-
metric studies that take into account how regional units spatially depend 
on each other. Naturally, there is no reason to expect that the SARS-CoV- 
2 virus stops at open district borders. In qualitative terms, the first result 
from our empirical analysis is therefore entirely unsurprising: there is 
spatial contagion among local authority districts in England. A higher 
new infection rate in other districts linked to the district under obser-
vation via historical commuter flows raises the rate of new infection the 
week after. Our analysis shows a high degree of this spatial dependence 
together with an explosive degree of temporal dependence within dis-
tricts before the national lockdown was imposed on March 23, 2020. In 
modern times, there is faster and stronger spatial contagion than, for 
example, during the times of the plague. Mankind is more mobile and 
people travel longer distances at much higher speed. In reality, spatial 
contagion will be even stronger than our conservative estimate suggests 

since we only model connectivity amongst districts based on historical 
work commuter flows. There is, of course, additional interaction among 
people across district boundaries in the form of, for example, family 
visits and leisure travel. This is only indirectly and imperfectly captured 
in our research design to the extent that commuter traffic and all other 
mobility between districts are correlated. Unfortunately, data on all 
other mobility is missing, and so we cannot distinguish between the 
spatial effects of different types of cross-district mobility. 

The lockdown imposed on 23 March by the UK government tried to 
artificially reduce this mobility both within and across districts. Sub-
stantively, the most interesting result that we have obtained directly 
tells us that the lockdown has, to a significant extent, achieved this 
double objective as indicated by the significant decline in the sizes of the 
temporal and the spatial lag coefficients. These results indicate that 
measures of social distancing not only manage to break the exponential 
growth of new infections within a district but also drastically reduce the 
spread of the disease across district borders. 

Lockdown has not managed to eliminate spatial contagion, however, 
which has also risen again, albeit not to pre-lockdown levels after the 
lockdown was eased on 11 May. Open borders do not stop the spread of 
COVID-19, not even during lockdown, and certainly not after the easing 
of lockdown. However, in combination with an autoregressive factor of 
below one, the lower the spatial dynamics of a pandemic, the easier it 
will be to isolate the virus at a local level. This result supports the shift to 
local policies aimed at controlling the pandemic that could be observed 
in late spring 2020 in countries that were more successful than the UK; 
for example in Germany. Therefore, our results support decentralized 
control policies once the worst is over and weekly new infection 
numbers have declined to low 2-digit numbers per 100,000 people. We 
expect that decentralized, federal countries will find it easier to organize 
local control strategies, but one would hope that more centralized 
nation-states will eventually overcome the institutional disadvantages 
they face and also manage to successfully employ local strategies to keep 
the pandemic at bay. Unfortunately, at the time of finishing this article, 
it has become all too clear that the strategy which countries tried to 
employ after the first wave of the pandemic appeared to be under con-
trol was insufficiently successful. England, together with its European 
peers, is now well and truly in the second wave of the pandemic, an 
analysis of which is beyond the scope of this article, which was entirely 
focused on spatial contagion during England’s first wave. 
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