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Abstract

Explicit models representing the response variables as functions of the control variables
are standard in virtually all scientific fields. For these models there is a vast literature on
the optimal design of experiments to provide good estimates of the parameters with the use
of minimal resources. Contrarily, the optimal design of experiments for implicit models is
more complex and has not been systematically addressed. Nevertheless, there are practical
examples where the models relating the response variables, the parameters and the factors
are implicit or hardly convertible into an explicit form.

We propose a general formulation for developing the theory of the optimal design of ex-
periments (ODoE) for implicit algebraic models to specifically find continuous local designs.
The treatment relies on converting the ODoE problem into an optimization problem of the
Nonlinear Programming class which includes the construction of the parameter sensitivities
and the Cholesky decomposition of the Fisher Information Matrix. The Nonlinear Program-
ming problem generated has multiple local optima, and we use global solvers, combined with
an equivalence theorem from the theory of ODoE, to ensure the global optimality of our con-
tinuous optimal designs. We consider D– and A–optimality criteria and apply the approach
to five examples of practical interest in chemistry and thermodynamics.

Keywords: Model-based optimal designs, Continuous designs, Implicit models, Nonlinear Pro-
gramming.

2



1 Motivation

The optimal design of experiments (ODoE) is a well-established and increasingly important sub-

field of statistics. Running experiments is costly and users want to rein in costs without sacrificing

the statistical efficiency of inferences. The literature on the construction of optimal experimental

designs for explicit models is extensive (Atkinson et al., 2007; Pukelsheim, 1993; Pronzato and5

Pázman, 2013). In this paper we employ the nomenclature commonly used in systems theory

and apply the term explicit model to functionals relating the set of control factors, parameters and

process states:

sss = fff (xxx,θθθ), (1)

where fff (•) ∈ Rns is a set of continuously differentiable functions, xxx ∈ X ⊂ Rnx is the set of10

control factors, known without error, sss ∈ S⊂Rns the set of state variables that fully characterize

the process state after the experiment, θθθ ∈ P⊂Rnθ the set of parameters, X, S and P are compact

domains of factors, states and parameters, respectively, ns the number of process states, nx the

number of control factors and nθ the number of parameters to be estimated from the experiment.

Let the responses, yyy, be a subset of state variables measured in the experiment, i.e. yyy∈Y⊂Rny ⊆15

Rns and ny(≤ ns) be the number of response variables.

Under the common assumption that responses yyy are affected by independent and identi-

cally distributed (iid) observational error εεε ∈ Rny with zero mean and standard deviation ςi, i ∈

{1, · · · ,ny} previously known, then

yyy = G sss+ εεε, (2)

where the expected values of the responses are20

E(yyy) = G sss, (3)
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with E(•) standing for the expectation. The domain Y is also closed and compact, and G is a

ny×ns matrix of 0’s except for the elements Gi, j, i ∈ {1, · · · ,ny}, j ∈ {1, · · · ,ns}, which are 1 if

the jth process state is measured and allocated to the ith element of yyy. Here, P =
⊗nθ

j=1[θ
LO
j ,θ UP

j ]

is the Cartesian domain of parameters, θ j representing a local value of parameter j and θ LO
j

and θ UP
j are the lower and upper values admissible for θ j. Further, ppp is a specific vector of25

parameters and is used to represent the values of θθθ used in designing the experiment, i.e. the

vector of parameters for which the locally optimal design is to be calculated. Finally, the error in

control factors is considered negligible.

Contrarily, systematic approaches for finding optimal experimental designs for implicit mod-

els are still elusive. Herein, we define implicit models as representations similar to30

ggg(sss|xxx,θθθ) = 000, (4)

where ggg(•) ∈ Rns is also a set of continuously differentiable functions, the responses are ob-

tained from states with (3), and all the other symbology has the same meaning as introduced

above. Implicit models, as they were called by Marshall (2003), have other designations, among

which are implicit functional relationships, see Sachs (1976) and Seber and Wild (2003, Chap.

10), and implicit regression models (Reilly and Patino-Lea1, 1981). Implicit models are a gen-35

eralization of explicit relationships that have not been exploited because of (i) reduced practical

interest since, in most applications, the response variables measured are explicitly related to the

control factors and parameters; and (ii) the complexity of constructing ODoE which requires the

use of numerical procedures to construct the parameter sensitivities embedded in the optimal de-

sign problem. Given the knowledge gap detected, our goal is to propose a general approach for40

calculating continuous locally optimal experimental designs for implicit models of practical in-

terest. Typically these models appear in the characterization of Vapor-Liquid Equilibrium (VLE)

or Liquid-Liquid Equilibrium data (Englezos et al., 1990; Gao et al., 2017), VLE thermodynamic

4



consistency checking (Dohnal and Fenclová, 1985), and potentiometric titration (Hofman and

Krzyżanowska, 1986).45

Amo-Salas et al. (2016) discuss the optimal design of experiments for implicit models but

their conceptualization of implicit models is less general than ours. Their study considers models

with separated variables (responses, states and inputs) where the relation between the responses

and the explanatory variables is unknown, contrarily to its inverse. Algebraic manipulations allow

reformulating the model as explicit, and finding the optimal design on the response variables50

space for this new functional. Here, we address implicit models of non-separable variables that

require numerical methods to determine the states for each xxx and θθθ . Dovì et al. (1993) consider

errors-in-variable implicit models similar to ours. They assume both explanatory variables and

responses are subject to noise, but contrarily to our work, only discuss sequential designs; they

propose an optimization-based approach finding one experiment at a time.55

In this work we address implicit algebraic models similar to (4). The optimization of ex-

perimental designs for models described by differential equations usually benefits from addi-

tional considerations for a more efficient numerical implementation, such as determination of

the derivatives of the response functions, and these problems have been considered separately.

Experimental designs for such models have been addressed by several authors aiming to (i) find60

the optimal set of sampling times to observe the system (Atkinson and Bogacka, 2002); and

(ii) find the optimal profile of control actions to maximize the information obtained from a (dy-

namic) experiment (Franceschini and Macchietto, 2008; Bauer et al., 2000; Körkel et al., 2004;

Balsa-Canto et al., 2016; Galvanin and Bezzo, 2018). The approach proposed herein can be di-

rectly applied to differential systems when their numerical solution involves the discretization (or65

parametrization) of the domain of the independent variables since, in both cases, sets of algebraic

equations are obtained, representing local approximations of the solution. Examples of methods
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in this category are considered by Hoang et al. (2013) and Duarte et al. (2019), where a simul-

taneous approach based on orthogonal collocation on finite elements is used to parameterize the

time domain.70

To motivate the following developments, an illustrative example arising from thermodynam-

ics is considered, to establish a more complete background of the problems addressed herein.

1.1 Illustrative example

Vapor-liquid equilibrium (VLE) experiments are repeatedly undertaken to build models which

are subsequently shipped with process simulators and modeling systems. VLE models are mostly75

built from experiments of binary mixtures and are crucial in designing, optimizing and controlling

process equipment, and find application in chemical and other industries. Constructing adequate

mathematical models from VLE data usually requires intensive experimental work.

Without loss of generality, let us consider that the experiments take place at moderate pres-

sure, the binary mixture is a non-electrolyte solution, and no associative reactions occur in the80

vapor phase. Under these assumptions, a broad family of Gibbs free energy models is described

in literature to represent non-ideal liquid mixtures, one being the Wilson model (Wilson, 1964),

presented later in Section 4.2. Accordingly, an implicit model ggg(•) with two nonlinear algebraic

equalities and two state variables is used to model the VLE data, see model (32). The most com-

mon experimental setup requires measuring only the molar fraction of a component in the liquid85

phase; the composition of the vapor phase is estimated from the measurement using the equilib-

rium relations. Since the fugacities are dependent on the composition of the liquid phase and are

strongly nonlinear, the models are formed by implicit nonlinear functions of the control factor

(i.e., the pressure), the response (i.e., the molar fraction of one of the components in the liquid

phase) and the parameters to be estimated from the experiments, which are commonly called90
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Binary Interaction Parameters (BIPs). Practically, there is substantial interest in finding optimal

experimental designs to characterize VLE so that maximum information is obtained given the

resources available. Although ggg(•) can change with the kind of phase equilibrium or thermody-

namic models used, the basic nature of the ODoE problem to be solved is similar.

1.2 Algorithms for finding Optimal Experimental Designs for explicit mod-95

els

Model-based optimal experimental designs provide maximum information at minimum cost. Our

setup is that we have a given implicit parametric model defined on a compact design space, a

given design criterion and a given budget determining the total number of observations, N. The

design problem, commonly designated as exact optimal design of experiments, is to determine100

optimal design points, which are members of the design space that describes the experimental

conditions, and the number of replicates at each of these design points, subject to the requirement

that they sum to N. Since we consider continuous optimal design problems where N→+∞, our

goal is to determine optimal design points and the relative effort (weights) at each of these design

points, subject to the requirement that they sum to 1. The previous approximation leads to a P-105

hard reformulation of the original exact optimal design problem and, consequently, to convex op-

timization problems (Fedorov and Hackl, 1997). However, its numerical treatment translates into

optimization problems with multinomial terms requiring specialized global optimization solvers

to assure the global optimum is found.

Over the last decades, algorithms have been developed and continually improved for gener-110

ating different types of optimal designs for explicit algebraic models. Various numerical algo-

rithms developed for the construction of such designs are based on exchange methods, originally

proposed for the D–optimality criterion (Mitchell and Miller Jr., 1970; Wynn, 1970; Fedorov,
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1972). The numerical efficiency of these Wynn–Fedorov schemes has been improved by several

authors, including Wu (1978); Wu and Wynn (1978); Pronzato (2003); Harman and Pronzato115

(2007). Some of these algorithms are reviewed, compared and discussed in Meyer and Nacht-

sheim (1995) and Pronzato (2008), among others. Another approach to finding continuous op-

timal designs is based on Multiplicative algorithms, which have found broad application due to

their simplicity (Mandal et al., 2015). The basic algorithm was proposed by Titterington (1976)

and later exploited in Pázman (1986); Fellman (1989); Pukelsheim and Torsney (1991); Torsney120

and Mandal (2006); Mandal and Torsney (2006); Dette et al. (2008); Torsney and Martín-Martín

(2009); Yu (2010c,b). Recently, cocktail algorithms, that rely on both exchange and multiplica-

tive algorithms, have been proposed (Yu, 2010a), and improved (Yang et al., 2013).

Because our models are nonlinear, the optimal design depends on the values of the parameters.

We therefore find locally optimal designs for specified point prior values of the parameters. In125

practice, the continuous designs have to be rounded to provide exact designs with integer valued

allocations of experimental effort. Rules for such rounding are in Pukelsheim and Rieder (1992).

Mathematical programming algorithms can currently solve complex, high-dimensional opti-

mization problems, especially when these are P-hard. Examples of applications of mathemat-

ical programming algorithms for finding continuous optimal designs are Linear Programming130

(Gaivoronski, 1986; Harman and Jurík, 2008), Second Order Conic Programming (Sagnol, 2011;

Sagnol and Harman, 2015), Semidefinite Programming (SDP) (Vandenberghe and Boyd, 1999;

Papp, 2012; Duarte and Wong, 2015), Semi Infinite Programming (SIP) (Duarte and Wong, 2014;

Duarte et al., 2015), and Nonlinear Programming (NLP) (Chaloner and Larntz, 1989; Molchanov

and Zuyev, 2002). Applications based on optimization procedures relying on metaheuristic al-135

gorithms are also reported in the literature, see Heredia-Langner et al. (2004) for Genetic Algo-

rithms, Woods (2010) for Simulating Annealing, Chen et al. (2015) for Particle Swarm Optimiza-
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tion and Masoudi et al. (2019) for the Imperialist Competitive Algorithm, among others.

The proposed approach is grounded on mathematical programming. Our formulation leads to

an optimization problem of the NLP class; since the problem has multiple local optima, a global140

optimizer is used. The main novelty of the numerical aspects of the proposed formulations is that

the equations representing the model and the sensitivity construction are embedded in the optimal

design problem as additional constraints. The same holds for matrix algebra operations required

for computing D– and A–optimality criteria. This strategy allows us to find optimal designs

that satisfy the model equations and guarantees that all the solutions in the convergence process145

are feasible. The Cholesky decomposition in the optimization problem allows automating the

computation of the determinant and trace of the inverse of the Fisher Information Matrix (FIM)

within the optimization problem, see Duarte et al. (2020).

To systematize our contribution, the innovative aspects of this paper are:

1. a systematic approach to find optimal experimental designs for nonlinear implicit non-150

separable algebraic models, a broader class than that of explicit models commonly consid-

ered in Model-based Optimal Design of Experiments;

2. mathematical programming-based formulations to find D– and A–optimal designs for this

class of models. The optimality of the numerically found designs is checked using an

equivalence theorem;155

3. the application of the formulations proposed to common models in thermodynamics and

chemistry areas.

The paper is organized as follows. Section 2 introduces the background and the notation

used to formulate the problem, including the equivalence theorem, as well as the fundamentals

of nonlinear programming. Section 3 presents the mathematical programming formulation for160
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finding D– and A–optimal designs for implicit models. Details of the construction of the Fisher

Information Matrix (FIM) are given, which in turn requires the calculation of the sensitivity

coefficients.

Section 4 applies these formulations to finding optimal designs. First we consider a simple

example to analyze the details of the algorithm, which we subsequently apply to five additional165

problems in the fields of chemistry, image processing, and thermodynamics. Finally, Section 5

reviews the formulation and offers a summary of the results obtained. Appendix A provides the

details of the numerical implementation.

2 Notation and background

This section establishes the nomenclature used in the representation of the models. In §2.1 we170

present the experimental design problems outlined above. Then, in §2.2, overview the fundamen-

tals of NLP.

2.1 Optimal experimental design

Bold face lowercase letters represent vectors, bold face capital letters continuous domains, black-

board bold capital letters discrete domains and capital letters matrices. Finite sets containing ι175

elements are compactly represented by JιK ≡ {1, · · · , ι}. The transpose operation of a matrix is

represented by “ᵀ” and the trace of matrix by tr(•).

We recall model (4) and consider a continuous design with K support points at xxx1,xxx2, . . . ,xxxK .

The weights at these points are, respectively, w1,w2, . . . ,wK where K is chosen by the user so

that K ≥ nθ . To implement the design for a total of N observations, we take roughly N ×wk180

observations at xxxk, k∈ JKK, subject to N×w1+ · · ·+N×wK =N, and each summand is an integer.
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For models with nx control factors, we denote the kth support point by xxxᵀk = (xk,1, . . . ,xk,nx) and

represent the design ξ by K rows (xxxᵀk ,wk), k ∈ JKK with ∑
K
k=1 wk = 1. In what is to follow, we let

Ξ≡ XK×Σ be the space of feasible K-point designs over X where Σ is the K−1-simplex in the

domain of weights Σ = {wk : wk ≥ 0, ∀k ∈ JKK, ∑
K
k=1 wk = 1}.185

The information resulting from an experimental design is measured by its FIM. The elements

of the normalized FIM are the negative expectation of the second order derivatives of the log-

likelihood of (4), L (ξ ,θθθ), with respect to the parameters, given by

M (ξ ) =−E
[

∂

∂θθθ

(
∂L (ξ )

∂θθθ
ᵀ

)]
=
∫

ξ∈Ξ

M(xxx) d(ξ ) =
K

∑
k=1

wk M(xxxk), (5)

where M (ξ ) is the global FIM from the design ξ , M(xxxk) is the local FIM from point xxxk.

Herein, we focus on the class of design criteria proposed by Kiefer (1974) where each member190

in the class, indexed by a parameter δ , is positively homogeneous and defined on the set of

symmetric nθ ×nθ semi-positive definite matrices given by

Φδ [M (ξ )] =

[
1

nθ

tr(M (ξ )δ )

]1/δ

. (6)

The maximization of Φδ for δ 6= 0 is equivalent to minimizing tr(M (ξ )δ ) when δ < 0. Prac-

tically, Φδ becomes [tr(M (ξ )−1)]−1 for δ = −1, which is A–optimality, and [det[M (ξ )]]1/nθ

when δ → 0, which is D–optimality. These design criteria are suitable for estimating model pa-

rameters as they maximize the FIM in various ways. For the D–optimality criterion the volume of

the confidence region of θθθ is proportional to det[M−1/2(ξ )]. Then, maximizing the determinant

(or a convenient convex function of the determinant) of the FIM leads to the smallest possible

volume. Consequently, the ODoE problem can be cast as an optimization problem. For example,

when ppp is fixed, the locally D– and A–optimal designs are respectively defined by

ξD = argmax
ξ∈Ξ

log{det[M (ξ , ppp)]} , (7)
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ξA = argmin
ξ∈Ξ

tr[M (ξ , ppp)−1], (8)

where the criteria (7-8) are +∞ for designs with singular information matrices. Herein we limit

our analysis to D– and A–optimal designs that are the most commonly used in practical applica-

tions. Without loss of generality, the formulations proposed in the following sections can easily195

be extended to other criteria of Kiefer class, such as G– and I–optimality if interest is in prediction

rather than parameter estimation.

When the design criterion is convex (which is the case for the above criteria), the global

optimality of a design ξ in X can be verified using an equivalence theorem based on the con-

sideration of the directional derivative of the objective function (Kiefer and Wolfowitz, 1960;200

Fedorov, 1972; Whittle, 1973; Kiefer, 1974; Silvey, 1980; Pukelsheim, 1993). For instance, if

we let δδδ x be the degenerate design at the point xxx ∈ X, the equivalence theorems for D– and

A–optimality are as follow: (i) ξD is D–optimal if and only if

tr
{
[M (ξD)]

−1 M(δδδ x)
}
−nθ ≤ 0, ∀xxx ∈ X; (9)

(ii) ξA is globally A–optimal if and only if

tr
{
[M (ξA)]

−2 M(δδδ x)
}
− tr

{
[M (ξA)]

−1}≤ 0, ∀xxx ∈ X. (10)

We call the functions on the left side of the inequalities (9-10) dispersion functions and denote

them by Ψ(xxx|ξ ). To compare the D–optimal efficiency, an indicator of the information content

extracted from two different designs, say ξD and ξ ref
D , where the last one is the reference, we use

EffD =

{
det[M (ξD,θθθ)]

det[M (ξ ref
D ,θθθ)]

}1/nθ

, (11)

and, similarly, for A–optimality criterion, the efficiency of ξA relative to ξ ref
A is defined by

EffA =
tr[M−1(ξ ref

A ,θθθ)]

tr[M−1(ξA,θθθ)]
. (12)
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2.2 Nonlinear Programming205

In this section we introduce the fundamentals of NLP which are used to solve the design problems

(7-8). Nonlinear Programming seeks to find the global optimum xxx of a convex or nonconvex

nonlinear function f : X 7→ R in a compact domain X with possibly nonlinear constraints. The

general structure of the NLP problems is:

min
xxx∈X

f (xxx) (13a)

s.t. ggg(xxx)≤ 000 (13b)

hhh(xxx) = 000, (13c)

where (13b) represents a set of ri inequalities, and (13c) represents a set of re equality constraints.

The functions f (xxx), ggg(xxx) and hhh(xxx) are twice differentiable. In our context, the variable xxx ∈ X

includes the location of the support points as well as the weights quantifying the relative effort

required at each one. By construction X in (13a) is closed which is what we have for Ξ.

Nested and gradient projection methods are commonly used to solve NLP problems. Some210

examples are the General Reduced Gradient (GRG) (Drud, 1985, 1994) and the Trust-Region

(Coleman and Li, 1994) algorithms. Other methods are Sequential Quadratic Programming

(SQP) (Gill et al., 2005) and the Interior-Point (IP) (Byrd et al., 1999). Ruszczyński (2006)

provides an overview of NLP algorithms.

3 NLP formulations for optimal design of experiments215

In this section we introduce NLP formulations for finding K−point, D–, and A–optimal designs

for implicit models. In Section 3.1 we introduce the approach for calculating the sensitivity
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coefficients and constructing the FIM. Then, in Sections 3.2 and 3.3, we respectively present the

formulations for finding D– and A–optimal designs.

3.1 Construction of the FIM220

Here we introduce the methodology used for computing the sensitivity coefficients of the re-

sponse variables in the implicit model (4) and the related FIM.

Applying the chain rule to differentiate the ith equality in (4), gi(sss|xxx,θθθ) = 0, with respect to

parameter θl, l ∈ Jnθ K, yields

ns

∑
j=1

(
∂gi(sss|xxx,θθθ)

∂ s j

)
∂ s j

∂θl
+

∂gi(sss|xxx,θθθ)
∂θl

= 0, i ∈ JnsK, l ∈ Jnθ K. (14)

Let ααα i,k ∈ R1×ns be the vector of derivatives of the ith function gi(sss|xxx,θθθ) with respect to the

model states at the kth support point xxxk, βββ l,k ∈ Rns×1 be the vector containing the sensitivities of

the state variables with respect to parameter l at support point k. Each sensitivity coefficient is

denoted by σ j,l,k, and γi,l,k ∈ R is the vector (with a single element) containing the derivative of

function i, gi(sss|xxx,θθθ), with respect to parameter l at support point k, i.e.

ααα i,k =
(

∂gi(sss|xxx,θθθ)
∂ s1

, · · · , ∂gi(sss|xxx,θθθ)
∂ s j

, · · · , ∂gi(sss|xxx,θθθ)
∂ sns

)
, i ∈ JnsK, xxx ∈ {xxxk : k ∈ JKK}

βββ l,k =
(

∂ s1
∂θl

, · · · , ∂ s j
∂θl

, · · · , ∂ sns
∂θl

)ᵀ
, l ∈ Jnθ K, xxx ∈ {xxxk : k ∈ JKK}

γi,l,k =
(

∂gi(sss|xxx,θθθ)
∂θl

)
, i ∈ JnsK, l ∈ Jnθ K, xxx ∈ {xxxk : k ∈ JKK}.

The calculation of the full set of sensitivities for the kth support point xxxk requires solving the225

algebraic equations (AEs) system with respect to sensitivities contained in βββ l,k, l ∈ Jnθ K, k∈ JKK,

for all the algebraic equations in (4), i.e.,
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

ααα1,k · · · 000ns · · · 000ns

000ns · · · ααα1,k · · · 000ns

000ns · · · 000ns · · · ααα1,k
...

...
...

...
...

ααα i,k · · · 000ns · · · 000ns

000ns · · · ααα i,k · · · 000ns

000ns · · · 000ns · · · ααα i,k
...

...
...

...
...

αααns,k · · · 000ns · · · 000ns

000ns · · · αααns,k · · · 000ns

000ns · · · 000ns · · · αααns,k





βββ 1,k
...

βββ l,k
...

βββ nθ ,k


+



γ1,1,k
...

γ1,l,k
...

γ1,nθ ,k
...

γns,1,k
...

γns,l,k
...

γns,nθ ,k



=



0
...

0
...

0
...

0
...

0
...

0



, xxx ∈ {xxxk : k ∈ JKK}, (15)

where 000ns is the row vector of zeros of size ns. The system (15) is compactly represented as

Ak vvvk + zzzk = 0, k ∈ JKK, (16)

where the vector vvvk contains all the sensitivity coefficients σ j,l,k, j ∈ JnsK, l ∈ Jnθ K, k ∈ JKK, Ak is

the matrix of derivatives of the functions with respect to the response variables and zzzk is the vector230

with the derivatives of ggg(sss|xxx,θθθ) with respect to the parameters at support point xxxk. Matrices Ak

will not be singular (otherwise the model includes linear dependencies between parameters) but

they can be ill conditioned; in those cases we can adopt a previous re-parametrization technique

as in Quaglio et al. (2019) or parameter scaling strategy as in Hoang et al. (2013).

The sensitivity coefficients of the set of response variables with respect to the parameters are235

obtained from σ j,l,k, j ∈ JnsK, l ∈ Jnθ K, k ∈ JKK by using Equation (3). Afterwards, the local

FIMs can then be computed. Without loss of generality, we first consider a system with a single
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response variable in each experiment, which is the first of the set of state variables characterizing

the system. Specifically, we have ny = 1 and G in (3) is a row vector of 0’s with G1,1 being 1.

Then,240

M(xxxk) =
(

σ1,1,k, · · · , σ1,nθ ,k

)ᵀ
×
(

σ1,1,k, · · · , σ1,nθ ,k

)
, (17)

where each element of M(xxxk) is represented as mloc
l,`,k, l, ` ∈ Jnθ K, k ∈ JKK.

When the system has more than one response variable the FIM requires first computing M(xxxk)

for each one with (17) and then weighting them considering the variance-covariance matrix for

the corresponding pair of observations (Draper and Hunter, 1966).

3.2 D-optimal designs245

In this section we propose a formulation for finding D–optimal continuous designs on Ξ defined

in (7).

To maximize log(det[M (ξ , ppp)]), we apply the Cholesky decomposition to the global FIM

and write

M (ξ , ppp) = U ᵀ(ξ , ppp) U (ξ , ppp), (18)

where U (ξ , ppp) is an upper triangular matrix and has positive diagonal elements ui,i when the250

FIM is positive definite. It follows that

det(M (ξ , ppp)) =
nθ

∏
i=1

u2
i,i, (19)

and log[det(M (ξ , ppp))] = 2∑
nθ

i=1 log(ui,i). Then, maximizing det(M (ξ , ppp)) is equivalent to max-

imizing the sum of the logarithms of the diagonal elements of U (ξ , ppp).

Let mi, j, i, j ∈ Jnθ K be the (i, j)th element of the global FIM M (ξ , ppp) and ui, j the (i, j)th
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element of U (ξ , ppp). The formulation for finding a locally D–optimal continuous design is

max
xxx,www

nθ

∑
i=1

log(ui,i) (20a)

s.t. ggg(sss|xxxk,θθθ) = 000, k ∈ JKK (20b)

Equations (3, 15-17) (20c)

mi, j =
K

∑
k=1

wk mloc
i, j,k, i, j ∈ Jnθ K (20d)

mi, j =
nθ

∑
l=1

ul,iul, j, i, j ∈ Jnθ K, i≤ j (20e)

ui,i ≥ ζ , i ∈ Jnθ K (20f)

ui, j = 0, i, j ∈ Jnθ K, i≥ j+1 (20g)

mi,i ≥ u2
i, j, i, j ∈ Jnθ K (20h)

K

∑
k=1

wk = 1 (20i)

xxx ∈ XK, www ∈ [0,1]K.

Here, ζ is a small positive constant to ensure that the FIM is positive definite. For all examples

in §4, ζ = 1×10−5. Equation (20b) is the model, (20c) includes the set of equations used to255

determine the sensitivity coefficients and the observation equation, equation (20d) follows from

(5), (20e) represents the Cholesky decomposition, (20f) guarantees that all diagonal elements

of U (ξ , ppp) are positive and (20g) assures that U (ξ , ppp) is upper triangular. Equation (20h) is

a numerical stability condition imposed on the Cholesky factorization of positive semidefinite

matrices (Golub and Van Loan, 2013, Theorem 4.2.8) and the constraint (20i) restricts the sum260

of weights to 1.

When ggg(sss|xxx,θθθ) = 000 has multiple solutions for each support point the problem can be handled
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by incorporating additional knowledge about the model, which is formalized as additional con-

straints (on yyy, sss and xxx) and included in model (20), see §4.1 for an example. If the domain of

search is not constrained the optimal design found is not affected in terms of efficiency but may265

be non-unique.

3.3 A-optimal design

Now, we propose a formulation to determine A–optimal continuous designs modeled by (8). The

optimization problem requires inverting M−1(ξ , ppp) which is potentially a numerically unsta-

ble operation when the FIM is ill-conditioned. To avoid the explicit computation of the inverse270

matrix, we apply the Cholesky decomposition to invert the upper diagonal matrix U (ξ , ppp) that

results from the decomposition of M (ξ , ppp); the rationale is that inverting an upper triangular

matrix obtained by Cholesky factorization is numerically more stable than inverting the original

matrix (Du Croz and Higham, 1992). The procedure has three steps that are handled simulta-

neously within the optimization problem: (i) apply the Cholesky decomposition to the FIM, cf.275

§3.2; (ii) invert the upper triangular matrix U (ξ , ppp) using the relation U (ξ , ppp) U −1(ξ , ppp) = Inθ
,

where Inθ
is the nθ−dimensional identity matrix; and (iii) compute M−1(ξ , ppp) via U −1(ξ , ppp),

i.e. M−1(ξ , ppp) = U −1(ξ , ppp)× [U −1(ξ , ppp)]ᵀ (Du Croz and Higham, 1992), and, finally, com-

pute tr[M−1(ξ , ppp)].

Let mi, j be the (i, j)th entry of M−1(ξ , ppp) and ui, j be the (i, j)th entry of U −1(ξ , ppp) where

i, j ∈ Jnθ K. By construction, U (ξ , ppp) is positive definite and invertible if all the diagonal ele-

ments are positive. The same holds for U −1(ξ , ppp). Step (i) is the Cholesky decomposition of the
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FIM represented by (20e) and the second step corresponds to inverting U (ξ , ppp) formulated as:∑
nθ

l=1 ui,l ul, j = 1 if i = j

∑
nθ

l=1 ui,l ul, j = 0 if i 6= j,
(21)

with step (iii) represented by280

mi, j =
nθ

∑
l=1

ui,lul, j, i, j ∈ Jnθ K, i≤ j. (22)

A–optimal designs minimize tr(M−1(ξ , ppp)) or equivalently, minimize the sum of all mi,i, i∈

Jnθ K. The complete NLP for computing A–optimal designs is

min
xxx,www

nθ

∑
i=1

mi,i (23a)

s.t. ggg(sss|xxxk,θθθ) = 000, k ∈ JKK (23b)

Equations (3, 15-17) (23c)

mi, j =
K

∑
k=1

wk mloc
i, j,k, i, j ∈ Jnθ K (23d)

mi, j =
nθ

∑
l=1

ul,iul, j, i, j ∈ Jnθ K, i≤ j (23e)

nθ

∑
l=1

ui,l ul, j = 1, i, j ∈ Jnθ K, i = j (23f)

nθ

∑
l=1

ui,l ul, j = 0, i, j ∈ Jnθ K, i 6= j (23g)

mi, j =
nθ

∑
l=1

ui,lul, j, i, j ∈ Jnθ K, i≤ j (23h)

ui,i ≥ ζ , i ∈ Jnθ K (23i)

ui,i ≥ ζ , i ∈ Jnθ K (23j)
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ui, j = 0, i, j ∈ Jnθ K, i≥ j+1 (23k)

ui, j = 0, i, j ∈ Jnθ K, i≥ j+1 (23l)

mi, j = m j,i, i, j ∈ Jnθ K, i≤ j−1 (23m)

mi,i ≥ u2
i, j, i, j ∈ Jnθ K (23n)

mi,i ≥ u2
i, j, i, j ∈ Jnθ K (23o)

K

∑
k=1

wk = 1 (23p)

xxx ∈ XK, www ∈ [0,1]K.

Equations (23b, 23c, 23d, 23e, 23i, 23k, 23n) and (23p) are similar to those in the D–optimal

design formulation. Equations (23f-23g) reflect the relationship (21) and generate U −1(ξ , ppp),

equation (23h) captures the constraint (22) to produce M−1(ξ , ppp) and equations (23k) and (23l),

respectively, impose the lower triangular structure of U (ξ , ppp) and U −1(ξ , ppp). Equation (23m)

imposes the symmetry on M−1(ξ , ppp) and equations (23i) and (23j), respectively, ensure that285

the diagonal elements of U (ξ , ppp) and U −1(ξ , ppp) are positive. The conditions (23n) and (23o)

are the numerical stability insurance for the Cholesky factorization of M (ξ , ppp) and M−1(ξ , ppp),

respectively. The symmetry of the FIM and its inverse are guaranteed by (23d) and (23m), re-

spectively.

In §A.1 we detail the implementation aspects related with the numerical approach to solve290

the optimal design problems. All computations in §4 used an Intel Core i7 machine running a 64

bits Windows 10 operating system with a 2.80 GHz processor.
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4 Numerical results

We now report locally D– and A–optimal continuous designs for implicit models with the for-

mulations in §3. The optima reported for each design are for 0.5× log[det(M (ξ ∗, ppp))] and295

tr[M−1(ξ ∗, ppp)], where ξ ∗ are the D– and A–optimal designs at convergence (note the first is a

maximizer and the second a minimizer).

We used related theoretical results to suggest an initial value for the number of support points.

Specifically, de la Garza (1954) proved that the D–optimal designs for polynomial regression

models are minimally supported, i.e. the number of support points is equal to the number of300

parameters. The same was proved for specific nonlinear forms such as the logistic model and

the family of generalized nonlinear logistic functions, see Ford et al. (1992) and Hedayat et al.

(1997), respectively. Since our models are of implicit polynomial or exponential nature, we use

these guidelines to set the number of support points in the numerical tests. The confirmation of

the optimality of the designs obtained is carried out graphically displaying the dispersion function305

which in turn validates the equivalence theorems (9) and (10). If the number of support points is

incorrect, the plot of the dispersion function will show this. In all our examples our initial value

of nθ was correct.

In Section 4.1 we analyze the details of the implementation with a simple example. In §4.2

five additional examples with practical interest are solved.310

4.1 A toy example

Here, we use the model

ggg(sss|xxx,θθθ) := s2
1 +2 s1 +θ1 x1 + exp(−θ2 x1) = 0, x1 ∈ X (24)
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to analyze the construction of the FIM and other implementation aspects. We note the model has

a single equation (ns = 1), a single response, i.e. ny = ns = 1 where E(y1) = s1, includes a single

control factor (nx = 1) and two parameters (nθ = 2). Here, ε1 is the observational error affecting315

the measurements of y1 characterized in §1 and the design space is X≡ [0,1].

The problem has two possible solutions for s1 (and y1) from each value of x1 in X, one positive

and the other negative. We limit the design to non-negative values of s1 to avoid multiple optimal

designs with the same performance. Typically, the optimal design will be supported by two points

of the positive branch of s1 and two points of the negative branch given the symmetry. Thus, four320

distinct optimal designs might be found by the global optimization solver which reports only one

of them containing two of the support points.

The restriction may be removed without any impact on the optimal design obtained but

with a resultant increase in CPU time. The locally optimal design is to be determined for

θθθ = (−10, 0.1)ᵀ; this set of parameters was chosen so that the problem allows demonstrat-

ing the fundamentals of the formulation. The AEs system representing the sensitivity equation

(15) for support point k is2 s1 +2 0

0 2 s1 +2

 σ1,1,k

σ1,2,k

+

 x1

−x1 exp(−θ2 x1)

=

0

0

 , xxx ∈ {xxxk : k ∈ JKK}. (25)

The local FIMs are then constructed from coefficients σ1,l,k, l ∈ Jnθ K, k ∈ JKK, employing

(17).

To analyze the accuracy of the approach used to find the sensitivity coefficients, we compare325

the optimal designs for the implicit representation (24) with those for the explicit form of the

model, which can be derived in this case,

s1 =−1+
√

1−θ1 x1− exp(−θ2 x1), x1 ∈ X. (26)
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We notice that the optimal designs for (26) were found with the formulations in §3 with the

exception of the sensitivity coefficients which were analytically derived and explicitly included

in the NLP problems. Specifically, the local FIMs are computed by

M(xxxk) =

 −x1

2
√

1−θ1 x1−exp(−θ2 x1)

x1 exp(−θ2 x1)

2
√

1−θ1 x1−exp(−θ2 x1)

×( −x1

2
√

1−θ1 x1−exp(−θ2 x1)

x1 exp(−θ2 x1)

2
√

1−θ1 x1−exp(−θ2 x1)

)
,

xxx ∈ {xxxk : k ∈ JKK}. (27)

The optimal designs found for both the implicit and explicit model forms are shown in Table

1. The matrices containing the optimal designs have the values of the control factor (x1) for

each support point in the first line followed by the values of the response variables (y1), and330

finally, in the last line, the weights (w). We note that (i) the designs obtained for implicit and

explicit representations are equal, having the same efficiency; (ii) the second point of the designs

coincide with the upper bound of the design space; and (iii) the D–optimal design is uniformly

distributed (the weight of both points is 1/nθ ). The CPU time required by the explicit model is

smaller because the size of the NLP problem solving implicit representations is larger, having335

more variables (i.e., degrees of freedom) and equality constraints.

We now demonstrate the global optimality of the designs found for model (24) by plotting the

dispersion functions defined in (9) and (10) for the D– and A–optimality criteria, respectively.

These are shown in Figure 1. We note that the dispersion function is limited from above by 0

and attains its maximum at the support points as required for optimal designs. If the restriction340

on s1 > 0 is removed, two optimal designs with equal efficiency are produced, both sharing the

support points but with distinct values of s1.

Finally, we compare the performance of the D– and A–optimal designs obtained for (24) using

a global solver and a Genetic Algorithm (GA) based solver with the ability to handle constrained
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Table 1: Locally optimal continuous designs for implicit (24) and explicit (26) forms of the toy

example.
Model Criterion Optimal design Optimum CPU time (s)

(24) D-


0.3260 1.0000

0.8143 2.1773

0.5000 0.5000

 −7.7153 6.03

(26) D-


0.3261 1.0000

0.8147 2.1773

0.5000 0.5000

 −7.7153 5.45

(24) A-


0.2439 1.0000

0.5693 2.1773

0.6616 0.3384

 1.363×105 13.05

(26) A-


0.2441 1.0000

0.5701 2.1773

0.6618 0.3382

 1.363×105 10.78

problems (Conn et al., 1991). The parameters of the GA solver are: (i) a population size of 50345

individuals; (ii) a crossover fraction equal to 0.8; (iii) a fraction of individuals kept on the first

Pareto front of 0.35; (iv) an absolute tolerance of 1×10−6; and (v) a limit of 10 generations to

stop. The optimum obtained with the GA-based solver is −7.8039; consequently, the D–optimal

efficiency relative to the design in Table 1 (first line), computed with Eq. (11), is 95.67 %. The

CPU time is 869.238 s, two orders of magnitude larger than that in Table 1. This increase is350

due to the need to solve a system of nonlinear algebraic equations to determine the parameter

sensitivities for each individual of the population in the evolutionary procedure.

For the A–optimal design, the optimum obtained with the GA-based solver is 1.5434×105,

and the A–optimal efficiency relative to the design in Table 1 (third line), obtained via Eq. (12),

is 88.31 %. The CPU time is 811.80 s, about 60 times larger than that of the deterministic global355

optimizer.
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Figure 1: Dispersion functions for: (a) locally D-optimal design; (b) locally A-optimal design for

the toy example. Both designs are optimal with nθ = 2.

Summing up, the comparison shows the advantage, in terms of accuracy and numerical ef-

ficiency, of deterministic global optimizers for this kind of problem when such optimizers are

combined with a search mechanism that solves the NLP problem from random starting points

for the initial values of the experimental variables and the adaption of the region of search to360

the evolution of the “best” solution found. Therefore, the design problems addressed in §4.2 are

solved with a deterministic global optimizer, OQNLP.

4.2 Application to realistic examples

We now apply the formulation to five problems from the fields of biomedicine, chemistry and

thermodynamics. All examples were chosen to demonstrate that, in practice, implicit models365

may have application in laboratory experiments. The structure used for tabulating ξ ∗ is similar
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to that employed in the previous example; the first line contains the levels of the control variable,

the following ns the predicted values for the state variables (which include the response), and the

last the weight of the corresponding support point. The global optimality of the designs presented

in this section was checked plotting the dispersion functions as in §4.1, and they were all demon-370

strated to be globally optimal. In all the cases, we report the locally optimal designs determined

for the set of parameters indicated (or fitted) in the references introducing the respective models.

1. X-ray images of prostheses. The first model considered is the one proposed by Reilly and

Patino-Lea1 (1981) for describing the X-ray image of a prosthesis made under conditions such

that the X-rays struck the photographic plate in an oblique angle, distorting the image of the375

spherical ball to an ellipse. We consider that the x-coordinate of the X-rays can be controlled,

and that the y-coordinate is related to it by

ggg(sss|xxx,θθθ) := θ3 (s1−θ1)
2 +2 θ4 (s1−θ1) (x1−θ2)+θ5 (x1−θ2)

2−1 = 0, (28)

where ns = 1, nx = 1, nθ = 5 and θθθ = (θ1, θ2, θ3, θ4, θ5)
ᵀ. Here, x1 is the x-coordinate chosen

for taking the image and s1 is the y-coordinate, with the response variable modeled as E(y1) = s1,

so ny = 1. The locally optimal designs are to be obtained for θθθ =(−0.99938, −2.93105, 0.08757,380

0.01623, 0.07975)ᵀ and are formed by the set of values of xxx chosen to maximize the amount of

information obtained from measuring y1. Here, x1 ∈ X ≡ [−6.0,0.5], and we restrict s1 so that

the values measured (y1) are in the upper arc of the distorted ellipse which requires the following

constraint on the design

s1 ≥−0.1833 x1−1.5435, (29)

to be added to NLP problems (20) and (23). We note the observations are symmetric with respect385

to the plane (29), and an equivalent design can be obtained if the lower arc is considered, the
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only difference being the symmetry of the x-coordinates. The absence of the constraint produces

multiple optimal designs combining points from both arcs, one of them arbitrarily chosen by the

solver.

Table 2 presents the optimal designs found and we notice that the D–optimal design is again390

uniform. Figure 2(a) shows the predicted values of y1 in the design interval of interest and the

support points for both D– and A–optimal designs. The support points of the two designs are

close to each other but the weights are substantially different. Figure 2(b) shows the dispersion

function for the D–optimal design presented in the first line of Table 2 and proves the design with

five support points is D–optimal. Similar checks were made for our remaining examples, but we395

do not report them here.

Table 2: Locally optimal continuous designs for prosthesis image, model (28), θθθ =

(−0.99938, −2.93105, 0.08757, 0.01623, 0.07975)ᵀ, X≡ [−6.0,0.5].

Model Criterion Optimal design Optimum CPU time (s)

(28) D-


−6.0000 −5.1250 −2.2819 0.0418 0.5000

1.3486 2.0908 2.2045 0.3665 −0.5851

0.2000 0.2000 0.2000 0.2000 0.2000

 4.8998 98.52

(28) A-


−6.0000 −5.2875 −2.2706 0.1360 0.5000

1.3486 1.9973 2.2005 0.2143 −0.5851

0.1268 0.2643 0.2380 0.2571 0.1138

 461.2786 356.13

2. Compressibility of helium at 273.15 K. The second model was proposed by Britt and

Luecke (1973) to describe the compressibility of helium at 273.15 K. The experimental data were

obtained by the Burnett method where the pressure of contained gas at constant temperature is

measured before and after expansion into a larger volume. Here, we consider that the pressure400
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Figure 2: Prosthesis image, model (28): (a) predicted values and optimal design points; (b)

dispersion function for the locally D-optimal design.

before compression is controlled and the pressure after expansion measured. The model is

ggg(sss|xxx,θθθ) := (θ1−θ3) x1 s1 +(θ2 s1−θ3 x1) x1 s1 + x1−θ3 s1 = 0, (30)

so that ns = 1, nx = 1 and nθ = 3, where θθθ = (θ1, θ2, θ3)
ᵀ. In (30), x1 is the pressure of the

system before expansion (expressed in atm) and s1 the pressure after expansion (also in atm). We

consider that the pressure after expansion is measured (i.e., is the response of the system) and

is denoted as y1 where E(y1) = s1 with ny being set to 1. The locally optimal designs are to be405

obtained for θθθ = (11.9517622, 113.9619475, 1.5648810)ᵀ, and we consider X ≡ [20.0,700.0]

with the response constrained to Y≡ [0.1,10.0].

The optimal designs found are listed in Table 3 and we note the first support point is con-

strained by the lower bound of y1 while the last one is constrained by the upper bound of the

control factor. Similarly, the D–optimal design is uniform, and only one support point of the410
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designs is different.

Table 3: Locally optimal continuous designs for compressibility of helium, model (30); θθθ =

(11.9517622, 113.9619475, 1.5648810)ᵀ, X≡ [20.0,700.0].

Model Criterion Optimal design Optimum CPU time (s)

(30) D-


20.2609 72.4753 700.0000

0.1000 0.8944 9.5201

0.3333 0.3333 0.3333

 −9.8645 13.05

(30) A-


20.2609 58.5581 700.0000

0.1000 0.7007 9.5201

0.0991 0.8517 0.0492

 3.625×106 99.42

3. Shockley’s equation for solar cells. The third case is the one-diode model adopted for

modeling solar cells. The model includes a photo-generated current source in parallel with a

diode, a shunt resistance and a series of resistances modeling the power losses. In practice, the

model for different solar cells is fitted through experiments where the voltage (V) is changed and415

the intensity of the current (I) in the circuit is measured (Silvestre, 2018). The diode is modeled

by the Shockley (1949) equation, and the I–V behavior of the solar cell is given by the implicit

model

ggg(sss|xxx,θθθ) := s1 +d1

{
exp
[

d3

θ2
(x1 +θ3 s1)

]
−1
}
+d2 (x1 +θ3 s1)−θ1 = 0, (31)

where s1 is the current intensity, x1 is the voltage, d1 and d2 are parameters of the cell which are

estimated from other experiments and d3 is a constant equal to q/(kB T ) where q stands for the420

charge of the electron, kB for the Boltzmann constant and T for the absolute temperature of the

experiment. For this system we have ns = 1, nx = 1 and nθ = 3 where θθθ = (θ1, θ2, θ3)
ᵀ; θ1 is

the photo-generated current, θ2 is the ideality factor of the diode and θ3 is the power loss. The
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current intensity is the response variable and is represented by y1 where E(y1) = s1 with ny being

set to 1.425

Here, we consider the photovoltaic module reported by Sabadus et al. (2017) where d1 =

1.243×10−7, d2 = 2.7894×10−4, and d3 = 38.921758 to determine the locally optimal designs

for θθθ = (0.146, 1.791, 0.038)ᵀ. The design space considered in our study was the one suggested

by the authors, i.e. X≡ [0.0, 0.65] and Y≡ [0.0, 0.15].

The optimal designs found are listed in Table 4 and we note the first support point is con-430

strained by the lower bound of the design space. The support points of both designs are similar

but the weights are quite different.

Table 4: Locally optimal continuous designs for solar cells, model (31), θθθ =

(0.146, 1.791, 0.038)ᵀ, X≡ [0.0, 0.65].

Model Criterion Optimal design Optimum CPU time (s)

(31) D-


0.0000 0.5993 0.6349

0.1460 0.0854 0.0215

0.3333 0.3333 0.3333

 −4.2972 26.98

(31) A-


0.0000 0.5992 0.6349

0.1460 0.0855 0.0215

0.2588 0.4950 0.2462

 619.6032 151.80

4. Vapor-Liquid Equilibrium (VLE) characterization. This model describes VLE data ob-

tained experimentally and follows from the assumptions presented in Section 1.1, see Englezos

et al. (1990) for consistency analysis. We consider a common isothermal experimental setup

where the pressure of the system is to be changed (and controlled) and the composition of com-

ponent 1 in the mixture is measured in the liquid (L) phase after the equilibrium has been reached.

30



The model ggg(sss|xxx,θθθ) is formed by the set of equations

g1(sss|xxx,θθθ) :=s2 x1− s1 γ1(s1) Ps
1(T ) = 0 (32a)

g2(sss|xxx,θθθ) :=(1− s2) x1− (1− s1) γ2(s1) Ps
2(T ) = 0 (32b)

Ps
i (T ) = 10Ai−Bi/(T+Ci), i ∈ {1,2} (32c)

log(γ1(s1)) = (1− s1)

(
θ1

s1 +θ1 (1− s1)
− θ2

θ2 s1 +1− s1

)
−

− log(s1 +θ1 (1− s1)) (32d)

log(γ2(s1)) =−s1

(
θ1

s1 +θ1 (1− s1)
− θ2

θ2 s1 +1− s1

)
−

− log(1− s1 +θ2 s1) (32e)

where Ps
i (T ) stands for the saturation pressure of component i in the mixture (i ∈ {1,2}), esti-

mated employing the Antoine equation (32c) and expressed in mmHg. The state variables are

the concentration of component 1 in the L phase, s1, and in the Vapor (V) phase, s2. The ac-435

tivity coefficients of both components in the mixture (32d-32e) derived from the Wilson model

(Wilson, 1964) are γi(s1), i ∈ {1,2}. Equations (32a-32b) are the equilibrium relations, T is the

temperature expressed in degrees K, Ai, Bi and Ci are Antoine constants and x1 is the overall

pressure at which the measurements are taken, also expressed in mmHg. The system response is

the concentration of component 1 in the L phase, designated as y1. Here, ns = 2, ny = 1, nx = 1,440

nθ = 2 where θθθ = (θ1, θ2)
ᵀ are the binary interaction parameters between the components in

the mixture, and E(y1) = s1. It is straightforward to generalize our design procedure to consider

measuring the composition of 1 in V phase (s2), so obtaining two measures per experiment.

For demonstration we consider the binary system formed by methanol (MET) - component

(1) - and water (WAT) - component (2). The Antoine constants for both components are in445

Table 5; we take T = 312.91K. The locally optimal design is found for the binary interaction
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parameters between the species θθθ = (0.4139, 1.0354)ᵀ. The design region is X ≡ [20.0,760.0]

and Y ≡ [0,1]. The optimal design consists of the optimal values of x1 (pressure) at which the

concentration of MET in the L phase is measured after equilibrium is attained, y1.

Table 5: Antoine constants (Poling et al., 2001) for vapor-liquid equilibrium.
Component A B C

MET (1) 8.08097 1582.27 -34.450

WAT (2) 8.07131 1730.63 -39.724

The optimal designs obtained are shown in Table 6. The designs include the value of x1 in450

the first row, the values predicted for s1 and s2 (in the second and third rows), and the value of w

for each support point.

Table 6: Locally optimal continuous designs for vapor-liquid equilibrium, model (32), θθθ =

(0.4139, 1.0354)ᵀ, X≡ [20.0,760.0].

Model Criterion Optimal design Optimum CPU time (s)

(32) D-


98.2731 206.4020

0.1081 0.7067

0.4985 0.8917

0.5000 0.5000

 −4.2106 4.36

(32) A-


108.6705 196.8287

0.1436 0.6412

0.5604 0.8672

0.6037 0.3963

 444.0183 12.34

5. Redox reaction titration. In the first three examples in this section we have one state vari-

able, i.e. ns = 1. The fourth example has ns = 2. In our final example we show how the method

works for ns = 3 (in all examples nx = ny = 1). The model represents the titration of redox
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reactions where changes in cell potential are used to follow the titration process as a function

of the volume of titrant added (Morales, 2002). Here, s1 is the concentration of oxidant, s2 the

concentration of reductant, s3 the potential of the cell and the control factor is the volume of re-

ductant added to initial volume of oxidant, x1. The parameters to be estimated are the equilibrium

constant of the redox reaction, θ1, and the standard cell potential, θ2. Thus, θθθ = (θ1, θ2)
ᵀ; the

response variable is the cell potential, i.e. E(y1) = s3. The optimal experimental design is sought

by choosing the volumes of titrant at which the system is to be observed so that the amount of

information is maximum. The model is:

g1(sss|xxx,θθθ) :=s1−
(

d1 d2−d3 x1

d1 + x1
+

s2
2

θ1 s1

)
= 0 (33a)

g2(sss|xxx,θθθ) :=s2−
(

d3 x1

d1 + x1
−

s2
2

θ1 s1

)
= 0 (33b)

g3(sss|xxx,θθθ) :=s3−
[

θ2 +d4 log
(

s2

s1

)]
= 0, (33c)

where d1 is the initial volume of oxidant, here assumed 50 mL, d2 is the concentration of oxidant

in the solution, 0.1 molL−1, d3 is the concentration of redox specie in the titrant, also considered

0.1 molL−1, and d4 is the ratio of R T/F where R is the ideal gas constant, T is the absolute455

temperature and F is the Faraday constant; d4 at 25 °C is 0.059 V. The optimal design is to

be found for θθθ = (0.079, 0.700)ᵀ. The values of constants di, i ∈ J4K, as well as those of the

parameters for constructing the locally optimal design are from Morales (2002). The design space

is X≡ [1×10−2,50.0] as we limit it to non-zero values to avoid numerical indeterminacies, and

impose the positivity of s1, s2 and s3, consistent with the physics of the system. Summing up,460

this problem is characterized by ns = 3, ny = 1, nx = 1 and nθ = 2.

The optimal designs obtained are shown in Table 7. The designs include the value of x1 in

the first row, then the values predicted for s1, s2 and s3, and the value of w for each support point.

Again, the D–optimal design is uniform, unlike the A–optimal design.
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Table 7: Locally optimal continuous designs for redox reaction titration, model (33), θθθ =

(0.079, 0.700)ᵀ, X≡ [1×10−2,50.0].

Model Criterion Optimal design Optimum CPU time (s)

(33) D-



0.0100 50.0000

0.0999 0.0390

2×10−5 0.0110

0.1973 0.6251

0.5000 0.5000


−1.6830 3.48

(33) A-



0.0100 50.0000

0.0999 0.0390

2×10−5 0.0110

0.1973 0.6251

0.5163 0.4837


30.947 8.86

5 Conclusions465

In this paper we have considered the problem of finding continuous optimal experimental designs

for algebraic implicit models, and have provided a systematic formulation based on nonlinear

programming for their calculation. As far as we know, this is the first paper to address this

class of models, which appear in several scientific areas. Our formulation addresses the D–

and A–optimality criteria and includes: (i) the generation of the sensitivity coefficients; and (ii)470

the Cholesky decomposition of the FIM. The first step requires solving the sensitivity equations

derived from the chain rule of differentiation, and the second allows optimizing convex functions

of the FIM, such as the determinant and the trace. The resulting optimization problem can have

multiple local optima, so we use a global optimizer to ensure a global optimum is attained.

We have tested our formulation on five examples of practical interest where implicit regression475

methods were previously applied to data analysis but not to design.

An interesting feature of all D–optimal designs we have found is that the number of support
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points is nθ . This is usually the case for explicit models, especially those that are nonlinear in

the parameters. A consequence is that the designs are then uniform, that is, the weight at each

support point is 1/nθ . Some comments and a proof are given by Pronzato and Pázman (2013,480

p.141). Since the result depends solely on the structure of determinants of square matrices, it is

not surprising to find that it also holds here for implicit models. However, it cannot be assumed

that the result holds for any other model, or even for one of the models exemplified here if the

parameter values are changed.

A topic to explore in the future is the extension of the formulations introduced in the present485

study to exact optimal designs using the ideas of Duarte et al. (2020). This problem has practical

interest, examples being the VLE or Liquid-Liquid Equilibrium characterization of mixtures us-

ing thermodynamic models. Another limitation of the proposed formulation is that it is focused

on locally optimal designs. However, very often the knowledge of the initial values of the param-

eters is poor. Then, Bayesian or minimax designs which are less inefficient than locally optimal490

designs for other parameter combinations should be considered. If sequential experimentation is

possible, sequential designs, with cycles of optimal experimental design, experimentation and re-

estimation of parameters rapidly overcome incorrect prior values for parameters. Box and Hunter

(1965) give an example for an algebraic model and designs for VLE characterization provide an

instance for implicit algebraic equation models. In some cases of strong uncertainty about prior495

values of parameters, it may be easier for scientists to predict responses for sufficiently many sets

of factor combinations to permit parameter estimation. Bobis and Andersen (1970) describes a

sequential design procedure that includes downweighting of the predicted responses as experi-

mental observations become available.
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Appendix A

A.1 Implementation aspects

The formulations (20) and (23) are coded in the GAMS environment (GAMS Development Cor-

poration, 2013). GAMS is a general modeling system that supports mathematical programming705

applications in several areas. Upon execution, the code describing the mathematical program

is automatically compiled, symbolically transcribed into a set of numerical structures, and all

information regarding the gradient and matrix Hessian are generated using the automatic dif-

ferentiation tool and made available to the solver. We provide a sample of such a code in the

Supplementary Material.710

The ODoE problems apart, the convexity properties are rather challenging. The calculations

require matrix algebra operations embedded in the optimization problems which in turn produce

problems with multinomial terms and variables of different scales, that may lead to multiple

local optima. To ensure the global optimum is attained we use a global optimizer. Specifically, to

determine the optimal design we used a multistart heuristic algorithm-based solver, OQNLP. The715

algorithm calls an NLP solver from multiple starting points, keeps all the feasible solutions found,

and picks the best as the optimal solution of the problem (Ugray et al., 2005). The starting points

are computed with a random sampling driver that uses independent normal random variables

for initializing each decision variable. Contrarily to deterministic global optimization solvers,

OQNLP does not certify that the final solution is a global optimum, but it has been successfully720

tested on a large set of global optimization problems. To build the initial sampling points the

variables need to be bounded, which is what we have since the design space and the region of

plausible values are all compact by assumption. The NLP solver called by OQNLP is CONOPT,

which in turn uses the Generalized Reduced Gradient (GRG) algorithm (Drud, 1985).
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The maximum number of starting points allowed is set to 3000 and the procedure terminates725

when 100 consecutive NLP solver calls result in an improvement less than 1×10−4. The absolute

and relative tolerances of the solver were set equal to 1×10−5 and 1×10−6, respectively, with

the absolute tolerance being equal to ζ which is the minimum value allowed for the diagonal

entries in the FIM or its inverse so that they are positive definite.
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