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ABSTRACT
We study neural networks as nonparametric estimation tools for the hedging of options. To this end, we
design a network, named HedgeNet, that directly outputs a hedging strategy. This network is trained to
minimize the hedging error instead of the pricing error. Applied to end-of-day and tick prices of S&P 500 and
Euro Stoxx 50 options, the network is able to reduce the mean squared hedging error of the Black-Scholes
benchmark significantly. However, a similar benefit arises by simple linear regressions that incorporate the
leverage effect.
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1. Introduction

Beginning with Hutchinson, Lo, and Poggio (1994) and
Malliaris and Salchenberger (1993), artificial neural networks
(ANNs) are being proposed as a nonparametric tool for the
risk management of options. Since then about 150 articles have
been published that apply ANNs to price and hedge options;
see Section 3 for several pointers to this literature. We show
that for the estimation of the optimal hedging ratio ANNs do
not outperform simple linear regressions that use only standard
option sensitivities.

We study a specific and well-defined risk management appli-
cation, namely the reduction of variance of the hedging error
in the daily options’ trading. More precisely, we consider a one-
period model and imagine an operator who is short an option
(or a cross section of options). The mark-to-market accounting
convention requires a good control of the hedging error for
short periods, even when considering long-dated options. To
reduce the variance of her portfolio the operator is allowed to
buy or sell the underlying. Today, she sells the option, say at
price C0. She is now allowed to buy δ shares of the underlying
at price S0 and C0 − δS0 units of the risk-free asset. Then
today’s portfolio value equals V0 = 0. Tomorrow, her portfolio
has value

Vδ
1 = δS1 + (1 + ronr�t)(C0 − δS0) − C1, (1)

where S1 and C1 denote tomorrow’s prices of the underlying
and the option, respectively, ronr is the over-night rate at which
the operator can borrow / lend money, and �t = 1/253. The
operator’ goal is to choose δ in such a way that the variance of
tomorrow’s wealth, var[Vδ

1 ] is minimized.
To make headway, since �t is small, we are allowed to

approximate the variance by the expected squared mean.
Indeed, if the expected return on the risky asset happens to
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be equal to the risk-free return then the expected value E[Vδ
1 ]

does not depend on δ at all. Then the operator’s objective is to
minimize the mean squared hedging error (MSHE)

E
[(

Vδ
1
)2] = E

[
(δS1 + (1 + ronr�t)(C0 − δS0) − C1)

2] . (2)

Let us assume for the moment that the option is a European
call. Then a standard and simple choice is using the practitioner’s
Black–Scholes Delta (BS Delta)

δBS = N(d1), (3)

where N denotes the cumulative normal distribution function
and

d1 = 1
σimpl

√
τ

[
ln

(
S0
K

)
+

(
r + 1

2
σ 2

impl

)
τ

]
. (4)

Here, τ is the time-to-maturity in year fraction, σimpl the annu-
alized implied volatility of the option, K the strike price, and r
the risk-free interest rate corresponding to the option’s maturity.
The operator would choose δ = δBS; if the option was a put then
she would choose δ = δBS − 1 in line with put-call parity. Since
the interest rate r is negligible, we assume for the moment that
it is zero. Then, the BS Delta can be written as a function of two
variables, namely the moneyness M = S0/K and the square root
of total implied variance σimpl

√
τ . Thus, we get the functional

representation

δBS = fBS
(
M, σimpl

√
τ
)

.

It is now reasonable to study other functionals. We shall
replace fBS by an ANN fNN with the two input features M and
σimpl

√
τ , trained to minimize the expression in Equation (2).

That corresponds to a nonparametric estimation of the opti-
mal hedging ratio that minimizes the variance of the hedging
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error. We will provide more details on the implementation in
Section 3. The motivation to study ANNs arises from the large
amount of historical data available, the universal approximation
ability of ANNs, and the sometimes unrealistic assumptions
underlying parametric models.

To benchmark the hedging performance of the ANN, we
introduce linear regression models that lead to hedging ratios
that are linear in several option sensitivities. They are motivated
by the leverage effect, credited to Black (1976). The leverage
effect describes the negative correlation between an underlying’s
price and its volatility. To illustrate how this matters, consider a
call and assume it is hedged with the BS Delta δBS > 0. If now the
underlying’s price goes up so do the call price and the hedging
position. Due to the leverage effect, the underlying (implied)
volatility tends to go down simultaneously, thus having a neg-
ative effect on the option price. Indeed, everything else equal,
both call and put prices go up as (implied) volatility increases—
their “Vega” is positive. The BS Delta δBS does not take into con-
sideration this additional effect. As we only allow hedging with
the underlying the obvious change is to hedge only partially, that
is, use the hedging ratio δLR = aδBS, where a is estimated (in
a training set). Here, LR stands for linear regression. For the
moment, it suffices to note that these arguments let us expect
a > 1 for puts and a < 1 for calls. (It turns out that hedging
with aδBS, where a = 0.9 for calls and a = 1.1 for puts works
extremely well on real-world datasets; see Section 5.3.) We shall
discuss such simple modifications of the BS Delta in Section 4,
all based on statistical hedging models involving various option
sensitivities.

The performance of the ANN and the benchmarks is tested
on daily end-of-day mid-prices obtained from OptionMetrics
and tick data provided by Deutsche Börse. These data are
described in more detail in Section 2. We also vary the length
�t of the hedging period from 1 hour to 2 days. All in all,
the ANN performs well in terms of MSHE relative to the BS
Delta, even when the latter is being used with contract-specific
implied volatility. However, using the linear regression hedging
ratios δLR performs roughly as well or at times better than δNN.
They lead to roughly 15%–20% reduction in the MSHE. For
a summary of the results, see Section 5. In addition, online
Appendix A contains an extensive simulation experiment using
data generated from the standard Black–Scholes model and
from Heston’s stochastic volatility model.

An interpretation of these observations is that the option
sensitivities already encapsulate all relevant nonlinearities in the
data necessary for the hedging task. Hence, the ANN seems to
be able to learn the leverage effect, but cannot improve on a
simple linear regression involving the relevant option sensitivi-
ties. What have we learned? Initially we were satisfied about the
outperformance of the ANN relative to the BS Delta on real-
world datasets. When investigating what the ANN is learning,
the linear regression models appeared as natural competitors.
These statistical models are extremely simple—for the easiest
such model one only replaces the BS Delta by a multiple of it.
Nevertheless, as far as we know, these models have not been used
in the literature to benchmark more complicated models.

We proceed as follows. Section 2 describes the datasets and
the experimental setup. Section 3 introduces the HedgeNet
architecture and implementation. This section also discusses

the advantage of outputting directly the hedging ratio instead
of option prices and then using a sensitivity as hedging ratio.
Section 4 describes how the leverage effect motivates various
benchmark models to be compared with ANNs. Section 5
presents the experimental results. Section 6 discusses potential
information leakage introduced by the data cleaning procedure.
Section 7 summarizes the main findings. Several online appen-
dices provide further details on the various sections.

2. Datasets and Setup of Experiments

This section presents the data used. Sections 2.1 and 2.2 describe
the two real-world datasets containing options on the S&P 500
and Euro Stoxx 50. Section 2.3 discusses the experimental setup.
Section 2.4 concludes the section by providing some economic
implications of reducing the MSHE. Online Appendix C con-
tains additional details on these datasets. Online Appendix A
discusses simulated datasets for an additional study.

2.1. S&P 500 End-of-Day Midprices

We obtained daily closing bid and ask prices on calls and puts
written on the S&P 500 between January 2010 and June 2019
from OptionMetrics (see https://optionmetrics.com). We inter-
pret the midprice as the true market price. Figure 1 displays a
sample of the obtained options, namely those puts with price
quotes in the first three months of 2010 or 2015. Sensitivities are
provided for the majority of options and are filled in for missing
values. The results presented below are robust to whether we
use computed sensitivities for all options or the sensitivities pro-
vided by OptionMetrics where available. The required interest
rates are interpolated from the rates provided by OptionMetrics.
For maturities less than one week (in which case OptionMetrics
does not provide the corresponding rates), we use the Overnight
Libor Rates from Bloomberg.

We organized the data in a table so that each row corre-
sponds to exactly one observation, that is, one option at one
trading day (along with the tomorrow’s price for training).
We remove certain samples; for example, those samples with
negative time-value, time-to-maturity less than 1 day, or zero
trading volume. We present the full cleaning process in online
Appendix C.1.

2.2. Euro Stoxx 50 Tick Data

We are grateful to Deutsche Börse, who provided us with tick
data of Euro Stoxx 50 index options and futures between Jan-
uary 2016 and July 2018. We refer to https://datashop.deutsche-
boerse.com/samples-dbag/File_Description_Eurex_Tick.pdf for
a description of this dataset.

We now briefly outline how we process these data. If sev-
eral trades are executed at exactly the same time stamp, then
we aggregate these orders and consider the volume-weighted
average price. We match each option transaction with the
most recent tick price of the future with the shortest maturity
(again, volume-weighted if several trades happen simultane-
ously). These futures, which are the most liquid ones, shall
be used to hedge the option position. The computation of the

https://optionmetrics.com
https://datashop.deutsche-boerse.com/samples-dbag/File_Description_Eurex_Tick.pdf
https://datashop.deutsche-boerse.com/samples-dbag/File_Description_Eurex_Tick.pdf
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Figure 1. A sample of the obtained put options along with the underlying’s (S&P 500) price process in blue. Only options that have a trading volume of more than 1000
on some trading day are included. Each red (black) line segment represents a put option that had price quotes within the first quarter of 2010 (2015). The corresponding
strike is indicated as the value on the y-axis. Small random vertical shifts are added to increase the visibility of the options.

option sensitivities requires a risk-free rate. We use interpolated
Euro LIBOR rates from Thomson Reuters’ DataStream.

To train the statistical models and to measure the hedging
performance, we require the option price after �t (1 h, 1 day,
2 days, etc.). There might not be a trade exactly after this time
period. Hence, we allow a matching tolerance window of 6 min,
equivalent to 0.1 hr. Hence, for example, if �t is a business day
and we have a trade on Monday, say at 2.12 p.m., then we match
it with the first price observation of this option on Tuesday after
2.12 p.m. If there is no transaction before 2:18 p.m., then this
sample gets discarded. We refer to Section 6 for a discussion of
potential information leakage introduced in this step.

Finally, we perform a similar cleaning process as for the
S&P 500 dataset. The details are laid out again in online
appendix C.1.

2.3. Data Preparation and Experimental Setup

As discussed in Section 1, our goal is to determine the hedging
ratio δ as a function of observable quantities to minimize the
variance over one period of the hedged portfolio

Vδ
1 = δS1 + (1 + ronr�t)(C0 − δS0) − C1. (5)

Here, S0 and S1 denote the prices of the hedging instrument at
the beginning and end of the period and C0 and C1 denote the
prices of the call or put. We study how well an ANN performs in
this task on end-of-day midprices (see Section 2.1) and on tick
data (see Section 2.2). We benchmark these results with linear
regression models for the hedging ratio δ. A corresponding
simulation study is discussed in online Appendix A.

Each of the datasets is split up into in-sample and out-of-
sample (“test”) data. Both the ANN and the benchmark models
are trained to (estimated by) the in-sample dataset only. The
variance of the hedged portfolio is approximated by the MSHE.
The performance of each of the methods is measured on the out-
of-sample dataset as follows:

var(Vδ
1) ≈ MSHE = 1

Ntest

Ntest∑
t,j

(
100

Vδ
t+1,j

St

)2

, (6)

where δ is either modeled by an ANN or by a linear regres-
sion. Both the indexing and the normalization by St/100 need
explanation.

First of all, the indexing has changed from Equation (5) to
(6). Indeed, each traded option yields a series of samples, one for
each trading period. Moreover, several options corresponding to
different strikes (indexed by j) are being priced in any specific
period (e.g., a day). To emphasize this point, the samples are
double indexed in Equation (6). Next, Equation (6) normalizes
the value of the hedging portfolio by dividing it by St/100. This
normalization “removes the units” and allows to compare errors
across the different datasets, and arguably more importantly,
across time. Equivalently, at any point of time t, instead of
replicating a full option, we replicate the fraction 100/St of this
option.

One could have considered a different normalization. For
example, in Equation (6), one could have divided by the time-
t-option price Ct instead of St . This would induce a different
weighting of the samples. However, a fixed Dollar position in a
far out-of-the money option is riskier than in an at-the-money
option. Indeed, a move in the underlying tends to have a larger
effect on the far out-of-the money position. Hence, from a risk
perspective, the alternative normalization would put too much
weight on far out-of-the money options. For this reason, we
choose the normalization of Equation (6).

We now provide more details on how we prepare each
dataset. First, we store each dataset in a dataframe as in Table 1.
We then remove all in-the-money samples. That is, if at one
specific date an option was in the money, we discard this specific
date for the corresponding option.

We break up the S&P 500 dataset in 14 overlapping time
windows of length 3 years in order to understand whether the
comparisons between the ANNs and the linear regressions are
consistent across time. In each time window, the first 900 days
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Table 1. This table presents a (simplified) preview of one of the four processed datasets.

Index Date Features Additional information Target

σimpl
√

τ M δBS VBS S0 S1 C0 ronr CP flag C1

0 2018/07/02 0.047 1.003 0.531 9.357 100 98.223 2.002 0.01 0 1.130
...

NOTES: The “Features” columns are used as inputs for the ANN and the linear regressions. The labels σimpl
√

τ and M denote the square root of total implied variance
and moneyness of the option. The labels δBS and VBS are the BS Delta and Vega. The CP flag indicates whether the corresponding option is a call or a put. Prices and
sensitivities are all normalized.

form the in-sample set, while the last 180 days are used for
the out-of-sample set, yielding a ratio 5:1. For the training of
the ANN, the 900 days are furthermore split into 720 days of
training and 180 days of validation yielding a ratio 4:1:1. We roll
the time windows forward by 180 days, so that sample appears
maximally once in the aggregated out-of-sample set. The Euro
Stoxx 50 dataset is much shorter, and we do not break it up in
different time windows. This leads to 750 (600+150) days in the
in-sample set and 150 days in the out-of-sample set, yielding
again a ratio 4:1:1.

In practice, one would expect to retrain each statistical model
weekly or daily instead of every 180 days as done in the S&P
dataset. For computational limitations, we are not able to do so.
(Currently, training and running one ANN configuration for the
14 S&P time windows takes about 10 hr on a GTX 1060 6GB
GPU cluster.) We treat the statistical benchmark models below
in the same way, also only retraining them every 180 days.

2.4. Digression: Economic Interpretation of the MSHE

We now briefly comment on the economic gains when using
hedging strategies that lead to reduced MSHEs. We have in
mind a financial entity (or “operator”) acting as a market maker;
that is, taking on (short) positions in options as “inventory”
to satisfy some market demand. This operator sells a cross
section of delta-hedged puts or calls. In the classical one-period
framework of Stoll (1978) (see also O’Hara 1997, chap 2.2), the
operator charges a premium (e.g., through a bid–ask spread)
to take on the additional inventory (i.e., the short position of
delta-hedged options). Reducing the MSHE allows the operator
to charge a lower premium as we outline next.

Formally, we equip the operator with quadratic utility x �→
x −γ x2/2, where γ > 0 denotes her coefficient of risk aversion.
We suppose that the delta-hedged short-position is uncorrelated
with the operator’s optimal wealth. Furthermore, we assume that
the expected return of a delta-hedged option position does not
depend on the hedging strategy (e.g., if the expected return of
the risky asset equals the risk-free return) and set it to zero for
simplicity. Under Bertrand competition of liquidity providers
with the same risk aversion γ , the operator charges γ /2 times
the MSHE as a premium. Hence, if the MSHE can be reduced by
a certain percentage, then the premium reduces by the same per-
centage times γ /2. For example, if the MSHE error is reduced
by 15% and γ = 2, then the premium decreases by 15%.

A similar argument applies if the financial entity was on
the “buy-side,” taking on short positions in options to collect
the volatility risk premium, and interested in maximizing the
Sharpe ratio of her position. This entity would then try to
hedge the exposure to the price movements in the underlying

by trading it. If the expected return of a delta-hedged option
position does not depend on the hedging strategy and the MSHE
is reduced by 15%, then the new Sharpe ratio is 1/

√
0.85 ≈

1.085 times the old one.

3. HedgeNet

There exists a long line of research on the use of ANNs in the
context of option pricing and hedging. Ruf and Wang (2020)
provided an overview of this literature. Here, we only give a
few pointers to articles that we found especially insightful. Early
on, Hutchinson, Lo, and Poggio (1994) suggested ANNs as non-
parametric alternative for the pricing of options. They show that
already quite small ANNs with only a few nodes perform well for
the pricing task. Garcia and Gençay (2000) are among the first
to introduce financial domain knowledge (the so-called homo-
geneity hint) in the design of ANNs. This type of regularization
improves the pricing performance of ANNs further. Carver-
hill and Cheuk (2003) proposed an ANN that directly outputs
hedging strategies, instead of the first outputting option prices
and then deriving hedging strategies as sensitivities. Dugas et al.
(2009) suggested an ANN architecture that guarantees that the
outputted prices satisfy a set of no-arbitrage conditions. Buehler
et al. (2019) brought several innovations forward. In order to
train their ANN, additional artificial data are drawn from an
appropriately fitted econometric model. Their framework for
hedging options includes the presence of transaction costs and
other market frictions, allowing general convex risk measures as
loss functions. All these references discussed here consider the
pricing/hedging task over the lifespan of an option.

We now introduce the ANN used in this study. As discussed
in the introduction, we focus on the one-period setup, and
benchmark the hedging performance of the ANN with appro-
priate linear regressions based on the options’ sensitivities, as
described in the next section. The ANN maps the option’s rele-
vant features (e.g., moneyness and square root of total implied
variance) to a hedging ratio δNN. In Section 3.1 we provide
details about the architecture, implementation, and training of
such an ANN. Section 3.2 provides some additional motivation
why the ANN is designed to output directly the hedging ratio
instead of the option price.

3.1. Architecture of HedgeNet, Its Implementation and
Training

An ANN is a composition of simple elements called neurons,
which maps input features to outputs. Such an ANN then forms
a directed, weighted graph.
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Figure 2. A schematic graph of HedgeNet. The features are transformed into a hedging position by a fully connected feed-forward neural network (FCNN). The additional
input is used to compute the value Ĉ1 of the replicating portfolio.

Figure 3. A detailed schematic presentation of HedgeNet. Recall that M = S0/K and σimpl
√

τ are moneyness and square root of total implied variance. “CP flag” is a
Boolean flag for the option type; it equals 1 for puts and 0 for calls. Next, S0 and S1 are the underlying’s prices at the beginning and end of the hedging period, C0 denotes
the option price at the beginning of the period, and Ĉ1 denotes the replication value. Finally, R = 1 + ronr�t is the risk-free overnight return.

As we shall discuss below in Section 3.2 it is not satisfactory
to compute or estimate option prices and then use their sensi-
tivities as hedging ratios. It is better to obtain the hedging ratio,
our quantity of interest, directly. Hence, we desire that the ANN
returns a hedging ratio and not a price. However, when training
such an ANN what should it be trained to? Optimal hedging
ratios are not provided in the data. For this reason, we design
an ANN, named HedgeNet, to have two parts, as illustrated in
Figure 2.

The first part, a multilayer fully connected feed-forward
neural network (FCNN), transforms features into a hedging
position, which is then turned by the second part into the
replication value Ĉ1 = V1 + C1. This output of HedgeNet can
then be trained to the observed option prices C1 at the end of
each period by minimizing the sum of squared differences.

The FCNN has two hidden layers with 30 nodes each, con-
nected by ReLU activation. (The benefits of using ReLU acti-
vation are addressed in Glorot, Bordes, and Bengio (2011) and
(Krizhevsky, Sutskever, and Hinton 2012, sec. 3.1).) The output
of the FCNN is provided by a linear node (with truncation at
zero and one) and corresponds to the hedging ratio δNN. We
tried different architectures, for example, 100 nodes in each
hidden layer, or three (instead of two) hidden layers with 30
nodes each. Motivated by the representation of the BS Delta in
Equation (3), we also tried the cumulative distribution function
N of a standard normally distributed random variable as output
function instead of the linear output function. None of these

modifications changed the overall conclusions below. We also
tried a modification, where we interpret the output not as the
hedging ratio but as the “bias” term δ − δBS, which corrects the
BS Delta. Such change did not help the performance of the ANN
either.

As illustrated in Figure 3, the nontrainable transformation
module turns the hedging ratio δNN into the replication value
Ĉ1 by following Equation (1). As the data include both puts and
calls, this module also requires an option type flag, which is set
to 1 in the case of a put and to 0 in the case of a call. If the
sample is a put, then the module replaces δNN by δNN −1 in line
with put-call parity. The nontrainable transformation module
consists of a series of affine transformations, and hence does
not affect the universal approximation property, discussed, for
example, in Yarotsky (2017).

All numerical experiments are run on a standard desktop
with GPU accelerated computation (specification: GTX 1060
6GB GPU). We use Python as programming language. The ANN
is implemented with the deep learning framework Tensorflow
along with Keras. The inputs to the trainable part of HedgeNet
are standardized. The weights of the ANN are initialized via the
“Xavier” initializer (Glorot and Bengio 2010) and the “Adam”
optimizer (Kingma and Ba 2015) is applied for training the
ANN. Online Appendix B contains details on the choice of
additional hyperparameters.

For each dataset, we consider three different feature sets for
the trainable part of HedgeNet:
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• ANN(M; σimpl
√

τ): The first one is already indicated in
Figure 3. It uses moneyness M, square root of total implied
variance σimpl

√
τ , and a flag to indicate whether the option

is a call or a put. It is worth pointing out that using mon-
eyness instead of the underlying’s price and the strike price
separately offers a better generalization performance. The
most important reason for its better performance is that
moneyness resembles more a stationary feature compared
to the underlying’s price and strike price separately. Indeed,
options are created and traded only for a certain range of
moneyness values. Ghysels et al. (1998), Garcia and Gençay
(2000), and Ruf and Wang (2020) provided more comments
on the advantage of using moneyness. The choice of square
root of total implied variance is motivated by the fact that
volatility squares with the square root of time; see also the
expression for δBS in Equations (3) and (4).

• ANN(�BS; VBS; τ): Motivated by the leverage effect dis-
cussed in Section 4, we also consider the second set of
features consisting of δBS, VBS, 1/

√
τ , and the put-call flag.

Here, VBS denotes Vega, the sensitivity of the option price
with respect to the implied volatility.

• ANN(�BS; VBS; VaBS; τ ): Since we shall use Vanna, the sen-
sitivity of Delta with respect to volatility, as a feature for linear
regression benchmarks in Section 4, we also consider using
a third feature set consisting of the three sensitivities, 1/

√
τ ,

and the put-call flag.

3.2. Digression: Why Outputting the Hedging Ratio
Instead of Computing Price Sensitivities?

Most ANNs constructed in the literature for the risk manage-
ment of options first learn the pricing function. Then in a second
step hedging strategy is computed as the sensitivity of the option
price with respect to the underlying’s price; see Ruf and Wang
(2020) for an overview of the literature. In contrast, HedgeNet
allows to predict the hedging position directly. In this way, the
hedging strategy is no longer interpreted as a sensitivity.

From a risk-management point of view, the hedging ratio is
the main quantity of interest. It is recommended—see, for exam-
ple, Bengio (1997) or Claeskens and Hjort (2003)—to estimate
relevant quantities directly. This is in line with the important
observation made in Lyons (1995) that different models might
yield similar option prices but completely different hedging
strategies. Obtaining directly the hedging ratio also avoids the
otherwise necessary step to differentiate, possibly numerically,
the trained option prices.

There are further important advantages of outputting
directly the hedging ratio. Computing sensitivities usually does
not take into consideration that other model parameters also
might change, in line with the underlying. Hence, such sensitiv-
ities tend to be not optimal for reducing the MSHE. Theoretical
results supporting this observation are ample; see, for example,
Denkl et al. (2013). This discussion is continued in Section 4.2.
Moreover, as Buehler et al. (2019) showed, training to hedging
ratios allows to incorporate market frictions conveniently.

At this point, let us also mention a different approach to use
ANNs in the context of option pricing, namely as computational

tools to replace expensive PDE solvers or Monte-Carlo simu-
lations. Indeed, the risk management of “sell-side institutions”
is subject to regulatory purposes. In particular, their options’
hedging is supposed to be derived from specific parametric
models. ANNs are used to estimate (“calibrate”) these model
parameters. For references using this approach, see Ruf and
Wang (2020). Here, however, we do not intend to study the
question how well models can be calibrated by the use of ANNs.
Instead, we show the limitations and benefits of ANNs for
estimating the optimal hedging ratio when not being restricted
by a specific parametric model.

4. Linear Regression Models as Benchmarks

We now discuss how we benchmark the hedging performance of
the ANN. Although not very reasonable, one benchmark could
be not hedging at all, that is, δ = 0. In this case, the variance
of the hedging error is just the variance of the change in the
option price. More reasonable is to use the BS Delta, obtained
from the Black–Scholes formula, as discussed in Section 4.1.
Sections 4.2 and 4.3 introduce some further simple statistical
hedging models.

4.1. Black-Scholes Benchmark

Hedging via the BS Delta is a standard benchmark. That is,
for each option and for each date the corresponding implied
volatility is used to obtain the hedge in Equation (3), namely
the partial derivative of the Black–Scholes option price with
respect to the price of the underlying. Black–Scholes performs
the best if implied volatility is plugged in. In the literature, other
volatilities, such as historical volatility estimates or GARCH
predicted volatilities have been used. We refer to Ruf and Wang
(2020) for an overview.

Since here we hedge only discretely, using the BS Delta leads
to an error even if the data are simulated from the Black–Scholes
model. The performance of discrete-time hedging has been
extensively studied; some pointers to the literature include Boyle
and Emanuel (1980), Bertsimas, Kogan, and Lo (2000), and
Tankov and Voltchkova (2009), who provided an asymptotic
analysis of hedging errors.

4.2. Delta Hedging Other Sensitivities

The leverage effect, first discussed in Black (1976), describes the
negative correlation of observed returns and their volatilities in
equity markets. This effect has been confirmed in many follow-
up studies which also consider implied volatilities. For example,
Cont and Da Fonseca (2002) claimed that the leverage effect
is due to a shift in the overall level of the implied volatility
surface and not due to relative movements, that is, changes in the
shape of the implied volatility surface. The nonzero correlation
of returns and the implied option volatilities indicates that the
BS Delta can usually be outperformed by some relatively simple
adjustments. In this spirit, Vähämaa (2004) and Crépey (2004)
used the observed smile in option implied volatilities to improve
on the hedging performance of the BS Delta. These ideas are
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developed further in several articles; see, for example, Alexander
et al. (2012).

The central idea is to note that the first-order Taylor series
expansion of option prices yields

dC ≈ δBS dS +VBS dσimpl = δBS dS +VBS
dσimpl

dS
dS +VBS dS⊥,

where S⊥ is orthogonal to S. In words, the change in the option
price is approximately the BS Delta times the change in the
underlying’s price plus Vega times the change in the implied
volatility. The second term can be written in terms of changes
in the underlying’s price and changes in the implied volatility
that are uncorrelated with the changes in the underlying’s price.
These observations lead us to consider a statistical model of the
form

δ = a δBS + bVBS.

This statistical model replaces the BS Delta by a multiple a of
it plus a multiple b of Vega VBS. Here, a and b are estimated in
the in-sample set, separately for puts and calls. More precisely,
estimating a and b is equivalent to running a linear regression
with two independent variables and no intercept on the in-
sample set. Indeed, we minimize the expression in Equation (6),
where each summand can be written as the square of

a
(
δBS,t,j xt

) + b
(
VBS,t,j xt

) − yt,j,

with xt = 100(St+1/St−(1+ronr�t)) and yt,j = 100/St(Ct+1,j−
(1 + ronr�t)Ct,j).

Next, a Taylor series expansion of the BS Delta yields

dδ ≈ �BS dS + VaBS dσimpl.

Here, �BS denotes Gamma, namely the sensitivity of the BS
Delta to changes in the underlying’s price; VaBS denotes Vanna,
namely the sensitivity of the BS Delta to changes in the implied
volatility.

Combining these two expansions we obtain the linear regres-
sion model

δLR = a δBS + bVBS + c VaBS + d �BS. (7)

Again, a, b, c, and, d are estimated for puts and calls separately
on each in-sample set. We also consider nested models; in this
case, we force either a to be one or one (or more) of the other
coefficients to be zero and estimate the remaining coefficients.
The Vega and Gamma sensitivities are large for options when the
strike is close to the underlying’s current price. Thus, including
these sensitivities allow the statistical model to make adjust-
ments to the hedging ratio depending on whether an option is
at-the-money or out-of-the money. Using both two sensitivities
helps, moreover, to make additional adjustments depending on
the option’s time-to-maturity. Finally, Vanna for an out-of-the
money option is largest when the option is somehow out-of-the-
money but not too much. This allows the model to make the cor-
responding additional adjustments. We have also experimented
with an additional intercept term in Equation (7). Including it
does not change the conclusions below; we hence only report
the results without this additional term.

Furthermore, we include below the proposed hedging ratio
of Hull and White (2017), given by

δHW = δBS + VBS√
τS

(a + bδBS + cδ2
BS). (8)

Here, τ is the time-to-maturity and a, b, and c are again esti-
mated for puts and calls separately on each in-sample set. Hull
and White (2017) obtained this model from a careful analysis
of S&P 500 options and observe its excellent hedging perfor-
mance on options written on the S&P 500 and other indices. We
furthermore include a “Relaxed Hull-White” model, where the
coefficient in front of δBS is not restricted to one.

The models in Equations (7) and (8) should be considered
“statistical” in contrast to “model-driven” as the hedging ratio
is derived purely from statistical considerations instead of being
derived from stochastic models. In the language of Carr and Wu
(2020), these models are “local” and “decentralized,” as only one
period is considered instead of the option’s whole time horizon,
and as each option contract is treated separately instead of
finding an overall consistent valuation model. To the best of our
knowledge, the model in Equation (7) has not been suggested
in the literature before, despite its simplicity. Relatedly, Bergomi
(2009) introduced the “skew stickiness ratio” to describe the
idea that changes in the at-the-money implied volatility rela-
tive to the underlying’s logarithmic return is proportional to
the implied at-the-money volatility skew. The proportionality
constant can then be estimated again by linear regression. In
the context of credit risk, Cont and Kan (2011) also provided
a careful study of regression-based hedging. While here the
hedging ratio is regressed on option sensitivities, they regress
changes in the option price on changes in the underlying.)

4.3. Possible Other Benchmarks

One could consider hedging ratios derived from parametric
models such as stochastic volatility models. Bakshi, Cao, and
Chen (1997) observed that such models outperform the BS
Delta in the case of hedging out-of-the money options, but
not necessarily in-the-money options. Vähämaa (2004) pro-
vided additional references that test the hedging performance of
stochastic volatility models and concludes with the observation
that “such models do not necessarily provide better hedging
performance.” Hull and White (2017) noted that the hedging
ratio δHW of Equation (8) leads to a better performance than
stochastic volatility models.

We initially also investigated the following two (semi-)linear
benchmarks:

δ1 = aM + bσimpl
√

τ + c; δ2 = N
(
aM + bσimpl

√
τ + c

)
,

where M denotes moneyness, σimpl
√

τ square root of total
implied variance, and N the cumulative normal distribution
function. Here, the parameters a, b, c were estimated again in
each in-sample set. It turns out that these two linear regres-
sions perform far worse than the BS Delta δBS; hence, we will
not present results on these two benchmarks. The underper-
formance of these two linear regressions also shows that the
performance of the ANN is not entirely due to the hand-crafted
features.
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Table 2. Performance of the linear regressions and ANNs on the S&P 500 dataset.

1 day 2 days
Calls Puts Both Calls Puts Both

Zero hedge 4.01 4.78 4.54 8.31 9.73 9.29
BS Delta 0.687 0.655 0.665 1.58 1.54 1.55

Regressions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Delta-only −21.3 −14.8 −16.9 −16.3 −12.8 −13.9
Vega-only −13.7 −11.7 −12.3 −10.4 −10.1 −10.2

Gamma-only −15.5 −10.1 −11.8 −14.5 −11.2 −12.2
Vanna-only −12.4 −12.6 −12.5 −10.6 −13.0 −12.2

Delta-Gamma −21.6 −14.8 −17.0 −17.1 −13.1 −14.4
Delta-Vega −21.4 −14.9 −17.0 −16.4 −12.8 −13.9

Delta-Vanna −22.6 −16.6 −18.5 −17.7 −15.4 −16.1
Delta-Vega-Gamma −21.5 −14.8 −17.0 −16.8 −13.5 −14.5
Delta-Vega-Vanna −23.0 −16.6 −18.7 −18.1 −15.4 −16.2

Delta-Gamma-Vanna −22.6 −16.6 −18.5 −17.7 −15.2 −16.0
Delta-Vega-Gamma-Vanna −22.9 −16.4 −18.5 −17.4 −14.9 −15.7

Hull-White −23.1 −16.9 −18.9 −17.8 −14.5 −15.5
Relaxed Hull-White −23.2 −16.9 −18.9 −18.3 −14.6 −15.8

ANNs

⎧⎨⎩
M; σimpl

√
τ −22.3 −15.6 −17.7 −17.1 −10.9 −12.8

�BS; VBS; τ −23.4 −16.9 −18.9 −18.6 −12.9 −14.7
�BS; VBS; VaBS; τ −21.9 −14.4 −16.8 −12.5 −12.9 −12.8

NOTES: The hedging periods �t are here either one day or two days. The columns “Both” are the weighted average of the “Puts” and “Calls” columns. The row “Zero hedge”
corresponds to the MSHE when δ = 0 is chosen; that is, the mean squared changes in the option prices. The values in the top two rows are multiplied by 100 to improve
readability. The regression and ANN rows correspond to the various statistical models including HedgeNet with three different feature sets. For these two sets of rows,
the numbers are reported as relative improvements in MSHE over using the BS Delta, that is, Equation (9). Numbers in bold represent the largest outperformance (in each
column the best one is chosen along with the ones that are within 1% of the best).

5. Results

We now present the results on the performance of the various
statistical hedging models in terms of MSHE reduction. As a
quick summary, the hedging ratios of the ANNs do not outper-
form the linear regression models. On the S&P 500 dataset, the
Hull-White and Delta-Vega-Vanna regressions tend to perform
the best, with Hull-White better on the one-day hedging period,
and the Delta-Vega-Vanna regression better on the two-day
period. On the Euro Stoxx 50 dataset, the Delta-Vega-Gamma-
Vanna regression tends to perform the best. However, the dif-
ferences between these linear regressions with three or four
coefficients are neither statistically nor economically significant,
as we shall discuss.

Recall from Section 2.3 that each data sample is normalized
so that the underlying’s price S0 at time 0 is 100. This allows to
compare the absolute hedging errors across different datasets.
Recall also that we only consider out-of-the (and at-the)-money
puts and calls. In the next two subsections, we discuss the results
for the S&P 500 and Euro Stoxx 50 datasets. In Section 5.3,
we conclude this section with some general observations and
guidelines.

5.1. S&P 500 End-of-Day Midprices

Table 2 gives an overview of the MSHEs across different hedging
periods. The first two rows give the MSHEs for the zero hedge
and the BS Delta. The remaining rows give the relative improve-
ment over the BS Delta, that is,

MSHE(δ∗) − MSHE(δBS)

MSHE(δBS)
, (9)

All competing methods outperform the BS Delta. Among
them, the Delta-Vega-Vanna and (relaxed) Hull-White regres-
sions perform the best, with Hull-White doing slightly better
on the one-day hedging period while Delta-Vega-Vanna per-
forming better on two-day hedging period. Indeed, Hull and

White (2017) studied the same dataset to create the Hull-White
regression, so it is surprising how close the other regressions
get. The major improvement in the regressions (apart from the
Hull-White regression) comes from allowing the coefficient in
front of Delta to be estimated, rather than equal to one. The
ANNs perform similarly to the regressions in case of the one-
day period, but underperform for the two-day period.

Table 2 indicates that it is easier to outperform the BS Delta
when hedging out-of-the money calls than out-of-the money
puts. However, note that the BS Delta itself reduces the MSHE
more for puts than for calls when using the zero hedge as
baseline. To see this, let us have a closer look at the one-day
period. For calls, hedging with the BS Delta reduces the MSHE
by 1 − 0.687/4.01 ≈ 83%, while for puts, it reduces the MSHE
by 1 − 0.655/4.78 ≈ 88%. Using the Hull-White Delta reduces
the MSHE for calls only by 1− (1−0.231)×0.687/4.01 ≈ 87%,
but for puts by 1 − (1 − 0.169) × 0.655/4.78 ≈ 89%. Hence,
the relative outperformance of the linear regressions and ANNs
over the BS Delta is higher exactly when the BS Delta has a worse
performance. These observations are not due to the asymmetric
choice of moneyness (recall that we only consider out-of-the
money options with moneyness M = S0/K between 0.8 and
1 for calls and between 1 and 1.5 for puts). Indeed the same
results as outlined in this paragraph hold true when we allow
moneyness to be between 0.6 and 1 for calls and restrict it to be
between 1 and 1.2 for puts.

Recall from Section 2 that the S&P 500 dataset is been
split in rolling windows, each time shifted by 180 days. This
yields 14 out-of-sample sets. The samples in each out-of-sample
set are evaluated with the model parameters estimated on its
corresponding in-sample set. Figure 4 compares the MSHEs
of different statistical models by time window. Consistent with
Table 2, the blue dots corresponding to the BS Delta are usually
the largest. Both Table 2 and Figure 4 show that for two-day
hedging period, the MSHEs are about twice those for the one-
day period. The only exceptions are the 7th and the 13th time
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Figure 4. MSHEs of four different statistical models for the hedging ratio across all 14 time windows in the S&P 500 dataset, for the one-day (left) and two-day (right)
hedging period. The in-sample sets for periods 7 and 12 range from 2013 to the first half of 2015 and the second half of 2015 to 2017, respectively. The test data for the
7th time window fall exactly in the 2015–16 selloff. The test data for the 12th time window contain the first week of February 2018, where the S&P 500 experienced a 10%
drop; see also Figure 1.

Figure 5. The coefficients in the Delta-Vega-Vanna regression for each of the 14 time windows in the S&P 500 dataset. The top and bottom of each line segment are the
point estimate plus/minus two standard errors. These numbers correspond to the one-day hedging period. The coefficient plots for the two-day hedging periods (not
displayed here) look very similar; in particular, the Vanna coefficients for calls are again stable. However, the Vanna coefficients for puts and the Vega coefficients for calls
and puts are slightly more fluctuating.

window, when the errors are about 4 times and 3 times larger in
the two-day period.

Figure 5 provides the coefficients (plus their standard errors)
for the Delta-Vega-Vanna regression in the one-day period set-
ting. The intervals are getting smaller for later time windows due
to the fact that later time windows contain more samples as illus-
trated in Online Appendix C. Especially the Vanna coefficients

for calls are very stable across time windows. Figure 4 shows
that both the 7th and the 12th time window, whose out-of-
sample data are the second half of 2015 and the first half of 2018,
respectively, lead to an overall large MSHE. The corresponding
samples are then part of the in-sample set for the following
periods. And indeed, Figure 5 indicates a jump in some of the
coefficients in the 8th and 13th time window.
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The Delta coefficients of calls being smaller than one implies
that hedging a short position on a call, one would usually buy
less of the underlying than implied by the BS Delta. On the other
hand, for hedging a short position on a put, one needs to short
more of the underlying. This phenomenon is consistent with
the leverage effect, discussed in Section 4.2. Note that Vanna
is positive (negative) for out-of-the money calls (puts). Hence,
the Vanna term in the regression further contributes to holding
an even smaller number of the underlying than only implied
by the Delta term. Since Vanna is largest in absolute value for
slightly out-of-the money options, this correction term is largest
for such options. The Vega coefficients are negative for puts and
most time windows also for calls, adding yet a third correction,
most effective for long-dated at-the-money options.

Additional diagnostics are available in online Appendices D
and E.

We run three extra experiments to see whether the above
conclusions depend on the chosen setup.

1. In the first modified experiment, we remove all options that
have a time-to-maturity of 14 calendar days or less from
both the in-sample and out-of-sample sets. This yields an
additional relative improvement of about 2% in the one-day
experiment and about 3% in the two-day experiment for all
methods presented in Table 2. We omit presenting the precise
numbers here.

2. In the second modified experiment, we abstain from splitting
the dataset in 14 time windows. Instead of 14 experiments
we hence only have one, but with a much larger number
of samples. We keep the ratio 4:1:1, now across the whole
dataset, leading to an in-sample set of length 2850 (2280 +
570) days and a test set of length 570 days (instead of 14
test in-sample sets of length 900 (720 + 180) days and an
out-of-sample set of length 180 days; see Section 2.3). We
omit the detailed results of this experiment. The regression
models and ANNs improve their relative performance by
about 3% to 4% when using only one time window instead
of 14 time windows. Again the ANNs do not outperform the
linear regression models.

3. We put the options in two roughly equally sized buck-
ets: at-the-money/close-to-the money options and out-of-the
money options. We run the linear regressions and (appropri-
ately tuned) ANNs on both buckets separately. The bucketing
tends to help the linear regressions using a single sensi-
tivity slightly, does not change the linear regressions using
several sensitivities, and leads to a worse performance of
the ANNs.

Section 6 provides a fourth experiment to check whether the
cleaning process of the raw data introduced any information
leakage.

5.2. Euro Stoxx 50 Tick Data

Table 3 shows the performance of all competing methods on the
Euro Stoxx 50 dataset. Again we conclude that the ANNs in gen-
eral do not outperform the linear regressions. Now the Delta-
Vega-Gamma-Vanna regression performs best, closely followed
by the linear regressions using three sensitivities, which perform
better than the Hull-White regressions.

Just using the BS Delta reduces the overall MSHE by about
78% and 79%. This percentage is very stable across the three
different hedging periods and smaller than in the S&P 500
dataset. Again, the BS Delta reduces the MSHE more for puts
than for calls, and the relative outperformance of the regression
models is larger when the BS Delta is worse.

We list the coefficients of the Delta-Vega-Gamma-Vanna
regression (plus their standard errors) in Table 4. Again, the
Delta coefficients for calls (puts) are smaller (larger) than one,
consistent with the leverage effect. Additional diagnostics are
available in Online Appendices D and F.

Similarly to the S&P 500 dataset we run two additional
experiments.

1. In the first one, we only consider options with a time-to-
maturity of 14 calendar days or more. This yields an addi-
tional relative improvement of about 4–8%, in compari-
son with Table 3. The improvement tends to be larger for
the regressions using a smaller number of sensitivities. In
particular, the Delta-Vega-Vanna regression now seems to

Table 3. Performance of the benchmarks and ANNs on the Euro Stoxx 50 dataset, when the in-sample and out-of-sample are split into one time window.

1 hr 1 day 2 days

Calls Puts Both Calls Puts Both Calls Puts Both

Zero hedge 0.431 1.02 0.756 4.28 10.2 7.47 8.20 24.26 17.4
BS Delta 0.109 0.214 0.167 1.19 1.99 1.62 2.97 4.20 3.67

Regressions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Delta-only −18.9 −11.4 −13.6 −21.7 −12.2 −15.4 −36.0 −10.7 −19.5
Vega-only −25.3 −13.8 −17.2 −23.4 −16.0 −18.5 −35.2 −16.2 −22.8

Gamma-only −0.62 −1.29 −1.10 −15.7 −4.64 −8.37 −32.7 −4.62 −14.4
Vanna-only −16.1 −5.18 −8.35 −17.1 −12.6 −14.1 −26.9 −16.9 −20.4

Delta-Gamma −18.0 −14.5 −15.5 −20.5 −12.7 −15.4 −33.5 −6.89 −16.1
Delta-Vega −23.9 −13.7 −16.7 −22.7 −15.4 −17.9 −36.9 −15.3 −22.8

Delta-Vanna −20.8 −11.4 −14.1 −19.2 −14.8 −16.3 −34.9 −17.2 −23.4
Delta-Vega-Gamma −21.6 −15.2 −17.0 −20.7 −15.4 −17.2 −34.4 −13.5 −20.8
Delta-Vega-Vanna −23.6 −13.7 −16.6 −19.6 −16.7 −17.7 −35.1 −18.5 −24.2

Delta-Gamma-Vanna −23.1 −15.5 −17.7 −20.2 −17.9 −18.7 −33.8 −17.7 −23.3
Delta-Vega-Gamma-Vanna −23.3 −15.6 −17.8 −20.1 −18.0 −18.7 −34.4 −18.2 −23.9

Hull-White −20.0 −12.5 −14.7 −20.7 −14.3 −16.4 −36.1 −13.3 −21.2
Hull-White-relaxed −20.3 −12.6 −14.8 −20.6 −14.2 −16.4 −36.1 −12.7 −20.8

ANNs

⎧⎨⎩
M; σimpl

√
τ −17.6 −15.7 −16.3 −8.96 −3.3 −5.21 −27.4 11.3 −2.12

�BS; VBS; τ −16.1 −6.08 −9.01 −19.0 −6.83 −10.9 −25.6 −3.6 −11.2
�BS; VBS; VaBS; τ −25.0 −13.3 −16.7 −18.8 −10.1 −13.1 −29.2 −6.96 −14.7

NOTE: We refer to the caption of Table 2 for an explanation.
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Table 4. Coefficients of Delta-Vega-Gamma-Vanna regression for each sensitivity on the Euro Stoxx 50 dataset.

1 hour 1 day 2 days

Calls Puts Calls Puts Calls Puts

Delta 0.944 ± 0.002 1.134 ± 0.002 0.755 ± 0.003 1.056 ± 0.003 0.821 ± 0.004 1.021 ± 0.003
Vega −0.002 ± 0.000 0.000 ± 0.000 −0.001 ± 0.000 −0.002 ± 0.000 −0.001 ± 0.000 −0.002 ± 0.000

Gamma −0.021 ± 0.004 0.213 ± 0.003 0.226 ± 0.008 0.393 ± 0.006 0.109 ± 0.010 0.417 ± 0.008
Vanna −0.010 ± 0.000 0.014 ± 0.000 0.004 ± 0.000 0.029 ± 0.000 0.003 ± 0.000 0.025 ± 0.000

NOTES: Coefficients are presented for calls and puts separately. Each cell shows the coefficient and its standard error.

dominate the Delta-Vega-Gamma-Vanna regression, espe-
cially for the two-day hedging period. We again omit the pre-
cise numbers here as the overall conclusions do not change.

2. We again put the options in two roughly equally sized buck-
ets: at-the-money/close-to-the money options and out-of-
the money options. Running the statistical models on both
buckets separately seems to help slightly the linear regressions
with only one sensitivity but does not change or worsens the
performance of the other linear regressions and ANNs.

We also refer to Section 6 for another experiment to check
how the cleaning of the data might influence the results of this
subsection.

5.3. Guidelines on Statistical Hedging

We now develop some guidelines based on the results of the last
two subsections.

In none of the datasets do ANNs outperform the linear
regression models. We conclude that the option sensitivities
suffice to capture the nonlinearities in the data that are relevant
for the hedging task. Additional drawbacks of ANNs are their
computational demands and the necessary effort to tune their
hyperparameters (see online Appendix B).

Next, we have a closer look at the MSHEs of the linear
regression models. To this end, in the spirit of Equation (6), let
us define the time-t MSHE by

MSHEδ
t = 1

Nt

Nt∑
j

(
100

Vδ
t+1,j

St

)2

,

where Nt denotes the number of samples at time t. Here, t
ranges over days in the test set and δ denotes one of the hedging
methods. Hence MSHEδ

t denotes the average of a cross section
of hedging errors, namely those corresponding to the options
traded at some time t. Next, for each pair of hedging methods
(e.g., the Delta-only and the Delta-Vega-Vanna regressions), we
compute an approximate confidence interval for the difference
of the MSHEs by adding and subtracting twice the standard
error to the mean of the differenced time-t MSHEs. To be more
specific, we denote the difference of the MSHEs between two
regression models δA and δB by MSHEδA−δB

t = MSHEδA
t −

MSHEδB
t . Then the approximate confidence interval for the two

regression methods is given by(
1
T

T∑
t=1

MSHEδA−δB
t − 2 ∗ Std(MSHEδA−δB

t ),

1
T

T∑
t=1

MSHEδA−δB
t + 2 ∗ Std(MSHEδA−δB

t )

)
,

where T denotes the number of days in the test set and std
denotes the (population) standard deviation.

Due to their possible statistical dependence in time, these
confidence intervals need to be interpreted with caution. They
allow us to make the following observations.

• For both hedging periods in the S&P 500 dataset, the con-
fidence intervals for time-t MSHEs of BS Delta hedging
paired with any of the statistical regressions (except for
Gamma-only and Vanna-only regressions) do not contain
zero, strongly suggesting that their relative outperformance
is not due to noise only. The same observation also holds
for the one-hour and two-day hedging periods in the Euro
Stoxx 50 dataset. For the one-day hedging period in the Euro
Stoxx 50 dataset, the statistical methods reduce the BS Delta
hedging error by up to 18.7%, but the corresponding con-
fidence intervals include zero. This gives an instance where
the outperformance seems to be economically significant but
fails to be statistically significant.

• There is statistical evidence for the underperformance of the
Gamma-only and Vanna-only regressions. Pairing them with
any of the linear regression models usually leads to confi-
dence intervals that do not include zero. However, among any
pairs of the remaining linear regression models the evidence
is not clear cut. Sometimes the corresponding confidence
intervals contain zero, sometimes they do not.

We recommend to choose one of the linear regression mod-
els, for example, the Delta-Vega-Vanna or the Delta-Vega-
Gamma-Vanna regressions, which perform best in the above
experiments. Let us also note that the choice between the two
probably does not matter much from an economic perspective.
Indeed, let us consider the one-day hedging period in Euro
Stoxx 50, where the two regressions yield a relative reduction
of 17.7% and 18.7% (see Table 3). If we now consider the
Sharpe ratio of a delta-hedged option as in Section 2.4, then
these relative reductions increase the Sharpe ratio by a factor
of 1/

√
0.823 ≈ 1.10 and 1/

√
0.813 ≈ 1.11, respectively.

While either one leads to an economically significant increase
in Sharpe ratio, their relative difference seems to be very minor.

We conclude this section with a further observation. Moti-
vated by the reported results we try another “fixed” hedging
strategy that does not require any historical data. All calls are
hedged by 0.9 ∗ δBS and puts are hedged by 1.1 ∗ δBS. We have
not run other such “fixed” hedging strategies (hence, we have
not optimized this 10% relative correction term). Table 5 shows
the relative performance of this “fixed” strategy with respect to
BS Delta on the S&P 500 and Euro Stoxx 50 datasets. The out-of-
sample tests are the same ones that were used for Tables 2 and 3.
This simple strategy does very well but underperforms the linear
regression models.
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Table 5. Performance of the “fixed” hedging strategy on the S&P 500 and Euro Stoxx 50 datasets.

1 hour 1 day 2 days

Calls Puts Both Calls Puts Both Calls Puts Both

S&P 500 – – – −18.6 −13.1 −14.8 −15.0 −11.4 −12.6
Euro Stoxx 50 −15.4 −10.3 −11.8 −15.4 −12.7 −13.6 −23.7 −16.6 −19.0

NOTES: In the “fixed” hedges strategy, calls (puts) are hedged by 0.9 ∗ δBS (1.1 ∗ δBS). See the caption of Table 2 for further explanations.

6. Potential Information Leakage Through Data
Cleaning

We next discuss information leakage issues connected to the
data cleaning process. One obvious mistake would be removing
samples with wrong-way option price changes. An example is
the removal of call option samples, whenever the underlying’s
price increases but the call price decreases. Although the first
thought might be that this is a data issue such samples are
very well possible due to changes in the bid–ask spread or due
to the leverage effect; see also Bakshi, Cao, and Chen (2000)
and Pérignon (2006) for empirical evidence. Another important
source for information leakage is introduced if the dataset is split
into in-sample and out-of-sample sets without paying respect
to the time series structure. This can be mitigated by using a
chronological split instead of a random split; see Ruf and Wang
(2021).

The availability of end-of-period prices is a more difficult
issue to be resolved. Here, in our opinion, information leakage
cannot be completely avoided since it is not clear at the begin-
ning of a period whether prices can be observed at its end. If
those prices were missing at random, it would be fine to remove
those samples during backtesting. However, for financial price
data, such an assumption cannot be easily justified. Indeed,
missing observations tend to be caused by missing market liq-
uidity. Market liquidity and the implied volatility surface might
very well depend on each other. Hence, removing missing obser-
vations could potentially lead to biased parameter estimations.

To understand whether information leakage through missing
price observations appears in our experiments we run robust-
ness checks for both the S&P 500 and the Euro Stoxx 50 datasets.

We begin with the S&P 500 dataset. For these data, we have
quoted prices for all options, along with trading volumes. For
the results in Section 5.1, we remove all samples whose trading
volume at the beginning of its period are zero. We keep those
samples whose volume at the beginning is positive, but zero
at the end of the period. As a robustness check we rerun the
complete analysis with those samples removed whose trading
volume is zero at the end of the period. This reduces the overall
dataset by about 22% and increases the MSHE of the zero-hedge
for puts (by more than 10%). An explanation for this increase is
that this modified cleaning procedure removes especially deep
out-of-the-money puts, thus increasing the average squared
prices changes. However, the relative performance improvement
of the models with respect to the BS Delta does not change
much; in particular, the conclusions of Section 5.1 seem to be
robust with respect to this cleaning procedure.

Next, let us discuss the Euro Stoxx 50 dataset consisting
of tick data. Using such tick data leads to several difficulties
concerning missing price observations. First, the underlying’s
prices (we use short-term futures on the Euro Stoxx 50) and

option prices are not observed synchronously. This issue is
relatively mild since futures are extremely liquid. For an option
observation at some time t, we thus use the future’s price at the
last transaction before t.

However, a major issue in the data cleaning process is to
determine the price of the option at the end of a period. To
illustrate, consider the one-hour period setup. If an option
transaction in the dataset is observed at some time t, then we
would like to know the option price at time t+1 hour to backtest
the hedging performance of the different methods. It is very
unlikely to find a trade at exactly this time. To handle this
issue, we introduced a matching tolerance window of 6 min (see
Section 2.2). That is, if at some time t a transaction occurs then
the sample’s end-of-period price is the first price observation
after time t+1 hour, and the sample is discarded if this end-of-
period transaction occurs later than t+66 minutes.

As discussed above, we have clearly introduced some infor-
mation leakage by removing illiquid samples for which no end-
of-period price is observed. Let us now do again a robustness
check. To this end, we increase the matching tolerance window
from 6 to 30 min. In the one-day period situation, this increases
the overall number of samples from 0.6 million to 1.4 million,
a 133% increase. This modified set contains now many more
illiquid options, reflected also in a smaller MSHE of the zero-
hedge.

We first summarize how the Delta-Vega-Gamma-Vanna
regression performs on this modified and enlarged dataset.
For the two-day hedging period, the performance improves on
calls but worsens on puts, reducing the overall performance
from about −23.9% to −23.0%. For the one-day period, the
longer matching tolerance window improves the Delta-Vega-
Gamma-Vanna regression by 0.59% with respect to BS Delta,
from −18.7% to −19.3%, benefiting both calls and puts. For the
one-hour hedging period, the overall performance worsens by
0.1% with respect to BS Delta, from −17.8% to −17.7%, and
the longer matching tolerance window benefits calls and not
puts. All in all, for the regression models, the conclusions of Sec-
tion 5.2 are still valid. However, the longer matching tolerance
window has a significantly negative effect for the ANNs. Now
ANN (�BS; VBS; VaBS; τ ) always produce worse performance
for the three hedging periods, up to even a 6% loss in outperfor-
mance. Overall, doubling the dataset by increasing the matching
tolerance window does not change the regression results much,
but significantly handicaps the training of the ANNs. A further
test with a matching tolerance window of 60 min leads to the
same conclusions.

7. Conclusion and Discussion

In this work, we consider the problem of hedging an option over
one period. We consider statistical, regression-type hedging



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 13

ratios (in contrast to model-implied hedging ratios). To study
whether the option sensitivities already capture the relevant
nonlinearities we develop a suitable ANN architecture. Experi-
ments involving both quoted prices (S&P 500 options) and high-
frequency tick data (Euro Stoxx 50 options) show that the ANNs
perform roughly as well (but not better) as the sensitivity-based
linear regression models. However, the ANNs are not able to
find additional nonlinear features. Hence, option sensitivities by
themselves (in particular, Delta, Vega, and Vanna) in combina-
tion with a linear regression are sufficient for a good hedging
performance.

The linear regression models improve the hedging perfor-
mance (in terms of MSHE) of the BS Delta by about 15–20%
in real-world datasets. An explanation is the leverage effect that
allows the partial hedging of changes in the implied volatility
by using the underlying. As a rule of thumb, historical data
seem to imply that calls should be hedged with about 0.9δBS and
puts with about 1.1δBS. With the presence of sufficient historic
data, we recommend to follow a hedging strategy obtained from
a linear regression on the BS Delta, BS Vega, BS Vanna, and
possibly the BS Gamma.

We have not performed a cross-sectional study where the
hedging ratio is estimated not only from options written on
the same underlying. It would be interesting to see whether the
hedging ratios of the linear regression models can be further
improved by using options written on different underlyings, for
example, the constituents of an index.
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