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Abstract. This paper studies the uniform convergence rates of Li and Vuong’s (1998) non-

parametric deconvolution estimator and its regularized version by Comte and Kappus (2015)

for the classical measurement error model, where repeated noisy measurements on the error-

free variable of interest are available. In contrast to Li and Vuong (1998), our assumptions

allow unbounded supports for the error-free variable and measurement errors. Compared to

Bonhomme and Robin (2010) specialized to the measurement error model, our assumptions do

not require existence of the moment generating functions of the square and product of repeated

measurements. Furthermore, by utilizing a maximal inequality for the multivariate normalized

empirical characteristic function process, we derive the uniform convergence rates that are faster

than the ones derived in these papers under such weaker conditions.

1. Introduction

This paper studies uniform convergence rates of nonparametric deconvolution estimators for
the classical measurement error model, where repeated noisy measurements on the error-free
variable of interest are available. For this problem, based on Kotlarski’s (1967) identity, a seminal
work by Li and Vuong (1998, hereafter LV) developed a novel nonparametric estimator for the
densities of the error-free variable of interest and the measurement errors. An attractive feature
of the LV estimator is that it does not require prior information on the shape of the measurement
error density, such as symmetry (Delaigle, Hall and Meister, 2008). The LV estimator has been
applied in various contexts in econometrics, such as nonlinear errors-in-variables models (Li,
2002), panel data models (Evdokimov, 2010, Arellano and Bonhomme, 2012), generalized linear
models (Li and Hsiao, 2004), auctions (e.g., Krasnokutskaya, 2011, and Athey and Haile, 2007,
for a survey), identification of private information (Arcidiacono et al., 2011), among others. See
also Hu (2017) for a survey on various applications of measurement error models in economics.

In addition, for these econometric and statistical problems, the deconvolution estimators may
not necessarily be the ultimate objects of interest, and may be intermediate objects to be plugged-
in to obtain final estimators or test statistics. For example, Krasnokutskaya (2011) developed
nonparametric estimators for individual bid functions and cost components in auction models
with unobserved heterogeneity as certain functionals of the LV-type estimators. The semipara-
metric estimators by Li (2002) and Li and Hsiao (2004) are constructed as functionals of the
LV estimator. Also, other nonparametric measurement error problems often call for estimation
of the characteristic function of the measurement error, such as Adusumilli and Otsu (2018)
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for nonparametric instrumental regression with errors-in-variables, Otsu and Taylor (2019) for
specification testing on errors-in-variables regressions, and Adusumilli et al. (2020) for inference
on distribution functions under measurement errors. For those purposes, the LV-type estimators
play the same roles as primitive nonparametric estimators for semiparametric problems. Thus,
it is crucial to establish uniform convergence rates for the LV-type estimators under widely
applicable and mild conditions; this is the theme of the present paper.

In this paper, we derive uniform convergence rates for the LV estimator and its regularized
version proposed by Comte and Kappus (2015, hereafter CK). CK modified the LV estimator by
introducing a regularization factor to deal with small denominators and truncation to restrict the
estimated characteristic function not to take values larger than one. They also established the
L2-convergence rates under weaker assumptions than the ones in LV. Importantly, CK dropped
the bounded support conditions by LV on both the error-free variable of interest and the mea-
surement errors. In contrast, we study uniform convergence rates and show that both the LV
and CK estimators typically achieve faster uniform convergence rates under weaker assumptions
(especially unbounded support).

In another important paper, Bonhomme and Robin (2010) considered a general latent multi-
factor model, which includes the repeated measurements model as a special case, and established
the uniform convergence rate for their nonparametric deconvolution estimator without assuming
bounded support. Our convergence rates are faster than those given in Bonhomme and Robin
(2010) under weaker assumptions. In particular, we do not require existence of the moment
generating functions of the square and product of repeated measurements as in Bonhomme and
Robin (2010). The relaxation of this assumption is achieved by showing a maximal inequality
for the multivariate normalized empirical characteristic function process (Lemma 1 in Section
2.2), which is a multivariate version of Neumann and Reiss (2009, Theorem 4.1). This lemma
may also be used in Bonhomme and Robin (2010) to relax their assumptions in other contexts,
and thus is of independent interest.

The results of this paper are useful not only for extending the scope of empirical analysis for
econometric objects identified by Kotlarski’s identify, but also for addressing open questions on
existing methods that involve the LV-type estimators. Although detailed analyses are beyond
the scope of this paper, we mention such possibilities in our concluding remarks.

This paper is organized as follows. Section 2 presents our main results, the uniform conver-
gence rates of the LV and CK estimators. Section 2.1 collects remarks on the main theorems,
and Section 2.2 presents the maximal inequality for the multivariate normalized empirical char-
acteristic function process. Section 3 concludes with some potential applications of our main
results.

2. Main result

Consider a bivariate i.i.d. sample {Yj,1, Yj,2}nj=1 of (Y1, Y2), which is generated by

Y1 = X + ε1, (1)

Y2 = X + ε2,
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where (X, ε1, ε2) are unobservables. This setup is called the repeated measurements model, where
X is an error-free variable of interest, (ε1, ε2) are measurement errors for X, and (Y1, Y2) are
repeated noisy measurements on X.1 We are interested in estimating the densities of X, ε1, and
ε2.

Let i =
√
−1. We impose the following assumptions on the model (1).

Assumption M. (ε1, ε2) are independent copies of a random variable ε, X is independent of
(ε1, ε2), X and ε have square integrable Lebesgue densities fX and fε, respectively, the character-
istic functions ϕX(·) = E[ei·X ] and ϕε(·) = E[ei·ε] vanish nowhere, and E[ε] = 0. E[|Y1|2+η] <∞
for some η > 0.

These assumptions are standard for the classical measurement error model (see, e.g., CK).
The condition E[ε] = 0 is considered as a normalization to identify the mean of X. However,
they are weaker than other existing papers on the repeated measurements model, such as LV
(which impose bounded support of fX and fε), and Bonhomme and Robin (2010) (which require
the existence of the moment generating functions of Y 2

1 and Y1Y2). See Remark 2 and Section
2.2 for detailed discussions.

This paper studies the uniform convergence rates of the LV and CK estimators for the densities
and characteristic functions of X and ε. Let us first introduce the LV estimator. Define

ψ(u1, u2) = E[ei(u1Y1+u2Y2)] = ϕX(u1 + u2)ϕε(u1)ϕε(u2).

Under the condition E|Y1| < ∞, Kotlarski’s identity gives us an explicit identification formula
of ϕX , that is

ϕX(u) = exp

∫ u

0

∂ψ(0, u2)/∂u1

ψ(0, u2)
du2.

By taking its sample counterpart, LV proposed to estimate ϕX by

ϕ̂X(u) = exp

∫ u

0

∂ψ̂(0, u2)/∂u1

ψ̂(0, u2)
du2, (2)

where ψ̂(u1, u2) = 1
n

∑n
j=1 e

i(u1Yj,1+u2Yj,2) and ∂ψ̂(u1,u2)
∂u1

= 1
n

∑n
j=1 iYj,1e

i(u1Yj,1+u2Yj,2). Based on
this estimator, the density fX of X can be estimated by

f̂X(x) =
1

2π

∫
R
e−iuxϕ̂X(u)ϕK(hu)du, (3)

where ϕK(u) =
∫
R e

iuxK(x)dx is the Fourier transform of a kernel function K and h = hn is a
sequence of positive numbers (bandwidths) such that hn → 0 as n→∞.

Based on the expression ϕε(u) = ψ(0, u)/ϕX(u), the characteristic function ϕε of ε can also
be estimated by

ϕ̂ε(u) =
ψ̂(0, u)

ϕ̂X(u)
. (4)

The estimator f̂ε of the density fε is given by replacing ϕ̂X in (3) with ϕ̂ε.

1It is possible to extend to the case where more than two noisy measurements on X are available. However, for
sake of simplicity and clarity, we concentrate on the two dimensional case.
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We next introduce a regularized version of the LV estimator developed by CK. Their main
idea is to regularize ϕ̂X in (2) as

ϕ̃X(u) =
ϕ̃modX (u)

max{1, |ϕ̃modX (u)|}
, (5)

where

ϕ̃modX (u) = exp

∫ u

0

∂ψ̂(0, u2)/∂u1

ψ̃(0, u2)
du2, with ψ̃(0, u2) =

ψ̂(0, u2)

min{1,
√
n|ψ̂(0, u2)|}

.

There are two differences between ϕ̂X and ϕ̃X . First, the reciprocal 1/ψ(0, u2) is estimated by
1/ψ̃(0, u2) instead of the empirical average 1/ψ̂(0, u2). The additional term, min{1,

√
n|ψ̂(0, u2)|},

circumvents unfavorable effects caused by small values of the denominator. Second, the denom-
inator of ϕ̃X in (5) is introduced to improve the quality of the estimator by imposing that the
estimand is a characteristic function, which should not take values larger than one.

Based on this regularized estimator ϕ̃X , the CK estimator f̃X of the density fX is defined by
replacing ϕ̂X in (3) with ϕ̃X . Also, the characteristic function ϕε of ε can be estimated by

ϕ̃ε(u) =
ψ̂(0, u)

ϕ̄X(u)
, where ϕ̄X(u) =

ϕ̃X(u)

min{1,
√
n|ϕ̃X(u)|}

.

The estimator f̃ε of the density fε is given by replacing ϕ̂X in (3) with ϕ̃ε.
For these regularized estimators, CK investigated the risk bounds and convergence rates for

the L2-loss function. In this paper, we study the uniform convergence rates of the CK estimators.
To estimate the densities by (3), we need to choose the kernel function K, and impose the

following conditions.

Assumption K. (i) The kernel function K satisfies
∫
RK(x)dx = 1,

∫
R x

`K(x)dx = 0 for
` = 1, . . . , p − 1, and

∫
R |x|

pK(x)dx < ∞ with a positive even integer p. Also, ϕK(u) = 0 for
any |u| > 1. (ii) p ≥ max{βx, βε}. (iii) There exists 0 < c ≤ 1 such that ϕK(x) = 1 for |x| ≤ c.

Assumption K (i) says thatK is a p-th order kernel function. See e.g., Tsybakov (2009, Section
1.2.2) for a construction of higher order kernels. Assumptions K (ii) and (iii) are used for the
ordinary and super smooth cases, respectively.

To proceed, we adopt the terminology in Fan (1991) and consider two scenarios for the densities
fX and fε, called ordinary smooth and super smooth densities. In particular, we impose the
following assumptions on the characteristic functions ϕX and ϕε.

Assumption OS. For some positive constants βx > 1, Cx ≥ cx, ωx, βε > 1, Cε ≥ cε, and ωε, it
holds

cx|u|−βx ≤ |ϕX(u)| ≤ Cx|u|−βx for all |u| ≥ ωx,

cε|u|−βε ≤ |ϕε(u)| ≤ Cε|u|−βε for all |u| ≥ ωε.

In this case, fX and fε are called ordinary smooth. The conditions βx, βε > 1 are introduced
to guarantee the consistency of the density estimators. Since the estimators of the characteristic
functions are defined by the ratios of the (regularized) empirical averages, we need to use the
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lower and upper bounds of the characteristic functions to obtain suitable bounds of the stochastic
and deterministic bias terms of the estimators. A popular example of an ordinary smooth density
is the Laplace density.

Assumption SS. For some positive constants ρx, Cx ≥ cx, ωx, µx, ρε, Cε ≥ cε, ωε, µε, and
some constants βx, βε ∈ R, it holds

cx|u|βx exp(−|u|ρx/µx) ≤ |ϕX(u)| ≤ Cx|u|βx exp(−|u|ρx/µx), for all |u| ≥ ωx.

cε|u|βε exp(−|u|ρε/µε) ≤ |ϕε(u)| ≤ Cε|u|βε exp(−|u|ρε/µε), for all |u| ≥ ωε.

In this case, fX and fε are called super smooth. Similar to Assumption OS, we use the lower
and upper bounds to control estimation errors. A popular example of a super smooth density is
the normal density.

Define the maximal deviations

Dϕ,an = sup
u∈[−Tn,Tn]

|ϕ̂a(u)− ϕa(u)|, and Df,an = sup
|x|≤h−1

|f̂a(u)− fa(u)|,

for a = X and ε. Under the above assumptions, the convergence rates of these maximal deviations
are presented as follows. The proofs are presented in Appendices A-B.

First, we consider the case where both fX and fε are ordinary smooth. Let %o
T = T 2βx+2βε+1 log T .

Theorem 1. [OS fX and OS fε] Suppose that Assumptions M and OS hold. Then

Dϕ,Xn = Op(n
−1/2%o

Tn) under n−1/2%o
Tn → 0, (6)

Dϕ,εn = Op(n
−1/2T βxn %o

Tn) under n−1/2T βxn %o
Tn → 0. (7)

Additionally suppose that Assumptions K (i)-(ii) hold. Then

Df,Xn = Op(n
−1/2h−1%o

h−1 + hβx−1) under n−1/2%o
h−1 → 0, (8)

Df,εn = Op(n
−1/2h−βx−1%o

h−1 + hβε−1) under n−1/2h−βx%o
h−1 → 0. (9)

See Section 2.1 below for detailed comparisons with existing results. Equations (6) and (7)
characterize the uniform convergence rates of the characteristic function estimators ϕ̂X and ϕ̂ε,
respectively. When Tn → ∞, the convergence rate of ϕ̂ε is slower than that of ϕ̂X due to the
additional factor “T βxn ” in the right hand side of (7). Intuitively, this additional factor emerges
from the linearization coefficient of (4) around ϕ̂X(u) = ϕX(u). On the other hand, equations
(8) and (9) characterize the convergence rates of the LV-type density estimators f̂X and f̂ε,
respectively. The first terms in the right hand sides of (8) and (9) are orders of stochastic
errors, and the second terms represent the bias terms. Compared to the first term of (6) (with
setting Tn = h−1), the first term of (8) contains an additional factor “h−1”, which is due to
the regularization for the inverse Fourier transform (see (16) in Appendix), and thus converges
slower. The same remark applies to the first terms of (7) and (9).
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Second, we present the results for the case where both fX and fε are super smooth. Let
%s
T = T−2βx−2βε+1(log T ) exp

(
2T ρx
µx

+ 2T ρε
µε

)
,

ςxh,q = h
ρx
q
−βx−1

exp

(
−c

ρxh−ρx

µx

)
, and ςεh,q = h

ρε
q
−βε−1

exp

(
−c

ρεh−ρε

µε

)
,

where q = 1 when βx, βε > 0, and q > 1 when βx, βε ≤ 0. We note that ςxh,q and ςεh,q are used to
express the bias terms.

Theorem 2. [SS fX and SS fε] Suppose that Assumptions M and SS hold. Then

Dϕ,Xn = Op(n
−1/2%s

Tn) under n−1/2%s
Tn → 0,

Dϕ,εn = Op

(
n−1/2T−βxn e

T
ρx
n
µx %s

Tn

)
under n−1/2T−βxn e

T
ρx
n
µx %s

Tn → 0.

Additionally suppose that Assumptions K (i) and (iii) hold. Then

Df,Xn = Op(n
−1/2h−1%s

h−1 + ςxh,q) under n−1/2%s
h−1 → 0,

Df,εn = Op

(
n−1/2hβx−1e

h−ρx
µx %s

h−1 + ςεh,q

)
under n−1/2hβxe

h−ρx
µx %s

h−1 → 0.

Analogous comments to Theorem 1 apply. When Tn → ∞, Dϕ,εn converges slower than Dϕ,Xn
due to the additional factor, T−βxn e

T
ρx
n
µx . The first and second terms of the rates of Df,Xn and Df,εn

correspond to stochastic errors and bias terms, respectively. Note that due to the exponents in
these terms, we typically set the bandwidth h as a logarithmic decay rate.

Furthermore, we consider mixed cases, where fX and fε belong to different categories of
smoothness. Let %os

T = T 2βx−2βε+1(log T ) exp
(

2T ρε
µε

)
and %so

T = T−2βx+2βε+1(log T ) exp
(

2T ρx
µx

)
.

Theorem 3. [OS fX and SS fε] Suppose that Assumptions M, OS for ϕX , and SS for ϕε hold
true. Then

Dϕ,Xn = Op(n
−1/2%os

Tn) under n−1/2%os
Tn → 0,

Dϕ,εn = Op(n
−1/2T βxn %os

Tn) under n−1/2T βxn %os
Tn → 0.

Additionally suppose that Assumptions K (i) and (iii) hold. Then

Df,Xn = Op(n
−1/2h−1%os

h−1 + hβx−1) under n−1/2%os
h−1 → 0,

Df,εn = Op(n
−1/2h−βx−1%os

h−1 + ςεh,q) under n−1/2h−βx%os
h−1 → 0.

Theorem 4. [SS fX and OS fε] Suppose that Assumptions M, SS for ϕX , and OS for ϕε hold
true. Then

Dϕ,Xn = Op(n
−1/2%so

Tn) under n−1/2%so
Tn → 0,

Dϕ,εn = Op

(
n−1/2T−βxn e

T
ρx
n
µx %so

Tn

)
under n−1/2T−βxn e

T
ρx
n
µx %so

Tn → 0.
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Additionally suppose that Assumptions K (i) and (iii) hold. Then

Df,Xn = Op(n
−1/2h−1%so

h−1 + ςxh,q) under n−1/2%so
h−1 → 0,

Df,εn = Op

(
n−1/2hβx−1e

h−ρx
µx %so

h−1 + hβε−1

)
under n−1/2hβxe

h−ρx
µx %so

h−1 → 0.

Similar comments to Theorem 1 apply. The bias terms associated with ordinary (or resp.
super) smooth densities are polynomials (or resp. exponentials) of h.

Finally, we present the uniform convergence rates of the CK estimator.

Theorem 5. [CK estimator] The same uniform convergence results in Theorems 1-4 hold true
even if we replace the LV estimator (ϕ̂X , ϕ̂ε, f̂X , f̂ε) with the CK estimator (ϕ̃X , ϕ̃ε, f̃X , f̃ε).

2.1. Remarks on Theorems 1-5.

Remark 1 (Comparison with LV). We note that LV established the uniform convergence rates
of their estimator under the assumption that both X and ε have bounded support. On the other
hand, our theorems do not require such boundedness. Also, the convergence rates obtained
in our theorems are typically faster than those obtained in LV. For example, if we set Tn =

O
(
(n/ log log n)α/2(1+βx+βε)

)
with 0 < α < 1/2 as in Lemma 3.1 of LV, our Theorem 1 implies

that

Dϕ,Xn = Op

((
n

log log n

)− 1
2

+α− α
2(1+βx+βε)

)
,

and this convergence rate is faster than that given in LV, i.e.,
(

n
log logn

)− 1
2

+α
. Similar comments

apply to other cases.

Remark 2. [Comparison with Bonhomme and Robin, 2010] The convergence rates in our the-
orems are also faster than those given in Bonhomme and Robin (2010). For example, under
Assumption OS, Bonhomme and Robin (2010, Theorem 1) implies that

Dϕ,Xn = Op(n
−1/2T 3βx+3βε+2

n log Tn),

Dϕ,εn = Op(n
−1/2T 3βx+3βε+2

n log Tn).

In Bonhomme and Robin (2010, Footnote 20), they give a comment that if they focus on the
LV estimator, their convergence rate can be improved. Therefore, our results can be interpreted
as a theoretical justification of their comment. It should also be noted that our assumption on
(Y1, Y2) is weaker than Assumption A4 in Bonhomme and Robin (2010) since we do not need
the existence of the moment generating functions of Y 2

1 and Y1Y2. More precisely, the same
convergence rate given in Lemma 1 of their paper can be obtained under weaker conditions
by proving a maximal inequality for the multivariate empirical characteristic function processes
(Lemma 1 below). See Section 2.2 for a detailed discussion.

Remark 3 (LV and CK estimators). In Theorem 5, we show that the LV and CK estimators
achieve the same uniform convergence rates. On the other hand, it is open whether the LV
estimator can achieve the L2 convergence rate in CK. To control the L2 risk of the LV-type
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estimators which are defined by the ratios of the (regularized) empirical averages, it seems crucial
to introduce some regularization as in CK.

Remark 4 (Generalization for non-identical distributions of ε1 and ε2). Although this paper
(and also LV and CK) considers the case where the distributions of the measurement errors ε1
and ε2 are identical, other papers including the original one by Kotlarski (1967) allow different
distributions for the measurement errors. For example, under Assumption M with allowing
fε1 6= fε2 for E[ε1] 6= 0, the proof of Evdokimov (2010, Lemma 1) implies that

ϕε1(u) = exp

(∫ u

0

∂ψ(v,−v)/∂u1

ψ(v,−v)
dv − iuE[Y1]

)
,

ϕε2(u) = ψ(−u, u)/ϕε1(−u),

ϕX(u) = ψ(u, 0)/ϕε1(u).

Thus, these characteristic functions can be estimated by estimating ψ and E[Y1] with ψ̂ and
1
n

∑n
j=1 Yj,1, respectively. Indeed, by extending the current proof, we can show that these es-

timators (say, ϕ̄ε1 , ϕ̄ε2 , and ϕ̄X) satisfy: if τn = n−1/2Tn log Tn
(
inf |v|≤Tn |ψ(v,−v)|2

)−1 → 0,
then

sup
|u|≤Tn

|ϕ̄ε1(u)− ϕε1(u)| = Op(τn),

and if τn
(
inf |u|≤Tn |ϕε1(u)|

)−1 → 0, then

sup
|u|≤Tn

|ϕ̄ε2(u)− ϕε2(u)| = Op

(
τn

(
inf
|u|≤Tn

|ϕε1(u)|
)−1

)
,

sup
|u|≤Tn

|ϕ̄X(u)− ϕX(u)| = Op

(
τn

(
inf
|u|≤Tn

|ϕε1(u)|
)−1

)
.

Thus, the convergence rates of these characteristic functions and the associated density estimators
will be obtained under specific assumptions on the tail behaviors of ψ and ϕε1 .

Furthermore, Evdokimov and White (2012) extended the above identification result to more
general setups, where ϕε1 and ϕε2 are allowed to have zeros. In this case, we conjecture that
additional regularizations by some ridge parameters need to be introduced for estimation (see,
Hall and Meister, 2007). Full investigations for these extensions are left for future research.

2.2. Maximal inequality for multivariate empirical characteristic function processes.
One of the key features of the LV and CK estimators is that they involve the multivariate
empirical characteristic functions and their derivatives. In particular, key ingredients for the
proofs of our theorems are to establish the uniform convergence rates of the bivariate random
functions ψ̂(0, u) and ∂ψ̂(0, u)/∂u1 over |u| ≤ Tn as in Lemma 2 in Appendix C. For the
univariate case, Neumann and Reiss (2009, Theorem 4.1) obtained a maximal inequality under
the weighted sup-norm for the empirical characteristic function processes, which was used to
study convergence rates of nonparametric estimators for Lévy processes. Here we extend their
result to a multivariate setup to obtain the uniform convergence rates of ψ̂(0, u) and ∂ψ̂(0, u)/∂u1.
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To present our result, we need some notation. Let {Yj = (Yj,1, . . . , Yj,d)
′}nj=1 be Rd-valued

i.i.d. random variables. For t = (t1, . . . , td)
′ ∈ Rd, define

ψ(t) = E[eit·Y1 ], ψ̂(t) =
1

n

n∑
j=1

eit·Yj , t · Yj =

d∑
`=1

t`Yj,`,

Cn(t) =
1√
n

n∑
j=1

(eit·Yj − E[eit·Y ]) =
√
n(ψ̂(t)− ψ(t)),

C(k)
n (t) =

1√
n

n∑
j=1

∂|k|

∂tk11 · · · ∂t
kd
d

(eit·Yj − E[eit·Y ]), for k = (k1, . . . , kd)
′ ∈ Nd, |k| =

d∑
j=1

kj ,

E[‖C(k)
n ‖L∞(w)] = E

[
sup
t∈Rd

(
w(‖t‖)|C(k)

n (t)|
)]

,

where w(t) = (log(e + |t|))−1/2−δ is a weight function for some δ > 0 and ‖ · ‖ is the Euclidean
norm on Rd.

The multivariate version of Neumann and Reiss (2009, Theorem 4.1), a maximal inequality
for C(k)

n (t), is obtained as follows. The proof is presented in Appendix D.

Lemma 1. Assume E
[(∏d

j=1 |Y1,j |(kj∨1/2)
)2+η

]
<∞ for some η > 0. Then

sup
n≥1

E[‖C(k)
n ‖L∞(w)] <∞.

Remark 5. By this lemma, the uniform convergence rate of ∂|k|ψ̂(u)

∂u
k1
1 ···∂u

kd
d

over ‖u‖ ≤ Tn is obtained

as follows. Since

‖C(k)
n ‖L∞(w) ≥

√
n sup
‖u‖≤Tn

∣∣∣∣∣ ∂|k|

∂uk11 · · · ∂u
kd
d

(ψ̂(u)− ψ(u))

∣∣∣∣∣ inf
‖u‖≤Tn

w(‖u‖),

Lemma 1 and the definition of w(·) imply that

E

[
sup
‖u‖≤Tn

∣∣∣∣∣ ∂|k|

∂uk11 · · · ∂u
kd
d

(ψ̂(u)− ψ(u))

∣∣∣∣∣
]
≤

supn≥1E[‖C(k)
n ‖L∞(w)]√

n inf‖u‖≤Tn w(‖u‖)
= O(n−1/2 log Tn).

Thus, Markov’s inequality implies

sup
‖u‖≤Tn

∣∣∣∣∣ ∂|k|

∂uk11 · · · ∂u
kd
d

(ψ̂(u)− ψ(u))

∣∣∣∣∣ = Op(n
−1/2 log Tn).

Remark 6. The essential part of the proof of Lemma 1 is the way of applying the maximal
inequality for empirical processes in van der Vaart (1998, Corollary 19.35). To this end, it is suffi-
cient to compute the bracketing number of the class of functionsG1,k =

{
y 7→ ∂k

∂t1
cos(t · y) : t ∈ Rd

}
∪{

y 7→ ∂k

∂t1
sin(t · y) : t ∈ Rd

}
in (22) in Appendix D, and for the computation we only need poly-

nomial moments of each component of Y . This point is different from the proof of Bonhomme
and Robin (2010, Lemma 1), which is based on applications of a maximal inequality for empirical
processes and a general Chernoff bound that requires the existence of exponential moments of
random variables (eqs. (A6) and (A9) in their paper, respectively).
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Remark 7. Finally, we emphasize Lemma 1 could be applied to other contexts in econometrics
and statistics. For example, it can be applied to examples discussed in Bonhomme and Robin
(2010) and could also be used to extend the results in Kato and Kurisu (2020) and Kurisu (2019),
which study nonparametric inference on univariate Lévy processes under high- and low-frequency
observations, to multivariate setups.

3. Concluding remarks

In this paper, we derive the uniform convergence rates of the Li and Vuong (1998) and Comte
and Kappus (2015) estimators for the classical measurement error model with repeated mea-
surements, where its identification is achieved by Kotlarski’s (1967) identity. The obtained
convergence rates are faster than the ones derived in Li and Vuong (1998) and Bonhomme and
Robin (2010), and also our assumptions are weaker than the ones in these papers. As a technical
lemma of independent interest, we obtain a maximal inequality for the multivariate normalized
empirical characteristic function process. We conjecture that our results are useful to address
some open questions or new applications of econometric methods using Kotlarski’s identify. We
close this article by discussing such possibilities.

(i): Adusumilli et al. (2020) already used an adapted version of our results to conduct
inference on the cumulative distribution function of the error-free variable. To allow both
unbounded support and non-existence of the moment generating function for observables,
it is critical to employ our uniform convergence results. Furthermore, in Adusumilli et al.
(2020, pp. 137-138), even our faster convergence rates are not sufficient to establish the
asymptotic validity of the naive bootstrap inference for the distribution function of the
error-free variable. Thus, Adusumilli et al. (2020) developed an alternative bootstrap
procedure based on a modified statistic using a subsample. In this case, our faster
convergence rates are useful to allow larger size of the subsample, which yields better
power properties.

(ii): Otsu and Taylor (2019) proposed a specification test for errors-in-variables models,
where the measurement errors are required to be symmetrically distributed. To extend
their approach to allow possibly asymmetric distributions on the measurement errors, one
may plug-in the LV-type estimators for the characteristic functions of the measurement
errors to their test statistic. In this case, if we wish to guarantee that the estimation errors
for the plug-in LV-type estimators are dominated by the main term considered in Otsu
and Taylor (2019), our faster convergence rates are useful to establish such asymptotic
negligibility under weaker conditions. Even if the convergence rates of Otsu and Taylor’s
(2019) statistic are not sufficiently fast, we can adapt a subsample-based modification
as in Adusumilli et al. (2020) to Otsu and Taylor’s (2019) statistic so that our main
theorems can be applied in an analogous way.

(iii): For some existing methods, such as Li (2002) and Li and Hsiao (2004), only consis-
tency is established in the literature and their convergence rates and limiting distributions
remain open questions. The estimators by Li (2002) and Li and Hsiao (2004) can be con-
sidered as semiparametric M-estimators, where the nonparametric nuisance parameters

10



are estimated by the LV-type estimators. Thus, faster uniform convergence rates under
weaker assumptions on the nonparametric plug-in components will be useful to achieve
faster convergence rates for the estimators of finite-dimensional components and to derive
the limiting distributions under mild regularity conditions.
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Appendix A. Proof of Theorems 1 and 5 under Assumption OS

Here we present the proof of Theorem 5 for the CK estimator under Assumption OS (i.e.,
(ϕ̃X , ϕ̃ε, f̃X , f̃ε) achieve the same uniform convergence rates as (ϕ̂X , ϕ̂ε, f̂X , f̂ε) in Theorem 1).
The proof of Theorem 1 on the LV estimator is its specialization (in particular, repeat the same
arguments in Appendices A.1-A.4 by replacing ψ̃(·, ·) with ψ̂(·, ·)).

We use the following notation.

∆(u) = log

(
ϕ̃modX (u)

ϕX(u)

)
=

∫ u

0

(
∂ψ̂(0, u2)/∂u1

ψ̃(0, u2)
− ∂ψ(0, u2)/∂u1

ψ(0, u2)

)
du2,

R1(u) =
1

ψ(0, u)
− 1

ψ̃(0, u)
, R2(u) =

∂ψ̂(0, u)

∂u1
− ∂ψ(0, u)

∂u1
.

A.1. Proof for ϕ̃X . The definition of ϕ̃X implies

|ϕ̃X(u)− ϕX(u)| = |ϕ̃modX (u)− ϕX(u)|I{|ϕ̃modX (u)| ≤ 1}+

∣∣∣∣ ϕ̃modX (u)

|ϕ̃modX (u)|
− ϕX(u)

∣∣∣∣ I{|ϕ̃modX (u)| > 1}

≤ |ϕ̃modX (u)− ϕX(u)|, (10)

where the inequality (for the case of |ϕ̃modX (u)| > 1) follows from the facts that ϕX(u) is inside
the unit circle on C but ϕ̃modX (u) is outside. Thus, we obtain

|ϕ̃X(u)− ϕX(u)| ≤ |ϕ̃X(u)− ϕX(u)|I{|∆(u)| ≤ 1}+ |ϕ̃X(u)− ϕX(u)|I{|∆(u)| > 1}

≤ |ϕ̃modX (u)− ϕX(u)|I{|∆(u)| ≤ 1}+ 2|∆(u)|I{|∆(u)| > 1}

= |ϕX(u)||1− e∆(u)|I{|∆(u)| ≤ 1}+ 2|∆(u)|I{|∆(u)| > 1}

≤ 2|ϕX(u)||∆(u)|I{|∆(u)| ≤ 1}+ 2|∆(u)|I{|∆(u)| > 1}

≤ 2(1 + |ϕX(u)|)|∆(u)|, (11)

where the second inequality follows from (10) and the fact that |ϕ̃X(u)−ϕX(u)| ≤ 2, the equality
follows from the definitions of ϕ̃modX (u) and ∆(u), and the third inequality follows from the fact
that |1− ez| ≤ 2|z| for z ∈ C with |z| ≤ 1. Thus, it is sufficient for the conclusion to derive the
rate of supu∈[−Tn,Tn] |∆(u)|.

Decompose

∆(u) =

∫ u

0

R2(u2)

ψ(0, u2)
du2 +

∫ u

0

∂ψ(0, u2)

∂u1
R1(u2)du2 +

∫ u

0
R1(u2)R2(u2)du2

:= ∆1(u) + ∆2(u) + ∆3(u),
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which are bounded as

sup
u∈[−Tn,Tn]

|∆1(u)| ≤ sup
u∈[−Tn,Tn]

|R2(u)|
(∫ Tn

0

1

|ψ(0, u2)|
du2

)
,

sup
u∈[−Tn,Tn]

|∆2(u)| ≤ sup
u∈[−Tn,Tn]

|R1(u)|
(∫ Tn

0

∣∣∣∣∂ψ(0, u2)

∂u1

∣∣∣∣ du2

)
= sup

u∈[−Tn,Tn]
|R1(u)|

(∫ Tn

0
|E[Y1e

iu2Y2 ]|du2

)
≤ TnE[|Y1|] sup

u∈[−Tn,Tn]
|R1(u)|,

sup
u∈[−Tn,Tn]

|∆3(u)| ≤ Tn sup
u∈[−Tn,Tn]

|R1(u)| sup
u∈[−Tn,Tn]

|R2(u)|.

Therefore, the conclusion follows from Lemmas 2 and 3.

A.2. Proof for ϕ̃ε. Note that

sup
u∈[−Tn,Tn]

∣∣∣∣∣ ψ̂(0, u)− ψ(0, u)

ψ(0, u)

∣∣∣∣∣ = Op

(
n−1/2T βx+βε

n log Tn

)
,

sup
u∈[−Tn,Tn]

∣∣∣∣ ϕ̃X(u)− ϕX(u)

ϕX(u)

∣∣∣∣ = Op

(
n−1/2T 3βx+2βε+1

n log Tn

)
.

We also note that

|ϕ̄X(u)− ϕX(u)| ≤ |ϕ̄X(u)− ϕ̃X(u)|+ |ϕ̃X(u)− ϕX(u)|

≤ |ϕ̄X(u)− ϕ̃X(u)|+ 4|∆(u)|

= |ϕ̄X(u)− ϕ̃X(u)|I{
√
n|ϕ̃X(u)| ≤ 1}+ |ϕ̄X(u)− ϕ̃X(u)|I{

√
n|ϕ̃X(u)| > 1}+ 4|∆(u)|

≤ (1/
√
n+ |ϕ̃X(u)|)I{

√
n|ϕ̃X(u)| ≤ 1}+ 0 + 4|∆(u)|

≤ 2/
√
n+ 4|∆(u)|,

and this implies that

sup
u∈[−Tn,Tn]

|ϕ̄X(u)− ϕX(u)| = O

(
sup

u∈[−Tn,Tn]
|ϕ̃X(u)− ϕX(u)|

)
. (12)

First we show

sup
u∈[−Tn,Tn]

| log ϕ̃ε(u)− logϕε(u)| = Op

(
n−1/2T 3βx+2βε+1

n log Tn

)
.

Let F (y) = log(1 + y), and ζ(u) = (ψ̂(0, u)− ψ(0, u))/ψ(0, u). Observe that for any |u| ≤ Tn,

(F ◦ ζ)(u) = F (0) + F ′(θ1ζ(u))ζ(u) = (F ′(0) + θ1F
′′(θ2ζ(u))ζ(u))ζ(u)

= ζ(u) + θ1F
′′(θ2ζ(u))ζ2(u),

for some θ1, θ2 ∈ [0, 1]. Then we have

sup
u∈[−Tn,Tn]

∣∣∣∣∣log

(
ψ̂(0, u)

ψ(0, u)

)
− ψ̂(0, u)− ψ(0, u)

ψ(0, u)

∣∣∣∣∣ ≤ O
(

sup
u∈[−Tn,Tn]

|ζ(u)|2
)

= Op

(
n−1T 2βx+2βε

n (log Tn)2
)
,
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which yields

sup
u∈[−Tn,Tn]

∣∣∣log(ψ̂(0, u)/ψ(0, u))
∣∣∣ = O

(
sup

u∈[−Tn,Tn]
|ζ(u)|

)
= Op

(
n−1/2T βx+βε

n log Tn

)
. (13)

Likewise, we can show that

sup
u∈[−Tn,Tn]

|log(ϕ̃X(u)/ϕX(u))| = O

(
sup

u∈[−Tn,Tn]

∣∣∣∣ ϕ̃X(u)− ϕX(u)

ϕX(u)

∣∣∣∣
)

= Op

(
n−1/2T 3βx+2βε+1

n log Tn

)
.

(14)
Together with (12), (13), and (14), we have that

sup
u∈[−Tn,Tn]

| log ϕ̃ε(u)− logϕε(u)|

= sup
u∈[−Tn,Tn]

∣∣∣log(ψ̂(0, u)/ϕ̄X(u))− log(ψ(0, u)/ϕX(u))
∣∣∣

≤ sup
u∈[−Tn,Tn]

∣∣∣log(ψ̂(0, u)/ψ(0, u))
∣∣∣+ sup

u∈[−Tn,Tn]
|log(ϕ̄X(u)/ϕX(u))|

= O

(
sup

u∈[−Tn,Tn]

∣∣∣∣∣ ψ̂(0, u)− ψ(0, u)

ψ(0, u)

∣∣∣∣∣
)

+O

(
sup

u∈[−Tn,Tn]

∣∣∣∣ ϕ̃X(u)− ϕX(u)

ϕX(u)

∣∣∣∣
)

= Op

(
n−1/2T 3βx+2βε+1

n log Tn

)
= op(1). (15)

On the other hand, since |ϕε(u)| ≤ 1 and |ez−1| ≤ |z| for z ∈ C with |z| < 1, a Taylor expansion
of ϕ̃ε(u)− ϕε(u) gives that

sup
u∈[−Tn,Tn]

|ϕ̃ε(u)− ϕε(u)| ≤ O

(
sup

u∈[−Tn,Tn]
| log ϕ̃ε(u)− logϕε(u)|

)
,

provided supu∈[−Tn,Tn] | log ϕ̃ε(u)− logϕε(u)| < 1. Therefore, (15) yields the desired result.

A.3. Proof for f̃X . Note that for all x,

|f̃X(x)− fX(x)|

=

∣∣∣∣∣ 1

2π

∫ h−1

−h−1

e−iux{ϕ̃X(u)− ϕX(u)}ϕK(hu)du+
1

2π

∫
e−iuxϕX(u){ϕK(hu)− 1}du

∣∣∣∣∣
≤ CK

h−1

π
sup

u∈[−h−1,h−1]

|ϕ̃X(u)− ϕX(u)|+ 1

2π

∫
|ϕX(u)||ϕK(hu)− 1|du, (16)

where the inequality follows from |e−iux| = 1 and supx∈R |ϕK(x)| ≤ CK for some positive constant
CK <∞. By the first part of this theorem, the first term of (16) is of orderOp

(
n−1/2h−2βx−2βε−2 log h−1

)
.

Since K is a p-th order kernel, the p-th order Taylor expansion of ϕK(x) around x = 0 yields
ϕK(x) = 1 + m(x)xp for all x ∈ [−1, 1], where m is some continuous function on [−1, 1] (for
|x| > 1, Assumption K requires ϕK(x) = 0). Therefore, the second term of (16) satisfies∫

|ϕX(u)||ϕK(hu)− 1|du ≤ Cx
∫
|u|−βx |ϕK(hu)− 1|du

≤ Cx sup
v∈[−1,1]

|m(v)|hp
∫ h−1

−h−1

|u|−βx+pdu+ 2Cx

∫ ∞
h−1

|u|−βxdu = O(hβx−1), (17)
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where the first inequality follows from Assumption OS, and the second inequality follows from
the assumption on K. Therefore, the conclusion follows.

A.4. Proof for f̃ε. The proof is similar to the one in Appendix A.3. Replace “ f̃X , fX , ϕ̃X , ϕX ”
with “ f̃ε, fε, ϕ̃ε, ϕε” and proceed in the same manner by using the uniform convergence rate of
ϕ̃ε obtained in Appendix A.2.

Appendix B. Proofs for other cases

B.1. Proof of Theorems 2 and 5 under Assumption SS. The proof for ϕ̃X is exactly same
as the one in Appendix A.1 except for the last sentence. Under Assumption SS, the conclusion
follows from Lemmas 2 and 4 (instead of Lemma 3 under Assumption OS), and characterization
of
∫ Tn

0
1

|ψ(0,u2)|du2 using Assumption SS.
The proof for ϕ̃ε proceeds in the same way as the one in Appendix A.2. The only difference

is to insert the orders for ψ(0, u), ϕX(u), and ϕε(u) implied from Assumption SS.
The proof for f̃X proceeds in the same way as the one in Appendix A.3. For the first term

of (16), replace the order of supu∈[−h−1,h−1] |ϕ̃X(u)− ϕX(u)| with the one derived from the first
part of this theorem by using Lemma 4 (instead of Lemma 3 under Assumption OS). For the
second term of (16) (i.e., the bias term), under Assumptions SS and K with ϕK(x) = 1, |x| ≤ c

for some 0 < c ≤ 1, there exists a positive constant C0 such that∫
|ϕX(u)||ϕK(hu)− 1|du ≤ C0Cx

∫ ∞
ch−1

|u|βxe−|u|ρx/µxdu

=

O
(
h−βx−1+ρx/q exp

(
− cρxh−ρx

µx

))
if βx ≤ 0,

O
(
h−βx−1+ρx exp

(
− cρxh−ρx

µx

))
if βx > 0,

(18)

where q is any constant with q > 1. In fact, when βx ≤ 0, by using Lemma 4.2 in LV and
Hölder’s inequality, we have that∫ ∞

ch−1

|u|βxe−|u|ρx/µxdu ≤
(∫ ∞

ch−1

|u|q1(βx−1)du

)1/q1 (∫ ∞
ch−1

|u|q2e−q2|u|ρx/µxdu
)1/q2

= O
(
h−βx+1−1/q1

)
×O

(
hρx/q2−1−1/q2 exp

(
−c

ρxh−ρx

µx

))
= O

(
hρx/q2−βx−1 exp

(
−c

ρxh−ρx

µx

))
,

where q1 and q2 are constants with 1/q1 + 1/q2 = 1 and q1, q2 > 1. Therefore, the conclusion
follows.

Finally, the proof for f̃ε is similar to the one for f̃X above. Replace “ f̃X , fX , ϕ̃X , ϕX ” with
“ f̃ε, fε, ϕ̃ε, ϕε” and proceed in the same manner by using the uniform convergence rate of ϕ̃ε. The
bias term is bounded as in (18) by replacing “ϕX , βx, ρx, µx, Cx” with “ϕε, βε, ρε, µε, Cε”.

B.2. Proof of Theorems 3 and 5 with OS fX and SS fε. The proof for ϕ̃X is exactly
same as the one in Appendix A.1 except for the last sentence. For the case of OS fX and SS fε,
the conclusion follows from Lemmas 2 and 5 (instead of Lemma 3 under Assumption OS), and
characterization of

∫ Tn
0

1
|ψ(0,u2)|du2 using Assumptions OS for fX and SS fε.
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The proof for ϕ̃ε proceeds in the same way as the one in Appendix A.2. The only difference
is to insert the orders for ψ(0, u), ϕX(u), and ϕε(u) implied from Assumptions OS for fX and
SS fε.

The proof for f̃X proceeds in the same way as the one in Appendix A.3. For the first term
of (16), replace the order of supu∈[−h−1,h−1] |ϕ̃X(u)− ϕX(u)| with the one derived from the first
part of this theorem by using Lemma 5 (instead of Lemma 3 under Assumption OS). For the
second term of (16) (i.e., the bias term), we can apply the same order in (17) because fX satisfies
Assumption OS.

Finally, the proof for f̃ε is similar to the one for f̃X above. Replace “ f̃X , fX , ϕ̃X , ϕX ” with
“ f̃ε, fε, ϕ̃ε, ϕε” and proceed in the same manner by using the uniform convergence rate of ϕ̃ε.
Also, the bias term is bounded as in (18) by replacing “ϕX , βx, ρx, µx, Cx” with “ϕε, βε, ρε, µε,
Cε”.

B.3. Proof of Theorems 4 and 5 with SS fX and OS fε. The proof for ϕ̃X is exactly
same as the one in Appendix A.1 except for the last sentence. For the case of SS fX and OS fε,
the conclusion follows from Lemmas 2 and 6 (instead of Lemma 3 under Assumption OS), and
characterization of

∫ Tn
0

1
|ψ(0,u2)|du2 using Assumptions SS for fX and OS fε.

The proof for ϕ̃ε proceeds in the same way as the one in Appendix A.2. The only difference is
to insert the orders for ψ(0, u), ϕX(u), and ϕε(u) implied from Assumptions SS for fX and OS
fε.

The proof for f̃X proceeds in the same way as the one in Appendix A.3. For the first term
of (16), replace the order of supu∈[−h−1,h−1] |ϕ̃X(u)− ϕX(u)| with the one derived from the first
part of this theorem by using Lemma 6 (instead of Lemma 3 under Assumption OS). For the
second term of (16) (i.e., the bias term), we can apply the same order in (18) because fX satisfies
Assumption SS.

Finally, the proof for f̃ε is similar to the one for f̃X above. Replace “ f̃X , fX , ϕ̃X , ϕX ” with
“ f̃ε, fε, ϕ̃ε, ϕε” and proceed in the same manner by using the uniform convergence rate of ϕ̃ε.
Also, the bias term is bounded as in (17) because fε satisfies Assumption OS.

Appendix C. Lemmas

Lemma 2. Assume E[|Y1|2+η] <∞ for some η > 0. Then we have that

sup
u∈[−Tn,Tn]

|ψ̂(0, u)− ψ(0, u)| = Op(n
−1/2 log Tn), sup

u∈[−Tn,Tn]
|R2(u)| = Op(n

−1/2 log Tn).

Proof. Since ψ̂(0, u) = 1
n

∑n
j=1 e

iuYj,2 is the empirical characteristic function of ψ(0, u), we can
apply Lemma 1 with d = 1 and k = 0. This yields that

sup
u∈[−Tn,Tn]

|ψ̂(0, u)− ψ(0, u)| = Op(n
−1/2 log Tn).

An application of Lemma 1 with d = 2, k = (1, 0)′ also yields that

sup
u∈[−Tn,Tn]

|R2(u)| = Op(n
−1/2 log Tn).

�
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Lemma 3. Suppose Assumption OS holds. Assume E[|Y1|2+η] < ∞ for some η > 0 and
n−1/2T βx+βε

n log Tn → 0 as n→∞. Then we have that

sup
u∈[−Tn,Tn]

|R1(u)| = Op(n
−1/2T 2βx+2βε

n log Tn).

Proof. Note that

|R1(u)| ≤ |ψ̃(0, u)− ψ(0, u)|
|ψ(0, u)||ψ̃(0, u)|

≤ |ψ̃(0, u)− ψ(0, u)|
|ψ(0, u)||ψ̂(0, u)|

.

Here, we used the fact |ψ̃(0, u)| ≤ |ψ̂(0, u)|. By the definition of ψ̃(0, u), we have that

|ψ̃(0, u)− ψ(0, u)| ≤ |ψ̃(0, u)− ψ̂(0, u)|+ |ψ̂(0, u)− ψ(0, u)|

≤ |ψ̃(0, u)− ψ̂(0, u)|I{|ψ̂(0, u)| > 1/
√
n}+ |ψ̃(0, u)− ψ̂(0, u)|I{|ψ̂(0, u)| ≤ 1/

√
n}

+|ψ̂(0, u)− ψ(0, u)|

= |n−1/2 − ψ̂(0, u)|I{|ψ̂(0, u)| ≤ 1/
√
n}+ |ψ̂(0, u)− ψ(0, u)|

≤ 1√
n
I{|ψ̂(0, u)| ≤ 1/

√
n}+ |ψ̂(0, u)|I{|ψ̂(0, u)| ≤ 1/

√
n}+ |ψ̂(0, u)− ψ(0, u)|

≤ 2√
n

+ |ψ̂(0, u)− ψ(0, u)|.

Combining this with Lemma 2, we have

sup
u∈[−Tn,Tn]

|ψ̃(0, u)− ψ(0, u)| = Op(n
−1/2 log Tn). (19)

Assumption OS and Lemma 2 using the condition n−1/2T βx+βε
n log Tn → 0 also imply that

inf
u∈[−Tn,Tn]

|ψ̂(0, u)| ≥ inf
u∈[−Tn,Tn]

|ψ(0, u)| − sup
u∈[−Tn,Tn]

|ψ̂(0, u)− ψ(0, u)| = Op(T
−βx−βε
n ). (20)

Combining (19) and (20), we finally obtain that

sup
u∈[−Tn,Tn]

|R1(u)| ≤
supu∈[−Tn,Tn] |ψ̃(0, u)− ψ(0, u)|

infu∈[−Tn,Tn] |ψ(0, u)| infu∈[−Tn,Tn] |ψ̂(0, u)|
= Op(n

−1/2T 2βx+2βε log Tn).

�

Lemma 4. Suppose Assumption SS holds. Assume E[|Y1|2+η] < ∞ for some η > 0 and
n−1/2T−βx−βεn (log Tn) exp

(
T ρxn
µx

+ T ρεn
µε

)
→ 0 as n→∞. Then we have that

sup
u∈[−Tn,Tn]

|R1(u)| = Op

(
n−1/2T−2βx−2βε

n (log Tn) exp

(
2T ρxn
µx

+
2T ρεn
µε

))
.

Proof. The proof is same as Lemma 3 up to (19). Then Assumption SS and Lemma 2 combined
with the condition n−1/2T−βx−βεn (log Tn) exp

(
T ρxn
µx

+ T ρεn
µε

)
→ 0 also imply that

inf
u∈[−Tn,Tn]

|ψ̂(0, u)| ≥ inf
u∈[−Tn,Tn]

|ψ(0, u)| − sup
u∈[−Tn,Tn]

|ψ̂(0, u)− ψ(0, u)|

= Op

(
T βx+βε
n exp

(
−T

ρx
n

µx
− T ρεn

µε

))
. (21)

17



By (19) and (21), we finally obtain that

sup
u∈[−Tn,Tn]

|R1(u)| ≤
supu∈[−Tn,Tn] |ψ̃(0, u)− ψ(0, u)|

infu∈[−Tn,Tn] |ψ(0, u)| infu∈[−Tn,Tn] |ψ̂(0, u)|

= Op

(
n−1/2T−2βx−2βε

n (log Tn) exp

(
2T ρxn
µx

+
2T ρεn
µε

))
.

�

Analogous lemmas can be obtained for the mixed cases. Since the proofs are similar to the
ones in Lemmas 3 and 4, they are omitted.

Lemma 5. Suppose Assumption OS holds for fX and Assumption SS holds for fε. Assume
E[|Y1|2+η] < ∞ for some η > 0 and n−1/2T βx−βεn (log Tn) exp

(
T ρεn
µε

)
→ 0 as n → ∞. Then we

have that
sup

u∈[−Tn,Tn]
|R1(u)| = Op

(
n−1/2T 2βx−2βε

n (log Tn) exp

(
2T ρεn
µε

))
.

Lemma 6. Suppose Assumption SS holds for fX and Assumption OS holds for fε. Assume
E[|Y1|2+η] < ∞ for some η > 0 and n−1/2T−βx+βε

n (log Tn) exp
(
T ρxn
µx

)
→ 0 as n → ∞. Then we

have that
sup

u∈[−Tn,Tn]
|R1(u)| = Op

(
n−1/2T−2βx+2βε

n (log Tn) exp

(
2T ρxn
µx

))
.

Appendix D. Proof of Lemma 1

We prove the case when k = (k, 0, . . . , 0)′. In this case, we rewrite C(k)
n as C(k)

n . Other cases
can be proved similarly. We follow the notations used in the proof of Neumann and Reiss (2009,
Theorem 4.1). Given two functions `, u : Rd → R the bracket [`, u] denotes the set of functions
f with ` ≤ f ≤ u. For a set G of functions the L2-bracketing number N[·](ε,G) is the minimum
number of brackets [`j , uj ], satisfying E[(uj(Y )−`j(Y ))2] ≤ ε2, that are needed to cover G. The
associated bracketing number is defined as

J[·](δ,G) =

∫ δ

0

√
log(N[·](ε,G))dε.

Moreover, a function F is called an envelop function for G if |f | ≤ F holds for all f ∈ G. We
decompose C(k)

n into its real and imaginary parts and introduce the set of functions

G1,k :=

{
y 7→ ∂k

∂t1
cos(t · y) : t ∈ Rd

}
∪
{
y 7→ ∂k

∂t1
sin(t · y) : t ∈ Rd

}
=: G(c)

1,k ∪G(s)
1,k. (22)

Since an envelop function of G1,k is given by Fk = |y1|k and E[|Y1|2k] < ∞, an application of
van der Vaart (1998, Corollary 19.35) yields that

sup
n≥1

E[‖C(k)
n ‖L∞(w)] ≤ CJ[·]

(√
E[Y 2k

1 ],G1,k

)
,

for a universal constant C. Define

M := M(ε, k) := inf
{
m > 0 : E[|Y1|2k1{|Y1| ≥ m}]

}
≤ ε2.
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Furthermore, let ‖w‖∞ = supx∈R |w(x)| and we set for grid points t ∈ Rd,

g±j (y) =

(
w(‖tj‖)

∂k

∂t1
cos(t · y)± ε|y1|k

)
I{y1 ∈ [−M,M ]} ± ‖w‖∞|y1|kI{y1 ∈ [−M,M ]c},

h±j (y) =

(
w(‖tj‖)

∂k

∂t1
sin(t · y)± ε|y1|k

)
I{y1 ∈ [−M,M ]} ± ‖w‖∞|y1|kI{y1 ∈ [−M,M ]c}.

For these functions, we can show that

E[(g+
j (Y )− g−j (Y ))2] ≤ 4ε2(E[|Y1|2k] + ‖w‖2∞),

E[(h+
j (Y )− h−j (Y ))2] ≤ 4ε2(E[|Y1|2k] + ‖w‖2∞).

To obtain above inequalities, we used the definition of M = M(ε, k). It remains to choose the
grid points tj in such a way that the brackets cover the set G1,k. Let Lip(w) be the Lipschitz
constant of the weight function w. For an arbitrary t ∈ Rd and any grid point tj we have that∣∣∣∣w(‖t‖) ∂

k

∂t1
cos(t · y)− w(‖tj‖)

∂k

∂tj,1
cos(tj · y)

∣∣∣∣
≤ |y1|kLip(w)|‖t‖ − ‖tj‖|+ ‖w‖∞|y1|k+1‖t− tj‖ ≤ |y1|k(Lip(w) + ‖w‖∞|y1|)‖t− tj‖,

and also have that∣∣∣∣w(‖t‖) ∂
k

∂t1
cos(t · y)− w(‖tj‖)

∂k

∂tj,1
cos(tj · y)

∣∣∣∣ ≤ |y1|k(w(‖t‖) + w(‖tj‖)). (23)

Therefore, the function y 7→ w(‖t‖) ∂k∂t1 cos(t · y) is contained in the bracket [g−j , g
+
j ] if

(Lip(w) + ‖w‖∞M)‖t− tj‖ ≤ ε.

Consequently, we choose the grid points as

tj = εzj/(Lip(w) + ‖w‖∞M(ε, k)), zj ∈ Zd,

for ‖zj‖ ≤ J(ε), where J(ε) is the smallest integer such that εJ(ε)/(Lip(w) + ‖w‖∞M(ε, k)) is
greater than or equal to

U(ε) = inf{a > 0 : sup
|v|≥a

w(v) ≤ ε/2}.

Together with this and (23) yield that N[·](ε,G
(c)
1,k) ≤ (2J(ε) + 1)d (we can show the same bound

for N[·](ε,G
(s)
1,k)). Then we have that

N[·](ε,G1,k) ≤ N[·](ε,G
(c)
1,k) +N[·](ε,G

(s)
1,k) ≤ 2(2J(ε) + 1)d.

If follows from the Markov inequality that

M(ε, k) ≤ (E[|Y1|2k+η]/ε2)1/η.

From the definition of J(ε), have that

εJ(ε)

2(Lip(w) + ‖w‖∞M(ε, k))
≤ U(ε).
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Therefore we obtain the inequality

J(ε) ≤ 2U(ε)(Lip(w) + ‖w‖∞M(ε, k))/ε+ 1.

Then we have that log(N[·](ε,G1,k)) = O(log J(ε)) = O(ε−(δ+1/2)−1
+ log(ε−1−2/η)) = O(ε−κ) for

κ = (δ + 1/2)−1 < 2. This implies that J(δ,G1,k) <∞ as required.
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