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Abstract

This paper studies the spread of losses and defaults in financial networks with two inter-
related features: collateral requirements and alternative contract termination rules. When
collateral is committed to a firm’s counterparties, a solvent firm may default if it lacks suffi-
cient liquid assets to meet its payment obligations. Collateral requirements can thus increase
defaults and payment shortfalls. Moreover, one firm may benefit from the failure of another
if the failure frees collateral committed by the surviving firm, giving it additional resources
to make other payments. Contract termination at default may also improve the ability of
other firms to meet their obligations through access to collateral. As a consequence of these
features, the timing of payments and collateral liquidation must be carefully specified to
establish the existence of payments that clear the network. Using this framework, we show
that dedicated collateral may lead to more defaults than pooled collateral; we study the
consequences of illiquid collateral for the spread of losses through fire sales; we compare
networks with and without selective contract termination; and we analyze the impact of al-
ternative resolution and bankruptcy stay rules that limit the seizure of collateral at default.
Under an upper bound on derivatives leverage, full termination reduces payment shortfalls
compared with selective termination.

JEL Classifications: D53, D70, E44, G1, G28, G33, K22

Keywords: Contagion, OTC markets, financial regulation, network, fire sales, collateral,
automatic stays for qualified financial contracts

1 Introduction

This paper studies the spread of losses and defaults through financial networks when payment

obligations are at least partly secured by collateral. A combination of changes in regulation

and industry practices following the financial crisis of 2007–2009 have greatly expanded the use

of collateral in trading and lending. In the over-the-counter (OTC) derivatives market, most
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standardized contracts now trade through central counterparties, which require participants to

post collateral in the form of initial margin (IM). The part of the market that continues to trade

bilaterally is now also subject to IM requirements. Similarly, unsecured interbank lending is far

lower than its pre-crisis levels and has mostly been replaced by collateralized lending through

repurchase agreements. See, e.g., Duffie [13], Ghamami and Glasserman [24], Financial Stability

Board [21], and pages 107–126 of the U.S. Department of Treasury Report [43] for background.

Collateral provides a buffer against the spread of losses: if one party to a contract defaults

on a payment obligation, its counterparty can seize available collateral to offset the loss. In this

sense, collateral supports financial stability.

But, as our analysis will show, this is not the whole story. We highlight additional mecha-

nisms that complicate the impact of collateral. First, committing collateral to specific contracts

and counterparties can lead to an ex post inefficient allocation of a firm’s assets: a firm may

find itself unable to make a current payment obligation on one contract despite having posted

collateral to protect future potential obligations on other contracts. Firms do not ordinarily

have the option to terminate contracts to recover posted collateral. In reducing counterparty

credit risk, collateral requirements can increase strains on funding liquidity, because collateral

requirements create additional funding needs.1 These effects are intimately connected to con-

tract termination rights, because terminating a contract can provide access to collateral and,

indeed, is ordinarily necessary for access to collateral.

Collateral held in less liquid assets creates a further consequence for contagion. At the

failure of one institution, its counterparties would seize and liquidate collateral. This sell-off or

fire sale could drive down the price of the collateral assets, creating market losses at other firms

holding those assets. In particular, firms that had posted similar assets as collateral would find

themselves with a collateral shortfall — and an obligation to add collateral — as a result of the

fire sale. See Stein [40], Shleifer and Vishny [36], Chapters 1 and 2 of Gennaioli and Shleifer

[23], and the references therein for background on the role of fire sales in financial crises.

We develop these ideas in a network model. The nodes of the network are parties to financial

contracts; for brevity, we sometimes refer to these as banks, though we have in mind a broader

set of financial and even non-financial companies. The nodes are linked through contracts that

carry payment obligations. We take the network configuration as an input to our analysis; our

model does not seek to explain how a particular configuration comes about.

We build on the standard framework of Eisenberg and Noe [17]. The Eisenberg-Noe model

1Researchers have also debated the implications for economic growth of the demand for safe assets as collateral;
see Duffie et al. [14] and Sidanius and Zikes [37] for estimates of the demand. Our analysis addresses the
distribution and allocation of collateral, rather than its overall level.
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takes a set of nodes with balance sheets linked through uncollateralized payment obligations

and identifies one or more clearing vectors. A clearing vector describes a set of actual payments

under which a node never pays more than it owes, all contracts have equal seniority, and nodes

face limited liability. These properties lead to a fixed-point characterization of clearing pay-

ments. The Eisenberg-Noe model has been extended to cover many other features, including

bankruptcy costs (Rogers and Veraart [35]) and claims of different seniority (Elsinger [18]) or

maturity (Kusnetsov and Veraart [32]); see Cabrales, Gale, and Gottardi [8], Glasserman and

Young [25], Hurd [28], and Jackson and Pernoud [30] for overviews and extensive references. De-

spite these many extensions, the inclusion of collateral poses special complications and requires

a departure from the usual solution approach.

In a collateralized network, the failure of one node may improve the ability of other nodes

to meet their obligations. If a surviving node had committed collateral to a contract with the

failed node, the failure frees that collateral, providing the surviving node additional resources

to make other payments. Indeed, the freed collateral might even be necessary for the surviving

node to meet its obligations, in which case the failure of one node prevents the failure of

another. We will show that under these circumstances the notion of clearing payments may not

be well-defined.

In an equilibrium of the Eisenberg-Noe model, the timing of events (payments and defaults)

is immaterial, and these events may be understood as occurring simultaneously. In modeling

collateral, we separate the timing of two types of events following a default. We assume that

creditors have immediate access to collateral posted by the defaulting node; but the freeing of

collateral posted to the default node will follow a short delay. This modeling choice is supported

by Key Principle 5 of the BCBS-IOSCO [4] (p.20) principles on margin requirements for non-

cleared derivatives: Initial margin collected should be held in such a way as to ensure that (i) the

margin collected is immediately available to the collecting party in the event of the counterparty’s

default, and (ii) the collected margin must be subject to arrangements that protect the posting

party to the extent possible under applicable law in the event that the collecting party enters

bankruptcy. The return of collateral in (ii) does not carry the same urgency as the access to

collateral in (i), so we will not assume they occur simultaneously.

By separating these events we show that we can arrive at a well-defined set of clearing

payments. The separation eliminates the possibility that the failure of one node could prevent

the failure of another node by freeing collateral — a scenario we see as unrealistic as well as

a complication for the analysis. Along with the clearing payments, we characterize the set of

defaulting nodes and the redistribution of collateral.
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We use this framework to evaluate the effects on a network of various policy options related

to collateral and contract termination rights, because contract termination controls access to

collateral. We take as our measures of financial stability the size of the default set and the

network’s total payment shortfall. We examine these measures in various scenarios and establish

the following conclusions.

(i) Costless termination. As a starting point for comparion, we consider networks in which

nodes are free to terminate contracts, and we show that under this assumption posting collateral

is equivalent to making certain payments, so collateral plays no essential role. This reference

point establishes the close connection between access to collateral and restrictions on contract

termination that runs through the rest of our analysis.

(ii) Pooled collateral. We investigate the tradeoff between committing collateral to specific

counterparties versus pooling collateral and holding additional cash. This tradeoff is analogous

to the comparison between collateral requirements and capital requirements — capital absorbs

any type of loss, whereas collateral protects specific obligations. Although pooling may appear

to allow a better allocation of resources, we show that pooling is guaranteed to reduce defaults

under additional conditions. For instance, we show that when committed collateral exceeds

current payment obligations, pooling reduces defaults and does not affect payment shortfalls.

This result is applicable with derivative contracts. Since in OTC derivatives markets, collateral

in the form of initial margin captures in part extreme potential future exposures, it can exceed

current payments (Ghamami [27]). In general, however, pooling may produce larger or smaller

payment shortfalls, depending on a node’s position in the network, so the tradeoff cannot be

resolved by considering a node in isolation.

(iii) Collateral illiquidity. We expand our model to capture the potential spread of losses

through collateral fire sales. We extend the method of Cifuentes, Ferrucci, and Shin [10],

which models illiquidity through a price-impact function. When a node fails, its creditors

liquidate collateral, driving down its price and lowering the value of similar assets held by

other nodes. This price-mediated channel amplifies losses beyond the direct effect of missed

payments. Collateral illiquidity increases defaults and payment shortfalls.

(iv) Automatic stays. We consider the effect of a stay under which payments are made

before collateral is liquidated and show that it has no effect on defaults or payment shortfalls

when collateral is liquid. We interpret this point as consistent with the policy recommendations

of Duffie and Skeel [15] and the subsequent finalized stay rule on collateral sale in repo markets,

under which collateral can be accessed immediately only if it is held in cash or cash-like assets.

(v) Accelerated payments triggered by defaults. Shortly after Lehman Brothers filed for
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bankruptcy, its counterparties terminated approximately 733,000 of over 900,000 OTC deriva-

tives contracts (Fleming and Sarkar [22]). A contract termination creates a new payment

obligation, equal to the market value of the contract, from the out-of-the-money party to the

in-the-money party. Lehman’s counterparties generally terminated contracts with positive value

to the surviving party and chose not to terminate contracts with positive value to Lehman. We

expand our model to compare this type of selective termination (known as “cherry-picking”)

with full termination.

Incorporating accelerated payments through contract termination complicates the analysis,

again because one node can benefit from the failure of another, in this case because a default

by one node may accelerate payments to other nodes. Arriving at a well-defined set of clearing

payments requires making further assumptions on the timing of events; we assume a delay

between the failure of a node and any accelerated payments resulting from that failure. This

modeling choice is supported by the unfolding of the Lehman bankruptcy in 2008. Claims

against Lehman resulting from contract termination became part of the bankruptcy process,

leading to delays in payments, as discussed in Fleming and Sarkar [22].

(vi) Alternative contract termination rights. Using the framework of accelerated payments,

we compare networks under different contract termination protocols and discuss these compar-

isons in the context of post-crisis automatic stay rules2 on access to collateral upon a counter-

party’s failure. We compare three scenarios: selective termination (cherry-picking) by surviving

nodes, full termination of all contracts with a failed node, and no termination. We show that

selective termination ordinarily results in fewer defaults; but we also show that full termination

can reduce systemwide payment shortfalls under a constraint on a measure of firms’ deriva-

tives leverage. We make a similar comparison of full-termination and no-termination scenarios.

These comparisons are motivated by continuing discussions on the treatment of derivatives in

the bankruptcy and resolution of large financial institutions. See Jackson [31], Ghamami [26],

the U.S. Department of the Treasury Report [44], and the references therein.

Section 2 reviews the Eisenberg-Noe model, explains the difficulties introduced by collateral,

and presents our solution; it also examines the case of costless contract termination and collat-

eral pooling. Section 3 introduces illiquid collateral and presents the joint solution of clearing

payments and market prices for collateral assets, along with the implications for defaults and

payment shortfalls. Section 4 extends our model to cover accelerated payments from contract

2These rules generally apply to what are known as qualified financial contracts (QFCs), which include deriva-
tives and repos. See Duffie and Skeel [15], Skeel [38], and Roe and Adams [34] for legal background on stays for
QFCs. See Bolton and Oehmke [6] and Duffie and Wang [16] for corporate finance and game theoretic models
of automatic stays and contract termination.
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termination. Section 5 compares defaults and payment shortfalls under alternative termination

scenarios governing collateral access. We defer all proofs to an appendix.

2 Network Model

In this section, we first review the model of Eisenberg and Noe [17] and then introduce collateral.

2.1 Networks without Collateral

We consider a network with nodes N = {1, . . . , N} representing banks or other market partici-

pants. (We can also think of one node as representing the outside world.) We use the following

notation:

p̄ij = payment due from i to j, i, j ∈ N ;

ci = cash held by node i ∈ N ;

pij = actual payment from i to j, i, j ∈ N .

We refer to ci as cash for brevity; more generally, ci represents the near-term cash value of

assets (other than the p̄ji) available to node i to make payments. We assume that payment

obligations are netted so that p̄ij and p̄ji cannot both be strictly positive.

We seek to model default triggered by illiquidity rather than insolvency, and this differen-

tiates our formulation from most interbank network models. In our setting, the claims and

obligations p̄ij and cash values ci are not intended to provide a complete accounting of a node’s

balance sheet; each node would typically have other longer-term assets and liabilities. The p̄ij

measure payments due. A node defaults if it does not have the cash to make a payment, even if

the total value of its assets exceeds the value of its liabilities. Each ci includes the cash a node

could raise by borrowing against longer-term assets.

We imagine that, outside the model, some nodes have experienced an exogenous loss of

asset value, and we proceed to evaluate payments made, taking the ci as cash levels after the

exogenous shock. Given a collection of payments pij , node i’s cash is given by

Aoi = ci +
∑
k 6=i

pki, (1)

and its payments due are given by

Li =
∑
k 6=i

p̄ik. (2)
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Node i defaults if Aoi < Li, so the default set is

D = {i : N : Aoi < Li}.

If node i defaults, its creditors’ claims all have equal priority, and any remaining cash held

by node i is paid to the creditors in proportion to their claims. These proportions are given by

aoij = p̄ij/
∑
k 6=i

p̄ik, i, j ∈ N . (3)

For each i, we have
∑

j 6=i a
o
ij = 1.

Clearing payments are characterized by the fixed-point equation

pij = p̄ij ∧ aoijAoi

= p̄ij ∧

ci + aoij
∑
k 6=i

pki

 . (4)

This specification ensures that actual payments never exceed obligations (pij ≤ p̄ij); all creditors

have equal priority, in the sense that they receive payments proportional to their claims in the

event of default; and the total payments made
∑

j 6=i pij cannot exceed the available cash Aoi (p).

Eisenberg and Noe [17] showed the existence of a solution to (4) and also gave conditions for

uniqueness. Tarski’s [41] fixed-point theorem ensures the existence of a largest and a smallest

solution of (4).

2.2 Networks with Collateral: Round 1

We now introduce collateral, which we also refer to as initial margin (IM). We let

mij = margin posted by node i for obligations to node j.

Suppose, for example, that nodes i and j are two banks that have entered into a swap contract.

Under rules adopted in the U.S. in 2015 and 2016, each bank is required to post IM as collateral

against potential future payments to the other bank.3 If node j is a central counterparty (CCP),

then i posts IM to j, but j does post IM to i. Because IM is intended to cover potential future

losses, a node will often face a margin requirement on a contract even if no payment is due.

We will refer to mij as margin posted or committed by node i to node j. We assume that

the margin mij remains an asset of node i until node i fails to make a payment to node j.4

3U.S. banking regulators and the CFTC finalized their uncleared swap margin rules in 2015 and 2016. U.S.
margin rules for uncleared swap transactions follow closely the guidelines established by the BCBS-IOSCO [4].

4This assumption is consistent with the treatment of IM in practice. The required IM is commonly held by
a third-party custodian.
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The quantity mij differs from other assets held by node i in that node j’s claim to the mij has

priority over the claims of any other creditors. We take mii = 0 for all i.

We assume the following sequence of events at default. Node i goes into default when it

has insufficient cash (including payments received from other nodes) to meet its obligations.

Rather than make partial payments that would not stave off default, node i briefly suspends

making any payments. At this point, node j seizes enough of the collateral mij to cover any

payment due p̄ij from i to j. The amount of collateral seized by node j from node i is given by

∆ij =

{
mij ∧ p̄ij , i ∈ D;
0, i 6∈ D. (5)

In particular, if node i defaults, node j’s claim to the collateral mij is determined solely by the

payment obligation p̄ij and is unaffected by any other claims on node i’s assets. This is the

defining feature of collateral.

If the margin seized by node j from node i is insufficient to cover the obligation p̄ij , node j

retains a residual claim of p̄ij −mij , which has equal priority with any residual claims against

i by other nodes. This claim will produce a partial payment from i to j if node i has any

remaining assets. To reflect a pro rata allocation of node i’s cash to these equal-priority claims,

we replace (3) with the proportions5

a
(1)
ij = [p̄ij −mij ]

+/
∑
k 6=i

[p̄ik −mik]
+, i, j ∈ N . (6)

If the denominator is zero, no node has a residual claim on i, and we may set a
(1)
ij ≡ 0; if node

i does not default, set a
(1)
ij = aoij , as in (3).

Let p
(1)
ij denote the total payment made by node i to node j, consisting of any collateral

seizure ∆ij and any partial payments based on the proportions (6). Given payments p
(1)
ki made

to node i, the cash available to node i is given by

A
(1)
i = ci +

∑
k

p
(1)
ki ; (7)

this expression has the same form as (1), but it includes node i’s access to collateral mki posted

by other nodes and seized according to (5). The set of defaulting nodes is given by

D = {i ∈ N : A
(1)
i < Li}, (8)

5The assumption that collateral is taken first and the bankrupt firm’s assets are distributed in proportion to
the residual claims is consistent with the legal discussion in Ayer, Bernstein, and Friedland [2].

8



with the sets Li as in (2). The requirements for first-round clearing payments p
(1)
ij now take the

form

p
(1)
ij =

{
p̄ij ∧ [mij + a

(1)
ij A

(1)
i ], i ∈ D;

p̄ij , i 6∈ D.
(9)

These conditions extend (4) using (6)–(8) and including the collateral mij . If, for some j,

mij + a
(1)
ij A

(1)
i < p̄ij , then a

(1)
ij A

(1)
i < p̄ij , and node i is in default. We may therefore write (9)

as

p
(1)
ij = p̄ij ∧ [mij + a

(1)
ij A

(1)
i ]. (10)

This expression is similar to the Eisenberg-Noe equation (4), but the similarity hides an im-

portant difference: we cannot recover the default set from payments in (10) because a node in

default may meet its payment obligations through access to collateral. In (4), pij = p̄ij implies

that node i had not defaulted, but we cannot make a similar inference from p
(1)
ij = p̄ij in (10).

We will confirm the existence of clearing payments p(1) = {p(1)
ij , i, j ∈ N} satisfying (6)–(10)

shortly, but we first elaborate on the potential complications introduced by collateral.

2.3 Freed Collateral: Round 2

Following a default by node i, it may happen that the collateral committed to node j exceeds

the payment obligation to j, in which case the excess mij−∆ij would become available to node

i to meet other obligations. If another node k also defaults, then margin mik posted by i to

k may also become available to i. This return of collateral is potentially problematic for the

existence of clearing payments, as the following example illustrates.

Example 2.1. Consider the network illustrated in Figure 1, with nodes A, B, and C. The

number inside each circle indicates the node’s cash; all cash levels are initially zero. The arrows

indicate the directions of payment obligations, and the labels on the arrows indicate the amounts

due. The labels in square brackets show posted margin. For example, the label “[5-A]” above

node C indicates that node A has posted collateral worth 5 to node C.

As no node has cash, all nodes default. The default of node C returns collateral worth 5 to

A, and similarly B and C each recover collateral worth 5 from the defaults A and B. The result

is the configuration in the middle of the figure. With the freed collateral, all nodes can meet

their payment obligations, resulting in the final configuration.

But if all nodes have met their payment obligations, have they defaulted? It is not possible in

this example to simultaneously determine a consistent set of payments and default designations.

In the rightmost configuration, no node appears to be in default, but we cannot reach that

configuration without freeing collateral, which requires defaults.
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Figure 1: A three-node network. All nodes start with zero cash. The labels in brackets show
collateral — the amount posted and the posting party.

The problem illustrated by this example is that the default of one node can lead to the

return of collateral to other nodes. Those nodes may then be able to make greater payments

to the defaulted node, potentially lifting that node out of default, and precluding the existence

of an internally consistent set of payments.6

We avoid this difficulty through the definition of the default set in (8), based on p(1). In this

formulation, freed collateral does not become available until after payments have been made

and nodes have been declared in default. We have thus separated the payments process into

two rounds: a first round in which payments are made and collateral is seized as needed; and

a second round in which excess collateral and collateral posted to defaulted nodes becomes

available to the posting party to make other payments.

Obstacles to defining clearing payments arise in other extensions of Eisenberg and Noe [17]

as well. Elsinger [18] redefines clearing vectors to cover cross-holdings of debt and equity among

banks; David and Lehar [12] consider clearing payments when debt is subject to renegotiation;

Kusnetsov and Veraart [32] propose a detailed algorithm to handle debt with different matu-

rities; Jackson and Pernoud [30] note that clearing payments may not be well-defined when

banks buy credit protection on other banks, and Banerjee and Feinstein [3] similarly preclude

banks from speculating on other banks. None of these extensions fits our setting. Bichuch and

Feinstein [5] consider networks with collateral, but in their setting banks post collateral outside

the network to raise cash; in particular, they do not allow one bank to seize collateral posted

by another bank, which is a key feature of collateral in our setting.

In Figure 1, no collateral is seized because collateral is sitting at the wrong nodes to secure

payments due. For example, C owes A, but A has posted collateral to C. As a result, all

collateral is freed when the nodes default. Figure 2 shows the opposite configuration, with the

6Chang [9] develops a model in which borrowers may fail to recover collateral when a lender defaults because
the lender has in turn posted the collateral to another node. In our analysis, we assume nodes fully recover any
collateral to which they are entitled.
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Figure 2: The direction of collateral is reversed relative to Figure 1

direction of collateral postings reversed. All nodes default, all nodes seize collateral worth 5 to

cover the amount owed, and there are no remaining payment obligations. As in Figure 1, there

is no way to simultaneously define clearing payments and the default set: if all nodes default,

then all payments are covered, so no node defaults; if no node defaults, then no collateral is

seized, no payments are covered, so all nodes default.

The return or freeing of collateral in Figure 1 implicitly assumes that contracts with de-

faulted nodes are automatically terminated. Recall that margin mij is intended to cover future

potential losses on a contract (e.g., a swap), so it is possible to have margin posted when no

payment is due — that is, mik > 0 and p̄ik = p̄ki = 0. If node k defaults on its payments to

other nodes, the implications for node i are unclear. We assume (for now) that any contracts

between i and k are canceled and that posted collateral is returned: mik becomes available to

node i and mki becomes available to node k. We examine alternative assumptions on contract

termination and collateral access later.

Suppose the first round results in payments p
(1)
ij , i, j ∈ N . In other words, the p

(1)
ij satisfy

(6)–(9). If the payment due from i to j, p̄ij exceeds the payment p
(1)
ij , then node i enters the

second round with a remaining payment obligation to node j of

p̄
(2)
ij = p̄ij − p(1)

ij . (11)

In Round 2, we deal with the allocation of remaining resources to meet remaining payment

obligations. These remaining resources result from freed collateral.

In the Eisenberg-Noe setting, (4) ensures that a node in default pays out all its cash. But

the use of collateral in Round 1 makes two types of resources potentially available at a defaulted

node in Round 2: a node may recover excess collateral committed to another node; and it may

recover freed collateral committed to a defaulting node, as a result of contract termination.

Figure 3 illustrates these mechanisms.7

7It is also possible for node i to default in Round 1 yet end the round holding cash, even before the return of
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Figure 3: Three initial configurations, each leaving A with cash. In the first network, excess
collateral is returned to A following A’s default; in the second network, contract termination
returns collateral to A; in the third network, A is left with cash despite defaulting on its payment
to B.

Example 2.2. Figure 3 shows three starting configurations. In the first network, A defaults,

B seizes collateral to cover missed payments from A, and excess collateral is returned to A,

allowing A to pay C. In the second network, C defaults on its obligation to B; C’s default

cancels its contract with A, freeing the collateral posted by A to C, leaving A with 5 in cash.

In the last network, A defaults, B seizes its collateral, and A is left with 4 units of cash, despite

having defaulted. See Section 2.4 for a discussion of full repayment following default.

The total collateral “returned” to node i after Round 1 is given by

ri =

{ ∑
j 6=i(mij −∆ij), i ∈ D;∑
j∈Dmij , i 6∈ D. (12)

with D fixed by (8) in Round 1. If this freed collateral is insufficient to meet all of node i’s

remaining claims, payments are made in the proportions

a
(2)
ij = p̄

(2)
ij /

∑
k 6=i

p̄
(2)
ik , (13)

taking a
(2)
ij = 0 if the denominator is zero. Thus, we seek Round 2 payments satisfying

p
(2)
ij = p̄

(2)
ij ∧ a

(2)
ij

ri +
∑
k 6=i

p
(2)
ki

 , i, j ∈ N . (14)

For later use, we record a relationship between the allocation fractions in the two rounds.

Lemma 2.1. If a
(2)
ij 6= 0 then a

(2)
ij = a

(1)
ij .

In the following, we use p
(`)
i =

∑
j p

(`)
ij , ` = 1, 2, to denote the total amount paid by node i

in each round.

collateral. However, in this case, we would have p̄
(2)
ij = 0 for all j and node i has no remaining payments. This

case is also illustrated in the figure.
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Proposition 2.1. For any collateral levels {mij , i, j ∈ N}, there exist clearing payments

(p(1), p(2)) satisfying (6)–(9) and (11)–(14). Moreover,

p
(1)
i + p

(2)
i = p̄i ∧

[
Ai(p

(1) + p(2)) +
∑
k 6=i

mik

]
, (15)

where

Ai(p
(1) + p(2)) = ci +

∑
k 6=i

(p
(1)
ki + p

(2)
ki ).

As our examples have illustrated, the existence of clearing payments depends on separating

the timing of payments due from the freeing of collateral: the default set D and returned

collateral ri are determined by the first-round payments p(1). Without this separation, the

network will often fail to admit a consistent set of clearing payments. Equation (15) has a

simple interpretation: the total payments made by a node over two rounds equals the lesser

of the node’s total obligations and the node’s total cash, including collateral. However, (15)

does not extend to node-specific payments p
(1)
ij + p

(2)
ij because collateral is initially committed

to specific counterparties.

In subsequent sections, we will compare outcomes of networks under different policies re-

garding collateral and contracts. We will make these comparisons based on the sets of defaulting

nodes and the system-wide payment shortfall, which builds on the total payments in (15).

Definition 2.1. A network’s payment shortfall is the difference between payments due and

payments made, given by

L =
∑
i

(p̄i − p(1)
i − p

(2)
i ) =

∑
i∈D

(p̄i − p(1)
i − p

(2)
i ). (16)

For each node i that defaults, p̄i − p(1)
i − p

(2)
i is the difference between i’s total payment

obligation and its total payments; if i does not default, then p̄i = p
(1)
i , p

(2)
i = 0, and its shortfall

is zero.

Table 1 shows the default sets and payment shortfalls for the examples in several figures.

In several cases, we have designed the examples to have L = 0 to highlight the effect of two

rounds of payments. In the first example of Figure 3, for instance, increasing node A’s payment

obligations from 9 to 10 + x would result in L = x, for any x ≥ 0, without changing D.

To see that our two rounds cannot be combined in general, consider an ordinary Eisenberg-

Noe network without collateral. Suppose that for some node i there exists a cash level c such

that i defaults if ci < c, and i does not default if ci > c. (We can see from (7) and (8) that such

13



Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6

D = {A,B,C} D = {A,B,C} D = {A} D = {C} D = {A} D = {A} D = {A}
L = 0 L = 0 L = 0 L = 5 L = 0 L = 9 L = 5

Table 1: Default sets D and payment shortfalls L for examples in the figures. Figure 3 has
three examples.

thresholds will commonly exist.) Now introduce collateral and consider any proposed protocol

with the following two intended features: (i) collateral posted by a node is used towards the

node’s payment obligations if and only if that node defaults, and (ii) a node is deemed to

default if and only if it fails to meet its payment obligations. Such a protocol is not in general

consistent:

Proposition 2.2. Suppose
∑

jmij > c − ci > 0, and suppose mk` = 0, for all k 6= i. If node

i defaults, then it meets all its payment obligations; if node i does not default then it does not

meet all its payment obligations. In other words, no choice of default set D is consistent with

the protocol.

The proof of this claim is simple: If node i is deemed to default, then the resources ci +∑
jmij > c suffice to meet the node’s obligations, along with any cash received from other

nodes. If node i does not default, then the cash level ci < c does not suffice for i to make its

payments. In either case, we have a contradiction. Similar contradictions result from many

other configurations.

2.4 Default with Full Repayment

We have seen (as in Table 1) that it is possible for a node to default in the first round yet fully

meet its payment obligations by the end of the second round, eliminating its first-round shortfall.

In other words, a node may fail through illiquidity — a shortage of cash to meet payments due

— even if it is solvent, because some of its assets have been pledged as collateral. Indeed, the

major failures and near-failures of 2008 are generally understood as (at least initially) crises

of liquidity rather than solvency. Post-crisis regulation responded by introducing a liquidity

coverage ratio for banks as a complement to traditional capital requirements.

One may ask whether a default is costly if creditors are ultimately repaid. This question goes

to our definition of the default set, so we highlight two important practical considerations that

inform our modeling choice. First, a delay in payments can be costly because of its ripple effect

on downstream parties that rely on receiving those payments to meet their own obligations.

Delays can also lead to credit downgrades which then affect a node’s ability to borrow. Second,
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a delay that results in bankruptcy destroys franchise value; it locks a failed firm out of markets

that rely on a solid reputation for meeting payment obligations on time, and such a reputation is

not restored simply through eventual repayment. Nor are other costs of bankruptcy recovered.

The specifics of these mechanisms are beyond the scope of our model, but these considerations

explain why we treat first-round defaults as costly, even when second-round obligations are fully

met.

2.5 Networks with a Free Termination Option

As a benchmark, we consider a variant of our model in which nodes have the option to terminate

contracts in order to redeploy collateral they have posted. This termination option is exercised

whenever a node would otherwise default. We investigate other contract termination scenarios

more extensively in Sections 4 and 5.

To motivate this variant, consider the three networks in Figure 3. Suppose that node A

has the option to terminate any contract by using collateral posted to pay its counterparty,

recovering any remaining collateral. In the first case, this would mean paying 5 to B and

recovering 5; in the second case, paying zero to C and recovering 5; in the third case, paying 5

to B and recovering zero. In each case, A would avoid default.

We show in Appendix A.3 that this model can be reduced to a standard Eisenberg-Noe

model with lower payment obligations and adjusted cash balances in the following sense:

Lemma 2.2. Payments pij clear the network with collateral and free contract termination if

and only if payments pij−(mij∧p̄ij) clear the reduced Eisenberg-Noe network. The two networks

have the same default sets and payment shortfalls.

The reduced network is defined precisely in Appendix A.3. This result shows that collateral

plays no essential role in a network in which each node can recover collateral by terminating

contracts. With the option to terminate, posting collateral reduces to paying down certain

obligations. This result allows us to compare the collateralized networks of Sections 2.2–2.3

with otherwise identical networks that allow free contract termination:8

Proposition 2.3. Free contract termination reduces defaults but does not affect total payment

shortfalls.

8Here and in several subsequent results we are comparing two networks defined by fixed-point equations. To
account for the possibility of multiple fixed points, the comparison should be understood to hold for the largest
fixed points of the two networks and for the smallest fixed points. The existence of largest and smallest fixed
points follows from applications of Tarski’s fixed-point theorem. These issues are discussed in greater detail in
the proofs of the relevant results.

15



This comparison confirms the natural intuition that collateral trapped in the “wrong” places

will increase defaults (because it is not immediately available to meet payment obligations) but

not affect eventual payments (because excess collateral is eventually returned and deployed to

make payments).

The free-termination model is useful for illustration, but it overlooks two key points. First,

parties to swaps and similar contracts do not ordinarily have the right to terminate contracts

unilaterally9 but must pay for that option by, for example, buying a swaption. The issue of

termination near default can be particularly contentious, a point we return to in Section 5.

Furthermore, in the second example of Figure 3, suppose we change A’s obligation to B to 8

and change C’s obligation to B to 3. Node A would like to terminate its contract with C to

recover its collateral. But C has no reason to agree and would like to extract a payment from

A. To avoid default, both nodes would like to keep at least 3 units of the 5 units of collateral.

The second key point missed by this model variant is the distinction between payments due

and contract values. Suppose node A has taken out a loan of 50 from node C and posted 5 in

collateral. In the middle example of Figure 3, no interest is due on the loan. But if A were to

terminate the contract to recover its collateral, it would need to repay the principal, dramatically

increasing its immediate payment obligations. The same can happen with a cross-currency

swap, which entails an exchange of principal at maturity. We consider these consequences of

contract termination in detail in Section 4. For these reasons, we work with the framework of

Sections 2.2–2.3 for the rest of the paper: collateral becomes accessible only following a default.

2.6 Collateral Pooling

In the examples of Figures 2 and 3, some defaults occur because collateral is tied up in the

“wrong” places. More precisely, some defaults could be avoided if nodes were able to hold

on to their collateral as cash, rather than commit it to specific counterparties. This points

to a tradeoff similar to the tradeoff between capital requirements and collateral requirements:

collateral provides a buffer against specific losses, whereas capital absorbs any type of loss.

Similar considerations apply in debates over “ring-fencing” capital to absorb losses in specific

jurisdictions as opposed to holding capital at the parent level.

These considerations might suggest that defaults and losses can be reduced by having all

nodes hold additional cash rather than post collateral. But that conclusion is incorrect because

changing the distribution of collateral changes the distribution of payments.

9Most OTC derivatives contracts are governed by an ISDA Master Agreement, which specifies the very limited
settings — primarily events of default by the counterparty — in which one party may terminate a contract. See
the discussion in Appendix B.
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Figure 4: Pooling collateral may increase or decrease payment shortfalls and the number of
defaults

Consider the example of Figure 4. The labels on the edges indicate payment obligations.

None of the nodes holds cash, but node A may have posted collateral to B1 or C1. We compare

defaults and shortfalls in the following scenarios:

cA = 0, mAB1 = 0, mAC1 = 2 : D = {A,B1, B2}, L = 6;

cA = 2, mAB1 = 0, mAC1 = 0 : D = {A,B1, B2, C1}, L = 5;

cA = 0, mAB1 = 2, mAC1 = 0 : D = {A,C1}, L = 4.

In the first scenario, collateral is committed to node C1. Holding the collateral as cash instead,

as indicated in the second scenario, results in a payment of 1 to each of B1 and C1. This

increases the number of defaults but it reduces systemwide payment shortfalls, which argues in

favor of pooling. But the third configuration, with collateral committed to node B1, yields the

fewest defaults and the smallest shortfall.

As this example illustrates, pooling collateral is not unambiguously better or worse than

committing it to specific counterparties. The comparison depends on the network and cannot

be resolved by considering a node in isolation.

The next result shows that pooling is preferable in two settings. To be precise, we need

some terminology. Let us say that one network is obtained from another by pooling collateral

if it results from one or more transformations of the form m′ij = mij − δ, c′i = ci + δ, δ ≤ mij .

By the excess collateral posted by node i to node j we mean [mij − p̄ij ]+. We say that the

network has proportional collateral if mij = kip̄ij , for some ki ∈ [0, 1], for all i and j. (The case

ki > 1 would be a special case of excess collateral.)

Proposition 2.4. (i) Pooling excess collateral reduces defaults and does not affect payment

shortfalls. (ii) Under proportional collateral, pooling that preserves proportionality reduces de-
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faults and does not affect payment shortfalls.

This proposition and the example of Figure 4 together suggest that pooling is unambigu-

ously better (in reducing defaults and shortfalls) only under special conditions. A proportional

collateral rule (like a fixed loan-to-value ratio) is found in some circumstances, but it is not

applicable with derivative contracts that carry different levels of risk or when payment obliga-

tions are not known precisely at the time collateral is posted. Excess collateral is applicable to

derivative contracts as collateral in the form of initial margin can exceed current contractual

payment obligations. Since initial margin in part captures extreme potential future exposures,

it can exceed current payments, making the excess collateral condition particularly relevant to

OTC derivatives markets.

3 Illiquid Collateral and Fire Sales

In Sections 2.2 and 2.3, we implicitly treated collateral as cash: if node j seizes collateral

∆ij from node i, node i’s payment obligation is reduced by exactly ∆ij . In the non-cleared

derivatives market, a wide range of less liquid securities, including corporate bonds, foreign-

denominated bonds, and equities are accepted as collateral, and these types of securities are

also used as collateral in repurchase agreements.

In this section, we extend our earlier analysis to incorporate the use of less liquid collateral.

When a creditor seizes collateral, it must sell the collateral to recover cash. Selling less liquid

collateral drives down its price, spreading losses to other holders of similar assets. Moreover,

if excess collateral is available, the creditor has no incentive to sell at the best possible price,

making the risk of a fire sale particularly acute.

Indeed, collateral liquidity is at the heart of debates over contract termination rights and

bankruptcy stays that motivate our investigation. As explained, for example, in Roe and

Adams [34], p.366, the purpose of bankruptcy stays is to avoid the value destruction and fire

sales that would occur if creditors were allowed to cease and sell a failing firm’s illiquid collateral.

Regulators and industry participants continue to debate the extent to which less liquid collateral

should be allowed for derivatives and repo, and whether the nature of the collateral necessitates

different restrictions on contract termination and rules on stays.

3.1 Round 1 Revisited

As a first step, we reformulate the analysis of Sections 2.2–2.3 to incorporate illiquidity. We now

take mij to be the shares of collateral committed by node i to node j for an asset with price π,
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making mijπ the value of the collateral. The case considered in Sections 2.2–2.3 corresponds to

a constant value π = 1. In this section, the price starts at 1 but falls as collateral is liquidated.

We posit that π is a strictly decreasing function G(1,∆) of the total shares sold, ∆, the first

argument of G indicating the initial price of 1. To be concrete, we set

π = G(1,∆) ≡ e−α∆, (17)

for some α ≥ 0. A larger α corresponds to a less liquid asset. This choice of price-impact

function is also used in Cifuentes et al. [10]; Amini et al. [1] discuss conditions on α.

We make the simplifying assumption that all collateral is held in a single illiquid asset.

Assigning different prices and price-impact functions to different collateral assets would com-

plicate notation without significantly changing our analysis. Assuming a single illiquid asset

for all collateral overstates the effect of fire sales, but the overstatement can be offset through

a smaller value of α. The choice of α should reflect the average price impact across different

types of collateral and the imperfect correlation in price impact across different securities.

As in (7) and (8), we have

A
(1)
i = ci +

∑
k

p
(1)
ki , D = {i : A

(1)
i <

∑
k

p̄ik}, (18)

but the payments in A
(1)
i received by node i will now reflect the market price of the collateral

asset. If node i defaults and node j seizes collateral mij with price π, node j now holds a

residual claim of (p̄ij−πmij)
+ against node i, reflecting the market value πmij of the collateral

available. Node i’s assets are allocated to other nodes in proportion to the values of these

claims, so we replace (6) with

a
(1)
ij = (p̄ij − πmij)

+/
∑
k 6=i

(p̄ik − πmik)
+. (19)

Example 3.1. Figure 5 illustrates the difference between allocation proportions (6) and (19).

Node A has 6 in cash and 20 in payment obligations, so it defaults. Node B seizes the 5 shares

of the collateral asset posted by A. The 6 in cash held by A is divided between B and C. Under

(6), B would be allocated a proportion (10− 5)/15 = 1/3, and C a proportion 2/3. Under (19),

node B claims a proportion (10− 5π)/(20− 5π), which is a decreasing function of the price π

at which B sells collateral it seized from A; the allocation proportions depend on the market

price of the collateral asset.

With asset price π > 0, the shares of collateral seized and sold by node j upon the default

of node i are given by

∆ij =

{
mij ∧ p̄ij

π ; i ∈ D;
0, i 6∈ D, (20)

19



A
6

B
0

C
0

10

10 [5–A]

Figure 5: After A defaults, B seizes its collateral, and A’s 6 units of cash are divided between
B and C.

which reduces to (5) with π = 1. Dividing by π in (20) converts the dollar obligation p̄ij into

the number of shares required to cover the payment at the current market price. For π = 0,

interpret (20) as ∆ij = mij if p̄ij > 0 and ∆ij = 0 otherwise. The total shares of collateral

liquidated are given by

∆ =
∑
i

∑
j

∆ij , (21)

and the sale of these shares will drive down the price through (17). We modify (9) by seeking

clearing payments p(1) and an asset price π(1) satisfying

p
(1)
ij =

{
p̄ij ∧ [π(1)mij + a

(1)
ij A

(1)
i ], i ∈ D;

p̄ij , i 6∈ D,
(22)

together with (17)–(21).

3.2 Round 2 Revisited

Suppose that Round 1 clears with payments p(1) and asset price π(1). Define ri as in (12), and

interpret it as the number of shares of collateral freed or returned to node i. As in (11), node

i’s remaining obligation to node j is given by p̄
(2)
ij = p̄ij − p(1)

ij .

To meet its remaining obligations p̄
(2)
ij , node i will liquidate some or all of its freed collateral,

which will further drive down the price of the shares. Given second-round payments p
(2)
ij and a

second-round share price π(2) > 0, the number of shares liquidated by node i is given by

Γi = ri ∧
1

π(2)

∑
j 6=i

p̄
(2)
ij −

∑
j 6=i

p
(2)
ji

 . (23)

The expression in parentheses is the difference between node i’s remaining payment obligations

and the second-round payments it receives; dividing by π(2) yields the number of shares of

collateral required to make up this shortfall; but node i cannot liquidate more than the ri

shares it recovers. The total amount liquidated by all nodes is Γ =
∑

i Γi, driving the price to

π(2) = G(π(1),Γ) = π(1)e−αΓ. (24)
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To clear Round 2, we need payments p(2) and a price π(2) satisfying

p
(2)
ij = p̄

(2)
ij ∧ a

(2)
ij

∑
k 6=i

p
(2)
ki + π(2)ri

 , (25)

together with (23)–(24), and a
(2)
ij as in (13). The following result ensures the existence of

clearing payments and compares networks with liquid and illiquid collateral.

Proposition 3.1. There exist clearing payments and prices (p(1), π(1)) and (p(2), π(2)) for

Rounds 1 and 2 with illiquid collateral.

Two features in particular distinguish this result from other network models with fire sales,

such as Cifuentes et al. [10], Braouezec and Wagalath [7], and Cont and Schaanning [11]: one

is the need to split the payments into two rounds because of the collateral, and the second is

the fact that the proportions (19) depend on the collateral price π. Both features lead to more

involved arguments for the existence of clearing payments and prices. The source of the fire

sale is also different. In prior work, the fire sale is driven by banks selling their own assets to

meet capital requirements; in our setting, the fire sale is driven by creditors selling collateral to

recover payment shortfalls.

Our next result compares networks with liquid and illiquid collateral. In stating the result,

we need to account for the possibility that each network admits multiple sets of clearing pay-

ments. We will show that each network has a largest and smallest set of first-round and total

payments (p(1), p(1) + p(2)). The following comparison should be understood to hold for the

largest and smallest solutions of networks with liquid and illiquid collateral:

Proposition 3.2. Collateral illiquidity increases defaults and the total payment shortfall.

3.3 Collateral Fire Sale and Contagion

Our model formulation in Sections 2.2 and 3.1 assumed that, upon a default in Round 1,

collateral is seized first and partial payments are made second. For comparison, in this section

we consider an alternative formulation in which access to collateral is delayed and partial

payments are made first. Within Round 1, we reverse the order of collateral seizure and partial

payments; Round 2 proceeds as before. This reversal may be interpreted as the result of an

automatic stay, in which a defaulting node’s counterparties are prevented from immediately

seizing and liquidating collateral. (We discuss stays in greater detail in Section 5.) We give

an example here and leave the details for Appendix A.7. We show there that in the absence

of fire sales the total payments made from one node to another remain unchanged under this
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Figure 6: Nodes B and C hold collateral posted by A. Under the payments-first protocol, A
pays 8 to B before collateral is seized. Under the collateral-first protocol, A pays 5 to B after
collateral is seized.

protocol, even though the mix of collateral and cash payments may change. With illiquid

collateral, delaying collateral liquidation reduces systemwide losses and defaults.

Figure 6 illustrates the result. Node A defaults because its cash level 8 falls below its

payment obligations of 20. Under the collateral-first protocol, nodes B and C seize and liquidate

the collateral posted by A, which is mAB = 5 and mAC = 10. Applying (10) with a
(1)
AB = 1 and

a
(1)
AC = 0, node A makes a cash payment of 5 to node B in addition to the collateral transfer

of 5. The total first-round payments are p
(1)
AB = p

(1)
AC = 10, and there are no second-round

payments. Under the payments-first protocol, node A first makes a cash payment of 8 to node

B, again because a
(1)
AB = 1 and a

(1)
AC = 0. Node C liquidates mAC = 10 shares of collateral,

but node B liquidates only 2 shares and returns 3 to node A. The total first-round payments

are q
(1)
AB = q

(1)
AC = 10, and there are no second-round payments. However, the total amount of

collateral liquidated has been reduced from 15 to 12.

As in this example, the analysis of Appendix A.7 shows that when collateral is held in

cash-like assets, the spread of losses through the network is unaffected by the order of collateral

seizure and partial payments. However, as the example suggests, the collateral-first protocol

results in greater collateral liquidation. As a consequence, the collateral-first protocol can result

in greater losses when collateral is illiquid.

If we interpret the payments-first protocol as the result of an automatic stay on collateral

seizure by the counterparties to a failed node, then this observation is in line with policy

recommendations of Duffie and Skeel [15] and the subsequent finalized stay rule on collateral

sale in repo markets. The stay rule allows immediate seizure and liquidation of collateral only

if it is held in cash or cash-like assets.

4 Accelerated Payment Obligations from Contract Termination

A financial firm’s failure to make a payment due on one contract may trigger the termination

of other contracts on which no payments are due. This is particularly true in over-the-counter
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derivatives markets. OTC derivative contracts often provide participants the right to terminate

a contract if the counterparty enters bankruptcy, even if the counterparty has met all obligations

under the contract. Bankruptcy courts also provide failed firms certain rights to terminate

contracts. Upon termination, the market value of a swap or other derivative contract becomes

due from the out-of-the-money party to the in-the-money party; in this sense, a default can

accelerate payment obligations that would not otherwise be due.

In this section, we augment the model of Section 3 to incorporate this feature. We will show

that accelerated payments from contract termination can create inconsistencies in a network

model similar to those we encountered with collateral. We again resolve these complications

by carefully specifying the timing of events. Whereas clearing a network with collateral could

require two rounds, addressing contract termination may require as many rounds as there

are nodes, because each round of terminations may trigger further defaults and thus further

terminations. In this section, we assume that all contracts with a node are terminated upon

the node’s default; in the next section, we address selective termination.

Let

vij = positive value to node j of its derivative contracts with node i.

Under full contract termination, the default of node i triggers the termination of its derivatives;

at termination, node i incurs an obligation to pay node j the outstanding value vij , if vij > 0.

If however vji > 0, then the default of i triggers a payment obligation of vji from j to i. We

assume that all contracts between i and j are fully netted, so vijvji = 0.

Whereas the p̄ij represent payments due under ordinary circumstances (including, for exam-

ple, routine payments on swap contracts), the vij represent asset (vji > 0) or liability (vij > 0)

values for node i that turn into payment obligations only upon contract termination. If all

derivatives were subject to daily settlement (like futures contracts) then all changes in market

values would be offset by daily payments and we would always have vij = vji = 0. In practice,

the balance sheets of large banks show significant derivatives assets and liabilities, indicating

that not all contracts are settled daily.

The contingent payment obligations created by contract termination create some of the

same complications we saw previously, as the following example illustrates:

Example 4.1. Consider a three-node network with

p̄12 = 4, p̄13 = 2, p̄32 = 2, c1 = c2 = 4.

All other model parameters are zero, except for the termination values, which we specify shortly.

Node 1 defaults as its cash, c1 = 4, falls below its required payments to nodes 2 and 3. Node
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1 pays p12 = a12c1 = 4/6 × 4 ≈ 2.67 to node 2, and p13 = 2/6 × 4 ≈ 1.33 to node 3. Node 3

defaults as the payment of p32 = 1.33 it makes to node 2 is less than p̄32 = 2. Prior to contract

termination, node 2 does not have any payment obligations.

Suppose v21 = 2 and v13 = v23 = 0. Node 2, with cash of c2 + p12 + p32 = 8, pays v21 = 2 to

node 1. With this influx of cash, node 1 can now fully meet its payment obligations to nodes

2 and 3. In other words, node 1 can make all payments due, apparently avoiding default, but

only if it defaults! This example shows that it is not always possible to simultaneously specify a

consistent set of payments and default designations with automatic contract termination, even

without collateral.

To resolve this type of inconsistency, we separate payments into rounds as we did before,

consistent with the sequence of events described informally in Example 4.1. However, each

round of contract terminations can now potentially trigger additional payment obligations and

therefore additional defaults. In a network with N nodes, we may have up to N rounds of

defaults and N rounds of payments.

As in Section 3.3, we include the sale of any collateral in the total payment from node i to

node j and denote this total payment by pij . We assume the network follows the collateral-first

protocol of Sections 3.1 and 3.2. Perhaps most importantly, was assume that if node i defaults

in Round `, then any termination values vij or vji triggered by this default become payment

obligations in Round ` + 1. This timing is consistent with the interpretation of accelerated

obligations as consequences of default rather than causes of default.

Round 1

Round 1 proceeds exactly as in Section 3.1. The first-round quantities p
(1)
ij , π(1), A

(1)
i , D, a

(1)
ij ,

and ∆(1) ≡ ∆ are defined by equations (17)–(22).

Subsequent Rounds

We now consider round m, 2 ≤ m ≤ N . With c
(1)
i = ci, the cash available to node i at the

beginning of the round is given by

c
(m)
i = c

(m−1)
i +

∑
k 6=i

p
(m−1)
ki −

∑
k 6=i

p
(m−1)
ik ,

with p̄
(1)
ik = p̄ik. We will let D(l) denote the set of nodes that default in round l (and not before)

and define Sn to be the set of nodes that survive rounds 1, . . . , n,

Sn = {i : i /∈
n⋃
l=1

D(l)},
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with 1 ≤ n ≤ N , and S0 = N . Payment obligations in round m are defined by

p̄
(m)
ij =


vij + p̄

(m−1)
ij − p(m−1)

ij , i or j ∈ D(m−1), and i, j ∈ Sm−2;

p̄
(m−1)
ij − p(m−1)

ij , i or j /∈ Sm−2;

0, i, j ∈ Sm−1.

(26)

In each round, any previous payment obligation p̄
(m−1)
ij is reduced by any payment made p

(m−1)
ij .

A default by either node in the previous round creates the additional obligation vij from contract

termination. If both nodes have survived to the current round, then the original payment

obligation p̄ij was met in the first round and no subsequent obligation has been introduced, so

the remaining obligation is zero.

As in Section 2.3, defaults in the previous round may free collateral in the current round.

Recovered shares of collateral in round m are given by

r
(m)
i =

{∑
j∈Sm−2

[mij −∆
(m−1)
ij ], i ∈ D(m−1);∑

j∈D(m−1) mij , i ∈ Sm−1.

The number of shares of collateral posted by i that are seized and liquidated by j in round m

is given by

∆
(m)
ij =

mij ∧
p̄
(m)
ij

π(m) , i ∈ D(m), and j ∈ Sm−1;

0, otherwise.
(27)

Given total payments p
(m)
ij and a share price π(m), let

A
(m)
i = c

(m)
i + π(m)r

(m)
i +

∑
k 6=i

p
(m)
ki (28)

denote the value of node i’s remaining cash and seized and returned collateral. The set of nodes

that default in the mth round is given by

D(m) = {i : i ∈ Sm−1, and A
(m)
i <

∑
k 6=i

p̄
(m)
ik }. (29)

Set

a
(m)
ij = [p̄

(m)
ij − π

(m)∆
(m)
ij ]/

∑
k 6=i

[p̄
(m)
ik − π

(m)∆
(m)
ik ].

Clearing payments in round m must satisfy

p
(m)
ij = p̄

(m)
ij ∧ [π(m)∆

(m)
ij + a

(m)
ij A

(m)
1 ]. (30)
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The number of shares of returned collateral liquidated by node i is given by10

Γ
(m)
i = r

(m)
i ∧ 1

π(m)

[∑
j 6=i

p̄
(m)
ij −

(
c

(m)
i +

∑
k 6=i

p
(m)
ki

)]
. (31)

With the totals

Γ(m) =
∑
i

Γ
(m)
i and ∆(m) =

∑
i

∑
j

∆
(m)
ij (p(m), π(m)),

the amount of collateral liquidated in round m drives the price to

π(m) = G(π(m−1),Γ(m) + ∆(m)) = π(m−1)e−α(Γ(m)+∆(m)). (32)

Proposition 4.1. For any levels of derivatives values {vij , i, j ∈ N}, there exist clearing pay-

ments and prices (p(m), π(m)), m = 1, . . . , N .

With the benefit of this result, we can revisit Example 4.1. Nodes 1 and 3 do indeed default

in Round 1; their first-round payments are p
(1)
12 = 8/3, and p

(1)
13 = 4/3. The default of node 1

creates a new payment obligation v21 for node 2; the second-round payments are p
(2)
21 = v21 = 2,

p
(2)
12 = 4/3, and p

(2)
13 = 2/3. At the end of the second round, all payment obligations have been

met.

5 Bankruptcy Stays and Selective Termination

The pros and cons of OTC derivative contract termination at bankrutpcy have been debated

since the 1990s, and the matter has received renewed attention since the failure of Lehman

Brothers. We provide some background before adapting our model to consider some of the key

tradeoffs.

Most creditors in bankruptcy are subject to a stay that prevents them from seizing assets

of a bankrupt entity. This provision is intended to improve the chances that the debtor will

return to viability or to maximize the value of the debtor’s assets to repay creditors. Derivatives

and certain other financial contracts have long been exempt from these stays. As explained in

Chapter 9 of Skeel [38], the exemption was introduced to reduce the risk of spillovers upon the

failure of a financial firm by giving special protections to derivatives counterparties.

Since the failure of Lehman Brothers, regulators have come to have a different perspec-

tive, seeing termination rights as potentially destabilizing. Fleming and Sarkar [22] report that

10In formulating Γ
(m)
i , we have made the reasonable assumption that banks use their liquid assets before selling

illiquid returned collateral. If the order is reversed, Γ
(m)
i becomes r

(m)
i ∧

∑
j 6=i p̄

(m)
ij /π(m).
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Lehman’s derivatives counterparties selectively terminated contracts where they stood to gain,

but maintained contracts where termination would have resulted in a payment to Lehman, a

practice often referred to as cherry-picking.11 The FDIC [19] reported that contract termina-

tions by Lehman’s counterparties caused market disruptions and left Lehman exposed to greater

market risk. In 2017, the Federal Reserve [20] adopted rules placing some limits on termination

of derivatives or, more precisely, qualified financial contracts (QFCs). In explaining the need

for an automatic stay on terminations, the Federal Reserve [20], p.42883, noted the risk of a

“chain reaction” of failures and the risk of fire sales from the liquidation of large volumes of

collateral assets.12

To capture the phenomenon of creditor cherry-picking — which we refer to as selective

termination — we modify the framework of Section 4. We assume that upon the failure of node

i, all amounts vij become due, but amounts vji do not come due (unless node j also defaults).

In other words, if node j survives when node i fails, node j terminates contracts that trigger

obligations from node i, but not contracts that trigger obligations to node i. We will compare

defaults and payment shortfalls under full termination and selective termination.13

5.1 Full Versus Selective Contract Termination

We detailed the full termination model in Section 4. In contrasting the two scenarios, we will use

the following notation for the full termination (FT) and selective termination (ST) models:14

p
(`)
ij , p̄

(`)
ij , π(`): payments, payment obligations, and collateral prices in the FT model;

q
(`)
ij , q̄

(`)
ij , π̂(`): payments, payment obligations, and collateral prices in the ST model;

11As explained in Skeel and Jackson [39], debtors may engage in their own form of cherry-picking. With the
protection of a bankruptcy stay, a debtor may decide which contracts to “assume” and which to “reject.” Skeel
and Jackson [39] also explain that this optionality is consistent with the treatment of “executory” contracts in
non-financial bankruptcies.

12Title II of the Dodd-Frank Act and the resolution framework of FDIC (in coordination with the Federal
Reserve and OCC) impose a 1-2 day stay for QFC counterparties of the most complex U.S. bank holding
companies (U.S. G-SIBs). Under the U.S. Treasury’s proposed chapter 14 bankruptcy process, termination
rights of QFC counterparties will be stayed for 2 days (U.S. Treasury Report [44]). That is, automatic stays for
QFCs can be in place both in bankruptcy and in resolutions proceedings.

13Although we interpret selective termination as the result of creditor cherry-picking, a similar outcome would
result if the failed node chose to terminate all its out-of-the-money contracts. This possibility is noted in Skeel
and Jackson [39], p.181. By terminating these contracts, a failed node could force its counterparties to accept
lower payments through bankruptcy proceedings.

14Our use of q and π̂ in this section should not be confused with their use in Section 3.3. In both cases, we
use q and π̂ to indicate an alternative to a model that uses p and π.
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The evolution of the ST model is identical to that of the FT model with one exception: in place

of (26), the payment obligations become

q̄
(m)
ij =


vij + q̄

(m−1)
ij − q(m−1)

ij , i ∈ D(m−1), and i, j ∈ Sm−2;

q̄
(m−1)
ij − q(m−1)

ij , i or j /∈ Sm−2;

0, i, j ∈ Sm−1.

(33)

Only the first case has changed: the obligation vij is added only if i defaults.

By construction, the FT and ST models are identical in Round 1, so they admit the same

sets of clearing payments p
(1)
ij and q

(1)
ij . Moreover, under selective termination, a node that

survives Round 1 has no payment obligations in Round 2, so no defaults occur after Round 1,

and the process terminates at the end of Round 2. By the argument used for Proposition 4.1,

we have the following result:

Proposition 5.1. For any levels of derivatives values {vij , i, j ∈ N}, there exist clearing pay-

ments and prices (q(1), π̂(1)) and (q(2), π̂(2)). The feasible clearing payments and collateral prices

in Round 1 under the ST and FT models coincide, and thus so do the first round payment short-

falls. The ST default set is a subset of the FT default set.

Because the two models agree in the first round, they produce the same defaults in Round

1; and because the ST model has no subsequent defaults, full termination always produces at

least as many defaults as selective termination. The comparison of payment shortfalls is less

clear. Full termination creates additional payment obligations and thus more opportunities for

payments to fall short; but full termination can also increase the flow of payments, potentially

offsetting the first effect.

To formulate the comparison precisely, we use the notation in (29) to denote the total default

sets for the two models (full and selective termination) by

Df =

m⋃
l=1

D(l), Ds = D(1). (34)

We define payment shortfalls for the two models as differences between payments due and

payments made,

Lf =
∑
i∈Df

(vi + p̄i − pi), and Ls =
∑
i∈Ds

(vi + p̄i − qi), (35)

where pi =
∑m

l=1 p
(l)
i , qi = q

(1)
i +q

(2)
i , and vi =

∑
j 6=i vij . These shortfall measures are calculated

relative to payments currently due — which is the relevant focus in a moment of market stress
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c0 …d d d dv01=d

0 1 2 N N+1

Figure 7: Network of Example 5.1. The dashed-line payment from node 0 to node 1 becomes
due only upon contract termination. Nodes 1, . . . , N + 1 have no cash.

or a crisis following defaults — and ignore future obligations. The total payments due in the

FT case are always at least as large as in the ST case, but the comparison of shortfalls can go

either way, as the following example illustrates.

Example 5.1. Consider the linear network of Figure 7 with nodes labeled 0, 1, . . . , N + 1.

Nodes i = 1, . . . , N have payments due to their successor nodes, p̄i,i+1 = d. Node 0 has a

potential obligation v01 = d. Node 0 holds c0 in cash; no other nodes have cash. In Round 1,

nodes 1, . . . , N default. Under selective termination, nothing more happens; none of the Nd

payments due are made, so Ls = Nd.

Under full termination, the default of node 1 triggers termination of the contract between

0 and 1, creating a payment obligation p̄
(2)
01 = v01 = d. Node 0 pays (d ∧ c0) to node 1,

and this amount is passed through all downstream nodes. The payment shortfall becomes

Lf = (N + 1)d − (N + 1)(d ∧ c0) = (N + 1)(d − c0)+. By varing the parameters N and d, we

can make Lf = 0 and Ls arbitrarily large, but we can also make Lf − Ls arbitrarily large.

This example suggests the following properties: If full termination does not increase the set

of defaults, then it (weakly) lowers the payment shortfall, compared with selective termination.

Unless a node is exactly on the boundary of default, a sufficiently small increase in payment

obligations will not push it into default. Thus, for sufficiently small vij , we have Lf ≤ Ls;

but by increasing some vij we can make Lf − Ls arbitrarily large, so long as j defaults and

i does not. The key then to comparing payment shortfalls is to understand the magnitudes

of derivatives liabilities relative to node distances from their default boundaries. We interpret

these relative magnitudes as measures of derivatives leverage.

As a first step in formalizing these ideas, we show that full termination increases payments

when collateral value is constant. Recall that the ST and FT models coincide in Round 1.

Lemma 5.1. Suppose the collateral price is constant π = π̂ = 1. Then full termination and

selective termination models satisfy

p
(2)
ij ≥ q

(2)
ij , for all i, j ∈ N , (36)
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taking the smallest or largest clearing payments under each model.

In the proof of the lemma, we confirm that the smallest and largest clearing payments

are well-defined for the two models. We compare these extremal solutions to account for the

possibility of non-uniqueness. If each model has unique second-round clearing payments, then

(36) holds directly. In light of these considerations we will compare models under payments

satisfying either of the following conditions:

p(1) = q(1), π(1) = π̂(1), and p(2) and q(2) are the largest second round payments; (37)

p(1) = q(1), π(1) = π̂(1), and p(2) and q(2) are the smallest second round payments. (38)

When the ST and FT models produce the same default sets, the additional termination

obligations under the FT model must be fully met — otherwise, they would trigger additional

defaults. Combining this observation with Lemma 5.1 yields the following.

Corollary 5.1. Suppose either (37) or (38) holds and the collateral price is constant. If Df =

Ds then Lf ≤ Ls.

To build on this observation, we develop the notion of derivatives leverage introduced in-

formally above. Let ei denote the net worth of node i at the end of Round 1,

ei = ci + π(1)ri +
∑
k 6=i

p
(1)
ki −

∑
k 6=i

p̄ik. (39)

Proposition 5.2. Suppose (37) or (38) holds. Full termination reduces payment shortfalls, in

the sense that Lf ≤ Ls, under the “aggregate derivatives leverage” condition∑
i∈Df−D(1)

vi ≤
∑

i∈Df−D(1)

ei, (40)

if either (i) the collateral price is constant π = π̂ = 1, or (ii) there is no excess collateral,

meaning that mij ≤ p̄ij, ∀i, j ∈ N .

We call (40) a derivatives leverage condition because it compares derivatives liabilities on

the left with a measure of equity on the right. A simple sufficient condition for (40) is vi ≤ ei,
for all i 6∈ D(1). This condition applies to Example 5.1. Only node 0 survives the first round,

and its net worth is e0 = c0. If c0 ≥ v0 = d, then Lf = 0 and thus Lf ≤ Ls. Condition (40)

also holds when Df = D(1), the case considered in Corollary 5.1.

To add some qualitative context to (40), we note that post-crisis capital and liquidity

regulations have significantly increased bank capital and liquidity levels. According to the U.S
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Department of the Treasury Report [42], p.37, large U.S. banks hold nearly 24% of their assets

in high-quality liquid assets such as cash and U.S. Treasury securities. We know from bank

regulatory reporting that derivatives transactions constitute a small portion of the balance

sheets of even the largest U.S. bank holding companies. These considerations suggest that the

cash demands from contract terminations are unlikely to topple an otherwise solvent bank,

favoring full termination over selective termination.

In defining the shortfall measure Ls in (35), we have not included contracts that have positive

value vki for a failed node i ∈ Ds, where k 6∈ Ds is a surviving node: under selective termination,

these contracts are not terminated and the payment obligations are not accelerated. To include

these quantities as payment shortfalls, we can define

Ls+ = Ls +
∑
k 6∈Ds

∑
i∈Ds

vki.

As Ls ≤ Ls+, we clearly have Lf ≤ Ls+ under the conditions of Proposition 5.2.

The following modification of Example 5.1 highlights the effect of collateral fire sales on the

total payment shortfalls under full and selective termination.

Example 5.2. We modify the linear network of Example 5.1 by setting c0 = 0 to remove node

0’s cash and introducing collateral shares m01 > 0 posted by node 0 to node 1. With a fixed

collateral price π ≡ 1 and m01 = c0, the shortfalls in this network are identical to those in

Example 5.1: following the first-round default of nodes 1, . . . , N , the collateral m01 is returned

to node 0, and node 0 pays d∧m01 to node 1 in the case of full termination; it pays nothing in

the case of selective termination.

Suppose m01 > d, so that node 0 could meet its obligation in the FT case if π ≡ 1,

resulting in Lf = 0. If the collateral is illiquid, its value will drop when node 0 sells collateral

shares. Applying (31) and (32), we find that the amount liquidated is Γ(2) = m01∧d/π(2), with

π(2) = exp(−αΓ(2)), so Γ(2) = m01 ∧ d exp(αΓ(2)). If m01 < d exp(αm01), then Γ(2) = m01 (all

shares are liquidated) and the amount node 0 pays to node 1 is π(2)m01 = m01 exp(−αm01) < d.

The resulting shortfall is Lf = (N + 1)(d −m01 exp(−αm01))+, whereas Ls = Nd. We thus

have Lf ≥ Ls for sufficiently large α. In other words, the illiquidity of the collateral can reverse

the order of the two shortfalls.

5.2 Comparison with No Termination

If we set aside the option for a bankrupt node to reject certain contracts, we can model an

automatic stay by supposing that no payments are accelerated at default. This no-termination
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scenario is equivalent to setting all vij = 0, which reduces to the model of Sections 2 and 3. We

compare no termination with full termination and selective termination.

We begin with the comparison between full termination and no termination. We continue to

use pij to denote clearing payments under the full termination protocol; in this section, we use

qij to denote clearing payments with no accelerated payments. The two scenarios coincide in

Round 1; and without contract terminations no defaults occur after Round 1, and no payments

are made after Round 2. We compare payments under the assumption that (37) or (38) holds,

applying these conditions to the new qij . The total payment shortfall in the no-termination

scenario is given by

Ln =
∑
i∈D(1)

(p̄i − qi),

with qi = q
(1)
i + q

(2)
i .

Proposition 5.3. Suppose that (37) or (38) holds. Suppose there is no excess collateral,

meaning that mij ≤ p̄ij, ∀i, j ∈ N . Then full termination results in the same default set

as no termination and lower payment shortfalls, Lf ≤ Ln, if the following condition holds:

vi ≤
{
ei, i 6∈ D(1);∑

k/∈D(1) vki, i ∈ D(1).
(41)

The comparison of full termination and no termination presents tradeoffs similar to those

in Section 5.1. Contract termination creates additional payment obligations, but it can also

increase the flow of cash to meet payment obligations. As in Proposition 5.2, the condition in

(41) can be interpreted as a constraint on derivatives leverage.

If we take the view that counterparties of a failed node will have to replace their contracts,

then we may define

Ln+ =
∑
i∈D(1)

(vi + p̄i − q̄i).

This shortfall measure includes the total value vi of node i’s outstanding contracts and thus

the replacement cost imposed on node i’s counterparties. Proposition 5.3 clearly applies with

Ln replaced by Ln+.

For the comparison of selective termination (creditor cherry-picking) and no termination,

we have the following simpler result. Recall that the two models coincide in Round 1.

Proposition 5.4. Suppose there is no excess collateral, meaning that mij ≤ p̄ij, ∀i, j ∈ N .

For any common set of first-round payments under selective termination and no termination,

we have Dn = Ds and Ln ≤ Ls.
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The network is unlikely to have excess collateral following a large shock. But if we drop

the assumption of no excess collateral, the comparison of shortfalls could go either way. For

example, suppose in Figure 7 that node 0 has a payment obligation to some other node A that it

cannot meet, and suppose node 0 has posted excess collateral to node A. That excess collateral

is returned to node 0 in Round 2. If node 1 selectively terminates its contract with node 0, this

creates a new payment obligation v01, potentially increasing the systemwide shortfall. But if

the excess collateral returned to node 0 is large, the contract termination will lead to additional

payments by nodes 1 through N , potentially reducing the systemwide shortfall.

6 Concluding Remarks

This paper introduces a framework to study contagion in collateralized financial networks and

to analyze the effects of the contract termination rules that control access to collateral. We

compare alternative scenarios through their impact on the set of nodes that default and the

total payment shortfall. In a collateralized network, the failure of one firm may improve the

ability of other firms to meet their obligations. We show that this phenomenon makes the

problem of determining clearing payments ill-posed. We resolve this difficulty and arrive at

a well-defined set of clearing payments by carefully specifying the timing of payments and

collateral liquidation.

It is interesting to view our analysis through a regulatory lens. In its comparison of margin

requirements and capital requirements, BCBS-IOSCO [4] (p.4) writes that, margin can be seen

as offering enhanced protection [in comparison with capital] against counterparty credit risk

provided that it is effectively implemented. In order for margin to act as an effective risk

mitigant, it must be (i) accessible when needed and (ii) provided in a form that can be liquidated

rapidly and at a predictable price even in a time of financial stress. Our analysis of fire sales

reinforces the second point, and our baseline model of collateral presupposes that collateral is

accessible at default. But our results also show that even when (i) and (ii) hold, collateral

is not guaranteed to improve financial stability. Depending on how collateral is allocated to

counterparties, it can increase or decrease defaults and payment shortfalls. For instance, we

show that committing excess collateral may increase risks to financial stability. This result is

applicable with derivative contracts where initial margin can lead to collateral levels in excess

of current payment obligations. Moreover, a comparison of alternative policies on collateral

seizure requires consideration of a firm’s positions in a network of payment obligations and

cannot be made by considering a firm in isolation.

The same point — that the network matters — applies to the comparison of alternative
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rules on contract termination. The debate over stays on contract termination upon the failure

of a firm gained renewed attention after the failure of Lehman Brothers. Policies adopted earlier

argued that financial stability required protecting the termination rights of surviving counter-

parties; more recently, the regulatory consensus has argued that financial stability requires

limiting these rights. Our analysis compares systemwide losses and defaults under alternative

assumptions about contract termination. These comparisons require analyzing the network;

our results and examples show that none of the termination scenarios we consider is uniformly

better than the others in stemming losses.

We are able to make a stronger statement under a constraint on derivatives leverage in

the network. When this condition holds, full termination results in lower payment shortfalls

than selective termination or no termination. A reduction in derivatives leverage is consistent

with post-crisis increases in bank capital and a general decline in over-the-counter derivatives,

adding to the relevance of the condition we introduce.
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A Appendix: Supporting Analysis

A.1 Proof of Lemma 2.1

Write Si = {k : p
(1)
ik < p̄ik} for the set of nodes to which node i did not meet its payment

obligations in Round 1. If j 6∈ Si then a
(2)
ij = 0, so we may suppose j ∈ Si; in particular, Si

is nonempty. The sums in the denominators of a
(1)
ij and a

(2)
ij can be restricted to k ∈ Si. We

prove the result in the more general setting of Section 3, for which π(1) = π(2) = 1 is a special

case. For all k ∈ Si,
p

(1)
ik = π(1)mik + a

(1)
ik A

(1)
i .
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Making this substitution in (11) and (13) and letting Ki denote the denominator of a
(1)
ij yields

a
(2)
ij =

p̄ij − π(1)mij − a(1)
ij A

(1)
i∑

k∈Si(p̄ik − π
(1)mik − a

(1)
ik A

(1)
i )

=
(p̄ij − π(1)mij)(1−A(1)

i /Ki)∑
k∈Si(p̄ik − π

(1)mik)(1−A
(1)
i /Ki)

= a
(1)
ij .

A.2 Proof of Proposition 2.1

The existence of clearing payments in this setting is a special case of the more general claim in

Proposition 3.1, which we prove separately. Here we prove (15).

The second-round payments in (14) satisfy p
(2)
ij ≤ p̄

(2)
ij = p̄ij−p(1)

ij , using (11), so p
(1)
ij +p

(2)
ij ≤

p̄ij . Summing over j, we get

p
(1)
i + p

(2)
i ≤ p̄i. (42)

We will next show that the second term in (15) is also an upper bound,

p
(1)
i + p

(2)
i ≤ ci +

∑
k 6=i

(p
(1)
ki + p

(2)
ki ) +

∑
k 6=i

mik. (43)

The second-round payments in (14) have exactly the structure of Eisenberg-Noe [17] clearing

payments (4), with ri in (14) playing the role of ci in (4) and payment obligations given by

p̄
(2)
ij . Any node that did not default in the first round has no payment obligations in the second

round. As in Eisenberg-Noe [17], we may write the node totals as

p
(2)
i = p̄

(2)
i ∧

ri +
∑
k 6=i

p
(2)
ki

 .

In other words, the minimum in (14) is either attained by the first term for all j or the second

term for all j. For i ∈ D, we can rewrite ri using (5) and (12) as ri =
∑

k(mik − p̄i)+. Making

this substitution and using (11), we get

p
(2)
i = [p̄i − p(1)

i ] ∧

∑
k 6=i

(mik − p̄ik)+ +
∑
k 6=i

p
(2)
ki

 . (44)

From (10) we have

p
(1)
ik = (mik ∧ p̄ik) + (a

(1)
ik A

(1)
i ∧ p̄ik) ≤ (mik ∧ p̄ik) + a

(1)
ik A

(1)
i . (45)
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Summing both sides of (45) over k and recalling the definition of A
(1)
i in (7), we get

p
(1)
i ≤ ci +

∑
k 6=i

p
(1)
ki +

∑
k 6=i

(mik ∧ p̄ik). (46)

Adding (46) to (44) yields (43).

In light of (42) and (43), to prove (15), we need to show that

if p
(1)
i + p

(2)
i < p̄i then p

(1)
i + p

(2)
i = ci +

∑
k(p

(1)
ki + p

(2)
ki ) +

∑
kmik. (47)

We claim that if p
(1)
i + p

(2)
i < p̄i then equality holds in (45) and (10) can be written as

p
(1)
ik = (mik ∧ p̄ik) + a

(1)
ik A

(1)
i . (48)

To show this equivalence, we need to consider three cases. (i) If p̄ik ≤ mik, then (6) yields

a
(1)
ik = 0, so (10) and (48) both give p

(1)
ik = p̄ik. (ii) If p̄ik ≥ mik + a

(1)
ik A

(1)
i , then (10) and

(48) both give p
(1)
ik = mik + a

(1)
ik A

(1)
i . (iii) The remaining case is mik < p̄ik < mik + a

(1)
ik A

(1)
i ,

which is equivalent to 0 < p̄ik − mik < a
(1)
ik A

(1)
i . In light of the definition of a

(1)
ik in (6), this

implies
∑

j [p̄ij −mij ]
+ < A

(1)
i . But this inequality says that following the seizure of collateral,

node i has sufficient remaining assets to meet all its residual claims, making p
(1)
ik = p̄ik, for all

k. Summing over k yields p
(1)
i = p̄i. Thus, under the condition p

(1)
i + p

(2)
i < p̄i, case (iii) is

precluded and (48) holds.

Summing over k in (48) we get equality in (46). Under the condition p
(1)
i +p

(2)
i < p̄i in (47),

the minimum in (44) is attained by the second term. Adding this term to the right side of (46)

yields the claimed result in (47).

A.3 Analysis of Free-Termination Model

We begin with a precise formulation of the model of Section 2.5. To capture the nodes’ access

to collateral, we need to set

Ai = ci +
∑
k 6=i

pki +
∑
k 6=i

[mik − p̄ik]+ ≡ cpi +
∑
k 6=i

pki. (49)

The term [mik − p̄ik]+ reflects excess collateral node i can call back from k to make payments

to other nodes. Node i defaults if Ai <
∑

k[p̄ik −mik]
+; in other words, default is the failure

to meet uncollateralized obligations. We can write the default set as

Dp = {i : ci +
∑
k

pki +
∑
k

mik <
∑
k

p̄ik}. (50)
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Upon i’s default, node j’s share of any remaining assets is proportional to its residual claim, so

aij =
[p̄ij −mij ]

+∑
k[p̄ik −mik]+

. (51)

Clearing payments are required to satisfy

pij = p̄ij ∧ [mij + aijAi]. (52)

Existence of (largest and smallest) clearing payments follows from Tarski’s fixed-point theorem.

To formulate the equivalent Eisenberg-Noe model, define reduced obligations

q̄ij = [p̄ij −mij ]
+, (53)

and increased cash

cqi = ci +
∑
k

[mik − p̄ik]+ +
∑
k

(mki ∧ p̄ki).

The additional cash reflects collateral [mik − p̄ik]
+ recovered by i and any paying down of

obligations to i using collateral posted by k, mki ∧ p̄ki. Set

Aqi = cqi +
∑
k 6=i

qki,

and notice that aij in (51) equals q̄ij/
∑

k q̄ik. With no collateral, the standard Eisenberg-Noe

condition for clearing payments becomes

qij = q̄ij ∧ aijAqi . (54)

We may rephrase the first statement of Lemma 2.2 as saying that payments qij satisfy (54) if

and only if payments pij = qij + (mij ∧ p̄ij) satisfy (52).

Proof of Lemma 2.2. If (54) holds, the substitutions qij = pij − (mij ∧ p̄ij) and (53) yield

pij − (mij ∧ p̄ij) = [p̄ij −mij ]
+ ∧ aijAqi ,

so

pij = p̄ij ∧ [(mij ∧ p̄ij) + aijA
q
i ]

= p̄ij ∧ [mij + aijA
q
i ]. (55)

But

Aqi = ci +
∑
k

[mik − p̄ik]+ +
∑
k

(mki ∧ p̄ki) +
∑
k

qki

= ci +
∑
k

[mik − p̄ik]+ +
∑
k

pki = Ai,
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so (55) yields (52). Conversely, if (52) holds, then, as p̄ij = qij + (mij ∧ p̄ij), we have

qij + (mij ∧ p̄ij) = [q̄ij + (mij ∧ p̄ij)] ∧ [mij + aijA
q
i ],

so

qij = q̄ij ∧ [(mij − p̄ij)+ + aijA
q
i ] = q̄ij ∧ aijAqi ,

because if mij > p̄ij then q̄ij = 0. As Aqi = Ai, (54) follows.

To see that the payment shortfalls coincide, observe that

q̄ij − qij = [p̄ij −mij ]
+ − [pij − (mij ∧ p̄ij)] = p̄ij − pij .

The default sets coincide because qij < q̄ij if and only if pij < p̄ij .

Proof of Proposition 2.3. For the model with free termination, we can use cpi in (49) to rewrite

the clearing condition (52) as

pij = p̄ij ∧ [mij + aij(c
p
i +

∑
k

pki)]. (56)

This equation has exactly the same form as the first-round clearing payments in (10), but with

ci in (7) replaced by cpi . As cpi ≥ ci, it follows from Theorem 3 of Milgrom and Roberts [33] that

the largest and smallest fixed points of (56) are no smaller than, respectively, the largest and

smallest fixed points of (10). In other words, payments with free termination exceed first-round

payments in the original model. By comparing (8) and (50), we see that pki ≥ p
(1)
ki implies

Dp ⊆ D: free termination results in fewer defaults.

To compare payment shortfalls in the two models, we use equation (57), proved below, and

claim that we can replace ci + ri with cpi to write

p
(1)
ij + p

(2)
ij = p̄ij ∧

[
mij + a

(1)
ij

(
cpi +

∑
k

(p
(1)
ki + p

(2)
ki )

)]
.

If i 6∈ D, then p
(1)
ij = p̄ij , p

(2)
ij = 0 and there is nothing to show. If i ∈ D, then the returned

collateral is ri =
∑

k[mik − p̄ik]+, and indeed ci + ri = cpi . Comparison with (56) now shows

that total payments in the two systems coincide.

A.4 Proof of Proposition 2.4

We first derive an expression for total payments p
(1)
ij +p

(2)
ij that is of independent interest. Using

Lemma 2.1, we can replace a
(2)
ij in (14) with a

(1)
ij , because if a

(2)
ij = 0 then p

(1)
ij = p̄ij , so p

(2)
ij = 0
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and is unchanged by the replacement. With this substitution and adding (10) and (14), we get

p
(1)
ij + p

(2)
ij = p̄ij ∧

([
p̄ij ∧ [mij + a

(1)
ij (ci +

∑
k

p
(1)
ki )

]
+ a

(2)
ij (ri +

∑
k

p
(2)
ki )

)

= p̄ij ∧

[
mij + a

(1)
ij

(
ci + ri +

∑
k

(p
(1)
ki + p

(2)
ki )

)]
. (57)

This expression does not quite reduce the two rounds to a single round because the returned

collateral ri is determined after the first round and is not an exogenous parameter. We now

turn to the two claims in the proposition.

(i) Removing excess collateral has no effect on Round 1 payments and no effect on which

nodes default. All excess collateral becomes returned collateral in Round 2. Replacing excess

collateral with cash increases ci by exactly the amount it decreases returned collateral ri, so we

can see from (57) that pooling excess collateral does not affect thet set of clearing payments

and therefore does not affect payment shortfalls. The increase in ci can, however, reduce the

default set, which is determined in Round 1.

(ii) Under proportional collateral, [p̄ij − mij ]
+ = (1 − ki)p̄ij , so a

(1)
ij = p̄ij/

∑
k p̄ik, from

which it follows that mij = a
(1)
ij mi, with mi =

∑
jmij . Moreover, with ki ∈ [0, 1], there is no

excess collateral, so no defaulting node receives any returned collateral, meaning that a
(1)
ij ri = 0.

We may therefore write (57) as

p
(1)
ij + p

(2)
ij = p̄ij ∧ a(1)

ij

(
mi + ci +

∑
k

(p
(1)
ki + p

(2)
ki )

)
.

As the total payments depend on mi and ci only through their sum, pooling while preserving

proportional collateral (increasing ci by decreasing ki) has no effect on payment shortfalls, but,

as before, increasing ci can reduce defaults.

A.5 Proof of Proposition 3.1

We begin with the analysis of first-round payments. Through an arbitrary ordering of pairs of

nodes, we can record the set of payments p
(1)
ij in a vector p(1); interpret the vector p̄ accordingly.

If we take any π ∈ [0, 1] and p(1) ∈ [0, p̄] and plug these variables into the right side of (17)–

(22), then the variables on the left side of (17) and (22) return new values of π ∈ [0, 1] and

p(1) ∈ [0, p̄]. In other words, expressions (17)–(22) define a mapping F : (π, p(1))→ (π, p(1)) of

[0, 1]× [0, p̄] into itself.

Lemma A.1. F is monotone increasing.
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Proof. In (22) we see that p
(1)
ij is monotone increasing in A

(1)
i and therefore monotone increasing

in p
(1)
ki , k 6= i. Now consider p

(1)
ij as a function of π. If i 6∈ D, then p

(1)
ij ≡ p̄ij , and changing π

has no effect on p
(1)
ij . For i ∈ D, we consider three cases.

Case 1. A
(1)
i <

∑
k(p̄ij −πmik)

+ and p̄ik > πmij . In this case, (22) yields a right derivative of

∂p
(1)
ij

∂π
= mij −

mijA
(1)
i∑

k(p̄ik − πmik)+
+

(p̄ij − πmij)
+A

(1)
i

∑
kmik1{p̄ik > πmik}

[
∑

k p̄ik − πmik)+]2
. (58)

The second term on the right is less than mij because we have assumed A
(1)
i <

∑
k(p̄ik−πmik)

+.

The third term is nonnegative, and the derivative is then as well. A small increase in π yields

an increase in p
(1)
ij .

Case 2. A
(1)
i ≥

∑
k(p̄ik − πmik)

+ and p̄ik > πmij . These conditions imply p
(1)
ij = p̄ij , and they

are preserved under a small increase in π, so ∂p
(1)
ij /∂π = 0.

Case 3. p̄ik ≤ πmij . In this case, p
(1)
ij = p̄ij , so ∂p

(1)
ij /∂π = 0.

As π increases, we may transition into Case 2 or Case 3. Either transition yields p
(1)
ij = p̄ij ,

so monotonicity holds.

It remains to show that (17) makes π on the left an increasing function of all p
(1)
ij and π

on the right. Monotonicity in π is immediate from the monotonicity of G. An increase in p
(1)
ij

leads the default set D to contract or remain unchanged, resulting in a decrease in ∆ and an

increase in π.

By Tarski’s fixed point theorem, Lemma A.1 implies that F has a fixed point in [0, 1]× [0, p̄],

which delivers the required clearing payments and collateral price. The following lemma will

ensure that a fixed point is reached through iterative application of F , starting from the upper

boundary of this domain.

Lemma A.2. F is continuous from the right; that is, for any decreasing convergent sequence

(π`, p`)→ (π∗, p∗), we have F (π`, p`)→ F (π∗, p∗).

Proof. Equations (17)–(22) imply that p
(1)
ij is continuous in p(1) and π, and (17) implies π on

the left is continuous in π on the right. A change in p(1) may produce a change in D and thus

a discontinuity in π. However, a small increase in p(1) preserves the inequalities defining the

default set in (18), leaving D unchanged and implying right-continuity of π in p(1).

We can now conclude the proof of Proposition 3.1. By Lemma A.1, the iterates of F starting

from (1, p̄) form a decreasing sequence F (π`, p`) = (π`+1, p`+1). This sequence is bounded is

below by (0, 0) and therefore has a limit (π∗, p∗). Thus, F (π`, p`)→ (π∗, p∗). But Lemma A.2

implies that F (π`, p`)→ F (π∗, p∗). We conclude that F (π∗, p∗) = (π∗, p∗).
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This fixed point provides a first-round price and clearing vector (π(1), p(1)). The existence

of (π(2), p(2)) now follows by a similar but simpler argument. Expressions (23)–(25) define a

mapping from (π(2), p(2)) on the right to (π(2), p(2)) on the left. The mapping is clearly monotone

increasing and continuous, and it maps [0, 1]× [0, p̄(2)] into itself. It therefore has a fixed point,

and the fixed point delivers the required solution (π(2), p(2)).

A.6 Proof of Proposition 3.2

The existence of a largest (and smallest) first-round solution follows from Tarski’s fixed point

theorem and the monotonicity of F in Lemma A.1. By Theorem 3 of Milgrom and Roberts

[33], the monotonicity of F in π(1) implies that the largest and smallest p(1) are smaller with

illiquid collateral (π(1) ≤ 1) than with liquid collateral (π(1) = 1). This implies that the default

set is larger with illiquid collateral.

With illiquid collateral, the argument leading to (57) yields

p
(1)
ij + p

(2)
ij = p̄ij ∧

[
π(1)mij + a

(1)
ij

(
ci + π(2)ri +

∑
k

(p
(1)
ki + p

(2)
ki )

)]
(59)

≡ p̄ij ∧
[
π(1)mij + a

(1)
ij Ãi

]
. (60)

With this representation, we may write (p(1), π(1), p(1)+p(2), π(2)) = (F (p(1), π(1)), F̃ (p(1), π(1), p(1)+

p(2), π(2))), with F as in Lemma A.1, and F̃ defined by (60) and (24).

In (60), Ãi is increasing in p(1)+p(2), in π(2), and in ri, which is increasing in π(1). Moreover,

(60) has the same form as (22), so the argument in Lemma A.1 shows that F̃ is monotone

increasing. It follows from Tarski’s fixed point theorem that the mapping defined by (F, F̃ )

has a largest and smallest fixed point. By Theorem 3 of Milgrom and Roberts [33], with

π(1), π(2) ≤ 1 (illiquid collateral), the largest and smallest fixed points are smaller than the

largest and smallest fixed points when we set π(1) ≡ π(2) ≡ 1 (the case of liquid collateral). As

illiquid collateral yields smaller total payments p(1) + p(2), it yields larger payment shortfalls.

A.7 Analysis of Collateral-First Protocol

In several places in this paper, we compare our baseline model of Sections 2.2–2.3 and Sec-

tions 3.1–3.2 with alternative models. In making these comparisons, we use the notation qij

and π̂ (with superscripts to distinguish rounds) to denote payments and prices in the alternative

model. The specific meaning of these variables will be different in different sections as we use

this notation to compare our baseline model against different alternatives.
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In this section, we use (q
(1)
ij , q

(2)
ij ) and (π̂(1), π̂(2)) to denote two rounds of payments and

collateral prices under a protocol in which payments precede collateral seizure in Round 1.

First-round payments are characterized by

q
(1)
ij =

{
p̄ij ∧

[
a

(1)
ij A

(1)
i + [(p̄ij − a(1)

ij A
(1)
i )+ ∧ π̂mij ]

]
, i ∈ Dq;

p̄ij , i /∈ Dq.
(61)

The first case should be read as follows: node i makes a partial payment to node j of a
(1)
ij A

(1)
i ;

any residual obligation (p̄ij−a(1)
ij A

(1)
i )+ is paid from collateral, up to the amount available π̂mij ;

the total payment cannot exceed the amount due p̄ij . The assets A
(1)
i have the same form as in

(7), but now with incoming payments q
(1)
ki ; the default set is determined exactly as in (8), but

we have labeled it Dq to indicate its dependence on the payments q(1). The proportions a
(1)
ij

are as given in (19) and thus reflect the collateral posted. Upon node i’s default, the shares of

collateral seized and sold by node j become

∆q
ij =

mij ∧
[p̄ij−a

(1)
ij A

(1)
i ]+

π̂(1) , i ∈ Dq;

0, i /∈ Dq.
(62)

The first case in (62) captures the feature that a failed node’s collateral can be seized and

liquidated only after its other assets are exhausted. Set ∆q =
∑

i

∑
j ∆q

ij . As before, the

price impact function π̂(1) = e−α∆q
determines the equilibrium asset price. Once first-round

payments and π̂(1) are determined, second-round payments q
(2)
ij and π̂(2) are characterized by

(23)–(25), just as before. The proof of Proposition 3.1 can be used to show the existence of

first- and second-round clearing payments and prices (q(1), π̂(1)) and (q(2), π̂(2)).

In the case of liquid collateral, π ≡ 1, total payments in the original (collateral first) model

and the alternative (payments first) model are the same:

Proposition A.1. Assume that collateral is posted in cash so that there are no fire-sale effects.

If (p
(1)
ij , p

(2)
ij ), i, j ∈ N , are total clearing payments for the original model, then q

(1)
ij = p

(1)
ij and

q
(2)
ij = p

(2)
ij , i, j ∈ N , are total clearing payments in the alternative model with delayed collateral

seizure. Thus, with liquid collateral, the two protocols yield the same default set and the same

payment shortfalls.

Proof of Proposition A.1. We first show that if all incoming payments to node i agree under

the two models, q
(1)
ki = p

(1)
ki , k ∈ N , then outgoing payments p

(1)
ij given by (10) and q

(1)
ij given

by (61) agree for all j ∈ N .

If all incoming payments to node i agree under the two models, then the two models yield

the same A
(1)
i , and i ∈ D if and only if i ∈ Dq. If i 6∈ D, then q

(1)
ij = p̄ij = p

(1)
ij , for all j.
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Suppose i 6∈ D. If p̄ij ≤ a(1)
ij A

(1)
i , then (10) and (61) both evaluate to p̄ij . If p̄ij > a

(1)
ij A

(1)
i , then

(61) evaluates to

q
(1)
ij = p̄ij ∧

[
a

(1)
ij A

(1)
i + [p̄ij − a(1)

ij A
(1)
i ] ∧mij

]
= p̄ij ∧

[
p̄ij ∧ (mij + a

(1)
ij A

(1)
i )
]
,

which agrees with (10). Thus, q
(1)
ij = p

(1)
ij , for all j.

We now turn to the second-round payments. We assume that all first-round payments

agree under the two models, and we assume that all second-round incoming payments agree,

q
(2)
ki = p

(2)
ki , for all k ∈ N , and we show that this implies that q

(2)
ij = p

(2)
ij , for all j ∈ N .

If i 6∈ D, then node i has no second-round payment obligations, so q
(2)
ij = p

(2)
ij = 0, for all j.

Suppose i ∈ D. If the amount of returned collateral ri is the same in the two models, then the

payments made by node i under the two models agree because they are determined by (14).

The only remaining case to consider is the possibility that the two models may produce

different quantities of returned collateral ri. We see from (12) that the quantities of liquidated

collateral ∆ij in (5) and ∆q
ij in (62) must then differ for some j. We always have ∆q

ij ≤ ∆ij ≤
mij , so for the quantities to differ we must have ∆q

ij < ∆ij and thus ∆q
ij < mij . We must then

have a
(1)
ij A

(1)
i + ∆q

ij = p̄ij ; if we had a
(1)
ij A

(1)
i + ∆q

ij < p̄ij , additional collateral would have been

liquidated in the first round of the payments-first protocol to meet the obligation p̄ij . Using

the definition of a
(1)
ij in (6), we can write the equation a

(1)
ij A

(1)
i + ∆q

ij = p̄ij as

[p̄ij −mij ]
+∑

k 6=i[p̄ik −mik]+
A

(1)
i = p̄ij −∆q

ij ⇒ A
(1)
i >

∑
k 6=i

[p̄ik −mik]
+.

But this inequality states node i has sufficient assets to meet all its Round 1 obligations under

the collateral-first protocol, so p
(1)
ij = p̄ij , hence q

(1)
ij = p̄ij , implying that p

(2)
ij = q

(2)
ij = 0.

A.8 Proof of Proposition 4.1

The first round with contract termination is identical to the first round in Section 3.1 so the

existence of (p(1), π(1)) follows from Proposition 3.1. For m ≥ 2, we claim that ∆
(m)
ij = 0.

In light of (27), it suffices to consider the case i ∈ D(m), j ∈ Sm−1. But if i ∈ D(m) then

i survived the first m − 1 rounds, so i ∈ Sm−1. In this case, (26) yields p̄
(m)
ij = 0, and (27)

yields ∆
(m)
ij = 0. With all ∆

(m)
ij = 0, the mapping defined by equations (26)–(32) becomes a

special case of the mapping in Lemma A.1, with one modification, which is the inclusion of

the returned collateral value π(m)r
(m)
i in A

(m)
i in (28). The monotonicity proved in Lemma A.1

holds with this modification: the only step affected is (58), where we pick up an additional

positive term from the monotonicity of A
(m)
i in π(m). The existence of (p(m), π(m)) follows as

in Proposition 3.1.
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A.9 Proof of Proposition 5.2

Proof of Lemma 5.1. The second-round payment obligations in the FT model are given by

p̄
(2)
ij =

{
vij + p̄ij − p(1)

ij , i or j ∈ D(1);

0, otherwise.
(63)

This follows from (26) with m = 2, recalling that all nodes are in S0. Under the ST model,

q
(1)
ij = p

(1)
ij and the second-round payment obligations are given by

q̄
(2)
ij =

{
vij + p̄ij − p(1)

ij , i ∈ D(1);

0, otherwise,
(64)

because the amount vij becomes due only if i defaults. Comparing (63) and (64), we can write

p̄
(2)
ij ≥ q̄

(2)
ij , ∀i, j ∈ N .

Second-round payments under full termination are given by (30) with m = 2. In the proof

of Proposition 4.1, we showed that ∆
(m)
ij = 0 for m ≥ 2, so (30) yields

p
(2)
ij = p̄

(2)
ij ∧ a

(2)
ij

[
c

(2)
i + π(2)r

(2)
i +

∑
k 6=i

p
(2)
ki

]
, a

(2)
ij =

p̄
(2)
ij∑

k 6=i p̄
(2)
ik

, (65)

taking a
(2)
ij = 0 if node i has no second-round obligations. Under selective termination,

q
(2)
ij = q̄

(2)
ij ∧ â

(2)
ij

[
c

(2)
i + π̂(2)r

(2)
i +

∑
k 6=i

q
(2)
ki

]
, â

(2)
ij =

q̄
(2)
ij∑

k 6=i q̄
(2)
ik

. (66)

The cash amounts c
(2)
i and returned collateral r

(2)
i are indeed equal in these two expressions

because the two models agree in Round 1. Equations (65) and (66) represent p(2) and q(2) as

fixed points of a common mapping, parameterized by p̄(2) and a(2) in the first case and by q̄(2)

and â(2) in the second case. Moreover, p
(2)
ij in (65) is an increasing function of p̄

(2)
ij and a

(2)
ij ,

and q
(2)
ij in (66) is an increasing function of q̄

(2)
ij and â

(2)
ij .

We have shown that p̄(2) ≥ q̄(2); we now claim that a
(2)
ij ≥ â

(2)
ij , for all i, j ∈ N . If i ∈ D(1),

then we see from (63) and (64) that p̄
(2)
ik = q̄

(2)
ik , for all k, so a

(2)
ij = â

(2)
ij ; and if i 6∈ D(1) then

â
(2)
ij = 0. The ordering in (36) now follows from Theorem 3 of Milgrom and Roberts [33] for the

smallest and largest fixed points of the two models, which also ensures the existences of these

extremal fixed points.
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Proof of Proposition 5.2. From from (34) we have Ds ⊆ Df , and as noted there Ds = D(1). To

compare payment shortfalls we use (35) to write

Ls − Lf =
∑
i∈D(1)

(pi − qi)−
∑

i∈Df−D(1)

(vi + p̄i − pi)

=
∑
i∈D(1)

(
∑
`≥2

p
(`)
i − q

(2)
i )−

∑
i∈Df−D(1)

(vi + p̄i − pi) (67)

=
∑
i∈D(1)

(
∑
`≥2

p
(`)
i − q

(2)
i )−

∑
i∈Df−D(1)

(vi −
∑
`≥2

p
(`)
i ). (68)

Equation (67) uses two properties: the first-round payments agree, p
(1)
i = q

(1)
i , for all i; and

under selective termination, there are no payments after the second round, so q
(`)
i = 0, for

` > 2. Equation (68) follows because if i 6∈ D(1), then node i must have met its first-round

payment obligations, so p̄i = p
(1)
i .

Under full termination, if node i survives Round 1 but defaults in a subsequent round (i.e.,

i ∈ Df −D(1)) then its payments
∑

`≥2 p
(`)
i must be at least as large as its net worth ei defined

in (39); if a node paid out less than its net worth, it would not default. From (68) we get

Ls − Lf ≥
∑
i∈D(1)

(
∑
`≥2

p
(`)
i − q

(2)
i )−

∑
i∈Df−D(1)

(vi − ei). (69)

In case (i), Lemma 5.1 applies, so p
(2)
i ≥ q

(2)
i and the first term on the right in (69) is

positive. Under condition (40), we conclude from (69) that Ls ≥ Lf . For case (ii) we note that

if mij ≤ p̄ij , for all i, j ∈ N , then, under selective termination, nodes that default in Round 1 do

not have any collateral returned and do not receive any subsequent payments, so they cannot

make any subsequent payments; thus, q
(2)
i = 0 in (69), so (40) again implies Ls ≥ Lf .

Proof of Proposition 5.3. Under full termination and the condition vi ≤ ei, ∀i /∈ D(1), a node

that survives the first round can meet its second-round obligations because these obligations vi

do not exceed the node’s net worth ei. Thus, Df = D(1), and without further defaults, p
(`)
ij = 0,

for all ` > 2.

In the no-termination scenario, D(1) is also the default set, because the two models agree in

Round 1. In the absence of excess collateral, a node that defaults in Round 1 has no collateral

returned. If no contracts are terminated then such a node has no influx of cash and therefore

cannot make any further payments: q
(`)
ij = 0 for ` ≥ 2 if i ∈ D(1). If i 6∈ D(1), then node i has

no payment obligations after Round 1 so again q
(`)
ij = 0 for ` ≥ 2. The difference in payment
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shortfalls is given by

Ln − Lf =
∑
i∈D(1)

(p̄i − qi)−
∑
i∈D(1)

(vi + p̄i − pi)

=
∑
i∈D(1)

(pi − qi)−
∑
i∈D(1)

vi

=
∑
i∈D(1)

p
(2)
i −

∑
i∈D(1)

vi, (70)

where the first equation uses Df = D(1), and the third step uses p
(1)
i = q

(1)
i , q

(`)
i = 0, ` ≥ 2,

and p
(`)
i = 0, for all ` > 2.

If i ∈ D(1), then node i’s total second-round payments are given by the lesser of its payment

obligations and its cash influx, so

p
(2)
i = (vi + p̄i − p(1)

i ) ∧ (
∑

k/∈D(1)

vki +
∑

k∈D(1)

p
(2)
ki )

≥ vi ∧ (vi +
∑

k∈D(1)

p
(2)
ki ) = vi,

using the second case in (41). It now follows from (70) that Ln − Lf ≥ 0.

Proof of Proposition 5.4. Under both selective termination and no termination, if the network

has no excess collateral then no collateral is returned in Round 2 and no payments are made

in Round 2. Selective termination does not create any new defaults, so Ds = D(1) = Dn.

Compared with no termination, selective termination increases second-round payment obliga-

tions; but with no second-round payments made, this results in larger payments shortfalls, so

Ln ≤ Ls.

B Appendix: Institutional Features

This appendix provides some institutional background on collateral ownership and contract

termination in the markets for over-the-counter (OTC) derivatives; similar considerations apply

to many forms of collateralized borrowing, including standard repurchase agreements. The

points we emphasize are as follows: collateral is owned by the posting party until that party

defaults; upon default by the posting party, the surviving party may seize the collateral quickly;

a surviving party may face delays in recovering collateral posted to a counterparty that defaults;

parties may not ordinarily terminate contracts at will as a means of recovering posted collateral.

OTC derivatives are traded either bilaterally (the non-cleared market) or through central

counterparties (CCPs). Following reforms introduced in 2009, when two parties enter into a
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bilateral contract, they post collateral to each other, and the amount of collateral is updated

regularly as market prices changes. The amounts exchanged may be asymmetric; for example,

the seller of an option will need to post more collateral than the buyer.

These arrangements are typically governed by an ISDA (International Swaps and Derivatives

Association) agreement. Under such an agreement, each party retains ownership of the collateral

it pledges and grants to the other party a “priority interest” in the collateral in case the pledging

party defaults. Contracts agreed to under an ISDA agreement are terminated by events of

default and certain additional events including changes in law, certain tax events, force majeure

events, and other triggers (such as credit downgrades) that the parties might agree to. (See,

e.g., ISDA [29].) Neither party may unilaterally terminate the contract unless that option is

itself part of the contract.

The internationally agreed principles governing bilateral margin (BCBS-IOSCO [4], p.23)

specify that it should be “immediately available to the collecting party in the event of the

counterpartys default.” They also state (p.24) that “collateral collected as initial margin from

the customer is treated as a customer asset” and (p.8) “the collected margin must be subject to

arrangements that fully protect the posting party to the extent possible under applicable law in

the event that the collecting party enters bankruptcy.” Our model is designed to capture these

principles in simplified form: collateral belongs to the posting party; it can be seized quickly by

the collecting party if the posting party defaults; the return of collateral to the posting party

may be delayed by bankruptcy proceedings if the collecting party fails.

In the centrally cleared market, CCPs collect but do not post collateral. Here, too, collateral

arrangements ensure immediate access by the CCP in case of a counterpartys default. Trades

with a CCP cannot be unilaterally terminated because the CCP needs to maintain a “matched

book,” with an offsetting contract for every trade.
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