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Abstract. We propose a semiparametric estimator for varying coefficient models when the re-

gressors in the nonparametric components are measured with error. Varying coefficient models

are an extension of other popular semiparametric models, including partially linear and non-

parametric additive models, and deliver an attractive solution to the curse-of-dimensionality.

We use deconvolution kernel estimation in a two-step procedure and show that the estimator is

consistent and asymptotically normally distributed. We do not assume that we know the dis-

tribution of the measurement error a priori. Instead, we suppose we have access to a repeated

measurement of the noisy regressor and present results using the approach of Delaigle, Hall and

Meister (2008) and, for cases when the measurement error may be asymmetric, the approach of

Li and Vuong (1998) based on Kotlarski’s (1967) identity. We show that the convergence rate of

the estimator is significantly reduced when the distribution of the measurement error is assumed

unknown and possibly asymmetric. We study the small sample behavior of our estimator in a

simulation study and apply it to a real dataset. In particular, we consider the role of cognitive

ability in augmenting the effect of risk preferences on earnings.

1. Introduction

Varying coefficient models, introduced by Hastie and Tibshirani (1993), represent a very gen-
eral class of semiparametric specification. In its canonical form, the varying coefficient model is
given by

Y = β0(Z) +X1β1(Z) +X2β2(Z) + · · ·+Xkβk(Z) + U, E[U |X,Z] = 0,

where Y is a scalar dependent variable, X = (X1, . . . , Xk)
′ and Z are covariates, (β0(·), . . . , βk(·))

are unknown functions of Z, and U is an error term. Note that X and Z need not necessarily be
mutually exclusive sets of variables, and may even coincide. This specification allows the effect of
each Xj on Y to depend on Z in a nonparametric manner. As well as nesting nonparametric ad-
ditive models (Hastie and Tibshirani, 1993), the varying coefficient model is also a generalisation
of the partially linear model (Robinson, 1988).

In this paper, we extend the varying coefficient model to allow for Z to be imperfectly mea-
sured. Contaminated data exists in almost all areas of the natural and social sciences and is
particularly common in economics. The prevalence of the problem is demonstrated by the large
- and continually growing - literature aimed at correcting this issue. There are many possible
causes for such noisy data, for example: an imperfect measurement instrument, which is partic-
ularly widespread in macroeconomics, where variables such as unemployment and inflation can
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only proxy for the truth; reporting errors in survey data; expectations of future variables, such
as expected future consumption or inflation; and variables whose very definitions are imprecise,
for example, ability or non-cognitive skills. More generally, measurement error is present when-
ever the variables of the theoretical model do not exactly match the variables in the data. Such
error-ridden variables are a well-known source of inconsistency in many estimators, and varying
coefficient models are no exception.

We propose a deconvolution based estimator for the varying coefficient model when the co-
variate in the nonparametric component is contaminated with classical measurement error. We
show that the estimator is consistent and asymptotically normally distributed under a range of
potential assumptions regarding the measurement error. In particular, we provide results for
both ordinary smooth and supersmooth error, and when the error distribution is assumed known
or when it must be estimated using auxiliary data. Moreover, in contrast to much of the previous
literature, we also prove the asymptotic properties of the estimator when the error distribution
is estimated but is not assumed symmetric.

Although seemingly innocuous, allowing the error distribution to be asymmetric poses consid-
erable technical challenges (see, for example, Li and Vuong, 1998, Bonhomme and Robin, 2010,
and Kurisu and Otsu, 2020). Indeed, Delaigle, Hall and Meister (2008) showed that nonpara-
metric deconvolution estimators with an unknown - but symmetric - measurement error density
can obtain the same convergence rate as the corresponding estimator with a known error den-
sity. In contrast, when the symmetry assumption is relaxed, the noise from estimating the error
characteristic function dominates the asymptotic properties of the final estimator and results in
slower convergence rates than its known (or symmetric) estimator counterparts.

The plethora of recent papers studying the theoretical properties of varying coefficient models
highlights their growing popularity (see, for example, Ma and Song, 2015, He, Lian, Ma and
Huang, 2018, and Yao, Zhang and Kumbhakar, 2019). However, these models are not only
of theoretical interest. They have been put to great use in many applied settings (see, for
example, Mamuneas, Savvides and Stengos, 2006, Heshmati, Kumbhakar and Sun, 2014, and
Feng, Gao, Peng and Zhang, 2017). Within empirical work, one of the biggest appeals of varying
coefficient models is their similarity to conventional linear regression models, which facilitates a
straightforward interpretation of the estimation results.

The ability of varying coefficient models to mitigate the ‘curse-of-dimensionality’ is another
source of their popularity in applied work. Typically, a single covariate is used in the nonpara-
metric component; for example, one may be interested in how the return to education changes
over the lifecycle of an individual or on their ability, the latter being a prime example of a mis-
measured variable. In this case, estimators of these effects converge at the rate

√
nan, where an

denotes the bandwidth parameter. This is in contrast to a fully nonparametric model where the
convergence rate is

√
nadn, where d is the dimension of the full set of regressors. Moreover, in the

presence of measurement error, the curse-of-dimensionality is, in general, exacerbated. Hence,
the benefits of using varying coefficient models are increased when working with contaminated
data.
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As a result, varying coefficient models have been extended to allow for measurement error in
the covariates in several ways. You and Chen (2006) considered the setting where one of the
coefficients is constant, and its associated covariate is contaminated with error from a known
distribution. Zhou and Liang (2009) extended this model to allow for an unknown error dis-
tribution but where auxiliary information is available to estimate this density. In both cases,
√
n-convergence is obtained for this finite-dimensional parameter using profile least squares es-

timation. Finally, Li and Greene (2008) suppose that the error-prone covariate has a varying
coefficient which depends on correctly measured regressors. They use locally corrected score
equations to estimate the nonparametric functions and show that the convergence rate is not
affected by the measurement error.

We depart from the previous literature by considering measurement error in the nonparametric
component. This poses very different problems to those encountered in the aforementioned
research. In particular, we require deconvolution techniques to recover the distribution of the
latent covariates needed to estimate the smooth coefficient functions. We show that, in contrast
to settings where the mismeasured covariates enter the model linearly, the measurement error
impacts the rate of convergence of the estimator. Furthermore, the rate of convergence depends
sensitively on the degree of smoothness of the measurement error density.

More generally, deconvolution methods were first applied to measurement error problems for
density estimation by Carroll and Hall (1988) and Stefanski and Carroll (1990). Following
this seminal work, myriad extensions have been developed. Much of this research has focused
on relaxing the assumption that the density of the measurement error is known and must be
estimated from auxiliary data; for symmetrically distributed error, see, for example, Horowitz
and Markatou (1996) and Delaigle, Hall and Meister (2008), among many others, and for non-
symmetric error, see, for example, Li and Vuong (1998) and Bonhomme and Robin (2010). With
respect to regression estimation, Fan and Truong (1993) proposed a deconvolution method based
on the Nadaraya-Watson estimator. A related strand of research considers adaptive estimation of
regression functions. Here, estimation methods exist for when the error distribution is assumed
known (Comte and Taupin, 2007), when it is unknown but symmetric (Kappus and Mabon,
2014), and when it is unknown and non-symmetric (Comte and Kappus, 2015). Also, as an
alternative to kernel methods, wavelets could potentially be used in our setting, see, for example,
Pensky and Vidakovic, (1999) and Fan and Koo (2002). Schennach (2016) gives a recent review
of the vast measurement error literature.

The paper proceeds as follows. In Section 2, we outline the model setting, discuss our estimator
when the density of the measurement error is assumed to be known, and present the asymptotic
properties of the estimator. In Section 3, we relax the assumption of a known error distribution
and detail the resulting asymptotic properties. Section 4 presents the small sample properties
of our estimator in a simulation study. Section 5 considers an empirical application of our
estimator, and Section 6 concludes. In the supplementary material, we consider the case of
possibly asymmetric measurement error densities and derive the asymptotic properties of the
estimator.
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2. case of known measurement error distribution

2.1. Setup and estimator. Consider the varying coefficient model

Y = X ′β(W ∗) + U, E[U |X,W ∗] = 0, (2.1)

where X = (X1, . . . , Xk)
′ ∈ Rk is a vector of observable covariates, W ∗ ∈ R is an error-free

covariate, and β(·) = (β1(·), . . . , βk(·))′ is a vector of unknown functions. In this paper, we con-
centrate on the case where X and W ∗ are non-overlapping; this negates the need for backfitting
algorithms in the estimation procedure. We wish to estimate β(w∗) at a given point w∗ ∈ R
using an i.i.d. sample of (Y,X,W ), where W is a noisy measurement of W ∗ generated by

W = W ∗ + ε, (2.2)

and ε is a measurement error. In this paper, we assume the measurement error is classical; that
is, ε is independent of (Y,X,W ∗). However, we do not require full independence between ε and
W ∗, we only need f ftW (t) = f ftW ∗(t)f

ft
ε (t) for all t ∈ R, where f ft(t) =

´
eitxf(x)dx denotes the

Fourier transform of a function f with i =
√
−1, and fA denotes the density function of a random

variable A. As argued in Schennach (2019), this assumption is only as strong as a conditional
mean restriction.

Our estimation strategy proceeds as follows. LetMXX(w∗) = E[XX ′|W ∗ = w∗] andMXY (w∗) =

E[XY |W ∗ = w∗]. MXX(w∗) is assumed to be invertible (see, Assumption M below). By pre-
multiplying (2.1) by X and taking the conditional expectation, the object of interest β(w∗) can
be written as

β(w∗) = MXX(w∗)−1MXY (w∗). (2.3)

The conditional moments on the right hand side can be estimated by using deconvolution
techniques. In particular, we estimate MXX(w∗) and MXY (w∗) by

M̂XX(w∗) =

∑n
j=1XjX

′
jK
(
w∗−Wj

an

)
∑n

j=1K
(
w∗−Wj

an

) , M̂XY (w∗) =

∑n
j=1XjYjK

(
w∗−Wj

an

)
∑n

j=1K
(
w∗−Wj

an

) ,

respectively, where K is a deconvolution kernel function defined by

K(x) =
1

2π

ˆ
e−itx

K ft(t)

f ftε (t/an)
dt, (2.4)

K:R→ R is an ordinary kernel function, and an is a bandwidth parameter.
Based on these deconvolution estimators for the conditional moments, β(w∗) can be estimated

by1

β̂(w∗) =

 n∑
j=1

XjX
′
jK
(
w∗ −Wj

an

)−1 n∑
j=1

XjYjK
(
w∗ −Wj

an

)
. (2.5)

Li et al. (2002) considered a similar estimator when there is no measurement error and W ∗

is directly observed. In this paper, we employ the deconvolution kernel K to deal with the

1Our assumptions below guarantee that 1
nan

∑n
j=1XjX

′
jK
(
w∗−Wj

an

)
p→MXX(w∗) (see, proof of Theorem 1 (i)).

Thus, the matrix 1
nan

∑n
j=1XjX

′
jK
(
w∗−Wj

an

)
is invertible with probability approaching one.
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measurement error in W . The deconvolution kernel K defined as in (2.4), however, requires
researchers to know the measurement error distribution, which is an assumption that can rarely
hold in practice. In Section 3, we use the repeated measurements on W ∗ to relax this known
error distribution assumption. Also note that even though we focus on the case where W ∗ is
scalar in both Sections 2 and 3 to keep the notation simple, an extension to the case where W ∗

is multivariate is discussed in Section 6.

2.2. Asymptotic properties. In this section, we focus on the estimator β̂(w∗) defined in (2.5)
and study its asymptotic properties. As in the majority of the deconvolution literature, to
investigate the asymptotic properties of β̂(w∗), we consider two separate cases based on the tail
behavior of the characteristic function of the measurement error. The first is known as the case
of ordinary smooth error, or the ordinary smooth case for short, and is characterized by the
characteristic function of the measurement error decaying to zero at some polynomial rate. The
second is known as the case of supersmooth error, or the supersmooth case for short, and is
defined by an exponentially decaying error characteristic function.

Let λmax(B) and λmin(B) denote the maximum and minimum eigenvalues, respectively, of a
matrix B. We impose the following assumptions for both the ordinary smooth and supersmooth
cases.

Assumption M.

(1): {Yj , Xj ,Wj}nj=1 is an i.i.d. sample of (Y,X,W ) satisfying (2.1) and (2.2), and ε is
independent of (Y,X,W ∗).

(2): β(·), fW ∗(·), and E[Xk1Xk2 |W ∗ = ·] for k1, k2 = 1, . . . , k have p ∈ N continu-
ous, bounded, and integrable derivatives. E[U2|X,W ∗] and E[X2

k1
X2
k2
|W ∗] for k1, k2 =

1, . . . , k are bounded. Also λmin(E[XX ′|W ∗]) > 0 holds almost everywhere.
(3): K satisfies

´
K(x)dx = 1,

´
xpK(x)dx 6= 0 for some p ∈ N, and

´
xqK(x)dx = 0 for

all positive integers satisfying q < p. Also K ft is supported on [−1, 1] and bounded.
(4): E[|U |2+η|X,W ∗] and E[|Xk1 |2+η|W ∗] for k1 = 1, . . . , k are bounded for some η > 0.

Assumption M (1) requires random sampling and classical measurement error. Assumption M
(2) constitutes mild assumptions on the smoothness and boundedness of densities and conditional
moments, and the last condition guarantees identification of β(w∗). The p-th order continuous
differentiability of the functions β(·), fW ∗(·), and E[Xk1Xk2 |W ∗ = ·] are imposed to characterize
the order of the bias term, i.e., the component a2pn in Theorem 1 (i) below. By inspection of the
proof of Li et al. (2002, Theorem 2.1), we can see that analogous differentiability conditions are
required to characterize the order of the bias term even for the error-free case. Assumption M (3)
concerns the kernel function K. In particular, we require K to be a p-th order kernel to control
the estimation bias. In addition to the high-order property, we also require K ft to be compactly
supported for regularisation, which is necessary in the deconvolution problem. Assumption M
(4) contains additional assumptions on the boundedness of conditional moments, which are used
to apply Lyapunov’s central limit theorem for the asymptotic distribution of β̂(w∗).

We begin with the ordinary smooth case, for which the following assumptions are also imposed.
Let | · | denote the Euclidean norm.
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Assumption O.

(1): There exist positive constants α and cos0 such that

|f ftε (t)|(1 + |t|)α ≥ cos0 for all t ∈ R.

(2): an → 0 and na1+2α
n →∞ as n→∞.

(3): There exists a positive constant cos ≥ cos0 such that

f ftε (t)|t|α → cos as |t| → ∞.

(4): E[Xk1Xk2U
2|W ∗ = ·] and E[X2

k1
X2
k2
|W ∗ = ·] for k1, k2 = 1, . . . , k are continuous.

(5): na1+2α+2p
n → 0 as n→∞.

Assumption O (1) says that fε is ordinary smooth of order α. Popular examples of ordinary
smooth densities include the Laplace and gamma densities. The traditional ordinary smooth
assumption, as in (2.31) of Meister (2009), involves two bounds on |f ftε (t)|. Assumption O (1)
only imposes the lower bound as this is sufficient to study the upper bound of the risk as in
Theorem 1 (i). Assumption O (2) gives conditions on the bandwidth an. In particular, an → 0

is required for a vanishing bias, and na1+2α
n → ∞ is needed to control the estimation variance.

We emphasise that only Assumption O (1)-(2) are needed to derive the convergence rate of
β̂(w∗), and Assumption O (3)-(5) are additional conditions to derive the asymptotic distribution
of β̂(w∗). Assumption O (3) characterizes the exact tail behavior of f ftε , which is typically
needed to derive the distributional result for the deconvolution-based estimators. Assumption O
(4) contains some smoothness conditions for conditional moments. Assumption O (5) gives an
additional restriction on the bandwidth, where we undersmooth so that the estimation bias is
asymptotically negligible.

Under these assumptions, the asymptotic properties of β̂(w∗) are obtained as follows.

Theorem 1.

(i): Under Assumptions M (1)-(3) and O (1)-(2), it holds

|β̂(w∗)− β(w∗)|2 = Op(n
−1a−(1+2α)

n + a2pn ).

(ii): Under Assumptions M (1)-(4) and O (1)-(5), it holds√
na1+2α

n {β̂(w∗)− β(w∗)} d→ N(0,Ω(w∗)),

where Ω(w∗) = S(w∗)−1Σ(w∗)S(w∗)−1 with

S(w∗) = E[XX ′|W ∗ = w∗]fW ∗(w
∗),

Σ(w∗) = C

ˆ
E[XX ′(U +X ′{β(W ∗)− β(w∗)})2|W ∗ = w∗ − v]fW ∗(w

∗ − v)fε(v)dv,

and C = 1
2πcos2

´
|K ft(t)|2|t|2αdt is a constant that depends on both K and fε.

Theorem 1 (i) characterizes the L2-risk property of our deconvolution estimator β̂(w∗). The
second term, a2pn , in the convergence rate characterizes the magnitude of the estimation bias,
which is identical to that of the error-free case. Note that when the class of densities for W ∗
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is restricted to satisfy
´
|f ftW ∗(t)|2 exp(2c1|t|c2)dt ≤ 2πc3 for some positive constants c1, c2, and

c3, exponential convergence rates for the estimation bias are possible, see, for example, Pensky
and Vidakovic (1999), Butucea and Tsybakov (2008), and Comte and Lacour (2013). The first
term, n−1a−(1+2α)

n , characterizes the magnitude of the estimation variance. Compared to that of
the error-free case, the estimation variance of β̂(w∗) decays more slowly due to the term a−2αn ; a
smoother error distribution, which is characterized by a larger α, would lead to a larger estimation
variance, hence a slower convergence rate. Similar convergence rates have been observed in other
nonparametric measurement error problems, such as, Dong and Otsu (2019) for nonparametric
additive models with errors-in-variables, Adusumilli and Otsu (2018) for nonparametric instru-
mental variable regressions with errors-in-variables, and Otsu and Taylor (2020) for specification
testing in errors-in-variables regressions.

Theorem 1 (ii) says that the estimator β̂(w∗) is asymptotically normal, centred at the true
value, and has variance S(w∗)−1Σ(w∗)S(w∗)−1. It is worthy to note that fε can be set as
the Dirac delta function when there is no measurement error. So in the error-free context,
Σ(w∗) =

´
K2(x)dxE[XX ′U2|W ∗ = w∗]fW ∗(w

∗) and the asymptotic variance Ω(w∗) would
degenerate to the error-free asymptotic variance as in Li et al. (2002, Theorem 2.1).

In the supersmooth case, we impose the following additional assumptions.

Assumption S.

(1): There exist positive constants µ, css0 , and 1/3 < γ ≤ 2 such that

|f ftε (t)|eµ|t|γ ≥ css0 for all t ∈ R.

(2): an → 0 and nane−2µa
−γ
n →∞ as n→∞.

(3): There exists a positive constant css ≥ css0 such that

f ftε (t)eµ|t|
γ → css as |t| → ∞.

(4): K ft(1− t) = Atθ + o(tθ) as t→ 0 for some constants A and θ ≥ 0.
(5): na2p−2(2+θ)n e−2µa

−γ
n → 0 as n→∞ if 1/3 < γ < 1 and na2p−2γ(θ+1)+2

n e−2µa
−γ
n → 0 as

n→∞ if 1 ≤ γ ≤ 2.

Assumption S (1) says that fε is supersmooth. Popular examples of supersmooth densities
include the Gaussian and Cauchy densities. Similar to the ordinary smooth case, Assumption S
(1) is different from the traditional supersmooth assumption, as in (2.32) of Meister (2009), in
the sense that it only imposes the lower bound on |f ftε (t)| as this is sufficient to study the upper
bound of the risk as in Theorem 2 (i). We restrict γ to be less than or equal to 2 to ensure
that fε is a density (Chung, 1974, Theorem 6.5.4), while the lower bound of 1/3 guarantees that
an approximation error is of smaller order than the asymptotic variance (the same assumption
is imposed in van Es and Uh, 2004). Assumption S (2) concerns the bandwidth an; similar
comments to the ordinary smooth case apply here. Equally, Assumptions S (3) and (5) are
analogous to Assumptions O (3) and (5) in the ordinary smooth case. Assumption S (4) is
an additional condition on the kernel function K. Examples of popular kernel functions which
satisfy this extra constraint include the Sinc kernel, K(x) = sin(x)/(πx), where θ = 0, and the
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kernel proposed in Fan (1992),

K(x) =
48x(x2 − 15) cos(x)− 144(2x2 − 5) sin(x)

πx7
,

where θ = 3.
Under these assumptions, our deconvolution estimator β̂(w∗) has the following asymptotic

properties.

Theorem 2.

(i): Under Assumptions M (1)-(3) and S (1)-(2), it holds

|β̂(w∗)− β(w∗)|2 = Op(n
−1a−1n e2µa

−γ
n + a2pn ).

(ii): Under Assumptions M (1)-(4) and S (1)-(5), it holds

Ωn(w∗)−1/2{β̂(w∗)− β(w∗)} d→ N(0, Ik),

where Ωn(w∗) = n−1S(w∗)−1V ar(ξ1)S(w∗)−1 and ξ1 is defined in (A.2) in the Appendix.

Similar comments to Theorem 1 apply here. Compared to the ordinary smooth case, the
convergence rate of β̂(w∗) is considerably slower in the supersmooth case, reflecting the more
difficult task of deconvolution in the presence of supersmooth contamination. In particular, rather
than the polynomial rate obtained in Theorem 1 (i), by setting an = c

−1/γ
s (log(n))−1/γ with

0 < cs < 1/2µ, the variance term is O
(
n2µcs−1(log(n))1/γ

)
, the bias term is O

(
(log(n))−2p/γ

)
,

and β̂(w∗) then converges at the rate of (log(n))−2p/γ , i.e., the rate presented in Theorem 2 (i)
is logarithmic. Comparably slow logarithmic rates have been observed in other supersmooth
settings, such as Fan (1992) and Schennach (2004).

3. case of unknown measurement error distribution

In many applications, it is unrealistic to assume the measurement error distribution is known.
In this section, we consider the situation where fε is unknown but repeated measurements on
W ∗ are available.2 In particular, we have two independent noisy measurements of the error-free
covariate W ∗, i.e.,

W = W ∗ + ε and W r = W ∗ + εr. (3.1)

Depending on whether the error density fε is symmetric around zero or not determines how
these repeated measurements on W ∗ can be used to estimate fε. In this section, we use the

2Delaigle and Hall (2016) proposed an intriguing alternative approach to estimate the distributions of W ∗ and
ε, which does not require additional data. They suppose ε has a symmetric density but the distribution of
W ∗ is asymmetric and cannot be represented by a convolution of a density with another symmetric density.
In our notation, their estimator for f ft

ε can be written as f̂ ft
ε,DH(t) =

(
1
n

∑n
j=1 e

itWj

)
/
(∑n

j=1 p̂je
itWj

)
, where

(p̂1, . . . , p̂n) solves

min
p1,...,pn

ˆ ∞
−∞

∣∣∣∣∣∣ 1n
n∑
j=1

eitWj − |ψ̂(t)|1/2
∑n
j=1 pje

itWj∣∣∣∑n
j=1 pje

itWj

∣∣∣
∣∣∣∣∣∣
2

w(t)dt,

for some weight function w(·) and ψ̂(t) = 1
n(n−1)

∑
j1<j2

eit(Wj1
−Wj2

). By replacing f ft
ε with f̂ ft

ε,DH in the decon-
volution kernel (2.4), we can construct a feasible estimator for β(w∗). Since technical arguments are substantially
different from the present paper, we leave the analysis of such an estimator for future research.
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repeated measurements on W ∗ to construct the estimator of β(w∗) for the case of symmetric fε
and derive the asymptotic properties of the proposed estimator. In the supplementary material,
we consider the case of possibly asymmetric fε and again derive the asymptotic properties of the
estimator.

When fε is symmetric around zero, to identify the distribution of ε, we impose the following
additional assumption.

Assumption RS. εr is independent of (Y,X,W ∗, ε) and has the same distribution as ε, and f ftε
is real-valued.

Assumption RS requires that εr is an independent copy of ε, and f ftε is real-valued when fε
is symmetric around zero. Under Assumption RS, the error distribution can be identified by
f ftε (t) = |E[cos{t(W −W r)}]|1/2. Based on an i.i.d. sample {Wj ,W

r
j }nj=1 of (W,W r), f ftε can be

estimated by (Delaigle, Hall and Meister, 2008)

f̂ ftε,s(t) =

∣∣∣∣∣∣ 1n
n∑
j=1

cos{t(Wj −W r
j )}

∣∣∣∣∣∣
1/2

.

Based on this estimator, we propose to estimate β(w∗) by

β̃s(w
∗) =

 n∑
j=1

XjX
′
jK̂s

(
w∗ −Wj

an

)−1 n∑
j=1

XjYjK̂s

(
w∗ −Wj

an

)
, (3.2)

where K̂s is the deconvolution kernel function obtained by replacing f ftε in (2.4) with f̂ ftε,s.
To analyse the asymptotic properties of β̃s(w∗), we focus on the following class of functions

introduced by Schennach (2004).

Definition. Let W be the set of all functions ψ : R→ R such that (i) ψ(t) is absolutely integrable
in every finite interval, and (ii)

´
|t|≥T |ψ(t) − Ψ(t)|dt < ∞ for some T > 0 and some function

Ψ(t) that can be written as a finite linear combination of finite products of functions of the forms
|t|c, sgn(t)|t|c, log |t|, sin(c1t), cos(c1t), and exp(c1t

a) with c > 0, c1 ∈ R, and a ∈ N.

As Schennach (2004, p. 1062) argued, this class W characterizes functions that are well be-
haved at infinity, and is useful to derive a lower bound for the asymptotic variance of our estima-
tor. First, we impose the following assumptions for both the ordinary smooth and supersmooth
error cases. Let b(·) = E[XX ′|W ∗ = ·]{β(·)− β(w∗)}fW ∗(·).

Assumption MS.

(1): E|ε|2+ς <∞ for some ς > 0.
(2): fε is continuous and non-vanishing everywhere. E[XX ′|W ∗ = ·]fW ∗(·), β(·), and K(·)

are symmetric around zero.
(3): d

dt

{
{ω′b(·)}ft(t){f ftε (t)}−2

}
∈W for any ω ∈ Rk with |ω| = 1.

(4): For any ω ∈ Rk with |ω| = 1, there exists some constant c̄s > 0 such that

V ar(ω′(ξ1 + ξ∗s,1)) ≥ c̄s max{V ar(ω′ξ1), V ar(ω′ξ∗s,1)},
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where ξ∗s,1 is defined in (B.16) in Appendix.

Assumption MS (1) is a regularity condition required by Lemma 3 in Appendix, which is used
to characterize the uniform convergence rate of the empirical characteristic function of ε − εr

over an expanding region. Assumptions MS (2)-(4) contain further conditions used to derive
the distribution of our estimator when the error distribution is unknown and symmetric around
zero. We emphasise that the convergence rate result given below does not require these three
assumptions.

Assumptions MS (2)-(3) are regularity conditions used to derive the lower bound for the
variance of β̃s(w∗); similar assumptions have been used in Schennach (2004, Assumptions 12 and
13). In particular, Assumption MS (3) characterizes the tail behavior of the dominant component
of β̃s(w∗)’s asymptotic representation brought by the estimation error of f ftε,s, and is used together
with Assumption O (3) in the ordinary smooth case or Assumption S (3) in the supersmooth
case to establish the lower bound of the variance of β̃s(w∗). Assumption MS (2) also includes
conditions on the symmetry of the density, conditional moment, coefficient function, and kernel,
which are imposed here to be compatible with the symmetry of fε. We emphasise that these
additional symmetry conditions are only imposed to allow a cleaner expression for the lower
bound for the variance of β̃s(w∗), which allows for more compact conditions on the bandwidth.
The same results on the convergence rate and asymptotic normality of β̃s(w∗) can be established
without these additional symmetry conditions, but at the cost of more complex conditions on
the bandwidth. Assumption MS (4) states that the variance of β̃s(w∗) is of an order no less
than any term in its asymptotic representation; a similar assumption is used in Schennach (2004,
Assumption 14).

When fε is ordinary smooth, we further impose the following assumptions.

Assumption OS.

(1): n−1/2a−(1+3α)
n log(1/an)→ 0 as n→∞.

(2): For any ω ∈ Rk with |ω| = 1 and some η > 0, as n→∞, min{n−1a−2pn , na
2(1+5α)
n log(1/an)−4, nη/(η+2)a

2(1+2α)
n }

×max

{
a
−(1+2α)
n ,

´ ∣∣∣{ω′b(·)}ft(t) cos(tw∗)Kft(tan)
{f ftε (t)}2

∣∣∣2 dt}
→∞.

Assumption OS (1) is imposed to control the magnitude of the estimation error from the
estimated error characteristic function f̂ ftε,s when the measurement error is ordinary smooth.
Assumption OS (2) imposes additional bandwidth conditions to derive the asymptotic normality

of β̃s(w∗). The component max

{
a
−(1+2α)
n ,

´ ∣∣∣{ω′b(·)}ft(t) cos(tw∗)Kft(tan)
{f ftε (t)}2

∣∣∣2 dt} characterizes (up to

1/n) the magnitude of the lower bound of the variance of β̃s(w∗). In particular, the first term
characterizes the estimation variance if fε is known and depends on the smoothness of fε as in
the standard deconvolution literature, and the second term, which can be further simplified as´
|t|≤a−1

n

∣∣∣{ω′b(·)}ft(t) cos(tw∗){f ftε (t)}2

∣∣∣2 dt if the Sinc kernel is used, characterizes the estimation error brought

by using f̂ ftε,s and depends on the relative smoothness to fε of the density fW ∗ , conditional moment
E[XX ′|W ∗], and coefficient function β. The component n−1a−2pn is related to the estimation bias
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when fε is known, the component na2(1+5α)
n log(1/an)−4 is related to the estimation error brought

by using f̂ ftε,s, and the component nη/(η+2)a
2(1+2α)
n is related to Lyapunov’s condition to apply

the central limit theorem. So, Assumption OS (2) contains further restrictions on the bandwidth
in order to use Lyapunov’s central limit theorem and to ensure the asymptotic negligibility of
the estimation bias and higher order terms in the estimation error from using f̂ ftε,s.

Theorem 3.

(i): Under Assumptions M (1)-(4), O (1)-(2), RS, MS (1), and OS (1), it holds

|β̃s(w∗)− β(w∗)|2 = Op(n
−1a−2(1+3α)

n log(1/an)2 + a2pn ).

(ii): Under Assumptions M (1)-(5), O (1)-(5), RS, MS (1)-(4), and OS (1)-(2), it holds

Ω̂n,s(w
∗)−1/2{β̃s(w∗)− β(w∗)} d→ N(0, Ik),

where Ω̂n,s(w
∗) = n−1S(w∗)−1V ar(ξ1 + ξ∗s,1)S(w∗)−1.

Theorem 3 (i) shows the L2-risk of our estimator β̃s(w∗) when the measurement error is
ordinary smooth and symmetric around zero. The first term results from the estimation error
of f̂ ftε,s, while the second term is the usual bias term from an error-free nonparametric estimator.
Theorem 3 (ii) shows that the estimator retains its asymptotic normality when the measurement
error characteristic function is estimated using the approach of Delaigle, Hall and Meister (2008),
and the extra estimation error brought by using f̂ ftε,s affects both the convergence rate and the
asymptotic variance. Compared to the rate result of β̂(w∗) established in Theorem 1 when
the measurement error distribution is known, β̃s(w∗) has a slower convergence rate due to the
estimation error from using f̂ ftε,s.

When fε is supersmooth, we impose the following assumptions.

Assumption SS.

(1): n−1/2e3µa
−γ
n a−1n log(1/an)→ 0 as n→ 0.

(2): For any ω ∈ Rk with |ω| = 1 and for some η > 0, as n→∞, min{n−1a−2pn , ne−10µa
−γ
n a2n log(1/an)−4, nη/(η+2)e−4µa

−γ
n a2n

×max

{
e2µa

−γ
n a

2(2+θ)
n ,

´ ∣∣∣{ω′b(·)}ft(t) cos(tw∗)Kft(tan)
{f ftε (t)}2

∣∣∣2 dt}
→∞,

if 1/3 < γ < 1 and min{n−1a−2pn , ne−10µa
−γ
n a2n log(1/an)−4, nη/(η+2)e−4µa

−γ
n a2n

×max

{
e2µa

−γ
n a

2(γθ+γ−1)
n ,

´ ∣∣∣{ω′b(·)}ft(t) cos(tw∗)Kft(tan)
{f ftε (t)}2

∣∣∣2 dt}
→∞,

if 1 ≤ γ ≤ 2.

Assumption SS (1) is imposed to control the magnitude of the estimation error from using
the estimated error characteristic function f̂ ftε,s when the measurement error is supersmooth.
Assumption SS (2) imposes additional conditions on the bandwidth to derive the asymptotic
normality of β̃s(w∗). Similar comments to Assumption OS (2) apply here, except that the
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bandwidth conditions are separately imposed for the cases with 1/3 < γ < 1 and 1 ≤ γ ≤ 2,
which is compatible with Assumption S (5) as in the case when fε is known.

Theorem 4.

(i): Under Assumptions M (1)-(4), S (1)-(2), RS, MS (1), and SS (1), it holds

|β̃s(w∗)− β(w∗)|2 = Op(n
−1e6µa

−γ
n a−2n log(1/an)2 + a2pn ).

(ii): Under Assumptions M (1)-(5), S (1)-(5), RS, MS (1)-(4), and SS (1)-(2), it holds

Ω̂n,s(w
∗)−1/2{β̃s(w∗)− β(w∗)} d→ N(0, Ik),

where Ω̂n,s(w
∗) = n−1S(w∗)−1V ar(ξ1 + ξ∗s,1)S(w∗)−1.

Similar comments to Theorem 3 apply here. Theorem 4 (i) shows the L2-risk of our estimator
β̃s(w

∗) when the measurement error is supersmooth and symmetric around zero. By similar
arguments to the case when the error distribution is known, the rate of β̃s(w∗) presented in
Theorem 4 (i) can be shown to be logarithmic, which is considerably slower than the polynomial
rate obtained for β̃s(w∗) in the ordinary smooth case. Theorem 4 (ii) shows that the estimator
retains its asymptotic normality when the measurement error characteristic function is estimated
using the approach of Delaigle, Hall and Meister (2008). The estimation error from using f̂ ftε,s
affects both the convergence rate and the asymptotic variance of β̃s(w∗). Again β̃s(w∗) converges
more slowly than β̂(w∗) due to the estimation error from using f̂ ftε,s.

4. Simulation

In this section, the small sample properties of our deconvolution estimator are investigated
using a Monte Carlo study. The following data generating process is considered

Y = β0(W
∗) +X1β1(W

∗) +X2β2(W
∗) + U,

where (X1, X2) are drawn from U [0, 1] with correlation of 0.2 and independent of (W ∗, U), and
U is drawn from N(0, 1) and is independent of W ∗. While W ∗ is assumed unobservable, we
suppose W = W ∗ + ε1 and W r = W ∗ + ε2 are observed, where (ε1, ε2) is mutually independent
and independent of (X1, X2,W

∗, U).
For the densities of W ∗ and (ε1, ε2), we consider two cases. First, for the ordinary smooth

setting, (ε1, ε2) have a zero mean Laplace distribution with standard deviation of 1/3, and W ∗

also has a Laplace distribution with zero mean and standard deviation of 1. Second, for the
supersmooth case, (ε1, ε2) have a normal distribution with zero mean and standard deviation of
1/3, and W ∗ has a standard normal distribution.

We take β0(w) = cos(wπ/2), β1(w) = 1 +w+w2, and consider three specifications for β2(w):

DGP1 :β2(w) = 1 + w,

DGP2 :β2(w) = 1 + w + w2,

DGP3 :β2(w) = 1 + w + w2 − w3.
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Note that each varying coefficient is further standardised by its respective standard deviation√
V ar(βj(W ∗)) for j = 0, 1, 2 so that each component adds the same explanatory power to the

model.
Throughout this simulation study, we use the infinite-order flat-top kernel proposed by Mc-

Murry and Politis (2004) whose Fourier transform is

K ft(t) =


1 if |t| ≤ 0.05,

exp
{
− exp(−(|t|−0.05)2)

(|t|−1)2

}
if 0.05 < |t| < 1,

0 if |t| ≥ 1,

and satisfies all necessary assumptions given previously in this paper. In preliminary simulations
(not reported) more stable estimates are found using this kernel in comparison to either the sinc
kernel or the kernel of Fan (1992). Results for two sample sizes, n = 250 and 500, are provided,
and all results are based on 500 Monte Carlo replications.

4.1. Bandwidth choice. As with any nonparametric kernel estimation method, the bandwidth
choice is critical for the performance of our estimator. Many data-driven methods exist to select
the bandwidth in kernel deconvolution density estimation, see, for example, Delaigle and Gijbels
(2004), Lepski (2018), and Lepski and Willer (2019). However, the analogous problem in a
regression setting has received less attention. We choose to adapt the ‘out-of-bag’ approach of
Dong, Otsu and Taylor (2020), which we briefly describe here in the context of our varying
coefficient estimator.

Consider the following criterion function to determine the optimal bandwidth

S(an) = E[{Yn+1 −X ′n+1β̂(W ∗n+1; an)}2],

where (Yn+1, Xn+1,W
∗
n+1) are independent of the original sample used to compute β̂(·; an). In

the absence of measurement error, a popular method to estimate this criterion is the leave-one-out
cross validation estimator

ŜCV (an) =
1

n

n∑
i=1

{Yi −X ′iβ̂−i(W ∗i ; an)}2,

where β̂−i(·; an) is the estimator for β using all observations except the i-th data point. This
leave-one-out approach removes the dependence between the estimator and the data used to
evaluate the estimator. However, when W ∗ is measured with error, we do not have access to its
true value, making this approach infeasible.

Instead, S(an) can be estimated by

S̃(an) =

˚
{y − x′β̂(w∗; an)}2f̂Y,X,W ∗(y, x, w∗)dydxdw∗

=
1

nhn

n∑
i=1

ˆ
{Yi −X ′iβ̂(w∗; an)}2K̂

(
Wi − w∗

hn

)
dw∗,

where the equality follows from Y and X being observable, and
´
ujK(u)du = 0 for j = 0, 1, 2

for a (higher-order) conventional kernel function K.
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Two points are important to recognize at this stage. First, an auxiliary bandwidth, hn, must
be selected; we return to this point below. Second, in the same spirit as the leave-one-out cross
validation approach, there should be no overlap in the data used to estimate β̂ as used to evaluate
it. Although a leave-one-out approach is feasible here, the number of β̂−i(w∗; an) to be calculated
can become overwhelming when the sample size is relatively large and a sensibly sized grid of
candidate bandwidths is considered.

To circumvent this problem, an out-of-bag approach can be used. Specifically, take a bootstrap
sample of size n (with replacement) from the original data, and estimate β̂ using this bootstrap
sample. Evaluate S̃(an) using the observations which were not selected as part of the bootstrap
sample, i.e., the out-of-bag observations. On average, these out-of-bag observations make up
approximately 37% of the total sample size (Breiman, 2001). Repeat this process for bootstrap
samples b = 1, . . . , B, giving B bootstrap versions of Ŝb(an) defined as

Ŝb(an) =
1

#Icbh#Icb

∑
i∈Icb

ˆ
{Yi −X ′iβ̂Ib(w

∗; an)}2K̂

(
Wi − w∗

h#Icb

)
dw∗,

where Ib denotes the set of observations in the bootstrap sample b, Icb is the complement of this
set (i.e., the out-of-bag observations), and #Icb denotes the cardinality of the set Icb . Finally,
S(an) is estimated by taking an average of Ŝb(an) over the bootstrap samples

Ŝ(an) =
1

B

B∑
b=1

Ŝb(an),

and a∗n is chosen as the minimiser of Ŝ(an).
To choose the auxiliary bandwidth parameter h#Icb , we suggest using the approach of Delaigle

and Gijbels (2004). From initial simulation results (not presented), the bandwidth selection
procedure is relatively insensitive to the choice of h#Icb providing that it is chosen in a sensible
manner.

Figure 1 shows a representative plot of Ŝ(an) against an for DGP3 with 250 observations and
Laplace errors which are assumed unknown but symmetric. We found that the performance
of the procedure converged with a relatively small number of bootstrap resamples; thus, only
50 bootstrap resamples were used in this example (this number was also used by Efron and
Tibshirani, 1997, in a similar bootstrap cross-validation procedure). There is a unique minimum
at 0.36 (indicated by the dashed line) which gives the chosen bandwidth in this sample.

While Dong, Otsu and Taylor (2020) provide a theoretical justification for this method for
nonparametric regression, this does not ensure the theoretical validity of the approach in our
context. This is beyond the scope of this paper; however, below, we provide finite sample
evidence of the suitability of this method.

Figures 2, 3, and 4 plot the mean integrated squared error (MISE) over bootstrap replications
for β̂0, β̂1, and β̂2, respectively, (between the 10-th and 90-th percentile of W ∗) as a function of
the difference between the bandwidth used and the ‘optimal’ bandwidth chosen by the selection
procedure. Again, the results are based on DGP3 with 250 observations and Laplace errors which
are assumed unknown but symmetric. The three figures show that the selected bandwidth is
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slightly larger than the optimum for estimating β0, but smaller than the optimum for estimating
β1 and β2. Thus, the selection procedure balances the respective costs across the three functions
to be estimated. It is not surprising that these estimated functions behave differently for various
bandwidth choices since the degree of nonlinearity is different for each.

This raises the question of whether a separate bandwidth should be chosen that is optimal
for each respective β coefficient. There are two issues with this idea. First, as can be seen in
(2.3), the estimation procedure does not lend itself easily to using several different bandwidths.
Secondly, the bandwidth selection procedure - as well as other potential procedures - is based
on predicting the outcome, Y , rather than the individual coefficient functions because these
functions are inherently unobservable. Thus, the procedure cannot be artificially directed towards
any one coefficient function in the model.

Figure 1. Representative plot of Ŝ(an) against an for DGP3 with 250 observations and
Laplace errors where the measurement error is assumed unknown but symmetric. 50 bootstrap
resamples were used. The dashed line (at 0.36) indicates the selected bandwidth in this sample.
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Figure 2. Plot of the MISE (over 500 bootstrap replications) for β̂0(·) (between the 10-th
and 90-th percentile of W ∗) as a function of the difference between the bandwidth used and
the ‘optimal’ bandwidth chosen by the selection procedure. As in Figure 1, this plot is based
on DGP3 with 250 observations and Laplace errors where the measurement error is assumed
unknown but symmetric and 50 bootstrap resamples were used in the selection procedure.

Figure 3. Plot of the mean (over 500 bootstrap replications) integrated squared error (MISE)
for β̂1(·) (between the 10-th and 90-th percentile of W ∗) as a function of the difference between
the bandwidth used and the ‘optimal’ bandwidth chosen by the selection procedure. As in Figure
1, this plot is based on DGP3 with 250 observations and Laplace errors where the measurement
error is assumed unknown but symmetric and 50 bootstrap resamples were used in the selection
procedure.
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Figure 4. Plot of the mean (over 500 bootstrap replications) integrated squared error (MISE)
for β̂2(·) (between the 10-th and 90-th percentile of W ∗) as a function of the difference between
the bandwidth used and the ‘optimal’ bandwidth chosen by the selection procedure. As in Figure
1, this plot is based on DGP3 with 250 observations and Laplace errors where the measurement
error is assumed unknown but symmetric and 50 bootstrap resamples were used in the selection
procedure.

4.2. Results. In Tables 1-3, results are reported for several varying coefficient estimators. The
row labelled ‘Known’ denotes the estimator of this paper for a known error characteristic function.
‘Symm’ refers to the same estimator but using the repeated measurements of the noisy regressor
and assuming a symmetric error density (‘Symm’). ‘Asymm’ presents results for our varying
coefficient estimator when the measurement error is assumed unknown and possibly asymmetric.
‘LHLF’ denotes the estimator of Li et al. (2002) using the mismeasured regressor, W , as if it
were the truth. Finally, ‘LHLF*’ is the estimator of Li et al. (2002) using the correctly measured
regressor, W ∗. Note that this final estimator would be infeasible in practice, but acts as a useful
benchmark with which to compare the other estimators. The bandwidths for LHLF and LHLF*
are chosen by leave-one-out cross validation. Results are given for the MISE of each β coefficient
between the 10-th and 90-th percentile of W ∗.
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Table 1: DGP 1

Estimator β0 β1 β2

Error Type OS SS OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500 250 500 250 500

Known 1.47 0.82 1.57 0.93 0.36 0.19 0.39 0.23 0.37 0.22 0.37 0.21

Symm 1.40 0.78 1.56 0.93 0.33 0.17 0.38 0.23 0.35 0.20 0.37 0.21

Asymm 1.39 0.77 1.58 0.94 0.32 0.17 0.40 0.24 0.35 0.20 0.38 0.22

LHLF 1.47 0.78 1.64 0.93 0.37 0.20 0.44 0.26 0.39 0.23 0.43 0.25

LHLF* 1.25 0.65 1.42 0.75 0.32 0.16 0.38 0.20 0.34 0.18 0.38 0.19

Table 2: DGP 2

Estimator β0 β1 β2

Error Type OS SS OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500 250 500 250 500

Known 1.19 0.67 1.30 0.77 0.26 0.15 0.30 0.17 0.26 0.15 0.28 0.16

Symm 1.16 0.65 1.29 0.78 0.25 0.13 0.30 0.17 0.25 0.14 0.28 0.16

Asymm 1.16 0.66 1.32 0.78 0.24 0.13 0.32 0.17 0.25 0.14 0.29 0.17

LHLF 1.22 0.66 1.38 0.78 0.30 0.17 0.37 0.22 0.31 0.18 0.36 0.20

LHLF* 1.11 0.58 1.28 0.72 0.28 0.14 0.29 0.19 0.29 0.15 0.33 0.18

Table 3: DGP 3

Estimator β0 β1 β2

Error Type OS SS OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500 250 500 250 500

Known 1.15 0.64 1.10 0.66 0.25 0.14 0.25 0.15 0.25 0.14 0.24 0.14

Symm 1.12 0.62 1.10 0.66 0.24 0.13 0.24 0.15 0.24 0.12 0.24 0.14

Asymm 1.14 0.62 1.12 0.67 0.23 0.13 0.26 0.16 0.23 0.12 0.26 0.16

LHLF 1.22 0.66 1.24 0.74 0.30 0.17 0.34 0.18 0.30 0.17 0.34 0.17

LHLF* 1.13 0.58 1.09 0.70 0.28 0.14 0.32 0.18 0.30 0.14 0.31 0.16
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The results appear encouraging and display several interesting features. First, as is expected,
the performance of all five estimators is poorer when faced with supersmooth error than with
ordinary smooth. Somewhat surprisingly, the relative performance of the three estimators studied
in this paper depends on the smoothness of the measurement error. For Gaussian error, Known
dominates Symm and Symm dominates Asymm, in accordance with the theoretical results.
However, for Laplace error, the Known estimator is dominated by the other two (which appear to
be almost identical); Delaigle, Hall and Meister (2008) find a similar result with the performance
of the deconvolution kernel regression estimator improving in some cases when the measurement
error is estimated.

It is unsurprising to see that the performance of the estimators of this paper, relative to the
correctly measured benchmark, LHLF*, deteriorate with the sample size. This reflects the slower
convergence rates of our estimators in comparison to the estimator of LHLF*. It is interesting
to see that as the degree of nonlinearity in the model increases, moving from DGP1 through to
DGP3, the performance of our estimators increase relative to LHLF* and, for some coefficients
in some settings, is actually superior to LHLF*.

In relation to LHLF, the estimators of this paper improve with the sample size, which reflects
the inherent bias in LHLF from not accounting for the measurement error. While this relative
performance does not appear to depend on the smoothness of the error. Note that the MISE
for LHLF does fall as the sample size increases; this reflects a decrease in the variance of the
estimator and not a decrease in the bias. Finally, as to be expected, the dominance of the
estimators of this paper in comparison to LHLF increases with the nonlinearity in the model,
i.e. moving from DGP1 through to DGP3.

5. Empirical Application

In this section, we apply our estimator to real data. In particular, we consider the role risk
preferences play in explaining earnings, and how this relationship is affected by cognitive ability.

It has been consistently shown that cognitive ability has a large effect on labour market out-
comes (see, for example, Herrnstein and Murray, 1994; Cawley, Heckman and Vytlacil, 2001).
Although comparatively less attention has been given to the role of risk preferences in deter-
mining earnings, it has been shown that risk averse individuals earn less than their risk-loving
counterparts (Bonin et al., 2007). In addition, there is growing evidence that cognitive ability
and attitudes towards risk are intimately related (Dohmen, Falk, Huffman, Sunde, 2010, 2018).

Taken together, these results suggest that in an analysis of the determinants of wages, both
cognitive ability and risk preferences should be accounted for. Moreover, their effects are likely
to interact, i.e. the effect of one of these variables on earnings is likely to depend on the level of
the other. Furthermore, it is well-known that measures of cognitive ability are not perfect and
can be subject to substantial measurement error. Hence, the varying-coefficient model of this
paper, with cognitive ability modifying the coefficients, is perfectly suited to this setting.

This is by no means the first investigation which allows the coefficients of a wage equation
to depend on cognitive ability. Heckman and Vytlacil (2001) use a nonparametric approach
to investigate how the returns to education vary across individuals’ ability. While Heckman,
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Stixrud and Urzua (2006) and Cunha, Heckman and Schennach (2010) also explore this link but
go beyond the previous literature by taking seriously the role of measurement error in cognitive
ability.

The data used for this empirical study come from the National Longitudinal Survey of Youth
1979 (NLSY79). This dataset follows a sample of Americans born between 1957-1964 who were
aged between 14-22 when first interviewed in 1979 and were periodically surveyed until the
present day (the most recent survey was conducted in 2016). As is typical in the literature
using the NLSY79 dataset, we restrict the sample to white males who work in the formal labour
market, giving a sample size of 1473.

The dataset contains a plethora of socio-economic information on the respondents; however,
we focus on the following variables. The outcome of interest is the natural logarithm of annual
earnings (recorded in 1996). The regressor of interest is the risk preference of the individual
taken from a survey question in 2010 (the only year in which this question is asked) regarding
the willingness to take risks while driving. The measure ranges from 0 - 10, with 0 being the
most risk averse.3 Dohmen et al. (2011) show that a direct question on risk taking preferences
- as opposed to results from lottery experiments - provides the best predictor of risk-taking
behaviour. Furthermore, we opt to use driving risk preferences - instead of, for example, financial
risk preferences - in an attempt to avoid possible simultaneity bias. We also choose to control
for age and age squared, years of education, years of work experience, and number of children
(all measured in 1996). Each regressor is standardised to have zero mean and unit variance.

Out of a battery of ASVAB test scores (taken in 1981), the three tests which are most
highly correlated with earnings are used as three repeated measures of cognitive ability, de-
noted (W1,W2,W3).4 A factor model structure is used, as in Cunha, Heckman and Schennach
(2010), which assumes that each measure is constructed as

Wj = αjC + εj for j = 1, 2, 3. (5.1)

We are free to make one normalising restriction in order to identify the α parameters. Without
loss of generality take α1 = 1. Then, under the maintained assumption of classical measure-
ment error, α2 can be identified via α2 = Cov(W2,W3)/Cov(W1,W3) and α3 can be obtained
analogously.

Unfortunately, there exist no tests for the classical measurement error assumption. However,
we hope to provide some evidence of this assumption being satisfied in our context. Table 4 gives
results of a regression of log of earnings on the three principal components of (W1,W2,W3),
showing that only one component affects income. This suggests that the measurement error
is unrelated to earnings and, thus, is plausibly unrelated to cognitive ability. Note that only
two of the three principal components can be interpreted as measurement error. Thus, since
(ε1, ε2, ε3) are constructed from two uncorrelated factors, this approach implicitly violates the
assumption that the measurement errors are independent across the repeated measures. So,

3The survey question is phrased as, "How would you rate your willingness to take risks (on a scale of 0-10) while
driving?".
4These are: ‘paragraph comprehension’, ‘numerical operations’, and ‘coding speed’.
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while this method does not prove the classical error assumption holds, it does give weight to its
validity.

Table 4. Principal Component Regression

Dependent variable:

log Earnings

Principal Component 1 −0.272∗∗∗
(0.016)

Principal Component 2 0.026
(0.034)

Principal Component 3 −0.038
(0.044)

Constant −0.000
(0.024)

Observations 1,473
R2 0.165

Notes: Results from a regression of log earnings (in 1996) on the three principal components of the ASVAB test
scores from the NLSY79 dataset. * indicates significance at 10%, ** indicates significance at 5%, and ***
indicates significance at 1%.

The full model is written as

log Y = β0(C) + β1(C)Risk + β2(C)Age+ β3(C)Age2

+β4(C)Educ+ β5(C)Exp+ β6(C)Child+ U, (5.2)

where Y is earnings, C is (unobserved) cognitive ability, Risk is our risk measure, Age is the
age of the respondent, Educ is the number of years of educations, Exp is the number of years of
work experience, and Child is the number of children the respondent has. We assume the mea-
surement error comes from a symmetric distribution and use the bandwidth selection mechanism
introduced in Section 4.1 with 50 bootstrap resamples.

We compare our results to the estimator of Li et al. (2002). Recall, that this estimator is not
designed for contaminated data. As such, the average of the three ASVAB test scores is used
as cognitive ability as if it is correctly measured. As in Section 4, the bandwidth is chosen by
leave-one-out cross-validation.

In the interest of space, and since our focus is on the interplay between cognitive ability and
risk preference, we report results only for β0 and β1. Figure 5 plots β̂0 between the 10th and
90th percentile of the ASVAB test score. Note that for ease of interpretation, the y-axis has been
transformed such that earnings are displayed as the annual dollar value rather than the natural
logarithm. The solid line gives the estimate using the estimator of this paper and the dashed
line denotes the estimate of Li et al. (2002). Unsurprisingly, cognitive ability has a relatively
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large positive impact on earnings. Moving from one standard deviation below the mean to one
standard deviation above the mean leads to an increase of approximately $8400 per annum (note
that median earnings in the data are $32000). In contrast, the estimator of Li et al. (2002)
predicts a $5500 increase. Moreover, while the general shape of the two estimators is similar,
the estimator of Li et al. (2002) appears to struggle to find the nonlinearity in the lower tail of
cognitive ability that the estimator of this paper shows.

Figure 6 displays the results of β̂1. Note that in this case, the y-axis has been transformed to
give the effect of risk preference on earnings as a percent, i.e. a value of 2 indicates that a one
standard deviation increase in risk preference leads to a 2 percent increase in earnings. Again,
the two estimates follow a similar shape, with our estimator detecting greater nonlinearity in the
lower tail. According to the results of our estimator, an individual at the mean level of cognitive
ability faces the following effect: a one standard deviation increase in risk preferences leads to a
1.5 percent increase in earnings. However, the results suggest that the effect of risk preferences
on earnings depends critically on the level of cognitive ability. While those with high cognitive
ability are expected to earn more from risk-loving preferences, the opposite is true for those
with low cognitive ability. An individual with cognitive ability at one standard deviation below
the mean faces a risk-preference-effect-on-earnings that is 3.6 percentage points below that of a
respondent with cognitive ability one standard deviation above the mean. Again, the estimator
of Li et al. (2002) predicts a smaller effect: a 1.9 percentage point drop.

Figure 5. Plot of β̂0 between the 10th and 90th percentile of the ASVAB test score from
the regression in (5.2) using the NLSY79 dataset. Note that the y-axis has been transformed
such that earnings are displayed as the annual dollar value rather than the natural logarithm.
The solid line gives the estimate using the estimator of this paper when the measurement error
is assumed unknown but symmetric. The dashed line denotes the estimate of Li et al. (2002)
using the mean of the ASVAB test scores as if it is true cognitive ability.
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Figure 6. Plot of β̂1 between the 10th and 90th percentile of the ASVAB test score from the
regression in (5.2) using the NLSY79 dataset. Note that the y-axis has been transformed to
give the effect of risk preference on earnings as a percent, i.e. a value of 2 indicates that a one
standard deviation increase in risk preference leads to a 2% increase in earnings. The solid line
gives the estimate using the estimator of this paper when the measurement error is assumed
unknown but symmetric. The dashed line denotes the estimate of Li et al. (2002) using the
mean of the ASVAB test scores as if it is true cognitive ability.

Our analysis is agnostic with regards to the causal channels through which risk preferences
affect wages. However, the previous literature sheds light on some potential mechanisms. Skri-
abikova, Dohmen and Kriechel (2014) investigate the relationship between risk aversion and
self-employment and show that those with a higher preference for risk are more likely to be self-
employed which may result in higher earnings (Levine and Rubinstein, 2017). Jaeger et al. (2010)
find that those with higher risk preferences are also more likely to migrate; this greater flexibility
imposes less constraints on a worker when attempting to maximise wages. Finally, Bonin et al.
(2007) show that those with a higher preference for risk sort themselves into occupations with
higher wage risk. Moreover, these jobs are associated with higher average wages.

6. Concluding remarks

In this paper, we develop an estimator for the varying coefficient model when the covariate in
the coefficient functions is contaminated with classical measurement error. Using deconvolution
kernel methods, the estimator is constructed following a similar two-step procedure as used in
Li et al. (2002) for the error-free case. We study three separate cases based on knowledge of the
error density. In the first, the error density is assumed known, this is then relaxed to allow for an
unknown but symmetric error distribution where a repeated measurement of the noisy covariate
is available. Finally, we allow for this density to potentially be asymmetric and again assume that
a repeated measure is available. Furthermore, in each case we consider both ordinary smooth
and supersmooth measurement error.
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In all cases, the proposed estimator is shown to be consistent and asymptotically normally
distributed. In particular, when the error density is unknown and symmetric, we use the approach
of Delaigle, Hall and Meister (2008) to estimate the error characteristic function. While for the
unknown and asymmetric case we use the approach of Li and Vuong (1998) based on Kotlarski’s
(1967) identity. Although this approach significantly increases the applicability of the estimator,
we show that it does reduce the convergence rate.

A novel bandwidth selection procedure is proposed based on the out-of-bag prediction error
and the finite sample performance of this method and the estimator in general is investigated
by Monte Carlo simulation. Finally, we apply our estimator to study how the effect of risk
preferences on earnings is affected by cognitive ability. In this setting, we show that accounting
for measurement error is indeed important.

Throughout this paper, we focus on the case where a single mismeasured covariate W ∗ enters
the coefficient functions β to keep the notation simple. The proposed method, however, can easily
be adapted to the multivariate case. In particular, when β is a function of a set of covariates
(W ∗, Z) with W ∗ ∈ Rdw and Z ∈ Rdz , i.e.,

Y = X ′β(W ∗, Z) + U, E[U |X,W ∗, Z] = 0, (6.1)

we wish to estimate β(w∗, z) at a given point (w∗′, z′)′ ∈ Rdw+dz using an i.i.d. sample of
(Y,X,W,Z), where W is a noisy measurement of W ∗ generated by W = W ∗ + ε̃ and ε̃ =

(ε1, . . . , εdw) is mutually independent and independent of W ∗. Similar to the case when β is
a univariate function of a scalar W ∗, by premultiplying (6.1) by X and taking the conditional
expectation, the object of interest β(w∗, z) can be written as

β(w∗, z) = MXX(w∗, z)−1MXY (w∗, z),

where MXX(w∗, z) = E[XX ′|W ∗ = w∗, Z = z] and MXY (w∗, z) = E[XY |W ∗ = w∗, Z = z].
The conditional moments on the right hand side can be estimated by

M̂XX(w∗, z) =

∑n
j=1XjX

′
jK
(
w∗−Wj

an

)
L
(
z−Zj
bn

)
∑n

j=1K
(
w∗−Wj

an

)
L
(
z−Zj
bn

) ,

M̂XY (w∗, z) =

∑n
j=1XjYjK

(
w∗−Wj

an

)
L
(
z−Zj
bn

)
∑n

j=1K
(
w∗−Wj

an

)
L
(
z−Zj
bn

) ,

respectively, where an and bn are bandwidths, L is an ordinary kernel function, and K is a
deconvolution kernel function defined by K(x) =

∏dw
l=1Kl(xl) with

Kl(xl) =
1

2π

ˆ
e−itxl

K ft(t)

f ftεl (t/an)
dt,

and K : R → R is an ordinary univariate kernel. Based on these deconvolution estimators for
the conditional moments, β(w∗, z) can be estimated by

β̂(w∗, z) =

 n∑
j=1

XjX
′
jK
(
w∗ −Wj

an

)
L

(
z − Zj
bn

)−1 n∑
j=1

XjYjK
(
w∗ −Wj

an

)
L

(
z − Zj
bn

)
.
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We expect that analogous results to our main theorems can be established for this estimator as
well.

Finally, it is interesting to study optimal convergence rates for our estimation problems on β(·)
and to develop adaptive bandwidth selection procedures. However, this is a substantial challenge
even for the conventional nonparametric deconvolution regression (see, e.g., Chichignoud et al.,
2017, for the case where the distributions of the regression error term and measurement error
are completely known), and we leave such extensions for future research.
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Appendix A. Proofs for Section 2

Notation. For the results in Section 2, define

Sn =
1

nan

n∑
j=1

XjX
′
jK
(
w∗ −Wj

an

)
, Tn =

1

n

n∑
j=1

(ξj − E[ξj ]), Bn = E[ξj ], (A.1)

ξj =
1

an
VjK

(
w∗ −Wj

an

)
, Vj = Xj [Uj +X ′j{β(W ∗j )− β(w∗)}]. (A.2)

Then the estimator β̂(w∗) can be written as

β̂(w∗) = β(w∗) + S−1n (Tn +Bn). (A.3)

To simplify the notation, hereafter we suppress the dependence of Sn, Tn, Bn, ξj , and Vj on w∗.
Also let ξk1j and V k1

j denote the k1-th element of ξj and Vj , respectively, and S
k1,k2
n and Sk1,k2

denote the (k1, k2)-th element of Sn and S, respectively, for k1, k2 = 1, . . . , k, where S is defined
in Theorem 1.

A.1. Proof of Theorem 1 (i) . By (A.3), we have |β̂(w∗)− β(w∗)|2 ≤ 2{λmin(Sn)}−2(|Tn|2 +

|Bn|2). Note that λmin(Sn) ≥ inf |ω|=1 ω
′(Sn − S)ω + λmin(S) and λmin(S) > 0 (Assumption M

(2)). Thus, we obtain
|β̂(w∗)− β(w∗)|2 = Op(|Tn|2 + |Bn|2), (A.4)

if we can show
Sn

p→ S. (A.5)

To show (A.5), note that for each k1, k2 = 1, . . . , k,

E[Sk1,k2n ] = a−1n E

[
Xk1Xk2K

(
w∗ −W
an

)]
= a−1n E

[
Xk1Xk2K

(
w∗ −W ∗

an

)]
=

ˆ
{E[Xk1Xk2 |W ∗ = ·]fW ∗(·)}(w∗ − anu)K(u)du = Sk1,k2 +O(apn), (A.6)

where the second step follows by Lemma 1 as in Appendix D with g(W ∗) = E[Xk1Xk2 |W ∗]
and last step follows by the smoothness of E[Xk1Xk2 |W ∗ = ·] and fW ∗(·) (Assumption M (2))
and properties of the p-th order kernel function K (Assumption M (3)). Also note that for any
k1, k2 = 1, . . . , k,

V ar(Sk1,k2n ) ≤ 1

na2n
E

[
X2
k1X

2
k2K

2

(
w∗ −W
an

)]
=

1

na2n

¨
K2

(
w∗ − u− v

an

)
{E[X2

k1X
2
k2 |W

∗ = ·]fW ∗(·)}(u)fε(v)dudv

=
1

nan

ˆ
K2(ũ)

{ˆ
{E[X2

k1X
2
k2 |W

∗]fW ∗}(w∗ − v − anũ)fε(v)dv

}
dũ

= O

(
1

nan

ˆ
K2(ũ)dũ

)
= O

 1

nan

(
inf
|t|≤a−1

n

|f ftε (t)|

)−2 , (A.7)

where the third step follows by the change of variables ũ = w∗−u−v
an

, the fourth step follows by
the boundedness of E[X2

k1
X2
k2
|W ∗] and fW ∗ (Assumption M (2)), and the last step follows by
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Lemma 2 as in Appendix D. Under Assumption O (1), (A.7) implies

V ar(Sk1,k2n ) = O(n−1a−(1+2α)
n ). (A.8)

Thus, (A.5) follows by (A.6) and (A.8) combined with an → 0 and na1+2α
n → ∞ (Assumption

O (2)).
It remains to characterize the stochastic orders of |Tn|2 and |Bn|2. For |Tn|2, note that for

k1 = 1, . . . , k,

E|ξk1j |
2 = a−2n

¨
K2

(
w∗ − u− v

an

)
{E[|V k1

j |
2|W ∗ = ·]fW ∗(·)}(u)fε(v)dudv

=
1

an

ˆ
K2(ũ)

{ˆ
{E[|V k1

j |
2|W ∗ = ·]fW ∗(·)}(w∗ − v − anũ)fε(v)dv

}
dũ

= O

(
1

nan

ˆ
K2(ũ)dũ

)
= O

 1

nan

(
inf
|t|≤a−1

n

|f ftε (t)|

)−2 , (A.9)

where the second step follows by the change of variables ũ = w∗−u−v
an

, the third step follows by the
definition of Vj and the boundedness of E[X2

k1
X2
k2
|W ∗], E[U2|X,W ∗], β, and fW ∗ (Assumption

M (2)), and the last step follows by Lemma 2. Then, by |Tn|2 = Op

(
n−1 max1≤k1≤k E|ξ

k1
j |2

)
,

(A.9) implies

|Tn|2 = O

 1

nan

(
inf
|t|≤a−1

n

|f ftε (t)|

)−2 , (A.10)

which under Assumption O (1) gives

|Tn|2 = Op(n
−1a−(1+2α)

n ). (A.11)

For |Bn|2, note that |Bn|2 ≤ kmax1≤k1≤k |E[ξk1j ]|2, and for k1 = 1, . . . , k,

E[ξk1j ] = a−1n E

[
V k1K

(
w∗ −W
an

)]
= a−1n E

[
V k1K

(
w∗ −W ∗

an

)]
=

ˆ
{E[V k1 |W ∗ = ·]fW ∗(·)}(w∗ − anu)K(u)du = O(apn), (A.12)

where the second step follows by Lemma 1 with g(W ∗) = E[V k1 |W ∗] and last step follows by
the definition of V , the smoothness of β(·), fW ∗(·), and E[Xk1Xk2 |W ∗ = ·] (Assumption M (2))
and properties of the p-th order kernel function K (Assumption M (3)). Then, it follows

|Bn|2 = O(a2pn ). (A.13)

Combining (A.4), (A.11), and (A.13), the conclusion follows.

A.2. Proof of Theorem 1 (ii) . By (A.3) and (A.5), it is sufficient to establish the asymptotic
normality of Tn and the asymptotic negligibility of Bn. The asymptotic negligibility of Bn (i.e.,√
na1+2α

n Bn → 0) is an immediate result of (A.12) and Assumption O (5). So, we focus on the
asymptotic normality of Tn, i.e., √

na1+2α
n Tn

d→ N(0,Σ). (A.14)
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By the Cramér–Wold device, (A.14) is equivalent to√
na1+2α

n ω′Tn
d→ N(0, ω′Σω) (A.15)

for each ω ∈ Rk with |ω| = 1. We first establish the standardised version of (A.15), i.e.

ω′Tn√
V ar(ω′Tn)

d→ N(0, 1). (A.16)

For (A.16), it suffices to check the Lyapunov condition for some η > 0, i.e.,

E|ω′ξj − E[ω′ξj ]|2+η

nη/2{V ar(ω′ξj)}1+η/2
→ 0. (A.17)

For the numerator of (A.17), we have

E|ω′ξj − E[ω′ξj ]|2+η ≤ 21+ηE|ω′ξj |2+η

= O

(
a−(2+η)n

¨ ∣∣∣∣K(w∗ − u− van

)∣∣∣∣2+η {E[|ω′V |2+η|W ∗ = ·]fW ∗(·)}(u)fε(v)dudv

)

= O

(
a−(1+η)n

ˆ
|K(ũ)|2+η

{ˆ
{E[|ω′V |2+η|W ∗ = ·]fW ∗(·)}(w∗ − v − anũ)fε(v)dv

}
dũ

)

= O

(
a−(1+η)n

ˆ
|K(ũ)|2+ηdũ

)
= O

a−(1+η)n

(
inf
|t|≤a−1

n

|f ftε (t)|

)−(2+η) , (A.18)

where the first step follows by Jensen’s inequality, the second step follows by the definition of
ξj , the third step follows by the change of variables ũ = w∗−u−v

an
, the fourth step follows by the

definition of V and the boundedness of E[|Xk1 |2+η|W ∗], E[|U |2+η|W ∗], β, and fW ∗ (Assumption
M (4)), and the last equality follows by Lemma 2. Under Assumption O (1), (A.18) implies

E|ω′ξj − E[ω′ξj ]|2+η = O(a−1−2α−η(1+α)n ). (A.19)

For the denominator of (A.17), for any ω1, ω2 ∈ Rk with |ω1| = 1 and |ω2| = 1, we have

E[ω′1ξjξ
′
jω2] = a−2n

¨ ∣∣∣∣K(w∗ − u− van

)∣∣∣∣2 {E[|ω′1V V ′ω2| |W ∗ = ·]fW ∗(·)}(u)fε(v)dudv

= a−2n

ˆ ∣∣∣∣K(w∗ − ũan

)∣∣∣∣2{ˆ {E[|ω′1V V ′ω2| |W ∗ = ·]fW ∗(·)}(ũ− v)fε(v)dv

}
dũ

= a−(1+2α)
n C

ˆ
{E[|ω′1V V ′ω2| |W ∗ = ·]fW ∗(·)}(w∗ − v)fε(v)dv(1 + o(1)), (A.20)

where the first equality follows by the definition of ξj , the second equality follows by the change
of variables ũ = u+ v, and the last equality follows by the continuity of

´
{E[|ω′1V V ′ω2| |W ∗ =

·]fW ∗(·)}(ũ − v)fε(v)dv as a function of ũ for any ω1, ω2 ∈ Rk with |ω1| = 1 and |ω2| = 1

(Assumption M (2)), Assumption O (4), Fan (1991, Lemma 2.1), Parseval’s identity, and the
definition of C.

Then, noting that V ar(ω′ξj) is dominated by E|ω′ξj |2, (A.20) implies

{V ar(ω′ξj)}−(1+η/2) = O(a(1+2α)(1+η/2)
n ), (A.21)
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Therefore, (A.19) and (A.21) imply that (A.17) is satisfied if nan →∞ as n→∞, which holds
under Assumption O (2).

To show (A.14), besides (A.16), we also need

na1+2α
n V ar(Tn)→ Σ. (A.22)

For (A.22), decompose na1+2α
n V ar(Tn) = Σn,1 + Σn,2, where

Σn,1 = a1+2α
n E[ξjξ

′
j ], Σn,2 = −a1+2α

n E[ξj ]E[ξj ]
′.

By (A.12) and an → 0 (Assumption O (2)), it holds Σn,2 = o(1). By (A.20), the (k1, k2)-element
of Σn,1 converges to C

´
{E[|V k1V k2 | |W ∗ = ·]fW ∗(·)}(w∗ − v)fε(v)dv, which implies Σn,1 → Σ,

and (A.22) follows.

A.3. Proof of Theorem 2 (i) . First, note that under Assumption S (1), (A.7) implies

V ar(Sk1,k2n ) = O(n−1a−1n e2µa
−γ
n ). (A.23)

Then, (A.4) follows by (A.5), which is implied by (A.6), (A.23), an → 0, and nane−2µa
−γ
n →∞

(Assumption S (2)).
Also note that under Assumption S (1), (A.10) implies

|Tn|2 = O(n−1a−1n e2µa
−γ
n ). (A.24)

Combining (A.4), (A.13), and (A.24), the conclusion follows.

A.4. Proof of Theorem 2 (ii). For the numerator of (A.16), under Assumption S (1), (A.18)
implies

E|ω′ξj − E[ω′ξj ]|2+η = O(a−(1+η)n e(2+η)µa
−γ
n ). (A.25)

To establish the lower bound of the denominator of (A.16), we leverage the approach of van
Es and Uh (2004) and Uh (2003). In particular, define c(an) =

´ 1
0 e

µ(s/an)γds, Dn,j =
Wj−w∗
an

mod 2π, and Ψθ(t) = (1− it)−(1+θ). By Uh (2003, Theorem 4.7), under Assumptions S (3) and
(4), we have

K
(
w∗ −Wj

an

)
=
AΓ(θ + 1)aγθn c(an)

π(µγ)θcss

 cos(Dn,j)<Ψθ

(
(Wj−w∗)aγ−1

n

µγ

)
− sin(Dn,j)=Ψθ

(
(Wj−w∗)aγ−1

n

µγ

)
+Op(a

γ(1+θ)
n c(an)),

where <f and =f denote the real and imaginary parts of a complex-valued function f , respec-
tively. So, V ar(ω′ξj) is dominated by a2(γθ−1)n c(an)2V ar(ω′ψj) with

ψj = Vj

{
cos(Dn,j)<Ψθ

(
(Wj − w∗)aγ−1n

µγ

)
− sin(Dn,j)=Ψθ

(
(Wj − w∗)aγ−1n

µγ

)}
,

which, together with van Es and Uh (2004, Lemma 2.1), gives

{V ar(ω′ξj)}−(1+η/2) = O
(
a−(γθ+γ−1)(2+η)n e−(2+η)µa

−γ
n {V ar(ω′ψj)}−(1+η/2)

)
. (A.26)

By (A.26), for the lower bound of the denominator of (A.16), we can focus on the lower bound
of V ar(ω′ψj), for which it is sufficient to derive the lower bound of E|ω′ψj |2. Using the law of
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iterated expectation, we have

E|ω′ψj |2 = E

 E[|ω′Vj |2|Wj ]

 cos(Dn,j)<Ψθ

(
(Wj−w∗)aγ−1

n

µγ

)
− sin(Dn,j)=Ψθ

(
(Wj−w∗)aγ−1

n

µγ

)


2  . (A.27)

Let D be a random variable that is uniformly distributed on [0, 2π] and is independent of W .
Following van Es and Uh (2004), we consider three separate cases based on the value of γ. In
particular, using van Es and Uh (2004, Lemma 3.1), (A.27) implies

E|ω′ψj |2 =


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which together with (A.26) gives

{V ar(ω′ξj)}−(1+η/2) =

O
(
a
−(2+θ)(2+η)
n e−(2+η)µa

−γ
n

)
if 1/3 < γ < 1

O
(
a
−(γθ+γ−1)(2+η)
n e−(2+η)µa

−γ
n

)
if 1 ≤ γ ≤ 2

. (A.28)

Therefore, (A.25) and (A.28) imply that (A.17) is satisfied if na2γ(θ+1)(1+2/η)−2
n →∞ for some

η > 0 in the case when 1 ≤ γ ≤ 2 or if na2(3+θ)(1+2/η)−2
n → ∞ for some η > 0 in the case when

1/3 < γ < 1, which holds true under Assumption S (2).
The conclusion then follows by

n1/2ω′Bn√
V ar(ω′ξj)

= op(1),

for which we combine (A.13) and (A.28) with na
2p−2(2+θ)
n e−2µa

−γ
n → 0 if 1/3 < γ < 1 and

na
2p−2γ(θ+1)+2
n e−2µa

−γ
n → 0 if 1 ≤ γ ≤ 2 (Assumption S (5)).

Appendix B. Proofs for Section 3

Notation. For the results in Section 3, we introduce µ̂s(t) = 1
n

∑n
l=1 µs,l(t) and µs(t) =

E[µs,1(t)] with µs,l(t) = cos{t(Wl −W r
l )}, which give f̂ ftε,s(t) = |µ̂s(t)|1/2 and f ftε (t) = |µs(t)|1/2,

i.e., K̂s and K are functionals of µ̂s and µs, respectively. Define

Π̂s(t) =
1

n

n∑
l=1

Πs,l(t), Πs,l(t) =
µs(t)− µs,l(t)

2µs(t)
,

Π̂res
s (t) =

(2|µ̂s(t)|1/2 + |µs(t)|1/2)(|µ̂s(t)|1/2 − |µs(t)|1/2)2

µs(t)|µ̂s(t)|1/2
.

By expanding µ̂s around µs, we obtain

K̂s(u) = K(u) + As(u) + Rs(u), (B.1)
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where

As(u) =
1

2π

ˆ
e−itu

K ft(t)

f ftε (t/an)
Π̂s(t/an)dt,

Rs(u) =
1

2π

ˆ
e−itu

K ft(t)

f ftε (t/an)
Π̂res
s (t/an)dt.

Here As(u) is the Fréchet derivative of K̂s(u) as a functional of µ̂s at µs in the direction of
µ̂s − µs. Also note that Π̂res

s (t) is of a higher order than Π̂s(t). So, the remainder Rs(u) should
be dominated by As(u) asymptotically.

Define

Ŝn,s =
1

nan

n∑
j=1

XjX
′
j

{
As
(
w∗ −Wj

an

)
+ Rs

(
w∗ −Wj

an

)}
,

Ân,s =
1

n

n∑
j=1

{ξs,a,j − E[ξs,a,j ]}, B̂n,s = E[ξs,a,j ], R̂n,s =
1

n

n∑
j=1

ξs,r,j ,

where ξs,a,j = 1
an
VjAs

(
w∗−Wj

an

)
, ξs,r,j = 1

an
VjRs

(
w∗−Wj

an

)
, and Vj is defined in (A.2). Then,

using the approximation result for K̂s as in (B.1), we have

β̃s(w
∗) = β(w∗) + (Sn + Ŝn,s)

−1(Tn + Ân,s +Bn + B̂n,s + R̂n,s), (B.2)

where Sn, Tn, and Bn are defined in (A.1). Also, let Ŝk1,k2n,s denote the (k1, k2)-th element of
Ŝn,s, ξk1s,a,j and ξk1s,r,j separately denote the k1-element of ξs,a,j and ξs,r,j for k1, k2 = 1, . . . , k,
and Ej [·] = E[·|W ∗j , Xj , Yj , εj , ε

r
j ] for j = 1, . . . , n. The proofs of Theorems 3 and 4 follow along

similar lines as Theorems 1 and 2 respectively, as such, we only explain the parts that differ.

B.1. Proof of Theorem 3 (i). By (B.2), (A.5), and λmin(S) > 0 (Assumption M (2)), we have

|β̃s(w∗)− β(w∗)|2 = Op(|Tn|2 + |Bn|2 + |Ân,s + B̂n,s|2 + |R̂n,s|2), (B.3)

if we can show
Ŝn,s

p→ 0. (B.4)

To show (B.4), note that for any k1, k2 = 1, . . . , k,

|Ŝk1,k2n,s | ≤
1

nan

n∑
j=1

∣∣∣∣Xk1,jXk2,j

{
As
(
w∗ −Wj

an

)
+ Rs

(
w∗ −Wj

an

)}∣∣∣∣
≤ 1

nan

n∑
j=1

|Xk1,jXk2,j |
ˆ
|K ft(t)| |Π̂s(t/an)|+ |Π̂res

s (t/an)|
|f ftε (t/an)|

dt

= Op

(
sup|t|≤a−1

n
|Π̂s(t)|+ sup|t|≤a−1

n
|Π̂res

s (t)|
an inf |t|≤a−1

n
|f ftε (t)|

)
, (B.5)

where the second step follows by definitions of As and Rs, and the last step uses the fact that
K ft is supported on [−1, 1] (Assumption M (3)). By n−1/2a−2αn log(1/an)1/2 → 0 (Assumption
OS (1)) and Lemma 4 as in Appendix D, under Assumption O (1), (B.5) implies

|Ŝn,s| = Op

(
n−1/2a−(1+3α)

n log(1/an) + n−1a−(1+5α)
n log(1/an)2

)
, (B.6)
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and (B.4) follows by (B.6) and n−1/2a−(1+3α)
n log(1/an)→ 0 (Assumption OS (1)).

Since stochastic orders of |Tn|2 and |Bn|2 are obtained in Appendix A.1, it remains to char-
acterize the orders of |R̂n,s|2 and |Ân,s + B̂n,s|2. For |R̂n,s|2, note that

|R̂n,s| ≤
√
k max
1≤k1≤k

 1

n

n∑
j=1

|ξk1s,r,j |

 ≤ √k max
1≤k1≤k

 1

nan

n∑
j=1

|V k1
j |
ˆ
|K ft(t)| |Π̂

res
s (t/an)|
|f ftε (t/an)|

dt


= Op

(
sup|t|≤a−1

n
|Π̂res

s (t)|
an inf |t|≤a−1

n
|f ftε (t)|

)
, (B.7)

where the second step follows by definitions of ξs,r,j and Rs, and the last step uses the fact that
K ft is supported on [−1, 1] (Assumption M (3)). By n−1/2a−2αn log(1/an)→ 0 (Assumption OS
(1)) and Lemma 4, under Assumption O (1), (B.7) implies

|R̂n,s|2 = Op

(
n−2a−2(1+5α)

n log(1/an)4
)
. (B.8)

For |Ân,s + B̂n,s|2, note that

|Ân,s + B̂n,s| ≤
√
k max
1≤k1≤k

 1

n

n∑
j=1

|ξk1s,a,j |

 ≤ √k max
1≤k1≤k

 1

nan

n∑
j=1

|V k1
j |
ˆ
|K ft(t)| |Π̂s(t/an)|

|f ftε (t/an)|
dt


= Op

(
sup|t|≤a−1

n
|Π̂s(t)|

an inf |t|≤a−1
n
|f ftε (t)|

)
, (B.9)

where the second step follows by definitions of ξs,a,j and As, and the last step uses the fact that
K ft is supported on [−1, 1] (Assumption M (3)). By Lemma 4, under Assumption O (1), (B.9)
implies

|Ân,s + B̂n,s|2 = Op

(
n−1a−2(1+3α)

n log(1/an)2
)
. (B.10)

Combining (A.11), (A.13), (B.8), and (B.10) with (B.3), the conclusion follows.

B.2. Proof of Theorem 3 (ii) . Define

T ∗n,s =
2

n

n∑
j=1

{ξj − E[ξj ] + ξ̂s,j}, T̂n,s =

(
n

2

)−1 n−1∑
j=1

n∑
l=j+1

{ps,j,l + ps,l,j} T rn,s =
1

n2

n∑
j=1

ps,j,j ,

where ξ̂s,j = Ej [ξs,a,l,j ] for l 6= j and ps,j,l = ξj + ξs,a,j,l − E[ξj + ξs,a,j,l] with

ξs,a,j,l =
1

2πan

ˆ
Vje
−it

(
w∗−Wj
an

)
K ft(t)

f ftε (t/an)
Πs,l(t/an)dt.

Decompose

Tn + Ân,s =
n− 1

2n
T ∗n,s +

n− 1

2n
{T̂n,s − T ∗n,s}+ T rn,s. (B.11)

To understand (B.11), note that Tn + Ân,s = 1
n2

∑n
j=1

∑n
l=1 ps,j,l since ξa,j = 1

n

∑n
l=1 ξa,j,l, T

r
n,s

characterizes the diagonal elements of Tn + Ân,s, T̂n,s characterizes the off-diagonal elements of
Tn + Ân,s and is a second-order U-statistic with symmetric kernel ps,j,l + ps,l,j and the Hájek
projection T ∗n,s. Also note that ξ̂s,j = 0 (as Πs,j(t/an) = 0) when fε is known, which implies
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n−1
2n T

∗
n,s = Tn(1−1/n), i.e., n−12n T

∗
n,s is a natural extension of Tn to the case when f ftε is estimated

by f̂ ftε,s since Πs,j(t/an) in ξs,j characterizes the additional estimation error brought by f̂ ftε,s.
So, the conclusion follows if we can establish the asymptotic normality of T ∗n,s and show the

asymptotic negligibility of T̂n,s − T ∗n,s, T rn,s, Bn, B̂n,s, and R̂n,s. Using the Cramér–Wold device,
this is equivalent to establishing the asymptotic normality of ω′T ∗n,s and showing the asymptotic
negligibility of ω′(T̂n,s − T ∗n,s), ω′T rn,s, ω′Bn, ω′B̂n,s, and ω′R̂n,s for each ω ∈ Rk with |ω| = 1.

For the asymptotic normality of ω′T ∗n,s, we show

ω′T ∗n,s√
V ar(ω′T ∗n,s)

d→ N(0, 1). (B.12)

To this end, it suffices to check Lyapunov’s condition for some η > 0, i.e.,

E|ω′(ξj + ξ̂s,j)− E[ω′ξj ]|2+η

nη/2{V ar(ω′(ξj + ξ̂s,j))}1+η/2
→ 0. (B.13)

For the numerator of (B.13), note that

E|ω′(ξj + ξ̂s,j)− E[ω′ξj ]|2+η ≤ 21+η{E|ω′ξ̂s,j |2+η + E|ω′ξj − E[ω′ξj ]|2+η}

= O

(
E

∣∣∣∣ 1

2πan

ˆ
E

[
ω′V e

−it
(
w∗−W∗
an

)]
Πs,j(t/an)K ft(t)dt

∣∣∣∣2+η + E|ω′ξj − E[ω′ξj ]|2+η
)

= O

a−(2+η)n (E|ω′V |)2+ηE

( sup
|t|≤a−1

n

|Πs,j(t)|

)2+η
+ E|ω′ξj − E[ω′ξj ]|2+η


= O

a−(2+η)n

(
inf
|t|≤a−1

n

|f ftε (t)|

)−2(2+η) , (B.14)

where the first step follows by Jensen’s inequality, the third step follows from the fact that K ft is
supported on [−1, 1] (Assumption M (3)), and the last step follows by Lemma 5 as in Appendix
D and (A.18). Under Assumption O (1), (B.14) implies

E|ω′(ξj + ξ̂s,j)− E[ω′ξj ]|2+η = O(a−(2+η)(1+2α)
n ). (B.15)

For the denominator of (B.13), note that V ar(ω′(ξj + ξ̂s,j)) = V ar(ω′(ξj + ξ∗s,j)) with

ξ∗s,j = − 1

4π

ˆ
E[V eitW

∗
]K ft(tan)

{f ftε (t)}2
cos{t(εj − εrj)}e−itw

∗
dt. (B.16)

By Assumption MS (4), for the lower bound of V ar(ω′(ξj+ξ∗s,j)), it suffices to focus on V ar(ω′ξj)
and V ar(ω′ξ∗s,j), which are dominated by E|ω′ξj |2 and E|ω′ξ∗s,j |2, respectively. For E|ω′ξ∗s,j |2,
note that for some finite interval Is ⊂ R containing ±w∗, we have

E|ω′ξ∗s,j |2 =
1

16π2

ˆ ∣∣∣∣ˆ {ω′b(·)}ft(t)K ft(tan)

{f ftε (t)}2
cos(tu)e−itw

∗
dt

∣∣∣∣2 fε−εr(u)du

=
1

64π2

ˆ ∣∣∣∣ˆ {ω′b(·)}ft(t){f ftε (t)}2
{e−it(w∗−u) + e−it(w

∗+u)}K ft(tan)dt

∣∣∣∣2 fε−εr(u)du

≥ cs

ˆ
u∈Is

∣∣∣∣ˆ {ω′b(·)}ft(t){f ftε (t)}2
{e−it(w∗−u) + e−it(w

∗+u)}K ft(tan)dt

∣∣∣∣2 du, (B.17)
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where the first step follows from the definition of ξ∗s,j , the second step uses cos(x) = {eix+e−ix}/2,
and the last step follows by choosing some constant cs > 0 such that infu∈I fε−εr(u) > 64π2cs,
where such a cs exists due to the compactness of Is and the fact that fε is continuous and
non-vanishing everywhere (Assumption MS (2)).

As d
dt

{
{ω′b(·)}ft(t)
{f ftε (t)}2

}
∈W (Assumption MS (3)), Schennach (2004, Lemma 10) implies

lim
|u|→∞

(w∗ ± u)

ˆ
{ω′b(·)}ft(t)
{f ftε (t)}2

e−it(w
∗±u)dt = 0,

and it follows
ˆ
u∈Ic

∣∣∣∣ˆ {ω′b(·)}ft(t){f ftε (t)}2
{e−it(w∗−u) + e−it(w

∗+u)}dt
∣∣∣∣2 du = O

(ˆ
u∈Ic

1

(w∗2 − u2)2
du

)
= O(1).

(B.18)

Thus, for all n large enough and some constant Cs > 0, we have

E|ω′ξ∗s,j |2 ≥ Cs
ˆ ∣∣∣∣ˆ {ω′b(·)}ft(t){f ftε (t)}2

{
e−it(w

∗−u) + e−it(w
∗+u)

}
K ft(tan)dt

∣∣∣∣2 du
= 2πCs

¨ { {ω′b(·)}ft(t){ω′b(·)}ft(−s)Kft(tan)Kft(−san)
{f ftε (t)f ftε (−s)}2 ei(s−t)w

∗

× 1
2π

´ {
ei(t−s)u + ei(t+s)u + ei(−t−s)u + ei(−t+s)u

}
du

}
dsdt

= 4πCs

{ ´ ∣∣∣{ω′b(·)}ft(t){f ftε (t)}2 K ft(tan)
∣∣∣2 dt+

´ ({ω′b(·)}ft(t)
{f ftε (t)}2 K ft(tan)

)2
ei2tw

∗
dt
}

= 8πCs

ˆ ∣∣∣∣{ω′b(·)}ft(t) cos(tw∗)K ft(tan)

{f ftε (t)}2

∣∣∣∣2 dt, (B.19)

where the first step follows by (B.17) and (B.18), the third step follows by
´
δ(x−b)f(x)dx = f(b)

with the Dirac function δ(x) = 1
2π

´
e−itxdx, and the last step follows by the symmetry of

E[XX ′|W ∗ = ·]fW ∗(·), β(·), and K(·) (Assumption MS (2)) and the identity 1 + cos(2x) =

2 cos2(x).
Thus, (B.19) together with (A.21) implies

{V ar(ω′(ξj + ξ̂s,j))}−(1+η/2)

= O

(ˆ ∣∣∣∣{ω′b(·)}ft(t) cos(tw∗)K ft(tan)

{f ftε (t)}2

∣∣∣∣2 dt+ a−(1+2α)
n

)−(1+η/2) . (B.20)

Combining (B.15) and (B.20), (B.13) holds under Assumption OS (2), and (B.12) follows.
For ω′(T̂n,s − T ∗n,s), by Ahn and Powell (1993, Lemma A.3), we have

ω′(T̂n,s − T ∗n,s) = op(n
−1/2), (B.21)

if
E|ω′{ps,j,l + ps,l,j}|2 = O(n). (B.22)
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To show (B.22), note that

E|ω′ξs,a,j,l|2 = a−2n E

[(ˆ
|Πs,l(t/an)| |K

ft(t)|
|f ftε (t/an)|

dt

)2
]
E|ω′Vj |2

= O

a−2n E

( sup
|t|≤a−1

n

|Πs,l(t)|

)2
( inf

|t|≤a−1
n

|f ftε (t)|

)−2
= O

a−2n
(

inf
|t|≤a−1

n

|f ftε (t)|

)−6 , (B.23)

where the first step follows by random sampling (Assumption M (1)), the second step follows
from the fact that K ft is supported on [−1, 1] (Assumption M (3)), and the last step follows by
Lemma 5. Then, we have

E|ω′{ps,j,l + ps,l,j}|2 ≤ 8{E|ω′ξs,a,j,l|2 + E|ω′ξj |2} = O

a−2n
(

inf
|t|≤a−1

n

|f ftε (t)|

)−6 , (B.24)

where the first step follows by Jensen’s inequality and the second step follows by (B.23) and
(A.9). Under Assumption O (1), (B.24) implies E|ω′{pj,l + pl,j}|2 = O(a

−2(1+3α)
n ) and (B.22)

follows by Assumption OS (1).
For ω′T rn,s, note that

|ω′T rn,s|2 = O
(
n−3{E|ω′ξs,a,1,1|2 + E|ω′ξ1|2}

)
= O

n−3a−2n
(

inf
|t|≤a−1

n

|f ftε (t)|

)−6 , (B.25)

where the last step follows by (B.23) and (A.9). Under Assumption O (1), (B.25) implies

|ω′T rn,s| = Op(n
−3/2a−(1+3α)

n ). (B.26)

For ω′B̂n,s, note that

|ω′B̂n,s| =
1

2πnan

ˆ
E

[
ω′Vje

−it
(
w∗−Wj
an

)
Πs,j(t/an)

]
K ft(t)

f ftε (t/an)
dt

=
1

4πnan

ˆ
E

[
ω′Vje

−it
(
w∗−W∗j
an

)]
E

[
eitεj/an

{
1

f ftε (t/an)
−

cos{t(εj − εrj)/an}
{f ftε (t/an)}3

}]
K ft(t)dt

=
1

4πnan

ˆ
E

[
ω′Vje

−it
(
w∗−W∗
an

)]{
1− f ftε (2t/an) + 1

2{f ftε (t/an)}2

}
K ft(t)dt

= O

 1

nan

(
inf
|t|≤a−1

n

|f ftε (t)|

)−2 , (B.27)

where the first step follows from definitions of B̂n,s and ξs,a,j,j , the second step follows by in-
dependence between ε and (Y,X,W ∗) (Assumption M (1)) and the definition of Πs,j , the third
step follows from cos(x) = {ex + e−x}/2 and the fact that εr is independent of ε and has the
same distribution as ε (Assumption RS), and the penultimate step follows by the fact that K ft
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is supported on [−1, 1] (Assumption M (3)). Under Assumption O (1), (B.27) implies

|B̂n,s| = O(n−1a−(1+2α)
n ). (B.28)

Therefore, the conclusion follows by

n1/2ω′{T̂n,s − T ∗n,s + T rn,s +Bn + B̂n,s + R̂n,s}

2
√
V ar(ω′(ξj + ξ∗s,j))

= op(1), (B.29)

for which we combine (A.13), (B.8), (B.20), (B.21), (B.26), and (B.28) with Assumption OS (2).

B.3. Proof of Theorem 4 (i). First, note that by n−1/2e2µa
−γ
n log(1/an)→ 0 (Assumption SS

(1)) and Lemma 4, under Assumption S (1), (B.5) implies

|Ŝn,s| = Op

(
n−1/2e3µa

−γ
n a−1n log(1/an) + n−1e5µa

−γ
n a−1n log(1/an)2

)
, (B.30)

which together with n−1/2e3µa
−γ
n a−1n log(1/an) → 0 (Assumption SS (1)) gives (B.4), and thus

(B.3) follows.
Also note that by n−1/2e2µa

−γ
n log(1/an) → 0 (Assumption SS (1)) and Lemma 4, under

Assumption S (1), (B.7) implies

|R̂n,s|2 = Op

(
n−2e10µa

−γ
n a−2n log(1/an)4

)
, (B.31)

and (B.9) implies
|Ân,s + B̂n,s|2 = Op

(
n−1e6µa

−γ
n a−2n log(1/an)2

)
. (B.32)

Combining (A.13), (A.24), (B.31), and (B.32) with (B.3), the conclusion follows.

B.4. Proof of Theorem 4 (ii). Under Assumption S (1), (B.14) implies

E|ω′(ξj + ξ̂s,j)− E[ω′ξj ]|2+η = O
(
e2(2+η)µa

−γ
n a−(2+η)n

)
, (B.33)

and (B.19) together with (A.28) implies

{V ar(ω′(ξj + ξ̂s,j))}−(1+η/2)

=


O

((´ ∣∣∣{ω′b(·)}ft cos(tw∗)Kft(tan)
{f ftε (t)}2

∣∣∣2 dt+ e2µa
−γ
n a

2(2+θ)
n

)−(1+η/2))
if 1/3 < γ < 1

O

((´ ∣∣∣{ω′b(·)}ft cos(tw∗)Kft(tan)
{f ftε (t)}2

∣∣∣2 dt+ e2µa
−γ
n a

2(γθ+γ−1)
n

)−(1+η/2))
if 1 ≤ γ ≤ 2

.(B.34)

Combining (B.33) and (B.34), (B.13) holds under Assumption SS (2), and thus (B.12) follows.
Under Assumption S (1), (B.24) implies E|ω′{ps,j,l + ps,l,j}|2 = O

(
a−2n e6µa

−γ
n

)
and (B.22)

follows by na2ne−6µa
−γ
n →∞ (Assumption SS (1)), (B.25) implies

|ω′T rn,s| = Op

(
n−3/2e3µa

−γ
n a−1n

)
, (B.35)

and (B.27) implies
|B̂n,s| = O

(
n−1e2µa

−γ
n a−1n

)
. (B.36)

Combining (A.13), (B.21), (B.31), (B.34), (B.35), and (B.36), (B.29) holds under Assumption
SS (2). The conclusion then follows by (B.12) and (B.29) .
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Appendix C. Lemmas

Lemma 1. Under Assumption M, for any function g such that gfW ∗ ∈ L2(R), it holds

E

[
g(W ∗)K

(
w∗ −W
an

)]
= E

[
g(W ∗)K

(
w∗ −W ∗

an

)]
.

Proof.

E

[
g(W ∗)K

(
w∗ −W
an

)]
=

1

2π

ˆ
e−itw

∗/anE
[
g(W ∗)eitW/an

] K ft(t)

f ftε (t/an)
dt

=
1

2π

ˆ
e−itw

∗/an{gfW ∗}ft(t/an)K ft(t)dt

= E

[
g(W ∗)K

(
w∗ −W ∗

an

)]
,

where the first step follows by the definition of K, the second step follows by the independence
between ε andW ∗ (Assumption M (1)), and the last step follows by the Plancherel’s isometry. �

Lemma 2. Under Assumption M, for η > 0, it holds

ˆ
|K(x)|2+ηdx = O

( inf
|t|≤a−1

n

|f ftε (t)|

)−(2+η) .

Proof. The conclusion follows by
´
|K(x)|2+ηdx ≤ supx |K(x)|η

´
K2(x)dx with

sup
x
|K(x)|η = O

((ˆ ∣∣∣∣ K ft(t)

f ftε (t/an)

∣∣∣∣ dt)η) = O

((
inf
|t|≤a−1

n

|f ftε (t)|

)−η)
,

ˆ
K2(x)dx = O

(ˆ ∣∣∣∣ K ft(t)

f ftε (t/an)

∣∣∣∣2 dt
)

= O

( inf
|t|≤a−1

n

|f ftε (t)|

)−2 ,

where we use the fact that K ft is supported on [−1, 1] (Assumption M (3)) and Parseval’s
identity. �

Lemma 3. Under Assumptions RS and MS (1), it holds

sup
|t|≤a−1

n

|µ̂s(t)− µs(t)| = Op

(
n−1/2 log(1/an)

)
.

Proof. Note that |µ̂s(t) − µs(t)| ≤ | 1n
∑n

j=1 e
it(εj−εrj ) − µs(t)|. The conclusion then follows by

E|ε|2+ς <∞ for some ς > 0 (Assumption MS (1)) and Kurisu and Otsu (2020, Lemma 1). �

Lemma 4. Under Assumptions RS and MS (1), it holds

sup
|t|≤a−1

n

|Π̂s(t)| = Op

(
log(1/an)

n1/2{inf |t|≤a−1
n
|f ftε (t)|}2

)
.

Moreover, if n−1/2 log(1/an)
(

inf |t|≤a−1
n
|f ftε (t)|

)−2
→ 0, it holds

sup
|t|≤a−1

n

|Π̂res
s (t)| = Op

(
log(1/an)2

n{inf |t|≤a−1
n
|f ftε (t)|}4

)
.
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Proof. The first statement follows by Lemma 3 and sup|t|≤a−1
n
|Π̂s(t)| =

sup|t|≤a−1
n
|µ̂s(t)−µs(t)|

2{inf|t|≤a−1
n
|f ftε (t)|}2 . For

the second statement, note that

sup
|t|≤a−1

n

|Π̂res
s (t)| ≤ sup

|t|≤a−1
n

∣∣∣∣∣2(µs(t)− µ̂s(t))(|µs(t)|1/2 − |µ̂s(t)|1/2)
µs(t)|µ̂s(t)|1/2

∣∣∣∣∣
= sup

|t|≤a−1
n

∣∣∣∣ 2(µ̂s(t)− µs(t))2

µs(t)|µ̂s(t)|1/2(|µs(t)|1/2 + |µ̂s(t)|1/2)

∣∣∣∣ ≤ sup
|t|≤a−1

n

∣∣∣∣ 2(µ̂s(t)− µs(t))2

µs(t){(µ̂s(t)− µs(t)) + µs(t)}

∣∣∣∣
≤

2
(

sup|t|≤a−1
n
|µ̂s(t)− µs(t)|

)2
inf |t|≤a−1

n
µs(t) inf |t|≤a−1

n
{(µ̂s(t)− µs(t)) + µs(t)}

.

The conclusion then follows by Lemma 3 and n−1/2 log(1/an)
(

inf |t|≤a−1
n
|f ftε (t)|

)−2
→ 0. �

Lemma 5. Under Assumption RS, for η > 0, it holds

E

( sup
|t|≤a−1

n

|Πs,1(t)|

)2+η
 = O

( inf
|t|≤a−1

n

|f ftε (t)

)−2(2+η) .

Proof. The conclusion follows by

sup
|t|≤a−1

n

2|Πs,1(t)| = sup
|t|≤a−1

n

{
1− cos{t(W1 −W r

1 )}
{f ftε (t)}2

}
≤ 1 +

(
inf
|t|≤a−1

n

|f ftε (t)|

)−2
.

�
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ESTIMATION OF VARYING COEFFICIENT MODELS WITH
MEASUREMENT ERROR - SUPPLEMENTARY MATERIAL

HAO DONG, TAISUKE OTSU, AND LUKE TAYLOR

In this supplementary appendix, we discuss our varying coefficient regression estimator when
the measurement error distribution is unknown and possibly asymmetric.

1. Setup and estimator

If we wish to avoid assuming fε to be symmetric around zero, to identify the distribution of
ε, we require the following assumption.

Assumption RK. εr is independent of (Y,X,W ∗, ε) and has the same distribution as ε, f ft
W ∗

and f ft
ε vanish nowhere, and E[ε] = 0.

These assumptions are common in the literature (e.g., Li and Vuong, 1998, and Kurisu and
Otsu, 2020). Under Assumption RK, Kotlarski’s (1967) identity gives f ft

W ∗(t) = exp
(´ t

0
iE[W reisW ]
E[eisW ]

ds
)

and the error distribution is identified by f ft
ε (t) =

f ftW (t)

f ft
W∗ (t)

. Based on an i.i.d. sample {Wj ,W
r
j }nj=1

of (W,W r), f ft
ε (t) can be estimated by (Li and Vuong, 1998)

f̂ ft
ε (t) =

f̂ ft
W (t)

f̂ ft
W ∗(t)

,

where f̂ ft
W (t) = n−1

∑n
j=1 e

itW r
j and f̂ ft

W ∗(t) = exp

(´ t
0

i
∑n
j=1W

r
j e

isWj∑n
j=1 e

isWj
ds

)
.

Based on this estimator, we propose to estimate β(w∗) by

β̃(w∗) =

 n∑
j=1

XjX
′
jK̂
(
w∗ −Wj

an

)−1
n∑
j=1

XjYjK̂
(
w∗ −Wj

an

)
, (1.1)

where K̂ is the deconvolution kernel function obtained by replacing f ft
ε (t) in (2.4) with f̂ ft

ε (t).
A similar plug-in estimator was used in Schennach (2004) for a regression function when the
regressor is mismeasured and repeated noisy measurements are available.

1.1. Asymptotic properties. To analyse the asymptotic properties of β̃(w∗), we first impose
the following assumptions for both the ordinary smooth and supersmooth error cases.

Assumption MK.

(1): E|W ∗|2+η <∞ and E|ε|2+η <∞ for some η > 0.
(2): fW ∗(·) and E[W r2 |W ∗ = ·] are continuous and non-vanishing almost everywhere.
(3): d

dt

{
{ω′b(·)}ft(t){f ft

ε (t)}−1{f ft
W ∗(t)}−1

}
∈W,

d
dt

{
{
´∞
t +

´ −∞
t }{ω′b(·)}ft(s)e−isw∗ds{f ft

ε (t)}−1{f ft
W ∗(t)}−1

}
∈W, and

d
dt

{
{
´∞
t +

´ −∞
t }{ω′b(·)}ft(s)e−isw∗ds{f ft

ε (t)}−1 d
dt{f

ft
W ∗(t)}{f ft

W ∗(t)}−2
}
∈W for any ω ∈

Rk with |ω| = 1.
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(4): For any ω ∈ Rk with |ω| = 1, there exists some constant c̄ > 0 such that

V ar(ω′(ξ1 + ξ∗1,1 + ξ∗2,1 + ξ∗3,1)) ≥ c̄max{V ar(ω′ξ1), V ar(ω′ξ∗1,1), V ar(ω′ξ∗2,1), V ar(ω′ξ∗3,1)},

where ξ∗1,1, ξ
∗
2,1, and ξ

∗
3,1 are defined in (D.16), (D.17), and (D.18), respectively, in Ap-

pendix.

Assumption MK (1) is a regularity condition required by Lemma 1, which is used to charac-
terize the uniform convergence rate of the empirical characteristic function of (W,W r) and its
first-order derivative over an expanding region. Assumptions MK (2)-(4) contain further condi-
tions required to derive the distribution of our estimator when the error distribution is unknown
and possibly asymmetric. We emphasise that the convergence rate result below does not require
Assumptions MK (2)-(4). Assumptions MK (2)-(3) are regularity conditions used to derive the
lower bound for the variance of β̃(w∗); similar assumptions are used in Schennach (2004, As-
sumptions 12 and 13). In particular, Assumption MK (3) characterizes the tail behavior of the
dominant component of β̃(w∗)’s asymptotic representation brought by the estimation error of
f̂ ft
ε , and is used together with Assumption O (3) in the ordinary smooth case or Assumption S
(3) in the supersmooth case to derive the lower bound for the variance of β̃(w∗). Assumption
MK (4) states that the variance of β̃(w∗) is of an order no less than any term in its asymptotic
representation; a similar assumption is used in Schennach (2004, Assumption 14).

We again start with the ordinary smooth measurement error case and introduce the following
additional assumptions.

Assumption OK.

(1): There exists positive constants αw and cos
w,0 such that

|f ft
W ∗(t)|(1 + |t|)αw ≥ cos

w,0 for all t ∈ R.

(2): n−1/2a
−(2+3α+2αw)
n log(1/an)→ 0 as n→∞.

(3): For any ω ∈ Rk with |ω| = 1 and for some η > 0, as n→∞,

min{n−1a−2p
n , na

2(3+5α+4αw)
n log(1/an)−4, nη/(η+2)a

2(1+2α)
n }

×max



a
−(1+2α)
n ,

´ ∣∣∣{ω′b(·)}ft(t)Kft(tan)

f ftε (t)f ft
W∗ (t)

∣∣∣2 dt,
´ ∣∣∣∣{´∞t +

´−∞
t }{ω′b(·)}ft(s)Kft(san)e−isw∗ds d

dt
{f ft
W∗ (t)}

f ftε (t){f ft
W∗ (t)}2

∣∣∣∣2 dt,
´ ∣∣∣∣{´∞t +

´−∞
t }{ω′b(·)}ft(s)Kft(san)e−isw∗ds

f ftε (t)f ft
W∗ (t)

∣∣∣∣2 dt




→∞.

Assumption OK (1) assumes that fW ∗ is ordinary smooth of order αw, which is introduced
to guarantee the consistency of the estimated error characteristic function f̂ ft

ε . Similar to As-
sumption O (1) for fε, in contrast to the traditional ordinary smooth assumption, we only
need to impose a lower bound on |f ft

W ∗(t)| to study the upper bound of the risk as in Theo-
rem 1 (i). Assumption OK (2) is imposed to control the magnitude of the estimation error
from using f̂ ft

ε when the measurement error is ordinary smooth. Assumption OK (3) imposes
additional bandwidth conditions to derive the asymptotic normality of β̃(w∗). The component
a
−(1+2α)
n characterizes the estimation variance if fε is known, and depends on the smoothness
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of fε as in the standard deconvolution literature. The components
´ ∣∣∣{ω′b(·)}ft(t)Kft(tan)

f ftε (t)f ft
W∗ (t)

∣∣∣2 dt,
´ ∣∣∣∣{´∞t +

´−∞
t }{ω′b(·)}ft(s)Kft(san)e−isw∗ds d

dt
{f ft
W∗ (t)}

f ftε (t){f ft
W∗ (t)}2

∣∣∣∣2 dt, and ´ ∣∣∣∣{´∞t +
´−∞
t }{ω′b(·)}ft(s)Kft(san)e−isw∗ds

f ftε (t)f ft
W∗ (t)

∣∣∣∣2 dt
separately characterize the estimation errors brought by using 1

n

∑n
j=1 e

itW r
j , 1

n

∑n
j=1 e

itWj , and
1
n

∑n
j=1W

r
j e

itWj in place of E[eitW r
], E[eitW ], and E[W reitW ], respectively, and depend on the

relative smoothness of fε and fW ∗ to the conditional moment E[XX ′|W ∗] and the coefficient
function β. These four terms together characterizes (up to 1/n) the magnitude of the lower
bound of the variance of β̃(w∗). For min{n−1a−2p

n , na
2(3+5α+4αw)
n log(1/an)−4, nη/(η+2)a

2(1+2α)
n },

the first two terms reflect the estimation bias when fε is known and the estimation error from
using f̂ ft

ε , respectively, and the last term reflects Lyapunov’s condition to apply the central limit
theorem. So, Assumption OK (3) contains further restrictions on the bandwidth to use Lya-
punov’s central limit theorem and to ensure the asymptotic negligibility of the estimation bias
and higher order terms in the estimation error from using f̂ ft

ε .

Theorem 1.

(i): Under Assumptions M (1)-(4), O (1)-(2), RK, MK (1), and OK (1)-(2), it holds

|β̃(w∗)− β(w∗)|2 = Op

(
n−1a−2(2+3α+2αw)

n log(1/an)2 + a2p
n

)
.

(ii): Under Assumptions M (1)-(5), O (1)-(5), RK, MK (1)-(4), and OK (1)-(3), it holds

Ω̂n(w∗)−1/2{β̃(w∗)− β(w∗)} d→ N(0, Ik),

where Ω̂n(w∗) = n−1S(w∗)−1V ar(ξ1 + ξ∗1,1 + ξ∗2,1 + ξ∗3,1)S(w∗)−1.

Theorem 1 (i) shows the L2-risk of our estimator β̃(w∗) when the measurement error is ordinary
smooth and possibly asymmetric. The first term relates to the estimation error of f̂ ft

ε . The second
term is the usual bias term from an error-free nonparametric estimator. Theorem 1 (ii) shows
that the estimator retains its asymptotic normality when the measurement error characteristic
function is estimated using the approach of Li and Vuong (1998). Compared to the rate result
on β̂(w∗) established in Theorem 1 of the main body, where the error distribution is known,
β̃(w∗) converges more slowly due to the estimation error from f̂ ft

ε . Compared to the rate result
on β̃s(w∗) established in Theorem 3 of the main body, where the error distribution is unknown
but is symmetric around zero, the symmetry of the error distribution allows β̃s(w∗) to converge
faster than β̃(w∗).

We now turn to the supersmooth measurement error case which requires the following addi-
tional assumptions.

Assumption SK.

(1): For some positive constants µw, γw, and css
w,0, it holds

|f ft
W ∗(t)|eµw|t|

γw ≥ css
w,0 for all t ∈ R.

(2): n−1/2e3µa−γn +2µwa
−γw
n a−2

n log(1/an)→ 0 as n→∞.
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(3): For any ω ∈ Rk with |ω| = 1 and for some η > 0, as n→∞,

min{n−1a−2p
n , ne−10µa−γn −8µwa

−γw
n a6

n log(1/an)−4, nη/(η+2)e−2µa−γn −2µwa
−γw
n a2

n}

×max



e2µa−γn a
2(2+θ)
n ,

´ ∣∣∣{ω′b(·)}ft(t)Kft(tan)

f ftε (t)f ft
W∗ (t)

∣∣∣2 dt,
´ ∣∣∣∣{´∞t +

´−∞
t }{ω′b(·)}ft(s)Kft(san)e−isw∗ds d

dt
{f ft
W∗ (t)}

f ftε (t){f ft
W∗ (t)}2

∣∣∣∣2 dt,
´ ∣∣∣∣{´∞t +

´−∞
t }{ω′b(·)}ft(s)Kft(san)e−isw∗ds

f ftε (t)f ft
W∗ (t)

∣∣∣∣2 dt




→∞,

if 1/3 < γ < 1 and

min{n−1a−2p
n , ne−10µa−γn −8µwa

−γw
n a6

n log(1/an)−4, nη/(η+2)e−2µa−γn −2µwa
−γw
n a2

n}

×max



e2µa−γn a
2(γθ+γ−1)
n ,

´ ∣∣∣{ω′b(·)}ft(t)Kft(tan)

f ft
W∗ (t)f ftε (t)

∣∣∣2 dt,
´ ∣∣∣∣{´∞t +

´−∞
t }{ω′b(·)}ft(s)Kft(san)e−isw∗ds d

dt
{f ft
W∗ (t)}

{f ft
W∗ (t)}2f ftε (t)

∣∣∣∣2 dt,
´ ∣∣∣∣{´∞t +

´−∞
t }{ω′b(·)}ft(s)Kft(san)e−isw∗ds

f ft
W∗ (t)f ftε (t)

∣∣∣∣2 dt




→∞,

if 1 ≤ γ ≤ 2.

Assumption SK (1) assumes that fW ∗ is supersmooth of order γw. Similar to Assumption
S (1) for fε, different from traditional supersmooth assumption, to study the upper bound of
the risk as in Theorem 2 (i), we only impose a lower bound on |f ft

W ∗(t)|. As in the ordinary
smooth case, Assumption SK (2) is imposed to control the magnitude of the estimation error
from using f̂ ft

ε . Assumption SK (3) contains similar additional bandwidth conditions to derive
the asymptotic normality of β̃(w∗) as were used in the ordinary smooth setting, except that
conditions are separately imposed for the cases when 1/3 < γ < 1 and 1 ≤ γ ≤ 2, which is
compatible with Assumption S (5) as in the case when fε is known.

Theorem 2.

(i): Under Assumptions M (1)-(4), S (1)-(3), RK, MK (1), and SK (1)-(2), it holds

|β̃(w∗)− β(w∗)|2 = Op

(
n−1e6µa−γn +4µwa

−γw
n a−4

n log(1/an)2 + a2p
n

)
.

(ii): Under Assumptions M (1)-(5), S (1)-(3), RK, MK (1)-(4), and SK (1)-(3), it holds

Ω̂n(w∗)−1/2{β̃(w∗)− β(w∗)} d→ N(0, Ik),

where Ω̂n(w∗) = n−1S(w∗)−1V ar(ξ1 + ξ∗1,1 + ξ∗2,1 + ξ∗3,1)S(w∗)−1.

Similar comments to Theorem 1 apply here. Theorem 2 (i) shows the L2-risk of our estimator
β̃(w∗) when the measurement error is supersmooth and possibly asymmetric. Compared to the
ordinary smooth case where β̃(w∗) obtains a polynomial rate, by similar arguments to the case
when the error distribution is known, using the rate result presented in Theorem 2 (i), we can
show that β̃(w∗) converges at a considerably slower logarithmic rate in the supersmooth case.
Theorem 2 (ii) shows that the estimator retains its asymptotic normality when the measurement
error characteristic function is estimated using the approach of Li and Vuong (1998). Again,

4



β̃(w∗) converges more slowly than β̂(w∗) and β̃s(w∗) due to the estimation error from f̂ ft
ε and the

error distribution’s lack of symmetry.
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Appendix D. Proofs

Notation. We introduce µ̂ι(t) = 1
n

∑n
j=1 µι,j(t) and µι(t) = E[µι,1(t)] for ι = 1, 2, 3 with

µ1,j(t) = eitW r
j , µ2,j(t) = eitWj , and µ3,j(t) = W r

j e
itWj , which implies f̂ ft

ε (t) = µ̂1(t) exp
(
−
´ t

0
iµ̂3(s)
µ̂2(s) ds

)
and fε(t) = µ1(t) exp

(
−
´ t

0
iµ3(s)
µ2(s) ds

)
, i.e., K̂ and K are functionals of (µ̂1, µ̂2, µ̂3) and (µ1, µ2, µ3)

respectively.
Define

Π̂(t) =
1

n

n∑
l=1

Πl(t), Πl(t) = −
δ1,l(t)

µ1(t)
+ i

ˆ t

0

{
−
µ3(s)δ2,l(s)

µ2
2(s)

+
δ3,l(s)

µ2(s)

}
ds,

Π̂res(t) =
δ̂2

1(t)

µ1(t) + δ̂1(t)
−
ˆ t

0
i

{
−µ3(s)δ̂2(s)

µ2
2(s)

+
δ̂3(s)

µ2(s)

}
δ̂2(s)

µ2(s) + δ̂2(s)
ds

+

ˆ t

0
i

{
−µ3(s)δ̂2(s)

µ2
2(s)

+
δ̂3(s)

µ2(s)

}{
1− δ̂2(s)

µ2(s) + δ̂2(s)

}
ds

{
− δ̂1(t)

µ1(t)
+

δ̂2
1(t)

µ1(t) + δ̂1(t)

}

−1

2
eφ̄(t)

(ˆ t

0

{
−µ3(s)δ̂2(s)

µ2
2(s)

+
δ̂3(s)

µ2(s)

}{
1− δ̂2(s)

µ2(s) + δ̂2(s)

}
ds

)2{
1− δ̂1(t)

µ1(t)
+

δ̂2
1(t)

µ1(t) + δ̂1(t)

}
,

for some |φ̄(t)| ≤
∣∣∣´ t0 {−µ3(s)δ̂2(s)

µ22(s)
+ δ̂3(s)

µ2(s)

}{
1− δ̂2(s)

µ2(s)+δ̂2(s)

}
ds
∣∣∣, where δ̂ι(t) = 1

n

∑n
j=1 δι,j(t)

with δι,j(t) = µι,j(t)− µι(t) for ι = 1, 2, 3.
By expanding (µ̂1, µ̂2, µ̂3) around (µ1, µ2, µ3), we obtain

K̂(u) = K(u) + A(u) + R(u), (D.1)

where

A(u) =
1

2π

ˆ
e−itu K ft(t)

f ft
ε (t/an)

Π̂(t/an)dt,

R(u) =
1

2π

ˆ
e−itu K ft(t)

f ft
ε (t/an)

Π̂res(t/an)dt.

Here A(u) is the Fréchet derivative of K̂(u) as a functional of (µ̂1, µ̂2, µ̂3) at (µ1, µ2, µ3) in the
direction of (δ̂1, δ̂2, δ̂3), and R(u) represents the dominant components of the remainder. Also
note that Π̂res(t) is of a higher order than Π̂(t). So, the remainder R(u) is should be dominated
by A(u) asymptotically.

Define

Ŝn =
1

nan

n∑
j=1

XjX
′
j

{
A
(
w∗ −Wj

an

)
+ R

(
w∗ −Wj

an

)}
,

Ân =
1

n

n∑
j=1

{ξa,j − E[ξa,j ]}, B̂n = E[ξa,j ], R̂n =
1

n

n∑
j=1

ξr,j ,

where ξa,j = a−1
n VjA

(
w∗−Wj

an

)
, ξr,j = a−1

n VjR
(
w∗−Wj

an

)
, and Vj is defined in (A.2). Then, using

the approximation result for K̂ as in (D.1), we have

β̃(w∗) = β(w∗) + (Sn + Ŝn)−1(Tn + Ân +Bn + B̂n + R̂n), (D.2)
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where Sn, Tn, and Bn are defined in (A.1). Also, let Ŝk1,k2n denote the (k1, k2)-th element of Ŝn,
ξk1a,j and ξ

k1
r,j separately denote the k1-element of ξa,j and ξr,j for k1, k2 = 1, . . . , k. The proofs of

Theorem 1 and 2 follow along similar lines as Theorem 1 and 2 of the main body respectively,
as such, we only explain the parts that differ.

D.1. Proof of Theorem 1 (i). By (A.5), (D.2), and λmin(S) > 0 (Assumption M (2)), we have

|β̃(w∗)− β(w∗)|2 = Op(|Tn|2 + |Bn|2 + |Ân + B̂n|2 + |R̂n|2), (D.3)

if we can show
Ŝn

p→ 0. (D.4)

To show (D.4), note that for any k1, k2 = 1, . . . , k,

|Ŝk1,k2n | ≤ 1

nan

n∑
j=1

∣∣∣∣Xk1,jXk2,j

{
A
(
w∗ −Wj

an

)
+ R

(
w∗ −Wj

an

)}∣∣∣∣
≤ 1

nan

n∑
j=1

|Xk1,jXk2,j |
ˆ
|K ft(t)| |Π̂(t/an)|+ |Π̂res(t/an)|

|f ft
ε (t/an)|

dt

= Op

(
sup|t|≤a−1

n
|Π̂(t)|+ sup|t|≤a−1

n
|Π̂res(t)|

an inf |t|≤a−1
n
|f ft
ε (t)|

)
, (D.5)

where the second step follows by the definitions of A and R, and the last step uses the fact
that K ft is supported on [−1, 1] (Assumption M (3)). By Lemma 2 as in Appendix D and
n−1/2a

−(1+2α+2αw)
n log(1/an)→ 0 (Assumption OK (2)), under Assumptions O (1) and OK (1),

(D.5) implies
|Ŝn| = Op

(
n−1/2a−(2+3α+2αw)

n log(1/an)
)
, (D.6)

and (D.4) follows by n−1/2a
−(2+3α+2αw)
n log(1/an)→ 0 as n→∞ (Assumption OK (2)).

Since stochastic orders of |Tn|2 and |Bn|2 are obtained in Appendix A.1, it remains to char-
acterize the orders of |R̂n|2 and |Ân + B̂n|2. For |R̂n|2, note that

|R̂n| ≤
√
k max

1≤k1≤k

 1

n

n∑
j=1

|ξk1r,j |

 ≤ √k max
1≤k1≤k

 1

nan

n∑
j=1

|V k1
j |
ˆ
|K ft(t)| |Π̂

res(t/an)|
|f ft
ε (t/an)|

dt


= Op

(
sup|t|≤a−1

n
|Π̂res(t)|

an inf |t|≤a−1
n
|f ft
ε (t)|

)
, (D.7)

where the second step follows by the definitions of ξr,j and R, and the last step uses the fact that
K ft is supported on [−1, 1] (Assumption M (3)). By Lemma 2 and n−1/2a

−(1+2α+2αw)
n log(1/an)→

0 as n→∞ (Assumption OK (2)), under Assumptions O (1) and OK (1), (D.7) implies

|R̂n|2 = Op

(
n−2a−(6+10α+8αw)

n log(1/an)4
)
. (D.8)
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For |Ân + B̂n|2, note that

|Ân + B̂n| ≤
√
k max

1≤k1≤k

 1

n

n∑
j=1

|ξk1a,j |


≤
√
k max

1≤k1≤k

 1

nan

n∑
j=1

|V k1
j |
ˆ
|K ft(t)| |Π̂(t/an)|

|f ft
ε (t/an)|

dt


= Op

(
sup|t|≤a−1

n
|Π̂(t)|

an inf |t|≤a−1
n
|f ft
ε (t)|

)
, (D.9)

where the second step follows by definitions of ξa,j and A, and the last step uses the fact that
K ft is supported on [−1, 1] (Assumption M (3)). By Lemma 2, under Assumptions O (1) and
OK (1), (D.9) implies

|Ân + B̂n|2 = Op

(
n−1a−(4+6α+4αw)

n log(1/an)2
)
. (D.10)

Combining (A.11), (A.13), (D.8), and (D.10) with (B.3), the conclusion follows.

D.2. Proof of Theorem 1 (ii). Define

T ∗n =
2

n

n∑
j=1

{ξj − E[ξj ] + ξ̂j}, T̂n =

(
n

2

)−1 n−1∑
j=1

n∑
l=j+1

{pj,l + pl,j}, T rn = n−2
n∑
j=1

pj,j ,

where ξ̂j = Ej [ξa,l,j ] for l 6= j and pj,l = ξj + ξa,j,l − E[ξj + ξa,j,l] with

ξa,j,l =
1

2πan

ˆ
Vje
−it

(
w∗−Wj
an

)
K ft(t)

f ft
ε (t/an)

Πl(t/an)dt.

Decompose

Tn + Ân =
n− 1

2n
T ∗n +

n− 1

2n
{T̂n − T ∗n}+ T rn . (D.11)

The conclusion follows if we can establish the asymptotic normality of T ∗n and show the
asymptotic negligibility of T̂n − T ∗n , T rn , Bn, B̂n, and R̂n. Using the Cramér–Wold device,
this is equivalent to establishing the asymptotic normality of ω′T ∗n and showing the asymptotic
negligibility of ω′(T̂n − T ∗n), ω′T rn , ω′Bn, ω′B̂n, and ω′R̂n for each ω ∈ Rk with |ω| = 1.

For the asymptotic normality of ω′T ∗n , we show

ω′T ∗n√
V ar(ω′T ∗n)

d→ N(0, 1). (D.12)

To this end, it suffices to check Lyapunov’s condition for some η > 0, i.e.,

E|ω′(ξj + ξ̂j)− E[ω′ξj ]|2+η

nη/2{V ar(ω′(ξj + ξ̂j))}1+η/2
→ 0. (D.13)
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For the numerator of (D.13), note that

E|ω′(ξj + ξ̂j)− E[ω′ξj ]|2+η ≤ 21+η{E|ω′ξ̂j |2+η + E|ω′ξj − E[ω′ξj ]|2+η}

= O

(
E

∣∣∣∣ 1

2πan

ˆ
E

[
ω′V e

−it
(
w∗−W∗
an

)]
Πj(t/an)K ft(t)dt

∣∣∣∣2+η

+ E|ω′ξj − E[ω′ξj ]|2+η

)

= O

a−(2+η)
n (E|ω′V |)2+ηE

( sup
|t|≤a−1

n

|Πj(t)|

)2+η
+ E|ω′ξj − E[ω′ξj ]|2+η


= O

a−2(2+η)
n

(
inf
|t|≤a−1

n

|f ft
ε (t)| inf

|t|≤a−1
n

|f ft
W ∗(t)|

)−2(2+η)
 , (D.14)

where the first step follows by Jensen’s inequality, the third step follows from the fact that K ft is
supported on [−1, 1] (Assumption M (3)), and the last step follows by Lemma 3 as in Appendix
D and (A.18). Under Assumptions O (1) and OK (1), (D.14) implies

E|ω′(ξj + ξ̂j)− E[ω′ξj ]|2+η = O(a−2(2+η)(1+α+αw)
n ). (D.15)

For the denominator of (D.13), note that V ar(ω′(ξj + ξ̂j)) = V ar(ω′(ξj +
∑3

ι=1 ξ
∗
ι,j)), where

ξ∗1,j = − 1

2πan

ˆ
E

[
ω′V e

−it
(
w∗−W∗
an

)]
K ft(t)

µ1(t/an)
µ1,j(t/an)dt, (D.16)

ξ∗2,j = − i

2πan

ˆ
E

[
ω′V e

−it
(
w∗−W∗
an

)]
K ft(t)

{ˆ t/an

0

µ3(s)µ2,j(s)

µ2
2(s)

ds

}
dt, (D.17)

ξ∗3,j =
i

2πan

ˆ
E

[
ω′V e

−it
(
w∗−W∗
an

)]
K ft(t)

{ˆ t/an

0

µ3,j(s)

µ2(s)
ds

}
dt. (D.18)

By Assumption MK (4), for the lower bound of V ar(ω′(ξj +
∑3

ι=1 ξ
∗
ι,j)), it suffices to focus on

V ar(ω′ξj) and V ar(ω′ξ∗ι,j) for ι = 1, 2, 3, which are dominated by E|ω′ξj |2 and E|ω′ξ∗ι,j |2 for
ι = 1, 2, 3, respectively.

For E|ω′ξ∗1,j |2, note that for some finite interval I1 ⊂ R containing w∗, we have

E|ω′ξ∗1,j |2 =
1

4π2

ˆ ∣∣∣∣ˆ {ω′b(·)}ft(t)K ft(tan)

f ft
ε (t)f ft

W ∗(t)
eit(u−w∗)dt

∣∣∣∣2 fW (u)du

≥ c1

ˆ
u∈I1

∣∣∣∣ˆ {ω′b(·)}ft(t)K ft(tan)

f ft
ε (t)f ft

W ∗(t)
eit(u−w∗)dt

∣∣∣∣2 du, (D.19)

where the first step follows from the definitions of ξ∗1,j and b(·) and the last step follows by
choosing some constant c1 > 0 such that infu∈I1 fW (u) > 4π2c1, where such a c1 exists due
to the compactness of I1 and the fact that fW is continuous and non-vanishing everywhere
(Assumption MK (2)).

As d
dt

{
{ω′b(·)}ft(t)
f ft
W∗ (t)f ftε (t)

}
∈W (Assumption MK (3)), Schennach (2004, Lemma 10) implies

lim
|u|→∞

(u− w∗)
ˆ
{ω′b(·)}ft(t)
f ft
ε (t)f ft

W ∗(t)
eit(u−w∗)dt = 0,

9



and it follows
ˆ
u∈Ic

∣∣∣∣ˆ {ω′b(·)}ft(t)f ft
ε (t)f ft

W ∗(t)
eit(u−w∗)dt

∣∣∣∣2 du = O

(ˆ
u∈Ic

1

(u− w∗)2
du

)
= O(1). (D.20)

Thus, for all n large enough and some constant C1 > 0, we have

E|ω′ξ∗1,j |2 ≥ C1

ˆ ∣∣∣∣ˆ {ω′b(·)}ft(t)K ft(tan)

f ft
ε (t)f ft

W ∗(t)
eit(u−w∗)dt

∣∣∣∣2 du
= 2πC1

ˆ ∣∣∣∣{ω′b(·)}ft(t)K ft(tan)

f ft
ε (t)f ft

W ∗(t)

∣∣∣∣2 dt, (D.21)

where the first step follows by (D.19) and (D.20) and the last step follows by Parseval’s identity.
For E|ω′ξ∗2,j |2, note that for some finite interval I2 ⊂ R, we have

E|ω′ξ∗2,j |2 =
1

4π2

ˆ ∣∣∣∣∣
ˆ ˆ t

0

{ω′b(·)}ft(t) dds{f
ft
W ∗(s)}e−itw∗

f ft
ε (s){f ft

W ∗(s)}2
eisuK ft(tan)dsdt

∣∣∣∣∣
2

fW (u)du

=
1

4π2

ˆ ∣∣∣∣∣
ˆ {´∞t +

´ −∞
t }{ω′b(·)}ft(s)K ft(san)e−isw∗ds ddt{f

ft
W ∗(t)}

f ft
ε (t){f ft

W ∗(t)}2
eitudt

∣∣∣∣∣
2

fW (u)du

≥ c2

ˆ
u∈I2

∣∣∣∣∣
ˆ {´∞t +

´ −∞
t }{ω′b(·)}ft(s)K ft(san)e−isw∗ds ddt{f

ft
W ∗(t)}

f ft
ε (t){f ft

W ∗(t)}2
eitudt

∣∣∣∣∣
2

du, (D.22)

where the first step follows from the definitions of ξ∗2,j and b(·), the second step uses
´∞
−∞
´ t

0 f(t, s)dsdt =´∞
0

´∞
t f(s, t)dsdt +

´ 0
−∞
´ −∞
t f(s, t)dsdt for any absolutely integrable function f , and the last

step follows by choosing some constant c2 > 0 such that infu∈I2 fW (u) > 4π2c2, where such a
c2 exists due to the compactness of I2 and the fact that fW is continuous and non-vanishing
everywhere (Assumption MK (2)).

As d
dt

{
{
´∞
t +

´−∞
t }{ω′b(·)}ft(s)e−isw∗ds d

dt
{f ft
W∗ (t)}

f ftε (t){f ft
W∗ (t)}2

}
∈W (Assumption MK (3)), Schennach (2004,

Lemma 10) implies

lim
|u|→∞

u

ˆ {´∞t +
´ −∞
t }{ω′b(·)}ft(s)e−isw∗ds ddt{f

ft
W ∗(t)}

f ft
ε (t){f ft

W ∗(t)}2
eitudt = 0,

and it follows
ˆ
u∈Ic2

∣∣∣∣∣
ˆ {´∞t +

´ −∞
t }{ω′b(·)}ft(s)e−isw∗ds ddt{f

ft
W ∗(t)}

f ft
ε (t){f ft

W ∗(t)}2
eitudt

∣∣∣∣∣
2

du = O

(ˆ
u∈Ic2

u−2du

)
= O(1).

(D.23)

Thus, for all n large enough and some constant C2 > 0, we have

E|ω′ξ∗2,j |2 ≥ C2

ˆ ∣∣∣∣∣
ˆ {´∞t +

´ −∞
t }{ω′b(·)}ft(s)K ft(san)e−isw∗ds ddt{f

ft
W ∗(t)}

f ft
ε (t){f ft

W ∗(t)}2
eitudt

∣∣∣∣∣
2

du

= 2πC2

ˆ ∣∣∣∣∣{
´∞
t +

´ −∞
t }{ω′b(·)}ft(s)K ft(san)e−isw∗ds ddt{f

ft
W ∗(t)}

f ft
ε (t){f ft

W ∗(t)}2

∣∣∣∣∣
2

dt, (D.24)

where the first step follows by (D.22) and (D.23) and the last step follows by Parseval’s identity.
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For E|ω′ξ∗3,j |2, note that for some finite interval I3 ⊂ R, we have

E|ω′ξ∗3,j |2 =
1

4π2

ˆ ∣∣∣∣ˆ ˆ t

0

{ω′b(·)}ft(t)e−itw∗

f ft
ε (s)f ft

W ∗(s)
eisuK ft(tan)dsdt

∣∣∣∣2 {E[W r2 |W = ·]fW (·)}(u)du

=
1

4π2

ˆ ∣∣∣∣∣
ˆ {´∞t +

´ −∞
t }{ω′b(·)}ft(s)K ft(san)e−isw∗ds

f ft
ε (t)f ft

W ∗(t)
eitudt

∣∣∣∣∣
2

{E[W r2 |W = ·]fW (·)}(u)du

≥ c3

ˆ
u∈I3

∣∣∣∣∣{
´∞
t +

´ −∞
t }{ω′b(·)}ft(s)K ft(san)e−isw∗ds

f ft
ε (t)f ft

W ∗(t)
eitudt

∣∣∣∣∣
2

du, (D.25)

where the first step follows from the definitions of ξ∗3,j and b(·), the second step follows uses´∞
−∞
´ t

0 f(t, s)dsdt =
´∞

0

´∞
t f(s, t)dsdt+

´ 0
−∞
´ −∞
t f(s, t)dsdt for any absolutely integrable func-

tion f , and the last step follows by choosing some constant c3 > 0 such that infu∈I3{E[W r2 |W =

·]fW (·)}(u) > 4π2c3, and such a c3 exists due to the compactness of I3 and the fact that
E[W r2 |W = ·]fW (·) is continuous and non-vanishing everywhere (Assumption MK (2)).

As d
dt

{
{
´∞
t +

´−∞
t }{ω′b(·)}ft(s)e−isw∗ds

f ftε (t)f ft
W∗ (t)

}
∈ W (Assumption MK (3)), Schennach (2004, Lemma

10) implies

lim
|u|→∞

u

ˆ {´∞t +
´ −∞
t }{ω′b(·)}ft(s)e−isw∗ds

f ft
ε (t)f ft

W ∗(t)
eitudt = 0,

and it follows
ˆ
u∈Ic3

∣∣∣∣∣
ˆ {´∞t +

´ −∞
t }{ω′b(·)}ft(s)e−isw∗ds

f ft
ε (t)f ft

W ∗(t)
eitudt

∣∣∣∣∣
2

du = O

(ˆ
u∈Ic3

u−2du

)
= O(1). (D.26)

Thus, for all n large enough and some constant C3 > 0, we have

E|ω′ξ∗3,j |2 ≥ C3

ˆ ∣∣∣∣∣{
´∞
t +

´ −∞
t }{ω′b(·)}ft(s)K ft(san)e−isw∗ds

f ft
ε (t)f ft

W ∗(t)
eitudt

∣∣∣∣∣
2

du

= 2πC3

ˆ ∣∣∣∣∣{
´∞
t +

´ −∞
t }{ω′b(·)}ft(s)K ft(san)e−isw∗ds

f ft
ε (t)f ft

W ∗(t)

∣∣∣∣∣
2

dt, (D.27)

where the first step follows by (D.25) and (D.26) and the last step follows by Parseval’s identity.
Thus, (D.21), (D.24), and (D.27) together with (A.21) implies

{V ar(ω′(ξj + ξ̂j))}−(1+η/2)

= O




a
−(1+2α)
n +

´ ∣∣∣{ω′b(·)}ft(t)Kft(tan)

f ftε (t)f ft
W∗ (t)

∣∣∣2 dt
+
´ ∣∣∣∣{´∞t +

´−∞
t }{ω′b(·)}ft(s)Kft(san)e−isw∗ds d

dt
{f ft
W∗ (t)}

f ftε (t){f ft
W∗ (t)}2

∣∣∣∣2 dt
+
´ ∣∣∣∣{´∞t +

´−∞
t }{ω′b(·)}ft(s)Kft(san)e−isw∗ds

f ftε (t)f ft
W∗ (t)

∣∣∣∣2 dt



−(1+η/2)

. (D.28)

Combining (D.15) and (D.28), (D.13) holds under Assumption OK (3), and (D.12) follows.
For ω′(T̂n − T ∗n), by Ahn and Powell (1993, Lemma A.3), we have

ω′(T̂n − T ∗n) = op(n
−1/2), (D.29)
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if
E|ω′{pj,l + pl,j}|2 = O(n). (D.30)

To show (D.30), note that

E|ω′ξa,j,l|2 = a−2
n E

[(ˆ
|Πl(t/an)| |K

ft(t)|
|f ft
ε (t/an)|

dt

)2
]
E|ω′Vj |2

= O

a−2
n E

( sup
|t|≤a−1

n

|Πl(t)|

)2
( inf

|t|≤a−1
n

|f ft
ε (t)|

)−2


= O

a−2
n

(
inf
|t|≤a−1

n

|f ft
ε (t)|

)−6(
inf
|t|≤a−1

n

|f ft
W ∗(t)|

)−4
 , (D.31)

where the first step follows by random sampling (Assumption M (1)), the second step follows
from the fact that K ft is supported on [−1, 1] (Assumption M (3)), and the last step follows by
Lemma 3. Then, we have

E|ω′{pj,l + pl,j}|2 ≤ 8{E|ω′ξa,j,l|2 + E|ω′ξj |2}

= O

a−2
n

(
inf
|t|≤a−1

n

|f ft
ε (t)|

)−6(
inf
|t|≤a−1

n

|f ft
W ∗(t)|

)−4
 , (D.32)

where the first step follows by Jensen’s inequality and the second step follows by (D.31) and (A.9).
Under Assumptions O (1) and OK (1), (D.32) implies E|ω′{pj,l+pl,j}|2 = O(a

−2(1+3α+2αw)
n ) and

(D.30) follows by n−1/2a
−(2+3α+2αw)
n → 0 (Assumption OK (2)).

For ω′T rn , note that

|ω′T rn |2 = O
(
n−3{E|ω′ξa,1,1|2 + E|ω′ξ1|2}

)
= O

n−3a−2
n

(
inf
|t|≤a−1

n

|f ft
ε (t)|

)−6(
inf
|t|≤a−1

n

|f ft
W ∗(t)|

)−4
 , (D.33)

where the last step follows by (D.31) and (A.9). Under Assumptions O (1) and OK (1), (D.33)
implies

|ω′T rn | = Op(n
−3/2a−(1+3α+2αw)

n ). (D.34)
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For ω′B̂n, note that

|ω′B̂n| =

∣∣∣∣∣ 1

2πnan

ˆ
E

[
ω′Vje

−it

(
w∗−Wj
an

)
Πj(t/an)

]
K ft(t)

f ft
ε (t/an)

dt

∣∣∣∣∣
≤ {E|ω′Vj |2}1/2

2πnan

ˆ {
E|Πj(t/an)|2

}1/2 |K ft(t)|
|f ft
ε (t/an)|

dt

= O

n−1a−1
n

(
inf
|t|≤a−1

n

|f ft
ε (t)|

)−1
E

( sup
|t|≤a−1

n

|Π1(t/an)|

)2


1/2


= O

n−1a−2
n

(
inf
|t|≤a−1

n

|f ft
ε (t)|

)−3(
inf
|t|≤a−1

n

|f ft
W ∗(t)|

)−2
 , (D.35)

where the first step follows from the definitions of B̂n,s and ξa,j,j and random sampling (As-
sumption M (1)), the second step uses Cauchy-Schwarz inequality, the third step follows by the
fact that K ft is supported on [−1, 1] (Assumption M (3)), and the last step follows by Lemma
3. Under Assumptions O (1) and OK (1), (D.35) implies

|B̂n| = O(n−1a−(2+3α+2αw)
n ). (D.36)

The conclusion then follows by

n1/2ω′{T̂n − T ∗n + T rn +Bn + B̂n + R̂n}
2
√
V ar(ω′(ξj + ξ∗1,j + ξ∗2,j + ξ∗3,j))

= op(1), (D.37)

for which we combine (B.8), (A.13), (D.29), (D.34), (D.36), and (D.28) with Assumption OK
(3).

D.3. Proof of Theorem 2 (i). First, note that by n−1/2e2µa−γn +2µwa
−γw
n a−1

n log(1/an) → 0 as
n→∞ (Assumption SK (2)) and Lemma 2, under Assumptions S (1) and SK (1), (D.5) implies

|Ŝn| = Op

(
n−1/2e3µa−γn +2µwa

−γw
n a−2

n log(1/an)
)
, (D.38)

which together with n−1/2e3µa−γn +2µwa
−γw
n a−2

n log(1/an) → 0 as n → ∞ (Assumption SK (2))
gives (D.4), and (D.3) follows.

Also note that by n−1/2e2µa−γn +2µwa
−γw
n a−1

n log(1/an) → 0 as n → ∞ (Assumption SK (2))
and Lemma 2, under Assumptions S (1) and SK (1), (D.7) implies

|R̂n|2 = Op

(
n−2e10µa−γn +8µwa

−γw
n a−6

n log(1/an)4
)
, (D.39)

and (D.9) implies

|Ân + B̂n|2 = Op

(
n−1e6µa−γn +4µwa

−γw
n a−4

n log(1/an)2
)
. (D.40)

Combining (A.13), (A.24), (D.39), and (D.40) with (B.3), the conclusion follows.

D.4. Proof of Theorem 2 (ii). Under Assumptions S (1) and SK (1), (B.14) implies

E|ω′(ξj + ξ̂j)− E[ω′ξj ]|2+η = O
(
e2(2+η)µa−γn +2(2+η)µwa

−γw
n a−2(2+η)

n

)
, (D.41)
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and (B.19) together with (A.28) implies

{V ar(ω′(ξj + ξ̂j))}−(1+η/2)

=



O




e2µa−γn a

2(2+θ)
n +

´ ∣∣∣{ω′b(·)}ft(t)Kft(tan)

f ftε (t)f ft
W∗ (t)

∣∣∣2 dt
+
´ ∣∣∣∣{´∞t +

´−∞
t }{ω′b(·)}ft(s)Kft(san)e−isw∗ds d

dt
{f ft
W∗ (t)}

f ftε (t){f ft
W∗ (t)}2

∣∣∣∣2 dt
+
´ ∣∣∣∣{´∞t +

´−∞
t }{ω′b(·)}ft(s)Kft(san)e−isw∗ds

f ftε (t)f ft
W∗ (t)

∣∣∣∣2 dt



−(1+η/2)


if 1/3 < γ < 1

O




e2µa−γn a

2(γθ+γ−1)
n +

´ ∣∣∣{ω′b(·)}ft(t)Kft(tan)

f ftε (t)f ft
W∗ (t)

∣∣∣2 dt
+
´ ∣∣∣∣{´∞t +

´−∞
t }{ω′b(·)}ft(s)Kft(san)e−isw∗ds d

dt
{f ft
W∗ (t)}

f ftε (t){f ft
W∗ (t)}2

∣∣∣∣2 dt
+
´ ∣∣∣∣{´∞t +

´−∞
t }{ω′b(·)}ft(s)Kft(san)e−isw∗ds

f ftε (t)f ft
W∗ (t)

∣∣∣∣2 dt



−(1+η/2)


if 1 ≤ γ ≤ 2

.(D.42)

Combining (D.41) and (D.42), (B.13) holds under Assumption SK (3), and (B.12) follows.
Under Assumptions S (1) and SK (1), (D.32) impliesE|ω′{pj,l+pl,j}|2 = O

(
a−2
n e6µa−γn +4µwa

−γw
n

)
and (D.30) follows by n−1/2e3µa−γn +2µwa

−γw
n a−2

n → 0 (Assumption SK (2)), (D.33) implies

|ω′T rn | = Op

(
n−3/2e3µa−γn +2µwa

−γw
n a−1

n

)
, (D.43)

and (D.35) implies
|B̂n| = O

(
n−1e3µa−γn +2µwa

−γw
n a−2

n

)
. (D.44)

Combining (B.21), (D.43), (B.31), (A.13), (D.44), and (D.42), (B.29) holds under Assumption
SK (3). The conclusion then follows by (B.12) and (B.29).

Appendix E. Lemmas

Lemma 1. Under Assumptions RK and MK (1), for ι = 1, 2, 3, it holds

sup
|t|≤a−1

n

|δ̂ι(t)| = Op

(
n−1/2 log(1/an)

)
.

Proof. The conclusion follows by E|W ∗|2+η <∞ and E|ε|2+η <∞ for some η > 0 (Assumption
MK (1)) and Lemma 1 of Kurisu and Otsu (2020). �

Lemma 2. Under Assumptions RK and MK (1), it holds

sup
|t|≤b−1

n

|Π̂(t)| = Op

(
log(1/an)

n1/2an{inf |t|≤a−1
n
|f ft
ε (t)|}2{inf |t|≤a−1

n
|f ft
W ∗(t)|}2

)
.

Moreover, if n−1/4a
−1/2
n log(1/an)1/2

inf|t|≤a−1
n
|f ftε (t)| inf|t|≤a−1

n
|f ft
W∗ (t)| → 0, it holds

sup
|t|≤a−1

n

|Π̂res(t)| = Op

(
log(1/an)2

na2
n{inf |t|≤a−1

n
|f ft
ε (t)|}4{inf |t|≤a−1

n
|f ft
W ∗(t)|}4

)
.
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Proof. The first statement then follows by

sup
|t|≤a−1

n

|Π̂(t)| = Op

(
sup|t|≤a−1

n
|δ̂1(t)|

inf |t|≤a−1
n
|µ1(t)|

+ a−1
n

{
sup|t|≤a−1

n
|µ3(t)| sup|t|≤a−1

n
|δ̂2(t)|

{inf |t|≤a−1
n
|µ2(t)|}2

+
sup|t|≤a−1

n
|δ̂3(s)|

inf |t|≤a−1
n
|µ2(s)|

})

= Op

(
log(1/an)

n1/2an{inf |t|≤a−1
n
|f ft
ε (t)|}2{inf |t|≤a−1

n
|f ft
W ∗(t)|}2

)
,

where the last step uses Lemma 1, inf |t|≤a−1
n
|µι(t)| ≥ inf |t|≤a−1

n
|f ft
ε (t)| inf |t|≤a−1

n
|f ft
W ∗(t)| for ι =

1, 2 (Assumption RK), and sup|t|≤a−1
n
|µ3(t)| = O(1) (Assumption MK (1)).

For the second statement, note that under n−1/4a
−1/2
n log(1/an)1/2

inf|t|≤a−1
n
|f ftε (t)| inf|t|≤a−1

n
|f ft
W∗ (t)| → 0 as n→∞,

sup
|t|≤a−1

n

|φ̄(t)| = Op

 a−1
n

{
sup|t|≤a−1

n
|µ3(t)| sup|t|≤a−1

n
|δ̂2(t)|

{inf|t|≤a−1
n
|µ2(t)|}2 +

sup|t|≤a−1
n
|δ̂3(t)|

inf|t|≤a−1
n
|µ2(t)|

}
×
{

1 +
sup|t|≤a−1

n
|δ̂2(t)|

inf|t|≤a−1
n
|µ2(t)+δ̂2(t)|

}
 ,

= Op

(
n−1/2a−1

n log(1/an)

{inf |t|≤a−1
n
|f ft
ε (t)|}2{inf |t|≤a−1

n
|f ft
W ∗(t)|}2

)
= op(1),

where the second step uses Lemma 1, inf |t|≤a−1
n
|µ2(t)| ≥ inf |t|≤a−1

n
|f ft
ε (t)| inf |t|≤a−1

n
|f ft
W ∗(t)|, and

sup|t|≤a−1
n
|µ3(t)| = O(1) (Assumption MK (1)), which implies sup|t|≤a−1

n
e|φ̄(t)| = Op(1).

The conclusion then follows by n−1/4a
−1/2
n log(1/an)1/2

inf|t|≤a−1
n
|f ftε (t)| inf|t|≤a−1

n
|f ft
W∗ (t)| → 0 as n→∞ and

sup
|t|≤a−1

n

|Π̂res(t)| = Op



{sup|t|≤a−1
n
|δ̂1(t)|}2

inf|t|≤a−1
n
|µ1(t)+δ̂1(t)|

+ a−1
n

{
sup|t|≤a−1

n
|µ3(t)| sup|t|≤a−1

n
|δ̂2(t)|

{inf|t|≤a−1
n
|µ2(t)|}2 +

sup|t|≤a−1
n
|δ̂3(t)|

inf|t|≤a−1
n
|µ2(t)|

}

×


sup|t|≤a−1

n
|δ̂1(t)|

inf|t|≤a−1
n
|µ1(t)| +

{sup|t|≤a−1
n
|δ̂1(t)|}2

inf|t|≤a−1
n
|µ1(t)+δ̂1(t)|

+
sup|t|≤a−1

n
|δ̂2(t)|

inf|t|≤a−1
n
|µ2(t)+δ̂2(t)|

+
sup|t|≤a−1

n
|δ̂2(t)|

inf|t|≤a−1
n
|µ2(t)+δ̂2(t)|

{
sup|t|≤a−1

n
|δ̂1(t)|

inf|t|≤a−1
n
|µ1(t)| +

{sup|t|≤a−1
n
|δ̂1(t)|}2

inf|t|≤a−1
n
|µ1(t)+δ̂1(t)|

}


+a−2
n

{
sup|t|≤a−1

n
|µ3(t)| sup|t|≤a−1

n
|δ̂2(t)|

{inf|t|≤a−1
n
|µ2(t)|}2 +

sup|t|≤a−1
n
|δ̂3(t)|

inf|t|≤a−1
n
|µ2(t)|

}2

×
{

1 +
sup|t|≤a−1

n
|δ̂2(t)|

inf|t|≤a−1
n
|µ2(t)+δ̂2(t)|

}2{
1 +

sup|t|≤a−1
n
|δ̂1(t)|

inf|t|≤a−1
n
|µ1(t)| +

{sup|t|≤a−1
n
|δ̂1(t)|}2

inf|t|≤a−1
n
|µ1(t)+δ̂1(t)|

}


= Op

(
log(1/an)2

na2
n{inf |t|≤a−1

n
|f ft
ε (t)|}4{inf |t|≤a−1

n
|f ft
W ∗(t)|}4

)
,

where the last step uses Lemma 1, inf |t|≤a−1
n
|µι(t)| ≥ inf |t|≤a−1

n
|f ft
ε (t)| inf |t|≤a−1

n
|f ft
W ∗(t)| for ι =

1, 2 (Assumption RK), and sup|t|≤a−1
n
|µ3(t)| = O(1) (Assumption MK (1)). �

Lemma 3. Under Assumptions RK and MK (1), for η > 0, it holds

E

( sup
|t|≤a−1

n

|Π1(t)|

)2+η
 = O

a−(2+η)
n

(
inf
|t|≤a−1

n

|f ft
ε (t)| inf

|t|≤a−1
n

|f ft
W ∗(t)|

)−2(2+η)
 .
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Proof. The conclusion follows by

E

( sup
|t|≤a−1

n

|Π1(t)|

)2+η
 = E

( sup
|t|≤a−1

n

∣∣∣∣−δ1,1(t)

µ1(t)
+ i

ˆ t

0

{
−µ3(s)δ2,1(s)

µ2
2(s)

+
δ3,1(s)

µ2(s)

}
ds

∣∣∣∣
)2+η


≤ E

(sup|t|≤a−1
n
|δ1,1(t)|

inf |t|≤a−1
n
|µ1(t)|

+ a−1
n

{
sup|t|≤a−1

n
|µ3(t)| sup|t|≤a−1

n
|δ2,1(t)|

{inf |t|≤a−1
n
|µ2(t)|}2

+
sup|t|≤a−1

n
|δ3,1(t)|

inf |t|≤a−1
n
|µ2(t)|

})2+η


= O

(
1

{inf |t|≤a−1
n
|µ1(t)|}2+η

+
{sup|t|≤a−1

n
|µ3(t)|}2+η

a2+η
n {inf |t|≤a−1

n
|µ2(t)|}2(2+η)

+
1

a2+η
n {inf |t|≤a−1

n
|µ2(t)|}2+η

)

= O

a−(2+η)
n

(
inf
|t|≤a−1

n

|f ft
ε (t)| inf

|t|≤a−1
n

|f ft
W ∗(t)|

)−2(2+η)
 ,

where the first step follows by the definition of Π1(t), the second step uses the triangular inequal-
ity, the third step follows by sup|t|≤a−1

n
|δι,1(t)| ≤ 2 for ι = 1, 2 and E[{sup|t|≤a−1

n
|δ3,1(t)|}2+η] ≤

22+ηE|W r|2+η < ∞ (Assumption MK (1)), and Jensen’s inequality, and the last step follows
by inf |t|≤a−1

n
|µι(t)| ≥ inf |t|≤a−1

n
|f ft
ε (t)| inf |t|≤a−1

n
|f ft
W ∗(t)| for ι = 1, 2 (Assumption RK) and

sup|t|≤a−1
n
|µ3(t)| = O(1) (Assumption MK (1)). �
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