
Statistics and Computing (2021) 31:15
https://doi.org/10.1007/s11222-020-09973-3

Regularizing axis-aligned ensembles via data rotations that favor
simpler learners

Rico Blaser1 · Piotr Fryzlewicz1

Received: 25 January 2019 / Accepted: 6 December 2020
© The Author(s) 2021

Abstract
To overcome the inherent limitations of axis-aligned base learners in ensemble learning, several methods of rotating the
feature space have been discussed in the literature. In particular, smoother decision boundaries can often be obtained from
axis-aligned ensembles by rotating the feature space. In the present paper, we introduce a low-cost regularization technique
that favors rotations which produce compact base learners. The restated problem adds a shrinkage term to the loss function
that explicitly accounts for the complexity of the base learners. For example, for tree-based ensembles, we apply a penalty
based on the median number of nodes and the median depth of the trees in the forest. Rather than jointly minimizing prediction
error and model complexity, which is computationally infeasible, we first generate a prioritized weighting of the available
feature rotations that promotes lower model complexity and subsequently minimize prediction errors on each of the selected
rotations. We show that the resulting ensembles tend to be significantly more dense, faster to evaluate, and competitive at
generalizing in out-of-sample predictions.

Keywords Random rotation · Regularization · Ensemble learning · Minimal complexity

1 Introduction

Feature rotations are ubiquitous in modern machine learn-
ing algorithms—from structured rotations, such as PCA, to
random rotations and projections. For example, in computer
vision, local image rotations are routinely used toobtain high-
quality rotation-invariant features (e.g., Takacs et al. 2013).
In the context of axis-aligned ensemble learning, rotations—
and random projections, which can be decomposed into a
random rotation and an axis-aligned projection—can make
the difference between a highly successful classifier and an
average classifier (e.g., Durrant and Kaban 2013).

Rodriguez et al. (2006) introduced rotation forests after
demonstrating that repeated PCA rotations of random sub-
sets of the feature space significantly improved classification
performance of random forests (Breiman 1999) and other
tree ensembles. Blaser and Fryzlewicz (2016) showed that
rotation forests can be outperformed using unstructured ran-
dom rotations of the feature space prior to inducing the base

B Rico Blaser
R.Blaser@lse.ac.uk

1 London School of Economics and Political Science, London,
UK

learners. While random rotations are used with classifiers
designed for high-dimensional settings, Cannings and Sam-
worth (2017) presented a random projection ensemble, in
which the high-dimensional feature space is first projected
into a lower-dimensional space before applying a classifier
designed for low-dimensional settings.

An important insight from the latter two papers is that the
vast majority of rotations are unhelpful in improving out-of-
sample classifier performance. Instead, most of the benefit of
these ensembles is derived from a small number of rotations
that are particularly well suited for the specific classification
problem.

In the present paper, we investigate the efficacy of rota-
tions more closely and attempt to answer the question of how
we can identify or construct rotations that explicitly improve
classifier performance. We hypothesize that the most bene-
ficial rotations are those that align significant segments of
the decision boundary with one of the axes and thus result in
simpler and more compact base learners: we call it rotation
to simplicity. We also believe the converse to be true: those
rotations that produce less complex base learners positively
impact ensemble performance. Supporting evidence for this
assertion is provided in Sect. 5.

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-020-09973-3&domain=pdf

 15 Page 2 of 12 Statistics and Computing (2021) 31:15

The remainder of the paper is organized as follows: in
Sect. 2, we introduce the basic ensemble notation, as well
as an extended loss function which takes into consideration
the complexity of the base learners. This is similar to loss
functions in linear regression that include penalties on the
regression coefficients. In Sect. 3, we introduce a low-cost
regularization technique, which explicitly favors rotations
that are expected to produce simple base learners. Section
4 takes a step back and illustrates why certain rotations are
better than others for axis-aligned learners and how these
rotations differ from analytic methods, such as PCA. Next,
we present performance results on a sample of well-known
UCI data sets in Sect. 5 and conclude with our final thoughts.

2 Motivation

A decision tree divides the predictor space into disjoint
regions G j , where 1 ≤ j ≤ J , with J denoting the total
number of leaf nodes of the tree. Borrowing the notation from
Hastie et al. (2009), the binary decision tree is represented
as

T (x;�) =
J∑

j=1

c j I (x ∈ G j), (1)

where � = {G j , c j }J1 are the optimization- or tuning-
parameters and I (·) is an indicator function. Inputs x are
mapped to a constant c j , depending on which region G j

they are assigned to. A tree ensemble consisting of M trees
can then be written as

EM (x) =
M∑

m=1

T (x; �m). (2)

In this paper, we assume that trees are grown independently
and that no co-dependence exists between the tuning param-
eters of different trees. This restriction implicitly excludes
boosted tree ensembles (Friedman 2001). Our goal is then to
optimize the tuning parameters �m for each tree in such a
way as to minimize a given loss function, L(yi , f (xi)), that
is

�̂m = argmin
�m

N∑

i=1

L(yi , T (xi ;�m)). (3)

It shouldbenoted that the general tree-inductionoptimization
problem in Eq. (3) is NP-complete (Hyafil and Rivest 1976)
even for two-class problems in low dimensions (Goodrich et
al. 1995) and an axis-aligned, greedy tree induction algorithm
such as CART (Breiman et al. 1984) is typically used to find
a reasonable approximation.

At this point, we depart from the standard tree ensemble
setting in two aspects: (1) we add a penalty P to the loss
function and (2) we add rotations Rk to the input data. Hence,
the loss function gets modified to

L(yi , f (xi)) = V (yi , f (Rk(xi)))︸ ︷︷ ︸
accuracy

+ P(Rk(xi))︸ ︷︷ ︸
complexi t y

, (4)

where the regularization term P(·) penalizes rotations that
lead to more complex base learners. V (yi , f (xi)) is a typical
loss function—such as square-, hinge-, or logistic loss—
which does not take model complexity into account (see,
e.g., James et al. 2013). Minimizing this combined loss
function resembles constrained regression problems, such as
Ridge- or Lasso-regressions (Tibshirani 1996), but instead
of constraining coefficients, we actively regularize the base
learners. Lastly, the subscript k denotes the specific rotation;
we typically grow multiple trees per rotation, depending on
the efficacy of the rotation: this is described in detail in Sect.
3.

With the addition of the regularization term,we havemade
the problemevenmore challenging to solve. Since tree induc-
tion was already NP-complete to begin with, we discuss an
algorithm in the following section which strictly separates
the weighting of favorable rotations that reduce model com-
plexity from the tree induction optimization, which improves
accuracy. Using this approach, we implicitly assume that
simpler models do not lead to lower prediction accuracy, a
hypothesis we show to be empirically valid in Sect. 5.

3 Regularization

In this section, we introduce our proposed algorithm for
generating an ensemble that optimizes the use of available
rotations.

Given a set of R feature rotations,wewould like to build an
ensemble consisting of M base learners. In order to accom-
plish this, the algorithm first builds tiny micro-forests of U
unconstrained trees on each rotation, a low-cost operation
because U � M and U < M/R. Based on the statistical
properties of these micro-forests, the full ensemble is con-
structed. Here, we present the generic algorithm; in Sect.
5 we demonstrate several ways of leveraging the available
statistics. For tree-based ensembles, the trees in the micro-
forests can frequently be reused for the full ensemble, further
reducing the amortized cost of building the micro-forests.

Algorithm 1 describes the regularized rotation procedure
in detail. The integer inputs denote the desired total number
of treesM in the complete ensemble, the number of available
(or generated) rotations R, and the number of treesU created
for each micro-forest.

123

Statistics and Computing (2021) 31:15 Page 3 of 12 15

Algorithm 1 Regularized Rotation Ensemble (Pseudocode)
1: procedure reg_rot(M, R,U) � M : ensemble size, R: #rotations,

U : trees per μ-forest
2: rotations ← obtain_rotations(R)
3: for i ← 1 to R do
4: rotations[i].forest ← create_unconstrained_μ-forest(U)
5: rotations[i].complexity ← compute_complexity(rotations

[i].forest)
6: end for
7: sort(rotations, complexity)
8: for i ← 1 to R do
9: rotations[i].numtrees ← compute_numtrees(M , rotations)
10: rotations[i].forest ← add_trees(rotations[i].forest,

max(rotations[i].numtrees - U , 0))
11: end for
12: for i ← 1 to R do
13: for j ← 1 to rotations[i].numtrees do
14: ensemble.forest ← extend_forest(ensemble.forest,

rotations[i].forest[j])
15: end for
16: end for
17: return ensemble
18: end procedure

In line 2 of Algorithm 1, the available rotations are stored
in an array named rotations. It is important to include the
identity rotation here tomake sure the procedure returns high-
quality results when the problem is already optimally rotated
to begin with. If too few rotations are available, the proce-
dure can generate random rotations in addition to the identity
rotation (Anderson et al. 1987).

In lines 4–5, anunconstrained, unprunedmicro-forest con-
sisting of U trees is grown. The recommended default value
of U is of the order of 10–20 trees. The purpose of these
trees is merely to obtain a reliable estimate of the median
complexity of a representative tree that will be grown on the
particular rotation, with minimal interference from outliers.

Our main proposal in this paper is to apply a complex-
ity measure for base learners and use it to rank the obtained
rotations from the best one which corresponds to the least
complex learners to the worst one that corresponds to the
most complex learners. In the case of tree ensembles, we
suggest a complexity measure C(·) whereby trees with a
smaller number of nodes (size) are considered less complex
and, among trees with the same number of nodes, more shal-
low trees (depth) are considered less complex, that is

C(T (x;�m)) = #nodes + depth/N , (5)

where #nodes = 2J −1 and depth ≤ J for binary decision
trees, both depending on �m . N is the number of data points
and J the number of leaf nodes in the tree. It is clear that
1 ≥ depth/N and, consequently, that depth merely acts
as a tie-breaker for trees of equal size. We further discuss
tree complexity in Sect. 4.1. Up to this step, only model

complexity was used to quantify rotations; this corresponds
to the right-most section of Formula (4).

The sorting procedure in line 7 ofAlgorithm1 arranges the
rotations into ascending order of complexityC . At this point,
there are several ways of using this information. In Sect. 3.1,
we apply a parametric, non-increasing family of curves with
a tuning parameter h and use the out-of-bag (OOB) errors
of the micro-forests to determine the optimal parameter in a
grid search. However, as we will show in Sect. 5, it is also
possible to use the ranking on its own, without combining
it with predictive performance. The key point here is that
whatever procedure we use, it will determine the number of
base learners that need to be created for each rotation. This
is accomplished in line 9 of Algorithm 1.

Should additional trees (beyond the U already available
trees on each rotation) be needed, these are generated and
added to the rotation in line 10. Typically, these need to be
added to the most favorable rotations.

Finally, the equal-weighted ensemble is constructed from
the trees on the different rotations. It is important to note that
while the individual trees are equal-weighted in the ensem-
ble, more trees are used from favorable rotations and hence
the rotations are not equal-weighted. Also note that

∑R
i=1

rotations[i].numtrees = M .

3.1 Weighting of rotations

Given an ordered sequence of R rotations (r = 1 for themost
favorable rotation and r = R for the least attractive rotation)
and a specified total number of base learnersM in the ensem-
ble, we need to determine how many base learners to train
on each rotation. This corresponds to line 9 in Algorithm 1.
We now discuss the details of this procedure.

Any sensible (percentage) weighting schemewill have the
following three properties:

1. w(r) ≥ 0,∀ r
2. w(r) ≥ w(r + 1)
3.

∑R
r=1 w(r) = 1

We consider two weighting schemes that meet these criteria:

• Select the first h rotations from the ordered list and gen-
erate a fraction of exactly w(r) = 1/h of the required M
base learners on each of these rotations;

• Use an exponential family of curves with decay param-
eter h to determine the percentage of base learners that
should be trained on each rotation.

The first scheme corresponds to selecting the h rotations that
are expected to produce the lowest complexity base learners
and equal-weight the trees on these rotations. The second
scheme includes the possibility of including trees on more

123

 15 Page 4 of 12 Statistics and Computing (2021) 31:15

Fig. 1 Two parametric families of weight functions: top-h (left) and exponential (right)

different rotations but atmuch smaller weights. In both cases,
h acts as a tuning parameter that can be inferred from the data
via a simple grid search, the details ofwhichwill be described
at the end of this section.

In the first case, the weighting follows the formula

wcut (R, h; r) = I (r ≤ h)/h, (6)

where h is an integer tuning parameter in [1, R], representing
a cut-off value and I (·) is the indicator function. Note that
the sum of the weights is 1, as expected. For the second case,
we use the following family of exponential curves:

wexp(R, h; r) = 2−r/h(21/h − 1)

(1 − 2−R/h)
, (7)

where R is the total number of rotations and h is a positive,
real tuning parameter. In both cases, r is the sorted (integer)
rotation number, as described above. In both cases, small val-
ues of h result in large weights for the top rotations and small
(or zero) weights for less favorable rotations. By contrast,
large h eventually lead to the equal-weighting of rotations.

Figure 1 compares the two weighting schemes. A simple
method for obtaining a good tuning parameter h is to use the
OOB error estimates of the micro-forests on each rotation
and compute the sum product of these errors with and the
weight vectors using different values of h—effectively a grid
search. Since the rotations are in complexity-sorted order
and because the weighting schemes are non-increasing, the
resulting weighting will differ significantly from a weighting
based solely onOOBpredictive accuracy. In Sect. 5, we show
that weightings based solely on OOB predictive accuracy

produce base learners that are more complex on average,
without a corresponding out-of-sample performance gain.
It should also be noted that in line 9 of Algorithm 1, the
weights are multiplied with the ensemble size N and need to
be rounded to integer values, since we cannot grow partial
trees. In this process, it is possible due to rounding that the
sum of the computed number of trees does not add up to N
anymore. If this is the case, we automatically add anymissing
trees to the top rotation or analogously subtract additional
trees starting from the worst rotation.

4 Discussion

The goal of this section is to provide an intuitive understand-
ing ofwhich rotations are useful in the context of axis-aligned
learners. The discussion applies to higher-dimensional prob-
lems but is illustrated in two dimensions.

One visual indication betraying axis-aligned learners,
such as decision tree ensembles, is their rugged (“stair-
shaped”) decision boundary. When a segment of the true
decision boundary is not axis-aligned, such learners are
forced to approximate the local boundary using a number of
smaller steps. The greatest number of such steps is required
when the true boundary occurs at a 45-degree angle to one
of the axes.

Anatural strategy to overcome this predicament is to rotate
the space by 45-degrees, such that the decision boundary
becomes axis-aligned. After the rotation, only a single hyper-
plane is necessary to represent the very segment that required
many steps prior to rotation. Unfortunately, while rotating

123

Statistics and Computing (2021) 31:15 Page 5 of 12 15

Fig. 2 Three illustrative
classification problems with
known decision boundaries:
a y = x , b y = 0.5 +
max(x − 0.75),
c y = 0.5 + max(x − 0.5)

the feature space might improve classification locally, it may
actually have a negative effect overall, as other segments of
the decision boundary might have been well-aligned with the
axes prior to rotation but are now poorly aligned after rota-
tion. For this reason, rotations need to be examined globally
and jointly.

To better illustrate the argument, we artificially con-
struct the two-dimensional, two-class classification problems
depicted in Fig. 2.

For simplicity of the argument, no class overlap is cre-
ated but the conclusion will be unaffected. The problem on
the left-hand side (a) corresponds to the situation where the
decision boundary is at a 45-degree angle to both axes. For
this problem, we expect a 45-degree (or equivalent) rotation
to be optimal.

For the middle problem (b), the decision boundary is flat
and axis-aligned but there is a small segment that protrudes
at a 45-degree angle to the axes. A zero-degree rotation (or
equivalent) seems ideal for the longer segment but a 45-
degree rotation appears preferable for the smaller segment.
Note that since we are running an ensemble of trees, it would
be perfectly acceptable to combine one forest trained with-
out rotationwith another (perhaps smaller or down-weighted)
forest on the rotated space. The question is: which approach
produces a better-performing ensemble?

In the final classification problem on the right-hand side
(c), the portion of the decision boundary at a 45-degree angle
is slightly longer than the axis-aligned section. Here, rota-
tion is likely preferred again. But is it better to rotate by
45-degrees to aid classification near the longer segment or
perhaps just by 20-degrees, in such a way that the maximum
slope of the decision boundary is reduced at the expense of
constructing a problem that is completely unaligned to any
axis? In order to answer these questions, we need to define a
metric to quantify the value-add provided by a given rotation.

4.1 Tree complexity

The number of steps required—and hence the average num-
ber of nodes required to form a decision tree—generally
increases as the boundary becomes less alignedwith the axis.

This is because the tree construction is done recursively and
a new level of the tree is built whenever the local granularity
of the tree is insufficient to fully capture the details of the
local decision boundary.

For this reason, we propose to use the expected median
size of a decision tree as our metric of utility for a given
rotation. Rotations that result in smaller, shallower trees on
average are considered better rotations. Not only does the
metric in Formula (5) assist in creating streamlined trees
with fewer spurious splits, it also reduces the computational
burden of actually generating and running the full forest. In
addition, once we apply Metric (5) to all generated rotations,
we are in a position to obtain a ranking of the relative use-
fulness of each rotation.

In order to compute a reliable and consistent (across
rotations) estimate of the proposed metric, we generate a
micro-forest for each rotation. It is necessary to create multi-
ple trees to counteract the randomness that is injected in the
tree-induction process. For each micro-forest, we then com-
pute the median number of nodes used. We use the median
in order to actively ignore trees that are artificially inflated
by poor (random) variable selections. These operations are
computationally efficient when compared to generating a
full-blown tree ensemble for each rotation and can generate a
stable estimate of the truemedian. Based on our experiments,
the complexity rankings computed on the basis a 10–20-tree
forest is very similar to the complexity ranking computed on
the basis of a full forest. Hence, themetric is highly predictive
and useful.

4.2 Illustration

To demonstrate the usefulness of the proposed metric, we
have generated 100 random rotations for each of the two-
dimensional classification problems listed in Fig. 2. Figures
3, 4 and 5 illustrate cases (a), (b) and (c), respectively, ranked
by tree complexity. Note that the sorting is entirely based
on the tree complexity and, importantly, does not make use
of the predictive performance of these trees. Despite this,
it is interesting to see that the sort reflects our intuition: in
Figs. 3 and 4, those rotations for which one of the feature

123

 15 Page 6 of 12 Statistics and Computing (2021) 31:15

Fig. 3 Rotations of classification problem a in Fig. 2, sorted by expected tree height, as described in the text. Top left is the best rotation, bottom
right represents the worst rotation. The small number on the top right of each image is the unique rotation number

Fig. 4 Rotations of classification problem b in Fig. 2, sorted by
expected tree height, as described in the text. The top panel shows the
twenty best ranked rotations from top left to bottom right, the bottom

panel represents the twenty worst ranked rotations from bottom right to
top left. The small number on the top right of each image is the unique
rotation number

boundaries is aligned with one of the axis achieve the best
scores, while diagonal boundaries achieve the worst scores.
This allows us to find useful rotations without resorting to
structured rotations (such as PCA) commonly used in other
approaches.

However, if all of the top rotations were chosen solely
on the basis of the largest segment of the decision bound-
ary that is axis-aligned, important secondary segments might

get neglected, ultimately leading to a worse overall predic-
tion. Figure 5 demonstrates that this is not the case. In this
case, the best five rotations again aligned the longer segment
to one of the axis, as expected. However, the 6th rotation
aligned the shorter segment to the y-axis. This illustrates the
point that it may be useful to include multiple rotations in an
ensemble, since different rotations can specialize on specific
sub-features or decision boundary segments. These results

123

Statistics and Computing (2021) 31:15 Page 7 of 12 15

Fig. 5 Rotations of classification problem c in Fig. 2, sorted by expected
tree height, as described in the text. The top panel shows the twenty best
ranked rotations from top left to bottom right, the bottom panel repre-

sents the worst ranked rotations from bottom right to top left. The small
number on the top right of each image is the unique rotation number

are intuitive and demonstrate the usefulness of the tree-based
ranking. What is also striking is that the best rotations do not
at all resemble a PCA rotation. This is because the rotation
is optimized for alignment of the decision boundary with the
tree rather than for the variance of the covariates. This is what
sets random rotations apart from rotation forests.

Up to this point, we examined some very simple two-
dimensional toy problems with high signal-to-noise ratios
(SNRs). In each case, both dimensions were highly infor-
mative and contained minimal noise. This setup is ideal for
illustrating the method but is not representative of most real-
world challenges. Therefore, an important question is how
the method performs when we increase the dimensionality
or decrease the SNR. To answer this question, we start again
with the triangular base shape (a) but incrementally add uni-
form noise dimensions to the problem before applying the
proposed method. In this setting, it is more difficult to visu-
alize the results but we can still demonstrate alignment of
the decision boundary with one of the axes by projecting
the rotated problem onto the two-dimensional planes formed
by the axes—the coordinate surfaces—before plotting. It is
important to note that these are different projections of the
same rotation, rather than different rotations.

Figure 6 demonstrates that the proposed approach is
still successful in higher dimensions and with lower signal-
to-noise ratios. In these figures, each row represents an
exhaustive list of projections onto the coordinate surfaces for
a single rotation in p dimensions. The first two dimensions
are always the signal dimensions, while the remaining p− 2
dimensions are random noise dimensions. For example, in
the second row of Fig. 6 we started with the two original sig-
nal dimensions plus one random noise dimension (p = 3).
We then generated 100 rotations and selected the one rota-
tion that was ranked best according to the metric described
in Sect. 3. The row shows the three two-dimensional projec-

tions of this best ranked rotation onto the (x, y), (x, z) and
(z, y) planes, respectively. It is very apparent that the best
rotation aligns the decision boundary with the third axis (the
z-coordinate) in this case.

Even when the number of noise dimensions exceeds the
number of signal dimensions, as is the case for p = 5, the
alignment of the decision boundary with one of the axes is
still very consistent for the best rotation.

In contrast, Fig. 7 shows that theworst ranked rotations are
not aligned with any axis, regardless of the dimensionality
of the problem and that there is a considerable overlap in the
two classes at the decision boundary, making it extremely
difficult to produce a successful classifier. These examples
very clearly show the value of finding high-quality rotations.

5 Performance

In order to test our hypothesis that it is possible to rotate to
simplicity without a corresponding performance penalty, we
implemented the following weighting schemes:

(a) RRE: Random rotation ensemble, same number of trees
on each rotation: M/R.

(b) CUT: Same number of trees on the top-h rotations in
terms of complexity (h is chosen using grid search on
OOB performance per Sect. 3.1).

(c) EXP: Exponential weighting with half-life h in terms
of complexity (h is chosen using grid search on OOB
performance per Sect. 3.1).

(d) BST: All N trees on the lowest complexity (best) rotation
(equivalent to CUT with h = 1.

(e) NEW: Same number of trees on all rotations that are
ranked higher than or equal to the identity rotation.

123

 15 Page 8 of 12 Statistics and Computing (2021) 31:15

Fig. 6 Alignment of the decision boundary of the best ranked rotation
in p dimensions with each axis. In p dimensions, there are exactly
p(p − 1)/2 coordinate surfaces, meaning two-dimensional planes
formed by the p coordinate axes. In this figure, each row depicts the
projections of the best rotation in p dimensions onto all available coor-
dinate surfaces. The numbers on the top right of each sub-figure indicate

the two axes used to form the specific coordinate surface. For p = 2,
the signal-to-noise ratio (SNR) is high because only the two signal
dimensions were used. For p > 2 a total of p − 2 noise dimensions
were added, decreasing the SNR accordingly. Highlighted projections
indicate strong alignment with one of the axes

Fig. 7 Alignment of the decision boundary of the worst ranked rota-
tion in p dimensions with each axis. In p dimensions, there are exactly
p(p − 1)/2 coordinate surfaces, meaning two-dimensional planes
formed by the p coordinate axes. In this figure, each row depicts the
projections of theworst rotation in p dimensions onto all available coor-
dinate surfaces. The numbers on the top right of each sub-figure indicate

the two axes used to form the specific coordinate surface. For p = 2, the
signal-to-noise ratio (SNR) is high because only the two signal dimen-
sions were used. For p > 2 a total of p − 2 noise dimensions were
added, decreasing the SNR accordingly. No alignment is apparent with
any of the axes for the worst ranked rotation

123

Statistics and Computing (2021) 31:15 Page 9 of 12 15

(f) LIN: linearly decreasing number of trees: k on lowest
complexity rotation, k−1 on second lowest,…1 on high-
est complexity.

(g) OOB: linearly decreasing number of trees: k on lowest
OOB error rotation, k−1 on second lowest,…1 on high-
est OOB error.

(h) JNT: linearly decreasing number of trees: k on low-
est joint ranking of complexity and OOB error, …1 on
highest joint ranking rotation: rank(rank(OOB error) +
rank(complexity)).

For comparison, we also tested a standard Linear Discrimi-
nant Analysis (LDA), as well as three nonlinear classifiers: a
simple K-Nearest Neighbor classifier (KNN-5), a Support
Vector Machine (SVM), and a Gaussian Process classi-
fier (GPR). We have applied the competing methods (GPs
and SVMs) in a black-box manner with default parameters
available from publicly available software implementations.
Hence, their performance is not indicative of the performance
that would be achieved if these methods were applied knowl-
edgeably, with state-of-the-art model parameter tuning and
consistency checks of the model’s assumptions.

ForKNN,we used theR implementation in the class pack-
age with k=5 and for LDA the implementation in MASS.
For the SVM, we used the R implementation in the e1071
package with default parameters, that is we used type C-
classification with a radial basis function (RBF) kernel and
a default gamma of 1/N, which was adjusted to reflect the
number of data dimensions and added noise dimensions,
where applicable. The cost parameter (or C-parameter in
SVM parlance) was set to 1.0. For the GPR, we used the
R implementation gausspr in the kernlab package. Here, we
too used the problem type classification with a RBF kernel
(rbfdot) and took advantage of the built-in automatic sigma
estimation (sigest). We did not attempt to manually or oth-
erwise tune the meta-parameters of these methods, unless a
built-in auto-tuning feature was available, just like we did
not tune any parameters in the proposed tree-based methods
with the exception of the rotation selection that is the subject
of this paper. The overarching goal was to compare methods
with sensible default parameters across a number of problem
sets in order to determine how to best make use of rotations
with axis-parallel learners.

The test procedure generated a random subset of 70% of
the data for training purposes and all classifiers were tested
on the remaining 30% of the data. This process was repeated
100 times and averages are reported.

With the exception of the identity rotation, all rotations
were generated uniformly at random from the Haar distri-
bution. As our base case RRE, we implemented a random
rotation ensemble, which does not differentiate between rota-
tions. The only otherweighting scheme that does not consider
tree complexity at all is OOB, which only takes advantage

Table 1 Description of UCI data sets

UCI Name Dim (p) Rows (N)

BREAST 10 699

ECOLI 8 336

GLASS 10 214

IONO 34 351

IRIS 4 150

LIVER 7 345

WINE 13 178

WAVE 21 5000

of OOB errors across the different rotations. Our expectation
would be for OOB to outperform in terms of predictive accu-
racy but with high complexity ensembles. We would also
expect BST to produce the lowest complexity ensemble but
at the cost of lower predictive performance.

In terms of methodology, we first generated 100 random
rotations, including one identity rotation. These same rota-
tions were then used by all weighting schemes before the
entire process was repeated. In each case, we generated an
ensemble with exactly M = 5000 trees in total. The dimen-
sionality and number of data points for each data set are listed
in Table 1. The lowest-dimensional problem with 4 predic-
tors is IRIS and the highest-dimensional problem with 34
predictors is IONO. For space reasons, we refer the reader
to Dheeru and Taniskidou (2017) for a detailed description
of the UCI data sets we used for testing. Before running the
classification algorithms, we scaled all numeric predictors to
[0, 1].

Table 2 shows the names of the data sets, together with
the classification error resulting from applying the different
weighting schemes to the rotations. Interestingly, algorithm
OOB did not perform quite as well as we had anticipated.
For three of the data sets, the scheme performed more than
one cross-sectional standard deviation above (worse than) the
minimum error. In fact, this appears to be a common pattern
among these methods, except for CUT and EXP described
in Sect. 3.1, which are competitive on most of these data
sets. One interesting exception was the IRIS data set, for
which LDA outperformed all variants of the rotation-based
ensembles and indeed all nonlinear classifiers. This is an
example of where the proposed method does not work as
well as expected.

In Table 3, we can confirm that BST really does produce
the most compact ensembles. However, unfortunately per-
formance suffers accordingly. A good compromise is EXP,
which shows significant reductions in complexity without
suffering from performance problems.

For the IRIS data set, EXP resulted in an ensemble that
outperformed RRE despite a 24.4% decrease in complexity.

123

 15 Page 10 of 12 Statistics and Computing (2021) 31:15

Table 2 Classification error on test data (lower is better)

UCI Name LDA SVM GPR KNN-5 RRE CUT EXP BST NEW LIN OOB JNT

BREAST 0.0472 0.0386 0.0407 0.0410 0.0347 0.0348 0.0349 0.0354 0.0348 0.0349 0.0345 0.0347

ECOLI 0.1209 0.1265 0.1305 0.1365 0.1217 0.1233 0.1251 0.1445 0.1448 0.1208 0.1212 0.1207

GLASS 0.3805 0.3157 0.3213 0.3587 0.3001 0.2729 0.2400 0.2395 0.2378 0.2977 0.2994 0.3001

IONO 0.1381 0.0609 0.1317 0.1587 0.0514 0.0535 0.0544 0.0704 0.0706 0.0519 0.0510 0.0512

IRIS 0.0240 0.0407 0.0502 0.0416 0.0467 0.0451 0.0453 0.0456 0.0460 0.0467 0.0462 0.0464

LIVER 0.3318 0.3064 0.3162 0.3981 0.3116 0.3050 0.3135 0.3191 0.3089 0.3097 0.3079 0.3099

WAVE 0.1423 0.1383 0.1320 0.1815 0.1352 0.1380 0.1422 0.1435 0.1432 0.1352 0.1350 0.1351

WINE 0.0161 0.0206 0.0180 0.0433 0.0250 0.0176 0.0165 0.0172 0.0150 0.0222 0.0224 0.0232

Each rotation weighting method RRE, CUT, EXP, BST, NEW, LIN, OOB, JNT, as described in the text, was applied to the data sets listed under
UCI Name. Strikethrough represents a performance number that was more than one cross-sectional standard deviations above (worse than) the
minimum

Table 3 Tree complexity on test
data (lower is better, only
relevant for tree-based
classifiers)

UCI Name RRE CUT EXP BST NEW LIN OOB JNT

BREAST 54.69 52.08 51.68 51.11 52.94 53.66 54.42 54.63

ECOLI 76.82 71.67 69.08 44.52 44.56 75.23 76.68 76.59

GLASS 81.68 73.69 67.42 66.93 66.95 80.84 81.14 81.39

IONO 61.58 60.24 60.02 57.58 58.20 61.16 61.51 61.60

IRIS 20.98 16.52 15.86 15.36 18.67 19.44 20.30 20.98

LIVER 115.48 112.14 111.18 110.84 114.06 114.64 114.94 115.51

WAVE 1368.76 1332.53 1310.13 1303.26 1303.29 1359.99 1365.58 1368.30

WINE 36.21 32.52 31.02 30.88 31.21 35.42 35.42 36.15

Each rotation weighting method RRE, CUT, EXP, BST, NEW, LIN, OOB, JNT, as described in the text, was
applied to the data sets listed under UCI Name. Strikethrough represents a complexity number that was more
than one cross-sectional standard deviations above (worse than) the minimum

Table 4 Classification error on test data (lower is better)

NOISE SNR LDA SVM GPR KNN-5 RRE CUT EXP BST NEW LIN OOB JNT

1 6.02 0.0258 0.0578 0.0658 0.0507 0.0516 0.0489 0.0516 0.0560 0.0524 0.0507 0.0524 0.0516

2 3.01 0.0258 0.0533 0.0898 0.0480 0.0569 0.0551 0.0551 0.0587 0.0613 0.0569 0.0604 0.0578

4 0.00 0.0240 0.0827 0.1164 0.0871 0.0853 0.0693 0.0631 0.0640 0.0640 0.0853 0.0889 0.0853

8 − 3.01 0.0267 0.1591 0.1680 0.1467 0.1316 0.1093 0.0960 0.0996 0.1013 0.1333 0.1289 0.1289

16 − 6.02 0.0533 0.1591 0.1822 0.1200 0.1458 0.1396 0.1511 0.1671 0.1440 0.1440 0.1449 0.1422

32 − 9.03 0.0569 0.1618 0.1724 0.1458 0.1591 0.1636 0.1733 0.1724 0.1618 0.1609 0.1644 0.1671

64 − 12.04 0.1280 0.2222 0.2516 0.2249 0.2124 0.2116 0.2204 0.2364 0.2151 0.2151 0.2116 0.2133

128 − 15.05 0.1618 0.2951 0.3484 0.2596 0.2640 0.2676 0.2684 0.2898 0.2729 0.2658 0.2791 0.2676

Each rotation weighting method and control classifier was applied to the UCI data set IRIS. The first (NOISE) column indicates the number of
noise dimensions added to the original data set, from which an upper bound to the signal-to-noise ratio can be estimated as SNR (dB) ≤ 10×
log(4/NOISE) by assuming that the original data set is noise free. In the table, SNR represents this upper bound

Similarly, a 17.5% decrease in complexity was achieved in
the GLASS data set. The smallest improvement of merely
2.5% decrease in complexity occurred on the IONO data set,
for which RRE actually outperformed EXP, although not in
a statistically significant manner.

Tables 4 and 5 show the performance of a set of base-
line classifiers (SVM, GPR, KNN-5) and the various rotation
variants after adding noise dimensions to the data sets IRIS

and IONO. It is evident that the performance of the rotation-
based classifiers deteriorates relative to other classifiers as
the signal-to-noise ratio decreases. This is a known limita-
tion of themethod, further described in the following chapter.
At the same time, it can be observed that LDA performance
is very problem dependent, while KNN and SVM classifiers
actually became more competitive in a relative sense with
decreasing SNR.

123

Statistics and Computing (2021) 31:15 Page 11 of 12 15

Table 5 Classification error on test data (lower is better)

NOISE SNR LDA SVM GPR KNN-5 RRE CUT EXP BST NEW LIN OOB JNT

1 15.31 0.1479 0.0675 0.1423 0.1725 0.0600 0.0604 0.0600 0.0721 0.0706 0.0596 0.0592 0.0592

2 12.30 0.1234 0.0551 0.1294 0.1509 0.0521 0.0558 0.0589 0.0702 0.0691 0.0528 0.0521 0.0517

4 9.29 0.1577 0.0725 0.1464 0.1675 0.0675 0.0683 0.0702 0.0868 0.00875 0.0679 0.0698 0.0683

8 6.28 0.1506 0.0668 0.1408 0.1706 0.0668 0.0660 0.0717 0.0808 0.0815 0.0664 0.0668 0.0679

16 3.27 0.1438 0.0634 0.1362 0.1672 0.0657 0.0615 0.0747 0.0789 0.0785 0.0649 0.0664 0.0642

32 0.26 0.1642 0.0792 0.1638 0.1864 0.0864 0.0808 0.0879 0.0906 0.0838 0.0860 0.0857 0.0842

64 − 2.75 0.1951 0.1155 0.2257 0.1898 0.1521 0.1408 0.1385 0.1423 0.1442 0.1525 0.1498 0.1528

128 − 5.76 0.2921 0.1479 0.2687 0.2083 0.2230 0.2242 0.2200 0.2208 0.2211 0.2238 0.2245 0.2242

Each rotation weighting method and control classifier was applied to the UCI data set IONO. The first (NOISE) column indicates the number of
noise dimensions added to the original data set, from which an upper bound to the signal-to-noise ratio can be estimated as SNR (dB) ≤ 10×
log(34/NOISE) by assuming that the original data set is noise free. In the table, SNR represents this upper bound

6 Limitations

It was empirically demonstrated in Tomita et al. (2017) that
in situations where the signal is contained in a subspace that
is small relative to the dimensionality of the feature space,
random rotation ensembles tend to underperform ordinary
random forests. This is because such a setup renders most
rotations unhelpful. By overweighting the most successful
rotations, as we propose in this paper, this effect is somewhat
mitigated but not entirely eliminated.

Even in the illustrations in Fig. 6, it is clear that the qual-
ity of the most successful rotations decreases marginally as
the number of noise dimensions is increased. The alignment
with the axes is not perfect and the noise around the decision
boundaries increases visibly. Nonetheless, the rotated fea-
tures lead to better (axis-aligned) classifiers than the those
trained on the unrotated space.

The underlying issue is that rotations in the direction of
uninformative noise dimensions do not improve predictions
and when the number of noise dimensions is large rela-
tive to the signal dimensions, the likelihood of rotating in
uninformative directions increases. Note that the same is not
necessarily true when the SNR is decreased without increas-
ing the dimensionality of the problem. In this case, random
rotations and the ideas in this paper do not underperform
ordinary random forests in our experience.

One important consideration when introducing rotations
into a classifier is that features need to be of comparable scale.
We do not explicitly mention this in this paper but a section
on recommended scalingmechanisms can be found in Blaser
and Fryzlewicz (2016). We do not recommend using any
rotation-based ensembles without prior scaling or ranking
for practical problems.

7 Computational considerations

When compared to random rotation ensembles, there is an
additional computational cost for regularizing the ensemble.
Given the desired total number of trees M , the algorithm
requires the generation of micro-forests of sizeU for each of
the R rotations. Thesemicro-forests are essential for estimat-
ing the relative efficacy of each rotation. However, depending
on the weighting scheme employed, only a subset of the rota-
tions is actually included in the final model.

More specifically, in the initial step,U × R trees are con-
structed. However, if the weighting scheme only involves the
top r rotations, then (R − r) ×U trees subsequently get dis-
carded. This, in turn, implies that M −r ×U additional trees
need to be induced within the r selected rotations to end up
with M trees in total within the selected rotations. Expressed
as a percentage, we know that (R − r) ×U/(M − r ×U +
R × U) percent of the initially constructed trees get subse-
quently discarded, resulting in computational overheadwhen
compared to random rotation ensembles, where all trees are
used.

In order to obtain a bound on this expression, note that
R × U <= M . This is because it is not practical to gener-
ate more trees in the micro-forests than are needed in total.
Hence, in the worst case (R − r)/(2R − r) percent of the
initially constructed trees get subsequently discarded, a quan-
tity that is smaller than 1/2 because r is in [1, R] and R is
in [1, M]. This expression is maximized when only the best
rotation is selected (r = 1) andminimized when all rotations
are selected (r = R). Therefore, in terms of computational
overhead, the worst case is that nearly twice as many trees
need to be constructed when the ensemble is regularized than
for standard random rotation ensembles.

In practice, this bound is unrealistically high and the
magnitude of the overhead can be influenced by select-
ing sensible parameters. For example, using M = 5000,
R = 50 and U = 10 and utilizing the top r = 10

123

 15 Page 12 of 12 Statistics and Computing (2021) 31:15

rotations, we achieve a computational overhead of merely
(50− 10)× 10/(5000− 10× 10+ 50× 10) = 2/27, or less
than 7.41%. In addition, it should be noted that this overhead
gets partially offset by the fact that only R rotations need
to be generated with our method instead of M for random
rotation ensembles. In the current example, that number is
50 instead of 5000.

Besides these rather modest effects, the computational
complexity of our method is equivalent to that of random
rotation ensembles, regardless of the number of training sam-
ples or data dimensions.

8 Software

The authors have released an open-source R package by
the name of random.rotation. The package contains a ref-
erence implementation of random rotations, including the
weighting- and regularization methods described in this
paper. The package can be downloaded from GitHub with-
out registration. The easiest way to accomplish this is directly
within an R command-line shell:

library(‘devtools’)
install_github(‘randomrotation/random.
rotation’)

Acknowledgements We would like to thank the anonymous reviewers
for their helpful comments and constructive feedback.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Anderson, T., Olkin, I., Underhill, L.: Generation of random orthogonal
matrices. SIAM J. Sci. Stat. Comput. 8, 625–629 (1987)

Blaser, R., Fryzlewicz, P.: Random rotation ensembles. J. Mach. Learn.
Res. 17, 1–26 (2016)

Breiman, L. Random forests random features. Technical report (1999)
Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and

Regression Trees. Wadsworth, Belmont (1984)
Cannings, T., Samworth, R.: Random-projection ensemble classifica-

tion. J. R. Stat. Soc. B 79, 1–38 (2017)
Dheeru, D., Taniskidou, E.: UCI machine learning repository (2017).

http://archive.ics.uci.edu/ml
Durrant, R., Kaban, A.: Random projections as regularizers: learning a

linear discriminant ensemble from fewer observations than dimen-
sions. JMLR: Workshop and Conference Proceedings, vol. 29, pp.
17–32 (2013)

Friedman, J.: Greedy function approximation: a gradient boosting
machine. Ann. Stat. 5, 1189–1232 (2001)

Goodrich, M., Mirelli, V., Orletsky, M., Salowe, J.: Decision tree con-
struction in fixed dimensions: being global is hard but local greed
is good. Technical Report TR95-1 (1995)

Hastie, T., Friedman, J., Tibshirani, R.: The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, New
York (2009)

Hyafil, L., Rivest, R.: Constructing optimal binary decision trees is NP-
complete. Inf. Process. Lett. 5, 15–17 (1976)

James,G.,Witten,D.,Hastie, T.:An Introduction toStatisticalLearning.
Springer, New York (2013)

Rodriguez, J.,Kuncheva, L.,Alonso,C.:Rotation forest: a newclassifier
ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28,
1619–1630 (2006)

Takacs, G., Chandrasekhar, V., Tsai, S.: Fast computation of rotation-
invariant image features by approximate radial gradient transform.
IEEE Trans. Image Process. 22, 2970–2982 (2013)

Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R.
Stat. Soc. B 58, 267–88 (1996)

Tomita, T., Maggioni, M., Vogelstein, J.: Roflmao: robust oblique
forests with linear matrix operations. In: Proceedings of the 2017
SIAM International Conference on Data Mining, vol. 1, pp. 498–
506 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://archive.ics.uci.edu/ml

	Regularizing axis-aligned ensembles via data rotations that favor simpler learners
	Abstract
	1 Introduction
	2 Motivation
	3 Regularization
	3.1 Weighting of rotations

	4 Discussion
	4.1 Tree complexity
	4.2 Illustration

	5 Performance
	6 Limitations
	7 Computational considerations
	8 Software
	Acknowledgements
	References

