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Abstract

In this paper we propose a framework for Model-based Sequential Optimal De-

sign of Experiments to assist experimenters involved in Vapor-Liquid equilibrium

characterization studies to systematically construct thermodynamically consistent

models. The approach uses an initial continuous optimal design obtained via

semidefinite programming, and then iterates between two stages (i) model fitting

using the information available; and (ii) identification of the next experiment, so

that the information content in data is maximized. The procedure stops when the

number of experiments reaches the maximum for the experimental program or the

dissimilarity between the parameter estimates during two consecutive iterations is

below a given threshold. This methodology is exemplified with the D-optimal de-
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sign of isobaric experiments, for characterizing binary mixtures using the NRTL

and UNIQUAC thermodynamic models for liquid phase. Significant reductions

of the confidence regions for the parameters are achieved compared with experi-

mental plans where the observations are uniformly distributed over the domain.

Keywords: Sequential optimal design of experiments, Vapor-Liquid

Equilibrium, Semidefinite Programming, NRTL model, Nonlinear Programming.

1. Introduction

Numerous vapor-liquid equilibrium (VLE) experiments are undertaken to (i)

build models that are subsequently used for process design and optimization; and

(ii) improve the understanding of the VLE system. VLE models are crucial in de-

signing, optimizing and controlling process equipment (e.g., distillation or flash

operation), finding application in many chemical industries, including petrochem-

icals, pharmaceuticals and food processing. Constructing adequate mathemat-

ical models from VLE data typically involves seven steps or variants thereof:

(i) choosing the appropriate thermodynamic modeling framework, according to

the nature of the components and the operating region [50]; (ii) setting the ex-

perimental apparatus to extract the data with the required accuracy and precision

[59, 48]; (iii) determining the experimental plan [47]; (iv) setting the criterion

used for parameter estimation [32]; (v) performing the experiments and collecting

the data [62]; (vi) performing the parameter estimation given the thermodynamic

model [34, 42] and the criterion previously chosen, which, in turn, requires a phase

stability analysis to prevent spurious phase predictions [53], and consistency tests

to identify data anomalies [39, 75]; (vii) if necessary, iterating from (v) using the

results of further experiments to refine the parameter estimates, until the estimated
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model satisfies the experimental objectives. While there is a rich body of knowl-

edge to tackle steps (i-ii) and (iv-vi), to the best of our knowledge, methods to deal

with (iii) in the light of (iv) and with (vii) are practically non-existent. Very of-

ten the choice of experiments relies on an uniform grid temperature (or pressure)

conditions. Consequently, even correctly obtained and accurate VLE data may be

insufficient to support the fitting model, leading to high covariances in parame-

ters and lack of identifiability which undermine its use in process simulation and

optimization environments.

The experimental effort required for gathering VLE data depends on the sys-

tem and operating conditions considered. While this procedure can now be rou-

tinely performed for low pressure and non-azeotropic systems, it can also involve

more significant planning and effort when high pressure-temperature conditions

are involved. Hence, it is surprising that experimental plans are still customar-

ily established without the use of tools that can maximize the information about

the system, subject to the available resources [17]. As a result, the experiments

may yield limited information for the accurate estimation of the parameters of

the chosen thermodynamic model [55]. In addition, the models used to describe

VLE behavior are nonlinear by nature, so that good designs paradoxically require

accurate knowledge of the parameters to be estimated. Given the complexity of

finding robust Bayesian or minimax optimal designs to overcome parametric un-

certainty, the optimal designs prescribed would be local [5]. In such cases, the

information is maximized assuming a given set of operating parameter estimates.

Consequently, locally determined optimal designs may perform poorly if the true

parameter values are appreciably different from those used to calculate the design

[69]. A good way to circumvent this issue is the use of sequential optimal de-
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signs, where the experimental plan includes an initial step where a locally optimal

design is obtained and carried out, followed by a phase where the set of parame-

ters is iteratively re-estimated after each set of new results [80]. Specifically, the

subsequent experiment is chosen so that the amount of information available in

the augmented data set is maximized [38]. The procedure terminates when the

model parameters are accurate enough or the resources available have been de-

pleted. The rationale just described is the basis for the model-based sequential

optimal design of experiments (M-bSODE) [23]. An application of M-bSODE to

model parametrization appears in [5, §17.7].

M-bSODE helps to identify and plan the set of experiments required to im-

prove the precision or significance of the estimated parameters, providing a steady

incremental increase in the accuracy of the parameter estimates and guiding the

experimental work with model-based designs based on these estimates. Metrics,

such as the reduction of the volume of the confidence region for the parameters,

can then be computed using the additional information available from any new

experiment. In this way, successive optimal experiment(s) can be chosen. Practi-

cally, the method also allows for gradual refinement of the experimental region.

The minimum number of data measurements required to derive the model pa-

rameters with a given accuracy is difficult to forecast because the results of the

Model-based Optimal Design of Experiments (M-bODE) procedure are depen-

dent on the currently assumed parameter values. If the current values are known

to be exact, then we can apply the proposed procedure to determine how many and

what are the new experimental conditions for the required experiments. However,

if the current estimates are inaccurate (which is usually the case), these predictions

would probably change, as new information about the system is obtained. This is
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the reason for the incremental structure of the proposed algorithm. Nevertheless,

once the parameters become approximate, this question can still be approximately

answered in the framework of M-bSODE.

The use of Model-based Optimal Design of Experiments is well established

in the Chemical Engineering literature. Most of the applications aim at find-

ing the optimal sequence of actions on input variables and/or time instants at

which sampling is required so that the information obtained from dynamic ex-

periments is maximized [33, 4]. The problem is formulated as an optimal control

problem [79, 57] and numerically handled with dynamic optimization techniques

[72, 51, 46]. Recent applications include systems with continuous measurement

[41], online redesign of experiments considering the amount of information gath-

ered previously and the model inaccuracy [40], the design of robust experiments

taking into account the uncertainty of the model and violation of the constraints

[68] and an application to a real case study where local identifiability is simul-

taneously monitored and used to transform the problem into a well-conditioned

equivalent form [9]. All these references focus on dynamic experiments; the lit-

erature on M-bODE of static experiments applied to thermodynamic models is,

from our knowledge, limited to Dechambre et al. [25] where they use a Wynn-

Fedorov algorithm to prescribe optimal experimental for Liquid-Liquid Equilib-

rium characterization considering the Non-Random Two-Liquid (NRTL) and the

Universal Quasichemical (UNIQUAC) and Duarte et al. [30] where Semidefinite

Programming is used.

The works of Galvanin et al. [40] and Barz et al. [9] involve the redesign of

experiments which can be seen as an automated variant of M-bSODE in dynamic

experiments. However, the application of M-bSODE frameworks within static ex-
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perimental plans where human resources are required is rather scarce. The ratio-

nale is using the knowledge previously obtained to prescribe the next experiment

to maximize the information. Among the references in the Chemical Engineering

literature are Brendel et al. [16], Thompson et al. [69] who addressed the identifi-

cation of complex reaction kinetics in chemical reactors, Goujot et al. [43] whose

application is a compartmental model describing the convective drying of rice,

and Soepyan et al. [66] where the methodology couples the sequential design of

experiments with a software tool to build surrogate models for learning about the

operation of a solvent-based CO2 capture pilot plant. M-bSODE frameworks were

also consistently applied in model discrimination, see Buzzi-Ferraris et al. [19]

and Buzzi-Ferraris et al. [18] among others. Further examples of M-bSODE can

be found primarily in drug development; specifically in dose-response studies us-

ing prediction models, see Dragalin and Fedorov [26], Dragalin et al. [27], Wang

et al. [73], Leonov and Miller [52] among others.

While a larger number of measurements can help increasing the confidence

degree in the parameter values produced, extensive sampling of the domain might

not be required or correspond to the most efficient method of achieving a reason-

able description of the underlying physical system, as demonstrated in the exam-

ples in §4 and §5 (see also [56]). This is the key concept of Optimal Experimental

Design (OED), which has been successfully applied in many scientific domains,

most remarkably when new experiments are expensive. The extensive sampling

methodology still corresponds to the traditional approach for conducting experi-

mental studies in the VLE area. But the current situation can be improved by using

an assumed model for measuring the information content and iteratively maximiz-

ing the information value of each new experiment by choosing the conditions that
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minimize a measure of the size of the parametric confidence region.

This paper addresses the M-bSODE for thermodynamic models describing

VLE data which, to the best of our knowledge, has not been demonstrated in

the open literature. We aim at establishing a computational framework capable

of guiding the experimenters in planning measurements to build and refine ther-

modynamic models for VLE characterization, with a minimal use of resources.

M-bSODE complements other well established tools, such as the NIST Thermo-

Data Engine [39] which are focused on dynamic data validation rather than on

designing experiments to improve thermodynamic models precision. The algo-

rithms proposed herein can be implemented in a user friendly software package,

so that they become amenable and helpful for researchers involved in VLE char-

acterization. This will ensure that a large group of researchers currently involved

in experimental studies will have a suitable planning tool available to support their

work, in order to improve the accuracy of the resulting models, and help in ratio-

nalizing the corresponding resource usage.

One important feature of the proposed methodology is that it allows antici-

pating whether it will produce significant improvements, compared with a more

traditional regular domain sampling. The answer is related to the optimal location

of the new experimental points. If the locations of the optimal sampling points de-

viate significantly from a regular (equidistributed) sampling plan, then it is more

plausible that differences in the results can be expected (and the opposite, in the

remaining case). The proposed methodology is grounded on mathematical pro-

gramming, relying on algorithms which have improved substantially over the last

two decades and are now able to handle complex, large-scale optimization prob-

lems. Practically, our framework requires solving nonlinear optimization prob-
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lems to (i) fit the available data set; and (ii) find the next experimental conditions

that maximize the information obtained. Semidefinite Programming is used for

constructing the initial design.

Herein, we consider the D-optimality criterion for measuring the amount of

information in data and apply the approach to isobaric measurements of binary

mixtures. Although the study assumes that the vapor phase is ideal and that the

non-ideal behavior in the liquid phase is modeled with NRTL [61] or UNIQUAC

[1], the proposed approach can be generalized to other continuously differentiable

optimality criteria, isothermal experimental setups and thermodynamic models

through the adaptation of VLE description used (Appendix B).

1.1. Paper organization and nomenclature

Section 2 presents the mathematical representation of the VLE model, the

background required for building the M-bSODE framework, and the general char-

acteristics of the mathematical programming tools used. Section 3 presents the

framework algorithm and analyzes each step in depth. Section 4 demonstrates its

application to the methanol-water system where the thermodynamic model cho-

sen is the NRTL. Section 5 extends the application to additional thermodynamic

models and other systems of interest. Our main conclusions are in Section 6.

Bold face lowercase letters are used to represent vectors, bold face capital let-

ters for continuous domains, blackboard bold capital letters for discrete domains,

and capital letters for matrices. Finite sets containing ι elements are compactly

represented by JιK = {1, · · · , ι}. The symbol “ᵀ” is used to indicate the vec-

tor/matrix transpose operation, tr(•) stands for the trace of a matrix and card(•)
for the cardinality of a discrete set.
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2. Preliminaries

This section establishes the nomenclature used in the representation of the

models and the background required in the framework. In §2.1 we present the

VLE model. In §2.2 we present the experimental design problems outlined above,

and in §2.3 and Appendix A we establish the fundamentals of the mathematical

programming tools used in the algorithm.

2.1. VLE model

We start by introducing the formalism used to describe the phase equilibra.

Let JcK = {1, 2} be the set of components in the mixture, and JhK = {L, V }
(L standing for liquid and V for vapor) the set of phases into which the original

mixture separates. Let z ∈ R2 be the vector containing the molar fractions in the

initial mixture submitted to the ebulliometer, such that
∑2

j=1 zj = 1. The vector

d ≡ {z, P, T} contains the possible control factors in the experiments, namely,

initial composition of the mixture, pressure and temperature. We note that for

isobaric experiments, P (here expressed in mm Hg) is fixed and the control factor

is T , and for isothermal experiments the opposite occurs. The composition of the

initial mixture, limited by the corresponding compositions at the dew point and

bubble point, is a variable to be chosen in the experimental plan in agreement with

the temperature or pressure. Finally, the molar fraction of one of the components

in the initial mixture is not independent, i.e., the choice of z1 automatically sets

z2.

The molar fraction of the components in each phase is denoted by yp,j where

the first subscript identifies the phase, p ∈ JhK, and the second is for the com-

ponent, j ∈ JcK. Similarly, in each phase and ignoring any measurement er-
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rors, the component fractions sum to 1, i.e.
∑2

j=1 yp,j = 1, ∀p ∈ JhK and

0 ≤ yp,j ≤ 1, ∀p ∈ JhK, j ∈ JcK. Consequently, only one of the components

is measured in each phase because the molar fraction of the other is not indepen-

dent. Without loss of generality we consider that component 1 is measured. The

vector containing the molar fraction of both components in phase p is denoted by

yp,., p ∈ JhK. Practically, for the most volatile component yL,j ≤ zj ≤ yV,j , and

for the less volatile yV,j ≤ zj ≤ yL,j . The mathematical representation of the VLE

model is detailed in Appendix B.

The measurements of the response variables in model (B.2) include an error

component, i.e.

yobs
p,j = yp,j + εp,j, p ∈ JhK and j ∈ JcK, (1)

where yobs
p,j is the measurement of the molar fraction of component j in the pth

phase and εp,j is the corresponding observational error. Herein, we consider the er-

rors affecting each of the responses to be normally distributed with zero mean and

standard deviation σp,j , i.e. εp,j ∼ N (0, σp,j). Problems can arise when assum-

ing that measurement errors are normally distributed because the molar fractions

are constrained between 0 and 1. Here, these problems are mitigated because the

standard deviation of the errors is small. Without loss of generality, the standard

deviation of the observational errors is assumed to be known from the performance

of the measurement device and experimental procedure considered.

2.2. Optimal design of experiments

The regression models addressed herein are described by g(•) = 0 and have a

two-variate response with two control factors, corresponding to the initial mixture

composition and pressure (in isothermal experiments) or temperature (in isobaric
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experiments). It is noteworthy that the choice of the temperature or pressure influ-

ences the choice of the composition of the initial mixture as it must be within the

compositions at dew and bubble points. Practically, the initial mixture is a control

factor although it is dependent on the other control factor(s). The system response

is (i) the molar fraction of one of the components in L phase; or (ii) the compo-

sition of one of the components in both L and in V phases. In the latter case,

the mean response of the system at conditions d are denoted by E[yobs
V,. ,y

obs
L,. |d,θ],

where the expectations of yobs
L,. and yobs

V,. satisfy Equations (B.2–1) for a given vec-

tor d. Here, θ ∈ Θ ⊂ Rnθ where Θ is a compact domain containing the parameter

values and E[•] is the expectation operator with respect to the error distribution.

Because the model g(•) = 0 is nonlinear, the Fisher Information Matrix (FIM,

Eq. (3)) depends on θ, the value of which is to be estimated from the experimental

results [5]. The simplest approach to overcome the interdependence is fixing θ to

a set of values known a priori, construct the respective FIM and find the optimal

design for such a vector which is commonly designated as a locally optimal design

[22]. Another strategy is sequential optimal design; initially a locally optimal

design is found for a given set of postulated parameters which are subsequently

improved using the results of new iteratively designed experiments. We adopt

the latter strategy. In the first iteration of the M-bSODE procedure, the locally

optimal design is found with model parameters taken from previous studies or

experiments, which are treated as known in the FIM construction. We denote the

initial vector of parameters as θloc,0 where the number in the superscript is used to

identify the iteration.

To generate an initial optimal experimental plan we consider continuous de-

signs, denoted by ξcont, which allocate a weight wi ∈ [0, 1] to the ith candidate
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experiment di ∈ Xnq , with
∑nq

i=1 wi = 1. The weights wi can also be interpreted

as the relative effort at conditions di in the complete experimental plan (e.g., if

w1 is 0.1, the number of experiments carried out at conditions d1 is 10 % of all

the experiments sought); many wi’s may be zero in the optimal design if the ad-

ditional information provided by the corresponding conditions is low (or none).

Xnq := (dᵀ
1, · · · ,dᵀ

nq) is the set containing nq candidate treatments di with each

element including (i) the initial mixture composition; (ii) pressure (fixed in iso-

baric setups); and (iii) temperature (fixed in isothermal setups) at which measure-

ments can be taken. Specifically, Xnq contains nq discrete points of the continuous

(and compact) design space X ≡ Z× [Pmin, Pmax]× [Tmin, Tmax], where Z is the

two-dimensional simplex domain satisfying Z ≡ {zj ∈ [0, 1]2 : z1 + z2 = 1},
[Pmin, Pmax] is the domain for pressure (being a singleton value in isobaric exper-

iments), and [Tmin, Tmax] is the domain for temperature (being a singleton value

in isothermal experiments). Here, Pmin and Pmax are the minimum and maximum

values of pressure allowed by the ebulliometer, and Tmin and Tmax the minimum

and maximum values of temperature. Note that, for each temperature and pressure

in X, the model (B.2) allows calculation of the composition of the initial mixture

to be used, z, as it depends on the composition of phases at equilibrium which in

turn depend on T and P .

Consequently, continuous optimal designs are formed by a set of ns(≤ nq)

support points di (different experimental conditions) and respective weights wi(>

0), where ns ≥ nθ is required to ensure non-singular FIMs. The advantages of

working with continuous designs are many, and there is a unified framework for

finding optimal continuous designs for M-bODE problems when the design crite-

rion is a convex function on the set of all continuous designs [36]. In particular,

12



the optimal design problem can be formulated as a mathematical optimization

program with convex properties. In addition, so-called “equivalence theorems”

are available to check the optimality of obtained designs.

Exact designs are experimental plans where the weights wi are ratios ni/N

satisfying the conditions: (i) all ni’s are integer (or null); and (ii) sum to N .

In practice, implementable exact designs are obtained from continuous designs

assuming a given number N of experiments in the plan. Herein, they are de-

noted as ξexact
N , and are implemented by taking roughly N × wi replicates at con-

ditions di, i ∈ JnsK after rounding N × wi to an integer, subject to the constraint

N×w1+· · ·+N×wns = N . Rounding procedures for exact designs can be found

in Pukelsheim and Rieder [58]. We identify the set Ξcont of all feasible continuous

designs in Xnq as the nq−1-dimensional simplex in the space of weights satisfying

Ξcont ≡
{
w ∈ [0, 1]nq :

∑nq
i=1wi = 1| Xnq

}
. A continuous optimal experimental

design is represented by a ns−tuple

ξcont :=

dᵀ
1 · · · dᵀ

ns

w1 · · · wns

 ,

where ns one-point designs have wi > 0. Here, the upper part of the matrix

contains the conditions of the experiments, di, ∀i ∈ JnsK, and the last line the

respective weights in the experimental design.

Similarly, the set Ξexact
N contains all feasible exact designs of total size N in

Xnq satisfying Ξexact
N ≡

{
n ∈ Nnq

0 :
∑nq

i=1 ni = N |Xnq
}

, where N0 is the set of

non-negative integers. An exact experimental design is represented by

ξexact
N :=

dᵀ
1 · · · dᵀ

ns

n1 · · · nns

 .
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To systematize the nomenclature, we call the Fisher Information Matrix ob-

tained for a measurement at a candidate point an elemental FIM, with a global

FIM that resulting from combining all the elemental FIMs.

The log-likelihood function is [37, Ch. 1]

L(Xnq ,θ) =
∑
p∈JhK

nq∑
i=1

(ηobs
p,1,i − ηp,1,i) S−1 (ηobs

p,1,i − ηp,1,i)ᵀ, (2)

where S is the (constant) variance-covariance matrix, ηobs
p,j,i refers to measurements

of yp,1 at the ith candidate point and ηp,1,i stands for the respective prediction con-

structed using model (B.2).

The performance of the design ξcont is measured by a convex functional of its

global FIM. The elements of the normalized FIM obtained after adjusting for the

sample size are the negatives of the expectations of the second-order derivatives,

with respect to the parameters, of the log-likelihood. For a single response, say

the molar fraction of component 1 in phase p, given the set of candidate treatments

Xnq , the global partial FIM is proportional to

M(ξcont|Xnq ,θ) =

nq∑
i=1

wi M(di|Xnq ,θ) =

nq∑
i=1

wi

(
∂ηp,1,i
∂θ

)
S−1

(
∂ηp,1,i
∂θᵀ

)
,

(3)

where the elemental FIM obtained from measurements at conditions di is

M(di|Xnq ,θ). By assumption all the measurements have the same observational

error variance, which yields a diagonal variance-covariance matrix of ones after

normalization [28, 76].

When the observational errors are independent and identically distributed (iid),

the volume of the confidence region for model parameters θ is inversely propor-

tional to det[M1/2(ξcont|Xnq ,θ)]. Consequently, maximizing the determinant of

14



the FIM, by choice of design, leads to the most accurate estimates for the pa-

rameters. If interest is in finding the continuous locally D-optimal design, the

optimization problem is

ξcont
D = arg max

ξcont∈Ξcont
{det[M(ξcont|Xnq ,θ)]}1/nθ . (4)

To check the optimality of the D-optimal designs found we use an equivalence

theorem (ET) derived from directional derivative [49, 74, 5]. For the D-optimality

criterion the ET states that the scaled sensitivity function at point d ∈ Xnq , repre-

senting the directional derivative, is given by Kiefer and Wolfowitz [49]

Ψ(d, ξcont) =
(
∂yL,.
∂θ

∂yV,.
∂θ

)
M−1(ξcont

D |Xnq ,θ)

∂yL,.
∂θᵀ

∂yV,.
∂θᵀ

− nθ, (5)

being limited from above by 0, and achieving the maximum at the support points

of the design that correspond to di’s with positive weight.

2.3. Mathematical Programming tools

In this paper semidefinite programming is employed to solve the locally opti-

mal design problem for D-optimality over a given discrete domain Xnq . In turn,

Nonlinear Programming (NLP) is employed to fit the data to the thermodynamic

model and to solve the problem of finding the subsequent optimal experiment. In

§A.1 of the Appendix we overview the fundamentals of SDP and its application

in our context.

The problem of calculating a design for a pre-specified set of candidate experi-

ments Xnq with points di, ∀i ∈ JnqK, is solved with the general formulation (A.2)

complemented by the linear constraints on w: (i) w ≥ 0, and (ii) 1ᵀ
nq w = 1,

where 1ᵀ
nq is a unitary column vector with nq rows. The problem (A.2) is the

classic SDP problem which includes LMIs representing conic constraints.
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3. Sequential optimal design of experiments

Here we introduce the framework proposed for helping in the construction of

VLE models from data. First, the complete algorithm is discussed, then each of

the steps is analyzed in depth, see §3.1–§3.9.

Figure 1 illustrates the basic sequence of steps of the proposed tool. Steps 1

to 4 find an initial locally optimal experimental design for a postulated vector of

parameters, and Steps 5 to 9 provide the iteration of parameter estimation given

the information available followed by a tool to find the next (optimal) experiment

for the updated vector of parameters. The procedure ends when a given stopping

criterion is attained (see Step 9).

[Figure 1 about here.]

This framework for optimal design of experiments is compatible with the tra-

ditional experimental VLE workflow described in the Introduction section. In this

existing workflow, the new framework is intended to be applied in Steps (iii), for

constructing an initial experimental plan, and (vii), for the incremental planning

of new experiments, until a stopping condition is reached. Since the overall work-

flow is maintained, the role of the additional steps is also implicitly assumed. This

is important due to the crucial role that other support tasks play, including the use

of validation criteria and data consistency tests as is the usual practice in the field.

A more detailed description of the individual steps is provided below.

3.1. Discretization of the design space

For isobaric experiments the set of temperatures in candidate experiments d ∈
Xnq is constructed from a discretization scheme, say with a constant step, where

T1 = Tmin and the other points are determined recursively with a rule Tj =
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Tj−1 + ∆Tj−1, j = 2, · · · , nq. As the notation suggests, the discretization steps

can be unequal and the size of Xnq (i.e., nq) can be large. Practically, the choice of

nq is a trade-off between the accuracy required and the size of the SDP problem

to be solved in Step 3 which can be prohibitive for very large values. Fixed data

points such as the ones corresponding to pure component information and the

locations of azeotropes can also be included in this discretization grid as additional

sampling locations in the description of the domain. This is especially relevant

due to the particular information that these points provide, including sometimes

their a priori availability with smaller uncertainties associated compared to the

remaining measurements to be performed.

3.2. Construction of the global FIM

This section describes the procedure used to construct the global FIM for a

candidate set of control factors Xnq (Step 2). The model that is used to describe the

VLE equilibria between phases is represented by a set of equations with the form

gm(yL,.,yV,.|d,θ) = 0, where θ is the parameter vector evaluated at candidate

solutions θloc,0; this is detailed in Appendix B. In the application of the framework,

no particular assumptions relative to the form of g(·) are required, allowing this

procedure to be applicable to alternative models for phase behavior description.

The nonlinear algebraic equations in (B.2) are solved for each candidate treatment

in Xnq as a constrained nonlinear algebraic system (CNS), using for example the

CONOPT NLP solver, a Generalized Reduced Gradient (GRG) algorithm [29].

With the examples considered, relative and absolute tolerances of 1× 10−7 and

1× 10−8 were used, respectively.

The chain rule for differentiation with respect to the parameters applied to this
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set of equations leads to∑
p∈JhK

∂gm(yL,.,yV,.|di,θ)

∂yp,1
sp,1,i +

∂gm(yL,.,yV,.|di,θ)

∂θ
= 0, ∀m ∈ J8K,

di ∈ Xnq (6)

where sp,1,i denotes the vector sensitivities of the response yp,1 to θ at di ∈ Xnq .

The partial derivatives ∂gm(yL,.,yV,.|di,θ)/∂yp,1 and ∂gm(yL,.,yV,.|di,θ)/∂θ

are determined via automatic differentiation with ADiMat [12].

The set of algebraic equations (6) can be written as

Fp,1,i sp,1,i + rp,1,i = 0, p ∈ JhK, i ∈ JnqK (7)

where Fp,1,i are nθ × nθ matrices formed by terms ∂gm(yL,.,yV,.|di,θ)/∂yp,1,

and rp,1,i column vectors of size nθ containing the terms ∂gm(yL,.,yV,.|di,θ)/∂θ.

Consequently, (7) can be solved as

sp,1,i = −F−1
p,1,i rp,1,i, p ∈ JhK, i ∈ JnqK, (8)

provided that Fp,1,i is invertible. Here, sp,1,i are column vectors of size nθ cor-

responding to ∂yp,1/∂θ, p ∈ JhK at the ith candidate treatment. In this case, the

nθ × nθ elemental FIMs can be generated using the relation

M(di|Xnq ,θ) = sp,1,i S
−1 sᵀp,1,i, ∀di ∈ Xnq , p ∈ JhK, (9)

which allows the computation ofM(ξcont|Xnq ,θ) using Eq. (3).

3.3. Finding locally D-optimal continuous designs

This section presents the formulation for finding locally D-optimal designs via

SDP (Step 3 of the algorithm). We notice that the SDP can be computationally
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challenging if the number of candidate experiments is large, although it assures

that the global optimum is found. Methods based on the Wynn-Fedorov algo-

rithm [77] and subsequent improvements [24] or in the KL algorithm [5] may be

lighter, but they require successive reinitializations and the global optimality is

not guaranteed.

We recall the continuous D-optimal design problem (4), and use the formu-

lation proposed by Vandenberghe and Boyd [71] to handle the problem. That

is, given the VLE model, the set of local parameters, θloc,0, the set of candidate

experiments Xnq (already generated) and the elemental FIMs for each candidate

experiment, the problem for finding continuous D-optimal designs on Ξcont may

be formulated as:

max
w∈[0,1]nq

{
det
[
M(ξcont|Xnq ,θloc,0)

]}1/nθ (10a)

s.t.M(ξcont|Xnq ,θloc,0) =

nq∑
i=1

wi M(di|Xnq ,θloc,0) (10b)

M(ξcont|Xnq ,θloc,0) ∈ Snθ+ (10c)

1ᵀ
nq w = 1 (10d)

Here, Equation (10a) is the objective function, (10b) generates the global FIM

from elemental FIMs, (10c) is for the requirement of its semidefinite positiveness,

Snθ+ is the space of semipositive definite matrices, and (10d) guarantees that the

weights of the one-point designs sum to 1. We note the decision variable, w, is

included in the design ξcont (cf. §2.2).

To handle the SDP problems (10), there are user-friendly interfaces, such as

cvx [44] or PICOS [63], that automatically transform the semidefinite constraint

(10c) and the objective function into a series of Linear Matrix Inequalities (see
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Appendix A.1) before passing them to SDP solvers such as SeDuMi [67] or

Mosek [2]. This is possible when the design criterion is SDr, which is true for D-

optimality. In our work, we solved all SDP problems using the cvx environment

combined with the solver Mosek that uses an efficient interior point algorithm

[78]. The relative and absolute tolerances used to solve the SDP problem were set

to 1× 10−5.

3.4. Building D-optimal exact designs

Here, we detail the procedure to generate exact D-optimal designs, ξexact
N , from

continuous designs ξcont (Step 4).

We assume the number of experiments in the initial phase (Step 5) is equal

to the number of support points of the continuous design, and use the rounding

procedure proposed by Pukelsheim and Rieder [58] to generate the corresponding

exact design. Note that the number of support points of the exact design may be

lower than the number of support points of the continuous design when ni = 0 for

support point i. This implies that one or more other support points have increased

weight compared to those of the continuous design. The FIMs for exact designs

are updated with Equation (3). Specifically, the weights wi are replaced by the

ratios ni/N, ni ∈ N0. We call Cns(⊆ Xnq) the set of ns design points forming

the exact experimental plan prescribed in this phase.

3.5. Performing the experiments

During Step 5, the standing experimental sampling locations are evaluated.

After this, the results are added to the complete data set available for model re-

gression, and the framework proceeds at the next step.
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3.6. Estimating the parameters

This section presents the strategy for estimating the model parameters from

data collected from previous experiments, corresponding to Step 6 of the algo-

rithm. In this step, we use all the information (data) previously obtained (i.e. from

experiments of the initial design as well as from sequential experiments).

For simplification we consider the first iteration, i.e. k = 1 with k used to

count the iterations. Specifically, after carrying out the experimental plan pre-

scribed in Step 4 (comprising ns experiments) where the responses are the molar

fractions of component 1, ηobs
p,1,i, p ∈ JhK, i ∈ JnsK, with the subscript i identi-

fying the experiment, the data are used for fitting the model and estimating the

parameters. Moreover, let ηe
L,1,i and ηe

V,1,i, i ∈ JnsK, be the model estimates of the

equilibrium fractions in both phases at experimental conditions di ∈ Cns .

The objective function adopted to fit the data is the Ordinary Least Squares

(OLS) criterion as we assume homoscedastic observational error. The model fit-

ting problem falls into the class of implicit least squares with the estimated values

of the responses being calculated from a model embedded in the mathematical

program that maximizes the log-likelihood. The problem is formulated as

min
θ∈Θ

∑
p∈JhK

ns∑
i=1

(
ηe
p,1,i − ηobs

p,1,i

)2 (11a)

s.t. ηe
V,j,i − ηe

L,j,i γj(η
e
L,.,i, Ti,θ)

P v
j (Ti)

Pi
= 0, j ∈ JcK, i ∈ JnsK, (11b)

2∑
j=1

ηe
p,j,i = 1, p ∈ JhK, i ∈ JnsK, (11c)

P v
j (Ti) = 10Aj−Bj/(Ti+Cj), j ∈ JcK, i ∈ JnsK, (11d)

(Ti, Pi) ⊂ di ∈ Cns (11e)
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where (11a) is the objective function, (11b–11d) are model equations and (11e)

is the set of experimental conditions used. The problem (11) is in the NLP class

and we again use CONOPT, with relative and absolute tolerances set to 10−7 in all

problems.

3.7. Checking the need for further experiments

After finding the (optimal) parameter estimates by solving problem (11) for

kth iteration, Step 7 requires the decision of whether or not to carry out another

experiment. Common criteria to use in this step are (i) the total number of experi-

ments of the plan which may be limited by economic constraints; and (ii) whether

the dissimilarity of parameter estimates in two consecutive iterations is lower than

a tolerance, %, previously imposed, i.e.(
θloc,k − θloc,k−1

)ᵀ (
θloc,k − θloc,k−1

)
≤ %. (12)

When the iterations in the cyclic part of the procedure exceed the maximum

previously set, Nmax
it , or the condition (12) is satisfied, the procedure stops; other-

wise the global FIM for the total set of experiments available is updated for param-

eters θloc,k (Step 8). Next, a new (optimal) experiment at conditions dns+k, cor-

responding to the kth iteration, is determined (Step 9) and Steps 6–9 are repeated.

When the first decision rule is adopted, the procedure stops when k reachesNmax
it ,

previously set.

3.8. Update the elemental and global FIMs

Let θloc,1 be the optimum set of parameters estimated from the solution of

(11). Likewise, for stage k of the experimental plan, which involves data from

ns + k− 1 experiments, we obtain the parameter estimate θloc,k. The sequence of
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parameter vectors accumulated in the iteration procedure tends to the true values

of the model, see Fedorov and Leonov [37, Chap. 8]. In our study, the true values

of the parameters are those used for simulating the expected responses (without

observational error), see §3.5. After finding the vector θloc,1, the FIMs are updated

using the same strategy as for Step 2. Practically, in this Step the FIMs are updated

using the most up-to-date parameter estimates obtained in Step 6 and all the data

obtained so far.

3.9. Find the next experiment

We now formulate the problem of finding the next experiment to be carried

out in the plan. We consider the current estimate of parameters is θloc,1,when the

global FIM obtained in Step 7 is M(ξexact
ns+1|Cns ,θloc,1). That is, the problem is

solved for the most up-to-date parameter estimates.

We adopt the ideas of Box and Hunter [14] and Fedorov [35] who formulated

the problem of finding the next experiment as the search for the point of the design

space with the largest increment of the optimality criterion of interest. Such a

point is the maximum of the directional derivative represented by the sensitivity

function. For D-optimality, the problem corresponds to finding the maximum of

(5), i.e.:

max
d

(
∂yL,.
∂θloc,1

∂yV,.
∂θloc,1

)
M−1(ξexact

ns+1|Cns ,θloc,1)

 ∂yL,.
∂(θloc,1)ᵀ

∂yV,.
∂(θloc,1)ᵀ

 (13a)

s.t. yV,j − yL,j γi(yL,., T,θloc,1)
P v
j (T )

P
= 0, j ∈ JcK (13b)

2∑
j=1

yp,j = 1, p ∈ JhK (13c)

P v
j (T ) = 10Aj−Bj/(T+Cj), j ∈ JcK (13d)
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z1 − [ω yV,1 + (1− ω) yL,1] = 0 (13e)
2∑
j=1

zj − 1 = 0 (13f)

Equations (3) and (6− 9) (13g)

We recall that the decision variable is the vector of experimental conditions

d ∈ Z×{P}× [Tmin, Tmax] where P is fixed. Equations (13b–13f) represent the

model, and the set of equations in (13g) is to compute sensitivities and the global

FIM.

Let dns+k be the solution of problem (13) obtained from the kth iteration. Af-

terwards, the matrix form of the experimental design is updated using the rule

Cns+k :=

Cns+k−1

dns+k

 .

Problem (13) is a non convex NLP and we use a multistart heuristic algorithm-

based solver OQNLP [70] to solve it. Similarly, ADiMat is employed to generate

gradient and Hessian information required by the solver via automatic differenti-

ation.

4. Results

In this section, we apply the formulations of §3 to find locally D-optimal de-

signs for VLE characterization using experiments at constant pressure. Without

loss of generality, we consider that only the fraction of component 1 in the L phase

at equilibrium (yL,1) is measured, which is the most common experimental setup.

For demonstration purposes we consider the system formed by methanol (also

designated MET — component 1) and water (designated WAT — component 2).
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The VLE of this binary system is well characterized and allows analyzing the

details of the framework without the need of considering specificities that may

increase the difficulty such as the occurrence of azeotropic points. The VLE of

more complex binary systems is considered in §5.

4.1. Generation of test data

For a more precise evaluation of the effect of the introduction of optimal

sampling policies, while avoiding potential simultaneous influences from other

sources, synthetic test data that does not correspond to actual experimental mea-

surements were generated.

For each physical system, this data was obtained through the simulation of

the equilibrium curves at a number of discrete points, using the same equilibrium

model that is later used for parameter regression. Thus, in the absence of any

numerical errors, the values of the parameters obtained through regression of this

sampled information would be identical to the parameters used during the simu-

lation phase, and this would occur for any sampling plan that included a sufficient

number of data points (that is, with a practically identifiable model).

To avoid this trivial behavior, Gaussian random noise was added to the phase

compositions predicted by each model to provide us with “simulated” experimen-

tal measurements. The (P,T) values included in the data points correspond exactly

to the values that were also considered for simulation (no uncertainty). Due to the

setup used, no noise was added to the measurements corresponding to the pure

component values, and no additional sources of systematic errors were also con-

sidered. Hence, this type of data can be characterized as a best case scenario,

where only random errors are present and their magnitude is controlled, since

less problematic data would only be achievable through further reductions in the
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magnitude of the random noise considered.

Thus when simulating the procedure for illustrative purposes we solve the

model (B.2) for θtrue using the set of prescribed experiments, where θtrue stands

for the set of parameters that model the data. Of course in applications θtrue is not

known but is to be estimated from the experimental results.

To account for the observational error we add a stochastic component mod-

eled by the normal distribution to the responses calculated using θtrue. Then (1)

becomes

yobs
p,1 = ysim

p,1 + εp,1, p ∈ JhK (14)

where yobs
p,1 stands for the measurement of yp,1 and ysim

p,1 for the simulated value ex-

cluding observational error. When a single response is measured, say yL,1, Equa-

tion (14) applies only to the molar fraction of component 1 in the liquid phase.

For illustration in this study, see §4, we consider the observational error normally

distributed, and different standard deviations are tested, including (i) absence of

noise; (ii) σL,1 = 0.001 mol/mol, compatible with recent ebulliometer readings

[21]; and (iii) σL,1 = 0.002 mol/mol.

4.2. Test implementation

With this system, the NRTL model (Appendix C) is used for describing the

thermodynamic equilibrium where the BIPs τi,j, i, j ∈ JcK are dependent on pa-

rameters ai,j and bi,j according to Eq. (B.1). The set of parameters to be estimated

from the experimental data is θ ≡ {a1,2, a2,1, b1,2, b2,1}. The Antoine con-

stants for both components are in Table 1 and the true values of binary interaction

parameters used for simulation are in Table 2. The parameters α are chosen pre-

viously to model fitting and are not to be estimated from the experimental plan;
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for simulation purposes we use the values of α in Table 2. We assume the oper-

ation pressure, P , is 760 mm Hg and ω = 0.3; consequently, the design space is

X ≡ Z× {760} × [323.15, 374.15].

[Table 1 about here.]

[Table 2 about here.]

Instead of distributing the grid of candidate temperatures uniformly over the

design space, we adopt a different approach where the initial grid of candidate

temperatures results from distributing the points such that the increments of yL,1

in consecutive experiments in the grid are nearly equal. This technique focuses on

the region of the design space where both phases coexist. We used increments of

yL,1 equal to 0.025 and determine the equilibrium conditions for each molar frac-

tion; the complete set of candidate experiments contains 41 temperatures; conse-

quently Xnq includes 41 values (nq = 41). These choices can be properly adapted

to different systems, as required. Typically, the CPU time required by the SDP

solver used for determining the initial continuous design increases as the grid be-

comes finer, but the solver can efficiently tackle problems including thousands of

LMIs. In this experiment the CPU time required for finding the initial continuous

locally optimal design is around 6 s in an Intel Core i7 machine running a 64 bits

Windows 10 operating system with a 2.80 GHz processor.

For the sake of clarity, we call the BIPs in Table 2 the “true” parameters,

θtrue. These values are used for simulation purposes. For mimicking the lack

of knowledge at the beginning of the VLE characterization study, we assume the

values of ai,j and bi,j, i, j ∈ JcK, used for finding the continuous D-optimal design

are 10 % lower than those in Table 2, except for αi,j, i, j ∈ JcK, which are equal
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to the values used in the simulation. Practically, the temperature of the candidate

experiments is determined for θloc,0 = 0.9 × θtrue. Figure 2(a) shows the VLE

envelope and the candidate experiments corresponding to all the temperatures as

well as the initial composition.

[Figure 2 about here.]

The continuous optimal design obtained for the setup described above includes

4 support points and is listed in Table 3. The vectors dᵀ
i appear in the first four

lines (first the composition of the initial mixture, then the pressure, and finally the

temperature). The fraction of MET in the liquid phase at equilibrium is in fifth

line, its fraction in the vapor phase at equilibrium in sixth line, and the weights of

the support points in seventh line. We note the lowest temperature of the experi-

ments is 339.73 K and the highest is 364.13 K. The representation of the optimal

design in the VLE envelope appears in Figure 2(b) and we notice that (i) the de-

sign is minimally supported as it contains a number of support points, ns, equal

to the number of parameters (nθ = 4) given that a single measurement is obtained

per experiment; and (ii) the design points closer the extremes of the design space

have higher weights.

The exact optimal design, is obtained from ξcont using the rounding approach

of §3.4. We set the number of experiments in this initial phase to ns. The optimal

design obtained is in the second half of Table 3. Because its structure is similar to

ξcont we limit its presentation to first and last line, which now contains the number

of experiments at each design point.

[Table 3 about here.]

Now we address the iterative procedure (Steps 5-9) of updating the parameter
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estimates and accumulating new responses from locally optimal sequential experi-

ments. The decision of carrying out (or not) the next experiment prescribed in Step

7 is taken based on the maximum number of experiments in the iteration phase,

which is previously set, see Step 7 of the algorithm. To analyze the convergence of

the parameter estimates from data obtained from previous experiments, θloc,k, to

the “true” parameter values used for response generation, θtrue, we set Nmax
it = 5.

Since the number of experiments of the initial D-optimal design in this example

is 4, the complete plan will have a total of 9 experiments. We suppose we are in

stage k where k ∈ J5K.

First, we assume there is no observational error in yL,1, that is σL,1 =

0 mol/mol. Next, we address more realistic scenarios where noise is added

to measurements and Equation (14) is employed to simulate experimental re-

sponses. Here, two scenarios are considered: (i) σL,1 = 0.001 mol/mol; and

(ii) σL,1 = 0.002 mol/mol. The values of the parameter estimates in successive

iterations of the procedure are in Figure 3. Stage 0 corresponds to initial pa-

rameter guesses. We note that after the first iteration the estimates obtained for

σL,1 = 0 mol/mol by fitting the data agree with the values used in the simulation,

as they should in the absence of observational error. This result demonstrates the

accuracy of our routines. A different behavior is observed for other scenarios

where noise induces small fluctuations in the estimates of the parameters around

the values used to generate the responses. As an aid to more exact analysis, the se-

quences of parameter estimates in Figure 3 are repeated in Table 4. The evolution

of the estimates of b1,2 and b2,1 shows convergence to the “true” values. Increased

accuracy in the estimation of ai,j’s can be achieved using the Ds-optimality cri-

terion which allows determining a subset of parameters as precisely as possible
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[5].

[Figure 3 about here.]

[Table 4 about here.]

Table 5 presents the experiments prescribed in the iterative phase of the pro-

cedure. New experiments complement the design of the initial phase, see Table 3

and include points that are nearly replicates. Because, in the initial design (Ta-

ble 3) the weights of the support points were flattened by rounding, these replica-

tions increases the efficiency of the design towards that of the initial continuous

design. The sequential optimal design is similar for all observation error dis-

tributions, except from the change of order for k = 2 and 3, indicating slight

dependence of the procedure on noise at this level of magnitude. Figures 4(a) and

4(b) present the complete set of 9 experiments when σL,1 = 0.001 mol/mol, and

σL,1 = 0.002 mol/mol, respectively. The experiments of the initial design are

represented by dashed lines and those of the iterative phase by solid lines.

[Table 5 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

The complete numerical experiment reported in this section requires about 70 s

of CPU time where each iteration of Steps 5–9 requires on average 12 s.

Finally we compare the performance of the optimal experimental plan pre-

scribed with M-bSODE after 9 experiments with that resulting from distribut-

ing the experiments uniformly in the domain of z1, i.e. [0, 1]. The parameters
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were fitted and 95 % confidence regions were obtained for each value of σL,1, us-

ing the observed FIM employing standard asymptotic theory [65]. Plots of the

confidence regions for pairs of parameter values showed that regions for the se-

quential experiment always lay within those for the uniform experimental design.

We summarize these results in Table 6 as 95 % confidence intervals appear af-

ter each estimated value and the sign “±”. We note the confidence intervals re-

sulting from the M-bSODE algorithm are lower for both σL,1 = 0.001 mol/mol

and σL,1 = 0.002 mol/mol, being similar (and approximately null) in the ab-

sence of noise. On average the confidence limits obtained with M-bSODE algo-

rithm are 27.6 % tighter when σL,1 = 0.001 mol/mol and 36.0 % tighter when

σL,1 = 0.002 mol/mol, demonstrating the advantages of using M-bSODE. We

note the parameters confidence intervals can be used as an alternative criterion of

stopping the experimentation in Step 9, i.e., the iterative sequence of experiments

may end when the 100× (1−α) % confidence intervals of the parameters achieve

a previously set value expressed in absolute or relative form. Our results show

that a limited number of experiments optimally designed (i.e., 9) allows achieving

a parameter accuracy similar to that resulting from more extensive experimental

plans designed by distributing the experiments uniformly in the operating space.

As can be observed, the model structure together with the information obtained in

previous experiments guide the choice of the next experiment location, allowing

relevant savings in time and other experimental resources.

[Table 6 about here.]
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5. Application to other binary systems

This section applies the framework presented in §3 to binary systems with

more complex VLE. To demonstrate the generalization of the algorithm proposed

relative to the thermodynamic model both NRTL and UNIQUAC models are used

for L phase. Additionally, the following four VLE systems were considered:

1. Ethanol - Water, L phase modeled with NRTL;

2. Water - 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (mTBD), L phase

modeled with NRTL;

3. Methanol - Water, L phase modeled with UNIQUAC; and

4. Ethanol - Water, L phase modeled with UNIQUAC.

In all the tests, the observational noise affecting the measurements is normally

distributed with σL,1 = 0.001 mol/mol and the variable observed is the concen-

tration of component 1 in L phase. As in the MET-WAT system, the initial grid

of candidate experiments is formed by 41 points. For demonstration purposes, the

number of experiments in the iterative phase is set to 5. However, the number of

experiments in the initial design is prescribed by Steps 3 and 4 of the framework,

and so varies from example to example.

5.1. System: Ethanol-Water; L phase model: NRTL

The first system considered for testing is Ethanol—Water (ETH-WAT), where

Ethanol is component 1 and Water component 2. Because the binary ETH-WAT

is azeotropic, additional thermodynamic insights are needed to generate candidate
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experiments. Specifically, the azeotrope is first determined using the global opti-

mization approach proposed by Bonilla-Petriciolet et al. [13]. Here, the orthogo-

nal derivatives of the Gibbs free energy, the tangent plane criterion and the mass

balances were used to find the homogeneous azeotropic point. After computing

the azeotrope, the set of candidate experiments is generated using the methodol-

ogy in §3.1. That requires generating a set d ∈ Xnq from a grid of candidate

experimental temperatures. The equilibrium compositions and the initial mixture

are determined using model (B.2) and the information of the azeotropic point.

First, we use the NRTL model for describing the equilibrium; in §5.4 the UNI-

QUAC model is considered.

The Antoine constants for ETH and WAT were obtained from [56]. The ex-

tended model (B.1) is used for BIPs. The M-bSODE is determined for single-

ton parameter vector formed by a1,2 = −0.801, a2,1 = 3.458, b1,2 = 246.2 K,

b2,1 = −586.1 K, and α1,2 = α2,1 = 0.3 [11, Appendix B]; i.e., θloc,0 =

{a1,2, a2,1, b1,2, b2,1, α1,2, α2,1}.
Figure 6(a) shows the VLE envelope and the candidate experiments corre-

sponding to all the temperatures for θloc,0. The initial ODE prescribed is formed

by 9 points, more than that initially prescribed for MET-WAT system (4), see Ta-

ble 7. This increment is related to the behavior of the sensitivities on each side

of the azeotropic composition. In Table 7 the horizontal line separates the ex-

periments prescribed in the first stage (above the line) from those of the iterative

procedure (below the line). This representation is adopted for similar tables from

this point on. Figure 6(b) combines graphically the set of experimental conditions

to be carried out in both phases. The prescribed experiments lie on both sides of

the azeotropic point, see Figure 5(b).
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[Figure 6 about here.]

[Table 7 about here.]

Table 8 contains the estimates of the BIPs and respective 95 % confidence

intervals for ETH-WAT system. The M-bSODE approach is advantageous rel-

ative to uniform choice but the difference is relatively small. Specifically, the

corresponding parametric variances are in average 6.03 % smaller. It should be

noted that some of the experiments chosen by M-bSODE are in the vicinity of the

azeotropic point.

[Table 8 about here.]

5.2. System: Water–7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene; L phase

model: NRTL

Here, we consider the system formed by Water and ionic liquid 7-Methyl-

1,5,7-triazabicyclo[4.4.0]dec-5-ene; the first is component 1 (designated WAT),

the second is component 2 (mTBD). This system is of large interest in solid-liquid

and liquid-liquid extraction operations and is commonly used to extract valuable

chemicals from raw materials [8]. The VLE characterization places additional

challenges on experimental work as it requires operating the ebulliometer at rela-

tively high temperature; M-bSODE might increase experimental efficiency.

The Antoine constants for water were obtained from [56], and those for mTBD

were obtained regressing the data in Baird et al. [7]. The data were limited to

451.2 K which is also the limiting temperature in our simulation. The values of

Antoine constants obtained for vapor pressure of mTBD expressed in mm Hg are

A = 7.548 82, B = 2181.15 °C and C = 207.26 °C. The VLE is described

34



by the NRTL model, and the BIPs also follow the extended model (B.1). The

optimal experimental design is to be determined for the parameter vector with

a1,2 = 0.352 13, a2,1 = −1.219 66, b1,2 = −857.380 K, b2,1 = 978.478 K, and

α1,2 = α2,1 = 0.3 [8].

Figure 7(a) shows the candidate experiments for θloc,0. The initial ODE pre-

scribed is formed by 5 points, see Table 9 and Figure 7(b). Table 10 compares

the estimates of parameters and the corresponding 95 % confidence intervals ob-

tained with M-bSODE and uniform choice. The average estimates are similar but

the size of the uncertainty region of the parameters obtained from M-bSODE is

considerably tighter. The average reduction in parametric variance is 39.6 %.

[Figure 7 about here.]

[Table 9 about here.]

[Table 10 about here.]

5.3. System: Methanol—Water; L phase model: UNIQUAC

To demonstrate the ability of the framework to handle different thermody-

namic models we now consider the MET-WAT system with the UNIQUAC repre-

sentation. The UNIQUAC model [1] is in Appendix C, and the design of experi-

ments is sought to find the BIPs, τi,j, i, j ∈ JcK, given by

τi,j = exp

(
ai,j +

bi,j
T

)
, (15)

a structure similar to that of the NRTL model, except for the α’s which are omit-

ted. The values of τi,i, i ∈ JcK are set to 1.0. The parameters to be fitted from

the experiments are aggregated into θ ≡ {a1,2, a2,1, b1,2, b2,1}. In the numerical
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tests, the setup used for NRTL model is replicated. Similarly, the uncertainty of

the model predictions of experiments prescribed with M-bSODE are compared to

experiments prescribed using uniform choice.

The Antoine constants for both components are in Table 1. The locally D-

optimal design is found for θloc,0 = {a1,2, a2,1, b1,2, b2,1} where a1,2 = −1.0622,

a2,1 = 0.6437, b1,2 = 432.8785 K and b2,1 = −322.1312 K [3]. The design pre-

scribed by SDP has 5 experiments (one more than that obtained for NRTL model,

see Table 3). The complete set of experiments is in Table 11. The experiments

concentrate in the vicinity of 341 K and 360 K. Figure 8(a) displays the experi-

ments in the phase diagram.

[Table 11 about here.]

Table 12 compares the estimates of parameters obtained with M-bSODE and

uniform choice, and the M-bSODE framework also allows reducing the paramet-

ric uncertainty. The average parametric variance reduction is 20.4 %

[Table 12 about here.]

5.4. System: Ethanol—Water; L phase model: UNIQUAC

Finally, in this section we test the framework for the ETH-WAT system using

the UNIQUAC model. This binary mixture is more challenging because of the

azeotropic point. The Antoine constants for both components are in §5.1. The

locally D-optimal design is constructed for singleton θloc,0 where a1,2 = 2.0046,

a2,1 = −2.4936, b1,2 = −728.9705 K and b2,1 = 756.9477 K [3]. The initial

design prescribed has 8 experiments, see Table 13. Similarly to the NRTL model,

the experiments concentrate in the vicinity of the azeotropic point; see Figure 8(b).
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[Table 13 about here.]

[Figure 8 about here.]

Table 14 compares the estimates of parameters; the M-bSODE framework

reduces the parametric uncertainty after 13 experiments compared to experiments

uniformly chosen. The average decrease in the parametric uncertainty is 70.9 %.

[Table 14 about here.]

More significant reductions in the confidence intervals for the parameters of the

UNIQUAC model were observed in this case, compared with the previous exam-

ples. An interpretation of this behavior can be found in the nature of the model

used, which is based on the description of the excess Gibbs free energy of the

mixture. Similarly to the NRTL model, the residual term is often obtained as a

sum of contributions of approximately equal size but opposite sign, which cancel

most of their magnitudes like the forces on the extremes of a cable under tension.

In the present case, this becomes quite visible in the values presented in Table 14,

where the corresponding parameters for each species almost cancel out. When this

situation occurs, the presence of multiple local optima in the regression of these

model equations are also quite frequent, and this means that the model displays a

significant sensitivity to the data values considered. In this example this behavior

is exploited by the M-bSODE framework to significantly reduce the uncertainty

in the estimated parameters through the optimal choice of the sampling locations

for this system.
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6. Conclusions

This paper presented a general framework to assist experimenters interested

in VLE studies, relatively to the task of deciding the optimal set of experiments

to maximize the efficiency of their work, and accurately fit a particular thermo-

dynamic model. The framework uses the tools of M-bODE to construct an initial

design. This can be complemented by new experiments during the application of

the iterative refining phase, limited by the available resources or terminated when

the target accuracy for the parameter estimates is reached. Here we have focused

on the NRTL and UNIQUAC models for the liquid phase, and the D-optimality

criterion, but the framework allows its generalization to other models for liquid

and vapor phases, regression criteria, and the measurement of different response

variables. The approach is first demonstrated with the methanol-water system and

subsequently tested with more complex systems. Both the absence of observa-

tional error and the presence of homoscedastic Gaussian observational error are

considered.

The results clearly demonstrate the advantages associated with the M-bSODE,

relatively to regularly spaced experiments throughout the domain. In all tests, af-

ter an equal number of experiments, the confidence regions for the parameters are

tighter, corresponding to a reduced parametric variance of the estimates (between

6 % and about 70 %). Consequently, the M-bSODE is more efficient on a per

observation basis, i.e., more information is extracted on average from each exper-

iment. This was expected since the framework iteratively locates the experimental

conditions that can provide more information.

Fitting of thermodynamic models to VLE data can also be based on regression

criteria other than OLS. Such methods require adaptation of the FIMs and are a
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topic for future exploration. In the present paper we have also assumed that the

errors are normally distributed and homoscedastic. Different assumptions will

also impact the derivation of the FIMs, with a subsequent effect on the optimal

design. If the measurement errors are not normally distributed a different criterion

or an approach based on set-membership estimation, often known as Guaranteed

Parameter Estimation (GPE), should be considered [6]. The optimal design of

experiments for GPE of nonlinear models has been addressed by Mukkula and

Paulen [54] among others, and can be adapted to our algorithm. In this case, the

confidence regions might significantly differ from the ellipsoids considered during

this work, resulting from the asymptotic theory assumptions made.
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Appendix A

A.1. Semidefinite Programming

Let Snθ+ be the space of nθ × nθ symmetric positive semidefinite matrices, and

Snθ the space of nθ×nθ symmetric matrices. A convex set S ∈ Rm1 is semidefinite

representable (SDr) if and only if for each vector ζ ∈ S there exists a projection P

on to a higher dimensional set that can be described by Linear Matrix Inequalities

(LMIs). That is, S is SDr if and only if there exists some symmetric matrices

M0, · · · ,Mm1 ,Mm1+1, · · · ,Mm1+m2 ∈ Snθ such that [45]:

ζ ∈ S ⇐⇒ ∃v ∈ Rm2 : M0 +

m1∑
i=1

ζi Mi +

m2∑
j=1

vj Mm1+j � 0. (A.1)

Here � is the semidefinite operator, i.e., A � 0 ⇐⇒ 〈A,Ω〉 ≥ 0, ∀Ω ∈ Snθ+ ,

where 〈., .〉 is the Frobenius inner product operator, ζ ∈ Rm1 is a point of the

original set S, v a point of the incremental space Rm2 , and P : ζ 7→ M0 +∑m1

i=1 ζi Mi +
∑m2

j=1 vj Mm1+j .

In turn, a convex (or concave) function ϕ : Rm1 7→ R is SDr if and only

if the epigraph of ϕ, {(t, ζ) : ϕ(ζ) ≤ t}, or the hypograph, {(t, ζ) : ϕ(ζ) ≥
t}, respectively, are SDr and can be formalized as a set of LMIs [10, 15]. The
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problem of finding the optimal values, ζ, of SDr functions is then formulated as a

semidefinite program of the form

max
ζ

{
cᵀ ζ,

m1∑
i=1

ζi Mi −M0 � 0

}
. (A.2)

In our design context, c is a vector of known constants that depends on the

design problem, and matrices Mi, i ∈ {0, · · · ,m1} contain elemental FIMs and

other matrices produced by the reformulation of the functions ϕ(ζ) into LMIs.

The decision variables in vector ζ are the weights wi, i ∈ JnqK, of the optimal

design and other auxiliary variables required.

Ben-Tal and Nemirovski [10] provide a list of SDr functions useful for solving

continuous optimal design problems with SDP formulations, see Boyd and Van-

denberghe [15, Sec. 7.3]. Recently, Sagnol [64] showed that each criterion in the

Kiefer class of optimality criteria defined by

Φδ[M(ξcont|Xnq ,θ)] =

[
1

nθ
tr(M(ξcont|Xnq ,θ)δ)

]1/δ

(A.3)

is SDr for all rational values of δ ∈ (−∞,−1] and general SDP formulations

exist for them. This result also applies to the case when δ → 0; problem (4)

falls into this class. Practically, the problem of finding locally optimal continuous

experimental plans for the most common (convex) criteria can be formulated as a

Semidefinite Programming problem falling into the general representation (A.1),

see Vandenberghe and Boyd [71] or Duarte and Wong [31] among others.

Appendix B

In this section we present the VLE model used during the development of

the framework. The equilibrium conditions are expressed through iso-fugacity
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relations where, for the sake of the exposition, binary mixtures are considered at

moderate pressures (i.e., below 10 bar); electrolytic species, supercritical condi-

tions, and self-associating components are excluded. In this situation the vapor

phase can be approximated as an ideal gas while the fugacity of the liquid mix-

ture is described with an excess Gibbs free energy model normalized to Raoult’s

law with a unitary Poynting correction factor [20]. The activity coefficient, here

denoted by γ(yV,.,yL,., T,θ), is expressed by the NRTL model [61], but without

loss of generality, other models like UNIQUAC [1] can also be used. The vector of

parameters in the model, θ, includes the dimensionless pair of binary interaction

parameters (BIPs), τ , in turn related to the interaction energy parameters, and the

non-randomness parameters, α. Herein, we consider the general extended form

of the NRTL model implemented in the aspenONEr simulator [3] where τ is

given by

τi,j = ai,j +
bi,j
T
, (B.1)

ai,j and bi,j are BIPs between the ith and j th components of the mixture and T

is the absolute temperature (in K). Consequently, in this study we have θ ≡
{a, b,α}. For binary systems, θ ≡ {a1,2, a2,1, b1,2, b2,1, α1,2, α2,1}, where α

is fixed within the interval [0.0, 0.3] and only the determination of the parameters

θ ≡ {a, b} is sought. Since the interaction energy of each species with itself is

null, ai,i = 0 and bi,i = 0, ∀i ∈ JcK, these quantities do not need to be estimated

from experimental data. We note that values of α are symmetrical and prescribed

for pairs of components given their properties; typically they are set before model

fitting [60]. We designate nθ as the number of parameters to be estimated from

the experimental data. Here, given the assumptions listed above, nθ = 4, but can

be generalized to any other number according to the thermodynamic model to be
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fitted.

The VLE model for this case can be compactly written in the functional form

g(yL,.,yV,.|d,θ) where g(•) = 0 is a set of nonlinear algebraic equations [61]:

yV,j − yL,j γj(yL,., T,θ)
P v
j (T )

P
= 0, j ∈ JcK, (B.2a)

2∑
j=1

yp,j − 1 = 0, p ∈ JhK (B.2b)

P v
j (T )− 10Aj−Bj/(T+Cj) = 0, j ∈ JcK (B.2c)

z1 − [ω yV,1 + (1− ω) yL,1] = 0 (B.2d)
2∑
j=1

zj − 1 = 0 (B.2e)

Here P v
i stands for the saturation pressure of component i in the mixture (i ∈ JcK),

estimated employing the Antoine equation (B.2c) and expressed in mm Hg. Equa-

tions (B.2d–B.2e) allow the choice of the composition of the initial mixture; ω is

the fraction of the initial mixture vaporized at equilibrium which we assume fixed.

Alternative descriptions for the liquid activity coefficient model γj(yL,., T,θ)

from the ones considered here can also be used in (B.2a). Similarly, this equation

can be generalized to the treatment of non-ideal vapour phases if yV,j is replaced

by the corresponding fugacity of component j in the vapour phase, adding to the

set of equations (B.2d–B.2e) a suitable model for its calculation.

Appendix C

In this section we present the thermodynamic models for activity coefficients.

The NRTL activity model is [61]

γi = exp

[∑n
j=1 xj τj,i Gj,i∑n
k=1 xk Gk,i

+
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+
n∑
j=1

xj Gi,j∑n
k=1 xk Gk,j

(
τi,j −

∑n
m=1 xm τm,j Gm,j∑n

k=1 xk Gk,j

)]

Gi,j = exp (−αi,j τi,j)

τi,j = ai,j +
bi,j
T

The UNIQUAC model is as follows [1]:

γi = γcomb
i × γresid

i

log(γcomb
i ) = log(Φi) + 1− Φi −

ϑ

2
qi

[
log(Φi)− log(Ψi) + 1− Φi

Ψi

]
log(γresid

i ) = qi

[
1− log

(
c∑
j=1

Ψj xj τj,i

)
−

c∑
j=1

Ψj xj τi,j∑c
k=1 Ψk xk τk,j

]

Φi =
ri∑c

j=1 xj rj

Ψi =
qi∑c

j=1 xj qj

τi,j = exp

(
ai,j +

bi,j
T

)
ri =

g∑
k=1

νk Rk, qi =

g∑
k=1

νk Qk, ϑ = 10.

The group volume and area parameters, Rk and Qk, respectively, are obtained

from [3] or calculated from the pure component data.
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Step 3

Step 4

Step 5

Step 6

Discretize the design space

Construct local and global FIMs

Find the optimal continuous OED

Find the exact OED

Carry out experiments

Fit the data

Stop criterion
(Step 7)

Update global FIM

Find new experiment

Step 8

Step 9

Xnq k = 0

M(ξcont|Xnq ,θloc,k)

ξcont

ξexactE ,Cns

yobs
L,. , y

obs
V,.

θloc,kk ← k + 1

YES

NO

M(ξexactE+k |Cns+k−1,θloc,k)

dns+k

Figure 1: Algorithm for the sequential optimal design of experiments.
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Figure 2: Methanol-water VLE envelope for parameter value θloc,0: (a) candidate design points
for the initial design; (b) continuous initial D-optimal design (based on 4 support points).
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Figure 4: Methanol-water VLE envelope including the accumulated experiments for measurement
noise modeled by N (0, σL,1): (a) σL,1 = 0.001mol/mol; (b) σL,1 = 0.002mol/mol. The
experiments of the initial optimal design correspond to dashed lines and the experiments prescribed
in the iterative phase correspond to solid lines.

59



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

yL,1

y
V
,1

 

 

Equilibrium line

Isoconcentration line
Experiments

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

yL,1

y
V
,1

 

 

Equilibrium line

Isoconcentration line
Experiments

(b)

Figure 5: Phase diagram including the accumulated experiments for measurement noise modeled
by N (0, σL,1) (σL,1 = 0.001mol/mol) for: (a) Methanol-Water system; (b) Ethanol-Water sys-
tem. The equilibrium attained in experiments correspond to triangles.
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Figure 6: Ethanol-water VLE envelope for parameter vector θloc,0 (NRTL model): (a) candidate
design points for the initial design; (b) continuous D-optimal design (based on 9 initial support
points plus 5 additional experiments). The experiments of the initial optimal design correspond to
dashed lines and the experiments prescribed in the iterative phase correspond to solid lines.
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Figure 7: Water-mTBD VLE envelope for parameter vector θloc,0 (NRTL model): (a) candidate
design points for the initial design; (b) continuous D-optimal design (based on 5 initial support
points plus 5 additional experiments). The experiments of the initial optimal design correspond to
dashed lines and the experiments prescribed in the iterative phase correspond to solid lines.
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Figure 8: Phase diagram including the accumulated experiments (σL,1 = 0.001mol/mol) for: (a)
Methanol-Water system (UNIQUAC model); (b) Ethanol-Water system (UNIQUAC model). The
equilibrium attained in experiments correspond to triangles.
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Table 1: Antoine constants for system MET-WAT [56].
Component A B C

MET (1) 8.08097 1582.27 −34.450
WAT (2) 8.07131 1730.63 −39.724
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Table 2: Binary interaction parameters for vapor-liquid equilibrium characterization via NRTL
model for system MET-WAT [3].

Parameters ai,j Parameters bi,j Parameters α†
i,j

Component Component Component

Component MET (1) WAT (2) MET (1) WAT (2) MET (1) WAT (2)

MET (1) 0.000 −0.693 0.0 173.0 0.0 0.3
WAT (2) 2.732 0.000 −617.3 0.0 0.3 0.0

† Fixed.
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Table 3: D-optimal designs for VLE model using NRTL, θloc,0 = 0.9×θtrue except for αi,j , i, j ∈
JcK, which is set to the value used in the simulation: T ∈ [323.15, 374.15] K.

Designation Optimal design

ξcont



0.8362 0.4670 0.4347 0.1760
0.1638 0.5330 0.5653 0.8240

760 760 760 760
341.0000 349.5905 350.5981 362.1546
0.7925 0.3613 0.3253 0.0856
0.9383 0.7137 0.6901 0.3868
0.4390 0.1071 0.1978 0.2571


ξexact
ns

0.8362 0.4670 0.4347 0.1760
· · · · · · · · · · · ·
1 1 1 1


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Table 4: Parameter values fitted in iterative phase of the M-bSODE procedure.
σL,1 = 0 mol/mol σL,1 = 0.001 mol/mol

Iteration a1,2 a2,1 b1,2 b2,1 a1,2 a2,1 b1,2 b2,1

0 −0.6237 2.4588 155.7000 −555.5700 −0.6237 2.4588 155.7000 −555.5700
1 −0.6930 2.7320 173.0002 −617.3002 −0.6929 2.7283 173.0002 −617.3002
2 −0.6930 2.7320 172.9942 −617.3016 −0.7019 2.7409 172.9931 −617.3016
3 −0.6930 2.7320 172.9920 −617.3019 −0.7040 2.7444 172.9937 −617.3019
4 −0.6930 2.7320 172.9964 −617.3020 −0.6951 2.7317 172.9965 −617.3021
5 −0.6930 2.7320 172.9929 −617.3029 −0.7082 2.7532 172.9991 −617.3023

σL,1 = 0.002 mol/mol

Iteration a1,2 a2,1 b1,2 b2,1

0 −0.6237 2.4588 155.7000 −555.5700
1 −0.6824 2.7265 173.0002 −617.3002
2 −0.6714 2.7115 172.9939 −617.3013
3 −0.6525 2.6818 172.9968 −617.3017
4 −0.6777 2.7165 172.9944 −617.3022
5 −0.6738 2.7104 172.9942 −617.3028
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Table 5: Temperature of the prescribed experiments in the iterative stage of the procedure.
σL,1

Experiment 0 mol/mol 0.001 mol/mol 0.002 mol/mol

1 348.6134 348.5738 348.6427
2 348.2694 367.7045 367.7498
3 367.7102 348.1993 348.2941
4 361.2453 361.1808 361.3240
5 360.6602 360.8580 360.9504
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Table 6: Parameter predictions and respective 95% confidence intervals after 9 experiments.
prescribed with M-bSODE

Parameter σL,1 = 0 mol/mol σL,1 = 0.001 mol/mol σL,1 = 0.002 mol/mol

a1,2 −0.6930± 0.0000 −0.6846± 0.0428 −0.6648± 0.0541
a2,1 2.7320± 0.0000 2.7186± 0.0592 2.6765± 0.0753
b1,2 172.9929± 0.0002 172.9977± 6.9421 172.9993± 8.6112
b2,1 −617.3029± 0.0002 −617.3024± 10.1207 −617.3025± 12.2620

prescribed by uniform choice

Parameter σL,1 = 0 mol/mol σL,1 = 0.001 mol/mol σL,1 = 0.002 mol/mol

a1,2 −0.6930± 0.0000 −0.6772± 0.0619 −0.6811± 0.0870
a2,1 2.7320± 0.0000 2.7028± 0.0856 2.7079± 0.1206
b1,2 172.9935± 0.0001 172.9940± 10.1171 172.9938± 14.2303
b2,1 −617.3048± 0.0002 −617.3048± 12.2472 −617.3048± 17.2524
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Table 7: Temperature, initial mixture and equilibrium conditions of the experiments prescribed for
ETH-WAT system (σL,1 = 0.001mol/mol, NRTL model).

Initial and equilibrium conditions

Experiment T (K) z1 (mol/mol) yL,1 (mol/mol) yV,1 (mol/mol)

1 351.3273 0.9236 0.9256 0.9227
2 351.4337 0.8137 0.8008 0.8192
3 351.4989 0.7934 0.7741 0.8017
4 351.5769 0.7746 0.7502 0.7851
5 354.1048 0.5281 0.3516 0.6038
6 354.3466 0.5140 0.3251 0.5949
7 354.6101 0.4999 0.2997 0.5858
8 354.9023 0.4859 0.2755 0.5761
9 355.2333 0.4708 0.2497 0.5656

10 353.3995 0.5734 0.4339 0.6332
11 353.3991 0.5733 0.4334 0.6333
12 351.3274 0.8706 0.8678 0.8718
13 355.2257 0.4714 0.2510 0.5658
14 353.4351 0.5712 0.4303 0.6316
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Table 8: Parameter predictions and respective 95% confidence intervals for system ETH-WAT
after 14 experiments (σL,1 = 0.001mol/mol, NRTL model).

Parameter prescribed with M-bSODE prescribed by uniform choice

a1,2 −0.8023± 0.0158 −0.8049± 0.0168
a2,1 3.4524± 0.0309 3.4599± 0.0310
b1,2 246.2000± 4.6492 246.200± 4.7259
b2,1 −586.1000± 7.9301 −586.100± 8.2996
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Table 9: Temperature, initial mixture and equilibrium conditions of the experiments prescribed for
WAT-mTBD system (σL,1 = 0.001mol/mol, NRTL model).

Initial and equilibrium conditions

Experiment T (K) z1 (mol/mol) yL,1 (mol/mol) yV,1 (mol/mol)

1 424.7316 0.7800 0.3176 0.9782
2 403.0215 0.8384 0.4747 0.9943
3 401.1153 0.8443 0.4924 0.9951
4 384.4713 0.9134 0.7135 0.9990
5 383.6172 0.9181 0.7290 0.9992

6 389.8416 0.8863 0.6252 0.9982
7 408.0926 0.8231 0.4293 0.9919
8 382.2179 0.9266 0.7568 0.9993
9 381.1403 0.9330 0.7779 0.9994

10 380.2899 0.9392 0.7985 0.9995
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Table 10: Parameter predictions and respective 95% confidence intervals for WAT-mTBD system
after 10 experiments (σL,1 = 0.001mol/mol, NRTL model).

Parameter prescribed with M-bSODE prescribed by uniform choice

a1,2 0.3886± 0.0660 0.2977± 0.0897
a2,1 −1.3079± 0.0899 −1.1052± 0.1151
b1,2 −857.3802± 15.5512 −857.3808± 20.3720
b2,1 978.4779± 17.8381 978.4776± 21.5841
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Table 11: Temperature, initial mixture and equilibrium conditions of the experiments prescribed
for MET-WAT system (σL,1 = 0.001mol/mol, UNIQUAC model).

Initial and equilibrium conditions

Experiment T (K) z1 (mol/mol) yL,1 (mol/mol) yV,1 (mol/mol)

1 340.9419 0.8793 0.7931 0.9163
2 347.8379 0.6556 0.4268 0.7536
3 348.8431 0.6269 0.3849 0.7306
4 361.4484 0.3153 0.0962 0.4092
5 362.3175 0.2938 0.0852 0.3832

6 359.3193 0.3667 0.1254 0.4701
7 351.7348 0.5503 0.2864 0.6634
8 343.1779 0.8015 0.6608 0.8618
9 341.6018 0.8563 0.7544 0.9000

10 341.5970 0.8563 0.7542 0.9001
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Table 12: Parameter predictions and respective 95% confidence intervals for MET-WAT system
after 10 experiments (σL,1 = 0.001mol/mol, UNIQUAC model).

Parameter prescribed with M-bSODE prescribed by uniform choice

a1,2 −1.0810± 0.0418 −1.0513± 0.0478
a2,1 0.6636± 0.0502 0.6249± 0.0584
b1,2 432.8785± 5.5746 432.8785± 6.6552
b2,1 −322.1312± 8.6892 −322.1312± 8.7775
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Table 13: Temperature, initial mixture and equilibrium conditions of the experiments prescribed
for ETH-WAT system (σL,1 = 0.001mol/mol, UNIQUAC model).

Initial and equilibrium conditions

Experiment T (K) z1 (mol/mol) yL,1 (mol/mol) yV,1 (mol/mol)

1 355.3760 0.4683 0.2496 0.5620
2 355.0404 0.4830 0.2736 0.5727
3 354.7420 0.4981 0.3009 0.5826
4 354.4713 0.5122 0.3259 0.5921
5 351.6078 0.7752 0.7499 0.7860
6 351.5267 0.7950 0.7771 0.8026
7 351.4584 0.8142 0.8006 0.8201
8 351.3365 0.9238 0.9256 0.9230

9 351.6917 0.7583 0.7274 0.7716
10 351.3448 0.8703 0.8674 0.8715
11 351.3498 0.8653 0.8608 0.8673
12 351.3488 0.8664 0.8624 0.8681
13 351.3492 0.8658 0.8611 0.8678
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Table 14: Parameter predictions and respective 95% confidence intervals for ETH-WAT system
after 13 experiments (σL,1 = 0.001mol/mol, UNIQUAC model).

Parameter prescribed with M-bSODE prescribed by uniform choice

a1,2 2.0032± 0.0419 2.1573± 0.0868
a2,1 −2.4917± 0.0518 −2.3699± 0.1221
b1,2 −728.9705± 12.2946 −728.9705± 19.4923
b2,1 756.9477± 14.7917 756.9477± 24.8235
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