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Abstract: We derive explicit solutions to the perpetual American cancellable standard put and call
options in an extension of the Black–Merton–Scholes model. It is assumed that the contracts are
cancelled at the last hitting times for the underlying asset price process of some constant upper
or lower levels which are not stopping times with respect to the observable filtration. We show
that the optimal exercise times are the first times at which the asset price reaches some lower or
upper constant levels. The proof is based on the reduction of the original optimal stopping problems
to the associated free-boundary problems and the solution of the latter problems by means of the
smooth-fit conditions.

Keywords: perpetual American options; optimal stopping problem; Brownian motion; first passage
time; last hitting time; free-boundary problem; instantaneous stopping and smooth fit; a change-of-
variable formula with local time on surfaces

1. Introduction

The main aim of this paper is to compute closed-form expressions for the value
functions of the discounted optimal stopping problems:

V(x) = sup
τ

E
[
e−rτ (L− Xτ) I(τ < θ)

]
and U(x) = sup

ζ

E
[
e−rζ (Xζ − K) I(ζ < η)

]
(1)

with some L, K > 0 fixed, where I(·) denotes the indicator function.
Here, for precise formulation of the problems, we consider a probability space

(Ω,F , P) with a standard Brownian motion B = (Bt)t≥0. Here, the process X = (Xt)t≥0 is
given by:

Xt = x exp
((

r− δ− σ2/2
)

t + σ Bt

)
(2)

which solves the stochastic differential equation:

dXt = (r− δ) Xt dt + σ Xt dBt (X0 = x) (3)

where x > 0 is fixed, and r > 0, δ > 0, and σ > 0 are some given constants. Assume
that the process X describes the price of risky assets on a financial market, where r is the
riskless interest rate, δ is the dividend rate paid to the asset holders, and σ is the volatility
rate. We also introduce the random times θ and η by:

θ = sup{t ≥ 0 |Xt ≥ h} and η = sup{t ≥ 0 |Xt ≤ g} (4)

for some h > L > 0 and 0 < g < K fixed, which are not stopping times with respect
to the natural filtration (Ft)t≥0 of the process X, but they are honest times in the sense of
Nikeghbali and Yor [1]. Assume that the process X describes the price of a risky asset in
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a financial market, where r is the riskless interest rate, δ is the dividend rate paid to the
asset holders, and σ is the volatility rate. Suppose that the suprema in (1) are taken over
all stopping times τ and ζ with respect to the filtration (Ft)t≥0, and the expectations there
are taken with respect to the risk-neutral probability measure P. In this view, the values
V and U in (1) are the no-arbitrage prices of the perpetual American cancellable options
in the Black–Merton–Scholes model (see, e.g., [2] ([Chapter VII, Section 3g])). Note that
other perpetual American cancellable options with another game-type payoff structure
were recently studied by Emmerling [3] (see also references therein). Some extensive
overviews of the perpetual American options in diffusion models of financial markets and
other related results in the area are provided in Shiryaev [2] ([Chapter VIII; Section 2a]),
Peskir and Shiryaev [4] ([Chapter VII; Section 25]), and Detemple [5] among others.

The model studied here differs from models studied in existing works such as Szi-
mayer [6], Gapeev and Al Motairi [7], Glover and Hulley [8], Dumitrescu et al. [9], and Grig-
orova et al. [10], as neither the immersion hypothesis nor the density hypothesis is satisfied
by the random times (or default times) θ and η, and the default intensity process simply
does not exists in our setting (see, e.g., Bielecki and Rutkowski [11]). We see clearly in
(6) and (7) that, in the case of zero recovery, this leads to a modified discounting factors,
which are no longer functions of the sum of the interest rate and the default intensity rate.
In addition, the diversion from the immersion hypothesis leads to the appearance of an
adjusted dividend rate. Finally, if we were to study the finite horizon problem from a point
of view of the backward stochastic differential equations (or BSDEs) as in [9,10], then it
could be shown that the dynamics of the no-arbitrage (pre-default) price will no longer
satisfy a linear reflected BSDE but rather a linear reflected generalised BSDE where the
generalised driver is related to the local time of the underlying asset at h or g.

We further study the problems of (1) as the associated optimal stopping problems
of (20) and (21) for the one-dimensional continuous Markov underlying risky asset price
process X. Note that the integrals in the reward functionals of the optimal stopping
problems in (20) and (21) contain local times of the process X at the points h and g which
represents an interesting feature for the general theory of optimal stopping problems for
continuous Markov processes.

The rest of the paper is organised as follows. In Section 2, we embed the original
problems of (1) into the optimal stopping problems of (20) and (21) for the one-dimensional
continuous Markov process X defined in (2). It is shown that the optimal exercise times τ∗

and ζ∗ are the first times at which the process X reaches some lower or upper constant levels
a∗ or b∗. In Section 3, we derive explicit expressions for the associated value functions V∗(x)
and U∗(x) as solutions to the equivalent free-boundary problems and apply the smooth-fit
conditions to characterise the optimal stopping boundaries a∗ and b∗. In Section 4, by using
the change-of-variable formula with local time on surfaces from Peskir [12], we verify that
the solutions of the free-boundary problems provide the solutions of the original optimal
stopping problems. The main results of the paper are stated in Theorem 1.

2. Preliminaries

In this section, we introduce the setting and notation of the two-dimensional optimal
stopping problems which are related to the pricing of perpetual American cancellable
standard put-and-call options and formulate the equivalent free-boundary problems.

2.1. The Optimal Stopping Problems

In order to compute the expectations in (1), let us now introduce the conditional
survival processes Z = (Zt)t≥0 and Y = (Yt)t≥0 defined by Zt = P(θ > t | Ft) and
Yt = P(η > t | Ft), for all t ≥ 0, respectively. Note that the processes Z and Y are called
the Azéma supermartingales of the random times θ and η (see, e.g., [13] ([Section 1.2.1])).
By using the fact that the running maximum of a Brownian motion with the drift coefficient
r − δ − σ2/2 < 0 has an exponential distribution with the mean 1/(σ2 + 2(δ − r)),
while the running minimum of a Brownian motion with the drift coefficient r − δ − σ2/2 > 0
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has an exponential distribution with the mean 1/(2(r − δ) − σ2) (see, e.g., [14] ([Chapter II,
Exercise 3.12])), we have:

Zt =

{
(h/Xt)α ∧ 1, if α < 0
1, if α ≥ 0

and Yt =

{
(g/Xt)α ∧ 1, if α > 0
1, if α ≤ 0

(5)

where we set α = 2(r − δ)/σ2 − 1. The representations in (5) can also be obtained
by applying Doob’s maximal equality (see, e.g., [13] ([Lemma 0.1]) or [14] ([Chapter II,
Exercise 3.12])) to the process X−α = (X−α

t )t≥0, which is a strictly positive continuous
local martingale, and thus, a supermartingale converging to zero at infinity. Then, it follows
from a direct application of the tower property for conditional expectations that the first
terms in the right-hand sides of the expressions in (1) have the form:

E
[
e−rτ (L− Xτ) I(τ < θ)

]
= E

[
e−rτ (L− Xτ)

(
(h/Xτ)

α ∧ 1
)]

(6)

when α < 0, and

E
[
e−rζ (Xζ − K) I(ζ < η)

]
= E

[
e−rζ (Xζ − K)

(
(g/Xζ)

α ∧ 1
)]

(7)

when α > 0, for any stopping times τ and ζ of the process X. It is seen from the structure of
the rewards in (1) with (6) and (7) that it is not optimal to exercise the perpetual American
cancellable put or call options, when Xt > L or Xt < K holds, for any t ≥ 0, respectively.

By applying the change-of-variable formula from [12] ([Theorem 3.1]) (see also [4]
([Chapter II, Section 3.5]) for a summary of the related results and further references)
to the process e−rtG1(Xt) with G1(x) = (L − x)((h/x)α ∧ 1), for x > 0, we obtain
the representation:

e−rt G1(Xt) = G1(x) (8)

+
∫ t

0
e−ru

(
G′1(Xu) (r− δ) Xu + G′′1 (Xu)

σ2X2
u

2
− r G1(Xu)

)
I(Xu 6= h) du

+
∫ t

0
e−ru (G′1(h+)− G′1(h−)

)
I(Xu = h) d`h

u(X) + N1
t

when α < 0, for each x > 0 and all t ≥ 0. Here, the process N1 = (N1
t )t≥0 given by:

N1
t =

∫ t

0
e−ru G′1(Xu)

(
h/Xu

)α I(Xu 6= h) σ dBu (9)

is a continuous uniformly integrable martingale under the probability measure P, when α < 0,
while the process `h(X) = (`h

t (X))t≥0 defined as the limit in probability by:

`h
t (X) = P− lim

ε↓0

1
2ε

∫ t

0
I
(
h− ε < Xu < h + ε

)
σ2 X2

u du (10)

is the local time of the process X at the point h. Then, by means of Doob’s optional sampling
theorem (see, e.g., [15] ([Chapter III, Theorem 3.6]) or [14] ([Chapter II, Theorem 3.2])),
we get:

E
[
e−rτ G1(Xτ)

]
= G1(x) (11)

+ E
[ ∫ τ

0
e−ru

(
G′1(Xu) (r− δ) Xu + G′′1 (Xu)

σ2X2
u

2
− r G1(Xu)

)
I(Xu 6= h) du

+
∫ τ

0
e−ru (G′1(h+)− G′1(h−)

)
I(Xu = h) d`h

u(X)

]
when α < 0, for any stopping time τ with respect to (Ft)t≥0. Hence, getting the expres-
sions in (11) together with the ones in (6) above, we may conclude that the value V(x) from
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(1) is given by:

V(x) = G1(x) + sup
τ

E
[ ∫ τ

0
e−ru H1(Xu) I(Xu 6= h) du (12)

+
∫ τ

0
e−ru (G′1(h+)− G′1(h−)

)
I(Xu = h) d`h

u(X)

]
when α < 0, for each x > 0, where the supremum is taken over all stopping times τ of
the process X. Here, we put:

H1(x) = G′1(x) (r− δ) x + G′′1 (x)
σ2x2

2
− r G1(x) (13)

= (δ′x− rL) (h/x)α I(x < h) + (δx− rL) I(x ≥ h)

for all x > 0, where we set δ′ = δ + ασ2 ≡ 2r − δ − σ2, that can be considered as a
cancellation adjusted dividend rate.

Moreover, by applying the change-of-variable formula from [12] ([Theorem 3.1]) to
the process e−rtG2(Xt) with G2(x) = (x − K)((g/x)α ∧ 1), for x > 0, we obtain the
representation:

e−rt G2(Xt) = G2(x) (14)

+
∫ t

0
e−ru

(
G′2(Xu) (r− δ) Xu + G′′2 (Xu)

σ2X2
u

2
− r G2(Xu)

)
I(Xu 6= g) du

+
∫ t

0
e−ru (G′2(g+)− G′2(g−)

)
I(Xu = g) d`g

u(X) + N2
t

when α < 0, for each x > 0 and all t ≥ 0, where we have δ′ = δ + ασ2 ≡ 2r− δ− σ2.
Here, the process N2 = (N2

t )t≥0 given by:

N2
t =

∫ t

0
e−ru G′2(Xu)

(
g/Xu

)α I(Xu 6= g) σ dBu (15)

is a continuous uniformly integrable martingale under the probability measure P, when α > 0,
while the process `g(X) = (`

g
t (X))t≥0 defined as the limit in probability by:

`
g
t (X) = P− lim

ε↓0

1
2ε

∫ t

0
I
(

g− ε < Xu < g + ε
)

σ2 X2
u du (16)

is the local time of the process X at the point g. Then, by means of Doob’s optional
sampling theorem,

E
[
e−rζ G2(Xζ )

]
= G2(x) + E

[ ∫ ζ

0
e−ru

(
G′2(Xu)(r− δ) Xu + G′′2 (Xu)

σ2X2
u

2
− rG2(Xu)

)
I(Xu 6= g) du

+
∫ ζ

0
e−ru(G′2(g+)− G′2(g−)

)
I(Xu = g) d`g

u(X)

]
(17)

when α > 0, for any stopping time ζ with respect to (Ft)t≥0. Hence, getting the expressions
in (17) together with the ones in (7) above, we may conclude that the value U(x) from (1) is
given by:

U(x) = G2(x) + sup
ζ

E
[ ∫ ζ

0
e−ru H2(Xu) I(Xu 6= g) du (18)

+
∫ ζ

0
e−ru (G′2(g+)− G′2(g−)

)
I(Xu = g) d`g

u(X)

]
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when α > 0, for each x > 0, where the supremum is taken over all stopping times ζ of
the process X. Here, we put:

H2(x) = G′2(x) (r− δ) x + G′′2 (x)
σ2x2

2
− r G2(x) (19)

= (rK− δ′x) (g/x)α I(x > g) + (rK− δx) I(x ≤ g)

for all x > 0, where we recall that δ′ = δ + ασ2 ≡ 2r− δ− σ2. Note that, since the time
spent by the process X at the constant boundaries h and g is of the Lebesgue measure zero
(see, e.g., [16] ([Chapter II, Section 1])), the indicators in the expressions of (12) and (18) can
be set equal to one.

Therefore, we see that the problems in (12) can be naturally embedded into the
optimal stopping problems for the (time-homogeneous strong) Markov process X with the
value functions:

V∗(x) = sup
τ

Ex

[ ∫ τ

0
e−ru H1(Xu) du +

∫ τ

0
e−ru (G′1(h+)− G′1(h−)

)
I(Xu = h) d`h

u(X)

]
(20)

when α < 0, and

U∗(x) = sup
ζ

Ex

[ ∫ ζ

0
e−ru H2(Xu) du +

∫ ζ

0
e−ru (G′2(g+)− G′2(g−)

)
I(Xu = g) d`g

u(X)

]
(21)

when α > 0, respectively. Here, Ex denotes the expectation with respect to the probability
measures Px under which the one-dimensional Markov process X defined in (2) starts at
x > 0. We further obtain solutions to the optimal stopping problems in (20) and (21) and
verify below that the value functions V∗(x) and U∗(x) are the solutions of the problems in
(12) and (18), and thus, give the solutions of the original problems in (1).

2.2. The Structure of Optimal Exercise Times

Let us now determine the structure of the optimal stopping times at which the holders
should exercise the contracts. We first note that, it follows from the structure of the first
integrands in (20) and (21) that it is not optimal to exercise the perpetual American can-
cellable put option when H1(Xt) ≥ 0, while it is not optimal to exercise the corresponding
call option when H2(Xt) ≥ 0, for any t ≥ 0, respectively. In this respect, if we assume that
δ′ ≡ 2r− δ− σ2 ≤ 0 holds, that obviously implies that α ≡ 2(r− δ)/σ2 − 1 < 0 holds,
then we see from the expression in (20) that the equality τ∗ = 0 should hold for the optimal
stopping time, so that one should exercise the perpetual American cancellable put option
instantly. In this view, for simplicity of presentation, we further assume that δ′ > 0 holds,
as well as note that the fact that α ≡ 2(r− δ)/σ2 − 1 > 0 holds obviously implies that
δ′ ≡ 2r− δ− σ2 > 0 holds. In this case, the inequality (δ′x− rL)(h/x)α ≥ 0 is satisfied if
and only if x ≥ a holds with a = rL/δ′. Furthermore, the inequality (rK− δ′x)(g/x)α ≥ 0
is satisfied if and only if x ≤ b holds with b = rK/δ′.

We further search for the optimal stopping times in the problems of (20) and (21) with
the structure:

τ∗ = inf{t ≥ 0 |Xt ≤ a∗} and ζ∗ = inf{t ≥ 0 |Xt ≥ b∗} (22)

where the constant boundaries 0 < a∗ < L < h and b∗ > K > g > 0 are to be
determined, when α < 0 or α > 0, respectively (see Figures 1 and 2 below for computer
drawings of the value functions and the optimal exercise boundaries).
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-

6
V

x

V∗ (x) + G1(x)

L ha∗

G1(x)

L− h

Figure 1. A computer drawing of the value function V∗(x) + G1(x).

-

6
g

U

x

U∗ (x) + G2(x)

Kg

G2(x)

b∗

g− K

Figure 2. A computer drawing of the value function U∗(x) + G2(x).

2.3. The Free-Boundary Problems

By means of standard arguments based on the application of Itô’s formula (see,
e.g., [15] ([Theorem 4.4]) or [14] ([Chapter II, Theorem 3.2])), it is shown that the infinitesi-
mal operator L of the process X from (3) acts on a function F(x) from the class C2 according
to the rule:

(LF)(x) = (r− δ) x F′(x) +
σ2x2

2
F′′(x) (23)

for all x > 0 (see, e.g., [17] ([Chapter V, Section 5.1])). In order to find analytic expressions
for the unknown value functions V∗(x) and U∗(x) from (20) and (21) and the unknown
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boundaries a∗ and b∗ from (22), we apply the results of general theory for solving opti-
mal stopping problems for Markov processes presented in [4] ([Chapter IV, Section 8])
among others. More precisely, for the original optimal stopping problems in (20) and
(21), we formulate the associated free-boundary problems (see, e.g., [4] ([Chapter IV, Sec-
tion 8])) and then verify in Theorem 4.1 below that the appropriate candidate solutions of
the latter problems coincide with the solutions of the original problems. In other words,
we reduce the optimal stopping problems of (20) and (21) to the following equivalent
free-boundary problems:

(LV − rV)(x) = − H1(x) for x > a, (LU − rU)(x) = − H2(x) for x < b (24)

V(x)
∣∣
x = a+ = 0, U(x)

∣∣
x = b− = 0 (25)

V′(x)
∣∣
x = a+ = 0, U′(x)

∣∣
x = b− = 0 (26)

V(x) = 0 for x < a, U(x) = 0 for x > b (27)

V(x) > 0 for x > a, U(x) > 0 for x < b (28)

(LV − rV)(x) < − H1(x) for x < a, (LU − rU)(x) < − H2(x) for x > b (29)

for some 0 < a < L < h and b > K > g > 0, where the functions H1(x)
and H2(x) have the form of (13) and (19), respectively. Observe that the superharmonic
characterisation of the value function (see, e.g., [4] ([Chapter IV, Section 9])) implies that
V∗(x) and U∗(x) are the smallest functions satisfying (24),(25) and (27),(28) with the
boundaries a∗ and b∗, respectively. Note that the inequalities in (29) follow directly from
the arguments of Section 2.2 above.

3. Solutions to the Free-Boundary Problems

In this section, we obtain solutions to the free-boundary problems in (24)–(29) and
derive first-order nonlinear ordinary differential equations for the candidate optimal
stopping boundaries.

3.1. The Candidate Value Functions

It is shown that the second-order ordinary differential equations in (24) have the
general solutions:

V(x) = C1 xγ1 + C2 xγ2 + (x− L) (h/x)α I(x < h) + (x− L) I(x ≥ h) (30)

when α < 0, and

U(x) = D1 xγ1 + D2 xγ2 + (K− x) (g/x)α I(x > g) + (K− x) I(x ≤ g) (31)

when α > 0, for all x > 0, respectively. Here, Ci and Di, for i = 1, 2, are some arbitrary
constants, and γi, for i = 1, 2, are given by:

γi =
1
2
− r− δ

σ2 − (−1)i

√(
1
2
− r− δ

σ2

)2

+
2r
σ2 (32)

so that γ2 < 0 < 1 < γ1 holds. Observe that C1 = 0 and D2 = 0 should hold for
the candidate value functions in (30) and (31), since otherwise V(x)→ ±∞ as x ↑ ∞ and
U(x) → ±∞ as x ↓ 0, that must be excluded, by virtue of the fact that the values V∗(x)
and U∗(x) in (20) and (21) are finite. Then, by applying the conditions of (25) and (26) to
the functions in (30) and (31), we obtain the equalities:

C2 aγ2 + (a− L) (h/a)α = 0 (33)

γ2 C2 aγ2 +
(
(1− α) a + L α

)
(h/a)α = 0 (34)



Algorithms 2021, 14, 3 8 of 11

for a < h, and

D1 bγ1 + (K− b) (g/b)α = 0 (35)

γ1 D1 bγ1 −
(
(1− α) b + K α

)
(g/b)α = 0 (36)

for b > g, respectively. Hence, by solving the systems of equations in (33), (34) and
(35), (36), we obtain that the candidate value functions admit the representations:

V(x; a) = (L− a) (x/a)γ2 (h/a)α + (x− L) (h/x)α I(x < h) + (x− L) I(x ≥ h) (37)

for x > a with a < L < h, and

U(x; b) = (b− K) (x/b)γ1 (g/b)α + (K− x) (g/x)α I(x > g) + (K− x) I(x ≤ g) (38)

for x < b with b > K > g, respectively.
Moreover, by means of straightforward computations, it can be deduced from the

expressions in (37) and (38) that the first- and second-order derivatives V′(x; a) and V′′(x; a)
of the function V(x; a) take the form:

V′(x; a) = (L− a) (γ2/a) (x/a)γ2−1 (h/a)α + (1− α) (h/x)α I(x < h) (39)

+ L (α/x) (h/x)α I(x < h) + I(x ≥ h)

and

V′′(x; a) = (L− a)
(
γ2(γ2 − 1)/a2) (x/a)γ2−2 (h/a)α −

(
(1− α)α/x

)
(h/x)α I(x < h) (40)

− L
(
α(α + 1)/x2) (h/x)α I(x < h)

on the interval x > a, while the first- and second-order derivatives U′(x; b) and U′′(x; b)
of the function U(x; b) take the form:

U′(x; b) = (b− K) (γ1/b) (x/b)γ1−1 (g/b)α − (1− α) (g/x)α I(x > g) (41)

− K (α/x) (g/x)α I(x > g)− I(x ≤ g)

and

U′′(x; b) = (b− K)
(
γ1(γ1 − 1)/b2) (x/b)γ1−2 (g/b)α +

(
(1− α)α/x

)
(g/x)α I(x > g) (42)

+ K
(
α(α + 1)/x2) (g/x)α I(x > g)

respectively.

3.2. The Candidate Stopping Boundaries

By solving the systems of equations in (33), (34) and (35), (36), we obtain that the
candidate exercise boundaries have the form:

a∗ =
γ2 + α

γ2 + α− 1
L and b∗ =

γ1 + α

γ1 + α− 1
K (43)

when α < 0 or α > 0, under the assumption δ′ ≡ 2r− δ− σ2 > 0, respectively. Moreover,
it is shown by means of straightforward computations that the inequalities:

a∗ <
rL
δ′

and b∗ >
rK
δ′

(44)

hold with δ′ ≡ 2r− δ− σ2 > 0, so that the appropriate inequalities (29) are satisfied.
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4. Main Results and Proofs

In this section, based on the previous computations, we formulate and prove our main
results.

Theorem 1. Let the processes X be given by (2), with some r > 0, δ > 0, and σ > 0, and the
inequality δ′ ≡ 2r− δ− σ2 > 0 be satisfied. Suppose that the random times θ and η are defined
by (4), which are honest times but not stopping times with respect to the natural filtration (Ft)t≥0
of the process X. Then, the value functions of the perpetual American cancellable standard put and
call options from (20) and (21) admit the expressions:

V∗(x) =

{
V(x; a∗), if x > a∗

0, if 0 < x ≤ a∗
(45)

whenever α ≡ 2(r− δ)/σ2 − 1 < 0, and

U∗(x) =

{
U(x; b∗), if 0 < x < b∗

0, if x ≥ b∗
(46)

whenever α > 0. Here, the function V(x; a) admits the representation of (37) and the optimal
exercise boundary a∗ is given by (43), whenever α < 0, while U(x; b) admits the representation of
(38) and the optimal exercise boundary b∗ is given by (43), whenever α > 0.

Since both parts of the assertion stated above are proved using similar arguments,
we only give a proof for the case of the one-dimensional optimal stopping problem of (21)
related to the perpetual American cancellable standard call options.

Proof. In order to verify the assertion stated above, it remains for us to show that the
function defined in (46) coincides with the value function in (21) and that the stopping
time ζ∗ in (22) is optimal with the boundary b∗ specified above. Let us denote by U(x) the
right-hand side of the expression in (46). Then, it is shown by means of straightforward
calculations from the previous section that the function U(x) solves the right-hand system
of (24)–(29). Observe that the function U(x) is C2 on the closures {x > 0 | 0 < x ≤ g}
and {x > 0 | g ≤ x ≤ b∗}, while it is equal to zero on the closed set {x > 0 | x ≥ b∗}.
Hence, by applying the change-of-variable formula from [12] ([Theorem 3.1]) to the process
e−rtU(Xt), we obtain the expression:

e−rt U(Xt) = U(x) +
∫ t

0
e−ru (LU − rU)(Xu) I(Xu 6= g, Xu 6= b) du + Mt (47)

+
∫ t

0
e−ru (U′(g+)−U′(g−)

)
I(Xu = g) d`g

u(X)

for all t ≥ 0. Here, the process M = (Mt)t≥0 defined by:

Mt =
∫ t

0
e−ru U′(Xu) I(Xu 6= g) σ Xu dBu (48)

is a continuous local martingale with respect to the probability measure Px. Note that,
since the time spent by the process X at the constant boundary b is of the Lebesgue measure
zero (see, e.g., [16] ([Chapter II, Section 1])), the indicators in the first line of the expression
of (47) as well as in the expression of (48) can be set equal to one.

It follows from straightforward calculations and the arguments of the previous section
that the function U(x) satisfies the second-order ordinary differential equation in (24),
which together with the right-hand conditions of (25)–(27) as well as the fact that the right-
hand inequality in (29) holds imply that the inequality (LU− rU)(x) ≤ −H2(x) is satisfied
with H2(x) given by (19), for all x > 0 such that x 6= b. Moreover, we observe directly
from the expressions in (38), (41) and (42) that the function U(x) is convex and decreases
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to zero, because its first-order derivative U′(x) is negative and increases to zero, while its
second-order derivative U′′(x) is positive, on the interval 0 < x < b, under α > 0. Thus,
we may conclude that the inequality in (28) holds, which together with the conditions of (
25)–(27) imply that the inequality U(x) ≥ 0 is satisfied, for all x > 0.

Let (κn)n∈N be the localising sequence of stopping times for the process M from (48)
such that κn = inf{t ≥ 0 | |Mt| ≥ n}, for each n ∈ N. We also observe from the explicit
expressions in (38) and (41) that the equality U′(g+)−U′(g−) = − G′2(g+) + G′2(g−)
holds. It therefore follows from the expression in (47) that the inequalities:∫ ζ∧κn

0
e−ru H2(Xu) du +

∫ ζ∧κn

0
e−ru (G′2(g+)− G′2(g−)

)
I(Xu = g) d`g

u(X) (49)

≤ e−r(ζ∧κn) U(Xζ∧κn) +
∫ ζ∧κn

0
e−ru H2(Xu) du

+
∫ ζ∧κn

0
e−ru (G′2(g+)− G′2(g−)

)
I(Xu = g) d`g

u(X)

≤ U(x) + Mζ∧κn

are satisfied, for any stopping time ζ of the process X and each n ∈ N fixed. Then, taking
the expectation with respect to Px in (49), by means of Doob’s optional sampling theorem,
we obtain

Ex

[ ∫ ζ∧κn

0
e−ru H2(Xu) du +

∫ ζ∧κn

0
e−ru (G′2(g+)− G′2(g−)

)
I(Xu = g) d`g

u(X)

]
(50)

≤ U(x) + Ex
[
Mζ∧κn

]
= U(x)

for all x > 0 and each n ∈ N. Hence by letting n go to infinity and using Fatou’s lemma,
we obtain from the expressions in (50) that the inequalities:

Ex

[ ∫ ζ

0
e−ru H2(Xu) du +

∫ ζ

0
e−ru (G′2(g+)− G′2(g−)

)
I(Xu = g) d`g

u(X)

]
≤ U(x) (51)

hold, for any stopping time ζ and all x > 0. In order to prove the fact that the boundary
b∗ is optimal, we consider the sequence of stopping times κn, n ∈ N, defined as in the right-
hand part of (22). Then, by virtue of the fact that the function U(x) from the right-hand
side of the expression in (46) associated with the boundary b satisfies the conditions of (24)
and (25), and taking into account the structure of ζ∗ in (22), it follows from the expression
which is equivalent to the one in (47) that the equalities:

∫ ζ∗∧κn

0
e−ruH2(Xu) du +

∫ ζ∗∧κn

0
e−ru(G′2(g+)− G′2(g−)

)
I(Xu = g) d`g

u(X) (52)

= e−r(ζ∗∧κn)U(Xζ∗∧κn) +
∫ ζ∗∧κn

0
e−ruH2(Xu) du

+
∫ ζ∗∧κn

0
e−ru(G′2(g+)− G′2(g−)

)
I(Xu = g) d`g

u(X)

= U(x) + Mζ∗∧κn

hold, for all x > 0 and each n ∈ N. Observe that, by virtue of the arguments from [2] ([Chap-
ter VIII, Section 2a]), the property:

Ex

[
sup
t≥0

( ∫ ζ∗∧t

0
e−ru H2(Xu) du +

∫ ζ∗∧t

0
e−ru (G′2(g+)− G′2(g−)

)
I(Xu = g) d`g

u(X)

)]
< ∞ (53)

holds, for all x > 0. Hence, letting n go to infinity and using the condition of (25), we can
apply the Lebesgue dominated convergence theorem in the expression of (52) to obtain
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the equality:

Ex

[ ∫ ζ∗

0
e−ru H2(Xu) du +

∫ ζ∗

0
e−ru (G′2(g+)− G′2(g−)

)
I(Xu = g) d`g

u(X)

]
= U(x) (54)

for all x > 0, which together with the inequalities in (51) directly implies the desired
assertion.
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