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Abstract. This paper addresses inference in large panel data models in the presence of both

cross-sectional and temporal dependence of unknown form. We are interested in making inferences

that do not rely on the choice of any smoothing parameter as is the case with the often employed

“HAC” estimator for the covariance matrix. To that end, we propose a cluster estimator for

the asymptotic covariance of the estimators and valid bootstrap schemes that do not require the

selection of a bandwidth or smoothing parameter and accommodate the nonparametric nature of

both temporal and cross-sectional dependence. Our approach is based on the observation that

the spectral representation of the fixed effect panel data model is such that the errors become

approximately temporally uncorrelated. Our proposed bootstrap schemes can be viewed as wild

bootstraps in the frequency domain. We present some Monte Carlo simulations to shed some

light on the small sample performance of our inferential procedure.

JEL classification: C12, C13, C23

Keywords: Large panel data models. Cross-sectional strong-dependence. Central Limit Theo-

rems. Clustering. Discrete Fourier Transformation. Nonparametric bootstrap algorithms.

Affi liation: Economics Department, London School of Economics.

0Corresponding author: Marcia Schafgans. Economics Department, London School of Economics, Houghton

Street, London WC2A 2AE, UK. Tel.: +44 207 955 7487; fax: +44 207 955 6592.

E-mail addresses f.j.hidalgo@lse.ac.uk (J. Hidalgo), m.schafgans@lse.ac.uk.(M. Schafgans)
1



2 JAVIER HIDALGO AND MARCIA SCHAFGANS

1. INTRODUCTION

Nowadays we often encounter panel data sets where both the number of individuals, n, and

the time dimension, T , are large or increase without limit. Phillips and Moon (1999) and Pesaran

and Yamagata (2008) provide some theoretical results for the parameter estimators in large panel

data models, that is where both n and T tend to infinity. These works were done under the

assumption of no dependence among the cross-sectional units. Yet, it is well recognized that the

latter assumption is not very realistic, and there has been a surge of work on how to provide valid

inferences when this type of dependence is present. The issues are closely related to Zellner’s

(1962) SURE (Seemingly Unrelated Regression) model, be it that here both dimensions are

allowed to increase without limit.

Once one accepts the possibility that the errors of the model may exhibit cross-sectional and/or

temporal dependence, a key component to make valid inferences is the consistent estimation of the

asymptotic covariance matrix of the estimators. For that purpose, we might proceed by explicitly

assuming some specific dependence structure on the error term. In our context, this route appears

to be quite cumbersome mainly for two reasons. First, it is quite diffi cult to specify an appropriate

model in the presence of cross-sectional dependence as there are ample generic models capable to

justify such a dependence. Some examples are the Spatial Autoregressive (SAR) model of Cliff

and Ord (1973), which has its origins in Whittle (1954), Andrews’ (2005) proposal to capture

common shocks (e.g., macroeconomic, technological, legal/institutional) across observations and

Pesaran’s (2006) factor model. Second, in many settings it may be quite unrealistic to assume that

the temporal dependence is the same for all individuals, so finding a correct specification may be

infeasible as n increases with no limit. Inferential properties based on parameter estimates that

use a specific (wrong) structure, moreover, may be worse than the least squares estimates (LSE).

The latter observation was first documented in Engle (1974) and latter examined in Nicholls and

Pagan (1977), who illustrated the adverse consequences of imposing incorrect temporal depen-

dence assumptions on inference, say when the practitioner assumes an AR (1) model instead of

the true underlying AR (2) specification.

As the task of finding an appropriate model for the dependence can be very daunting, one of

our main aims in this paper is then to provide inference in panel data not only when the error term

(potentially) exhibits both temporal and cross-sectional dependence, but also more importantly

doing so without relying on any parametric functional form for such a dependence. Under these

circumstances, one standard methodology is based on the HAC estimator, whose implementation

requires the choice of one (or more) bandwidth parameter(s).1 While this approach is often invoked

and used in the context of time series regression models, application of spatial HAC estimators is

less common. The use of HAC estimators in spatial econometrics was advocated by Conley (1999)

and Kelejian and Prucha (2007) studied its use in Cliff—Ord type spatial models. Recently, a HAC

estimator accounting for both the temporal and the spatial correlation been considered by Kim

1In a time series regression model context several proposals, both in the time and frequency domain, have

been employed and bootstrap applications commonly approximate the long term covariance by using a long AR

polynomial (sieve method). Other methods include the use of orthogonal polynomials, see, e.g., Sun (2013) and

Phillips (2005), instead of the use of Fourier sequences. All of them have in common that they require the choice

of a bandwidth parameter and/or base function. Lazarus et al. (2018) provide an interesting simulation study.
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and Sun (2013). The implementation requires not only the selection of a bandwidth parameter

but, also more importantly, an associated measure of distance between the cross-sectional units.

This explicitly assumes that there is some type of ordering among the individuals or cross-sectional

units which, in contrast with the time dimension, is not unambiguous. Even if one accepts the

existence of such an ordering, it is likely that various economics and/or geographical distance

measures, each requiring their own bandwidth, may be required to encapsulate the order. For

instance, simply relying on the geographic “as the crow flies” distance measure for ordering is

questionable as one cannot expect that two cross-sectional units located in the Rockies would

behave the same as if they were in the Midwest. Clearly, a distance measure which captures the

topography and other economic measures may be required. In addition, if we recognize that the

temporal dependence may not be the same for all individuals, even the selection of a bandwidth

parameter to account for the temporal dependence may become infeasible. Any cross-validation

algorithm used to determine the bandwidth parameter for temporal dependence may then need

to be performed for each individual.

To deal with the potential caveats of HAC estimators, we shall propose a cluster based estimator

which is able to take into account both types of dependence and permits the temporal dependence

to vary across individuals, see Condition C1 and its discussion, extending the work of Arellano

(1987) and Driscoll and Kraay (1998) in a substantial way. While Driscoll and Kraay (1998)

employed a cluster type of estimator to account for the cross-sectional dependence, they relied on

the HAC methodology to accommodate the temporal dependence subjecting it to the drawback

mentioned before. We avoid the use of the HAC methodology altogether. In addition, we provide
a new CLT that accounts for an unknown and general temporal spatial dependence structure that

permits strong spatial dependence. Our approach allows for more general dependence structure

than permitted by Kim and Sun (2013) and Driscoll and Kraay (1998). Our new results can

therefore be regarded as providing primitive conditions that guarantee Kim and Sun’s and Driscoll

and Kraay’s assumption of the existence of a suitable CLT.

Our approach is based on the observation that the spectral representation of the fixed effect

panel data model (2.1) is such that the errors become approximately temporally uncorrelated

whilst heteroskedastic. It is this observation that enables us to conduct inference without any

smoothing. To provide finite sample improvements for inference based on our cluster estimator,

we present and examine bootstrap schemes which also do not require the choice of any bandwidth

parameter, contrary to the sieve or moving block bootstrap (henceforth denoted MBB). Two
bootstrap algorithms are presented, one where we assume homogeneous temporal dependence,

which we shall denote as the naïve bootstrap, and a second one, denoted the wild bootstrap,

where we allow for heterogeneous temporal dependence. Our bootstrap schemes can be viewed as

wild bootstraps in the frequency domain which are shown to have good finite sample properties.

We compare our proposal to other methods that also do not require any ordering of the cross-

sectional units. In particular, we consider Driscoll and Kraay’s HAC estimator and the fixed-b

asymptotic framework advocated by Vogelsang (2012) . We also consider the MBB bootstrap

applied to the vector containing all the individual observations at each point in time as proposed

by Gonçalves (2011).
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While our estimator does permit more general spatio temporal dependence and does not require

any smoothing parameters, in line with Robinson (1998), the approach examined in Section 2

precludes the presence of conditional heteroskedasticity. In Section 4, we examine how we can

relax this by introducing a multiplicative error structure, vpt = σ1(wp)σ2 (%t)upt, where wp and

%t can be functions of the fixed effects and/or variables which are correlated with the included

regressors. It is worth noting that we do not need to observe these variables, as is the case

when wp, say, is the fixed effect. That is, we can allow for “groupwise” heteroskedasticity and

applications in development economics are commonplace, see Deaton (1996) and Greene (2018).

Of particular interest, here, is the realization that our cluster based inference is robust to the

presence of heteroskedasticity that is only cross-sectional in nature (i.e., where σ2 (%t) is constant).

In the presence of a non-constant σ2 (%t), we propose a simple way to robustify our cluster based

inference. Whereas more general forms of heteroskedasticity, where vpt = σ(xpt)upt, can be

permitted, its implementation would require the use of nonparametric methods which would

require the selection of a bandwidth parameter to estimate the heteroskedasticity function. We

shall indicate how we should proceed if this were the case. Finally, a benefit of our estimator is

that it permits the temporal dependence to vary across individuals, which is more realistic. It is

important to point out that MBB would not be valid in these settings as it depends on some type

of temporal homogeneity or even stationarity.

The remainder of the paper is organized as follows: In Section 2 we discuss the regularity

conditions for our model and describe the main results. In Section 3 we introduce our bandwidth

parameter free bootstrap schemes and we demonstrate their validity. Section 4 discusses a gener-

alization of our model that permits (conditional) heteroskedasticity. Section 5 presents a Monte

Carlo simulation experiment to shed some light on the finite sample performance of our cluster

estimator and its comparison to others and we illustrate the finite sample benefits of our bootstrap

schemes. In Section 6 we summarize. The proofs of our main results are given in Appendix A,

which employs a series of lemmas given in Appendix B.

2. THE REGULARITY CONDITIONS AND MAIN RESULTS

We shall begin by considering the panel data model

ypt = β′xpt + ηp + αt + upt, p = 1, ..., n, t = 1, ..., T , (2.1)

where β is a k × 1 vector of unknown parameters, xpt is a k × 1 vector of covariates, αt and ηp
represent respectively the time and individual fixed effects and {upt}t∈Z, p ∈ N+, are sequences

of zero mean errors with heterogeneous variance E
(
u2
pt

)
= σ2

p, p ∈ N+. We allow for general

(unknown) temporal and cross-sectional dependence structures of the sequence {upt}t∈Z, p ∈ N+,

detailed in Condition C1 and {xpt}t∈Z, p ∈ N+, detailed in Condition C2. Further details are

provided in our discussion of these conditions below. For simplicity, we shall assume that the

sequences {xpt}t∈Z, p ∈ N+, are mutually independent of the error term {upt}t∈Z, p ∈ N+,

whilst allowing for dependence of the covariates with the fixed effects ηp and/or αt.
2 In Section

4, we shall relax this condition allowing for heteroskedasticity. A straightforward extension that

2 In fact, all that is needed is that the first conditional moment of the error is zero and the second conditional

moment is equal to the unconditional one.
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allows for lagged endogenous variables {yp,t−`}k1`=1 , as in Hidalgo and Schafgans (2017), requires

the use of the instrumental variable estimator, where {xp,t−`}k1`=1 provide natural instruments for

{yp,t−`}k1`=1. We have avoided this generalization as it would detract from the main contribution

of the paper and it will only add some extra technicalities and/or considerations which are well

known and understood when n = 1.

Our first aim in the paper is to perform inference on the slope parameters β in the presence

of a very general and unknown spatio-temporal dependence structure. To that end, we first

need to extend a Central Limit Theorem provided in Phillips and Moon (1999), see also Hahn

and Kuersteiner (2002). The reason for this is that in their work the sequences of random

variables, say
{
ψpt
}
t∈Z, p ∈ N

+, are assumed to be independent, that is
{
ψpt
}
t∈Z and

{
ψqt
}
t∈Z

are mutually independent for any p 6= q, which is ruled out in our context as we permit cross-

sectional dependence. Moreover, as we shall allow for “strong-dependence” in our error and

regressor sequences, we cannot use results and arguments based on any type of “strong-mixing”

conditions, so that results in Jenish and Prucha (2009, 2012) cannot be invoked in our framework

either. Our theorem also extends the results provided in Hidalgo and Schafgans (2017) by allowing

the errors upt to exhibit temporal dependence. A second aim of the paper is to extend the work of

Driscoll and Kraay (1998) by examining, in the presence of individual and temporal fixed effects,

a cluster estimator of the asymptotic covariance of the estimator of the slope parameters that does

not require the ordering of the observations (in the cross-sectional dimension) or the selection of

a bandwidth parameter.

The fixed effect model and the estimator for the slope parameters we consider are well known.

Denoting for any generic sequence {ςpt}Tt=1, p = 1, ..., n, the transformation

ς̃pt = ςpt − ς ·t − ςp· + ς ··; (2.2)

ς ·t =
1

n

n∑
p=1

ςpt; ςp· =
1

T

T∑
t=1

ςpt; and ς ·· =
1

nT

T∑
t=1

n∑
p=1

ςpt,

the estimator of β is obtained by performing least squares on the transformed model (where the

individual and time effects are removed)

ỹpt = β′x̃pt + ũpt, p = 1, ..., n and t = 1, ..., T, (2.3)

so that β̂ is defined as

β̂ =

 n∑
p=1

T∑
t=1

x̃ptx̃
′
pt

−1 n∑
p=1

T∑
t=1

x̃ptỹpt

 . (2.4)

It is obvious that we can take Expt = 0 as x̃pt is invariant to additive constants, say µt or νp, to

xpt.

In this paper, we shall focus on an equivalent frequency domain formulation of (2.1) and (2.3).

It is the application of the Discrete Fourier Transform (DFT) to our model, as will become clear

shortly, that plays an important role in describing and motivating the cluster estimator of the

asymptotic covariance matrix of β̂, or equivalently β̃ given in (2.7) below, and the bootstrap

schemes described in Section 3.
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For this purpose, we denote the DFT for generic sequences {ςpt}Tt=1, p ≥ 1, by

Jς,p (λj) =
1

T 1/2

T∑
t=1

ςpte
−itλj , j = 1, ..., T̃ = [T/2] , λj =

2πj

T
(2.5)

and Jς,p (λj) = Jς,p (−λT−j), j = T̃ + 1, .., T. We can then rewrite (2.3) as

Jỹ,p (λj) = β′Jx̃,p (λj) + Jũ,p (λj) , p = 1, ..., n; j = 1, ..., T − 1. (2.6)

Given that our sequences {ς̃pt}Tt=1 , p ≥ 1, are centred around their sample means, we can leave

out the frequency λj for j = T (and 0) as Jς̃ ,p (0) = 1
T 1/2

∑T
t=1 ς̃pt = 0. The interesting property

of Jũ,p (λj) , j = 1, ..., T − 1, that allows us to formulate our new cluster estimator that accounts

for both types of dependence, is that it is serially uncorrelated over the Fourier frequencies for

large T, whilst possibly heteroskedastic. Based on the frequency domain formulation of our model

(2.6), we can also compute our estimator of β as

β̃ =

 n∑
p=1

T−1∑
j=1

Jx̃,p (λj)J ′x̃,p (−λj)

−1 n∑
p=1

T−1∑
j=1

Jx̃,p (λj)Jỹ,p (−λj)

 . (2.7)

We introduce our regularity conditions next. To that end, and in what follows, we denote for

any generic sequence {vpt}t∈Z, p ∈ N,

ϕv (p, q) = Cov (vpt; vqt) , for any p, q ≥ 1.

Condition C1: {upt}t∈Z, p ∈ N+, are zero mean sequences of random variables such that

(i) upt =

∞∑
k=0

dk (p) ξp,t−k,
∞∑
k=0

kdk <∞, dk =: supp |dk (p)| ,

where E
(
ξpt | Vp,t−1

)
= 0; E

(
ξ2
pt | Vp,t−1

)
= σ2

ξ,p and finite fourth moments, with Vp,t
denoting the σ−algebra generated by

{
ξps, s ≤ t

}
.

(ii) For all t ∈ Z and p ∈ N+,

ξpt =
∞∑
`=1

a` (p) ε`t, sup
p∈N+

∞∑
`=1

|a` (p)|2 <∞, sup
`≥1

n∑
p=1

|a` (p)|2 <∞,

where the sequences {ε`t}t∈Z, ` ∈ N+, are zero mean independent identically distributed

(iid) random variables.

(iii) The fourth cumulant of {upt}t∈Z, p ∈ N+, satisfies

lim
T↗∞

sup
p∈N+

T∑
t1,t2,t3=1

|Cum (upt1 ;upt2 ;upt3 ;up0)| <∞.

Condition C2: {xpt}t∈Z, p ∈ N+, are sequences of random variables such that:

(i) xpt =

∞∑
k=0

ck (p)χp,t−k,
∞∑
k=0

kck <∞, ck =: supp ‖ck (p)‖ ,

where ‖B‖ denotes the norm of the matrix B and E
(
χpt | Υp,t−1

)
= 0; Cov

(
χpt | Υp,t−1

)
=

Σχ,p and E
∥∥χpt∥∥4

<∞, with Υp,t denoting the σ−algebra generated by
{
χps, s ≤ t

}
.

(ii) The sequences of random variables
{
χpt
}
t∈Z, p ∈ N

+, are such that

χpt =
∞∑
`=1

b` (p) η`t, sup
p∈N+

∞∑
`=1

|b` (p)|2 <∞, sup
`≥1

n∑
p=1

|b` (p)|2 <∞,
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where the sequences {η`t}t∈Z, ` ∈ N+, are zero mean iid random variables.

(iii) Denoting Σx,p = E
(
xptx

′
pt

)
, we have

0 < Σx = lim
n→∞

1

n

n∑
p=1

Σx,p (2.8)

and the fourth cumulant of {xpt}t∈Z, p ∈ N+, satisfies

lim
T→∞

sup
p∈N+

T∑
t1,t2,t3=1

|Cum (xpt1,a;xpt2,b;xpt3,c;xp0,d)| <∞, a, b, c, d = 1, ..., k,

where xpt,a denotes the a− th element of xpt.
Condition C3: For all p ∈ N+, the sequences {upt}t∈Z and {xpt}t∈Z are mutually indepen-
dent and

0 < max
1≤p≤n

n∑
q=1

‖ϕ (p, q)‖ <∞, (2.9)

where ϕ (p, q) := ϕu (p, q)ϕx (p, q).

We now comment on our conditions. Conditions C1 and C2 indicate that {upt}t∈Z and {xpt}t∈Z,
p ∈ N+, are linear processes that permit the usual SAR (or more generally SARMA) model.

Indeed, by definition of the SAR model, with W a spatial weight matrix we have

u = (I − ωW )−1 ε

= (I + Ξ) ε, Ξ =
(
ψq (p)

)n
p,q=1

,

so that up =
∑n

q=0 ψq (p) εq, which implies that the SAR model satisfies Condition C1. Unlike the

SAR model, Condition C1 does permit the sequence
∑n

p=1 |a` (p)| to grow with n. One can allow
the weights a` (p) to depend on the sample size “n”as is often done in SAR models with weight

matrices W row-normalized, but it does not add anything significant. Our conditions, therefore,

appear to be weaker than those typically assumed when cross-sectional dependence is allowed

while being similar to those of Lee and Robinson (2013). As the sequences may exhibit long
memory spatial dependence, the condition of strong mixing for the spatial dependence in Jenish

and Prucha (2012) is ruled out. This appears to be the case as Ibragimov and Rozanov (1978)

showed; if the sequence
{
γu,pq (j)

}
j∈Z is not summable, the process {upt}t∈Z , p ∈ N

+, cannot

be strong-mixing. The long memory dependence also rules out that the process is Near Epoch

Dependent with size greater than 1/2, which appears to be a necessary condition for standard

asymptotic CLT results.

Conditions C1 and C2 do rule out long memory temporal dependence on the sequences {xpt}t∈Z
and {upt}t∈Z for each p. Even though there are several results available allowing their temporal
dependence to exhibit long memory, see Robinson and Hidalgo (1997) or Hidalgo (2003), we have

decided to assume the temporal dependence of the regressors and errors to be weakly dependent

to simplify the arguments. It is worth pointing out that our Conditions C1 (i) and C2 (i) can be

relaxed to some extent to allow some type of mixing condition such as L4-Near Epoch dependence

with size greater than or equal to 2. The latter condition is often invoked when we allow the errors

to have a nonlinear type of dependence structure or if (2.1) were replaced by a nonlinear panel

data model

ypt = g (xpt;β) + ηp + αt + upt, p = 1, ..., n, t = 1, ..., T .
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In fact, we expect the conclusions of our results to hold under such a mixing condition as it

has been shown in numerous situations. Conditions C1 and C2 do permit heterogeneity in its

second moments as E
(
ξ2
pt | Vp,t−1

)
= σ2

ξ,p and Cov
(
χpt | Υp,t−1

)
= Σχ,p. This follows from our

conditions because E
(
ξ2
pt | Vp,t−1

)
=
∑∞

`=1 |a` (p)|2 clearly depends on p. Furthermore, we allow
for some trending behaviour of the sequences {xpt}t∈Z, p ∈ N+, as we allow the mean of xpt to

depend on time.

An important consequence of Conditions C1 and C2 is that they guarantee that the covari-

ance structure of the sequences {upt}t∈Z and {xpt}t∈Z, p ∈ N+, is multiplicative. For instance,

Condition C1 implies that, for all p, q ∈ N+,

E (uptuqs) = E

( ∞∑
k=0

dk (p) ξp,t−k

∞∑
`=0

d` (q) ξq,s−`

)

= E
(
ξp1ξq1

)


∞∑
`=0

dt−s+` (p) d` (q) t > s

∞∑
`=0

d` (p) ds−t+` (q) t ≤ s
(2.10)

= ϕu (p, q) γu;pq (t− s) .

Following the spatio-temporal literature, see Cressie and Huang (1999), we can denote this co-

variance structure as separable. Of course, there are nonseparable covariance structures, see

Gneiting (2002) and tests for separability are available, see Fuentes (2006) or Matsuda and Ya-

jima (2004). Notice that in the absence of cross-sectional dependence, E
(
ξp1ξq1

)
= σ2

ξp1 (p = q)

and E (uptuqs) = σ2
ξpγu;pp (t− s)1 (p = q). Here, and in what follows, 1 (A) denotes the indicator

function.

Remark 1. The condition supp∈N+
∑∞

`=0 |a` (p)|2 <∞ guarantees that for any reordering of the

sequence
{
|a` (p)|2

}
`∈N+

, say
{∣∣a`(τ) (p)

∣∣2}
`(τ)∈N+

, we have that a`(τ) (p) = O
(
` (τ)−ζ

)
for some

ζ > 1/2. Similarly the requirement sup`≥1

∑n
p=1 |a` (p)|2 <∞ will mean that a` (p) = O

(
p−ζ
)
for

some ζ > 1/2 uniformly in ` ≥ 1. Similar arguments follow for
{
|b` (p)|2

}
`∈N+

, p ≥ 1.

Condition C3 assumes that the sequences {xpt}t∈Z and {upt}t∈Z, p ∈ N+ are independent,

although we envisage that it can be relaxed to require only conditional independence in first and

second moments. To simplify the arguments somewhat, we have preferred to keep the condition as

it stands. Even though we allow long memory spatial dependence of the individual sequences, the

absolute summability requirement in (2.9) limits the combined cross-sectional dependence, that

is the dependence of the sequence {zpt = uptxpt}t∈Z, p ∈ N+, is “weakly spatially dependent”,

see also Hidalgo and Schafgans (2017). We have adopted the convention that γu;pp (t− s) =

E (uptups) /ϕu (p, p) . Importantly, as we assume that the errors and regressors are uncorrelated,

the spectral density matrix of the sequences {zpt =: uptxpt}t∈Z, p ∈ N+ is given by the convolution

of the spectral density matrix of {xpt}t∈Z and spectral density function of {upt}t∈Z, that is

fp (λ) =:

∫ π

−π
fu,p (υ) fx,p (λ− υ) dυ, p ∈ N+, (2.11)

where Conditions C1 and C2 imply that fp (λ) is twice continuous differentiable. By Fuller’s

(1996) Theorem 3.4.1, or Corollary 3.4.1.2, the Fourier coeffi cients of fp (λ) are given by γp (j) =
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γx,p (j) γu,p (j), p ∈ N+, so that

sup
p,q=1,..,n

∞∑
`=−∞

∥∥γpq (`)
∥∥ <∞; Cov (zpt; zqs) = γpq (t− s)ϕ (p, q) .

With the convention that γu,pq (0) = γx,pq (0) = 1, Cov (zpt, zqt) = ϕ (p, q) =: ϕu (p, q)ϕx (p, q) as

defined in Condition C3.

Remark 2. It is worth noticing that (2.9) ensures that ϕ (p, q) = O
(
q−1−δ) or ϕ (p, q) =

O
(
p−1−δ) for some δ > 0, so that

lim
n→∞

1

n

n∑
p,q=1

ϕ (p, q) <∞.

The latter displayed expression can be regarded as a type of weak dependence in the cross-sectional

dimension, see also Robinson (2011) or Lee and Robinson (2013). In addition, the ergodicity in

second mean, that is
1

n2

n∑
p,q=1

(ϕu (p, q) + ϕx (p, q)) = o(1),

implies that ϕu (p, q) = O (q−ςu) and ϕx (p, q) = O (q−ςx) such that ςu + ςx = 1 + δ > 0.

Conditions C1 − C3, therefore, imply that the “average” long-run variance of the sequences

{zpt =: uptxpt}t∈Z, p ∈ N+, is given by

Φ =: 2π lim
n→∞

1

n

n∑
p,q=1

fpq (0)ϕ (p, q) <∞ (2.12)

2πfpq (0) =
∞∑

`=−∞
γpq (`) .

Observe that standard algebra yields that

Φ = : lim
n→∞

lim
T→∞

1

nT
E


 n∑
p=1

T∑
t=1

xptupt

 n∑
p=1

T∑
t=1

x′ptupt


= lim

n→∞
lim
T→∞

1

nT

n∑
p,q=1

T∑
t,s=1

E
(
xptx

′
qs

)
E (uptuqs) , (2.13)

or, using its spectral domain formulation,

Φ = lim
n→∞

lim
T→∞

1

nT
E


T−1∑
j=1

n∑
p=1

Jx,p (λj)Ju,p (−λj)

T−1∑
j=1

n∑
p=1

J ′x,p (−λj)Ju,p (λj)


= lim

n→∞
lim
T→∞

1

nT

T−1∑
j=1

n∑
p,q=1

E
(
Jx,p (λj)J ′x,q (−λj)

)
E (Ju,p (−λj)Ju,q (λj)) . (2.14)

Finally, we denote

V = Σ−1
x ΦΣ−1

x , (2.15)

where Σx > 0 was defined in Condition C2.

The following theorem presents our result establishing the CLT for our slope parameter esti-

mates in the presence of general temporal and cross-sectional dependence.
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Theorem 1. Under Conditions C1− C3, we have that as n, T →∞,

(nT )1/2
(
β̃ − β

)
d→ N (0,V) .

Proof. The proof of this result, based on either the time or frequency domain formulation, will

be given in Appendix A. All other proofs are relegated to this appendix as well. �

Remark 3. While the result could be shown to hold with finite n, a setting considered by Robinson
(1998), the presence of the time fixed effect would require special attention since the dependence

structure of upt and upt − n−1
∑n

p=1 upt are not quite the same when n is finite.

With V defined in (2.15), Theorem 1 indicates that to make inferences on β, we need to

provide a consistent estimator of Φ. A first glance at (2.13) or (2.14) suggests that this might

be complicated or computationally burdensome due to the general spatio-temporal dependence

structure of the data. As we pointed out in the introduction, the standard approach to deal with

such dependence, that is a HAC type of estimator, has various potential drawbacks in the presence

of cross-sectional dependence. While choosing a bandwidth parameter associated with the cross-

sectional dependence requires or induces an artificial and/or nontrivial ordering, the presence of

individual heterogeneous temporal dependence (as assumed in Conditions C1 and C2) would even

render any cross validation method used to choose the temporal bandwidth parameter intractable.

While Kim and Sun’s (2013) approach is subject to both these criticisms, Driscoll and Kraay

(1998) avoid the need to specify an ordering of individuals by introducing an HAC estimator of

cross-sectional averages, so that one can consider their estimator as a hybrid between an HAC

and a cluster one: they employ the HAC methodology to deal with the temporal dependence

whereas they employ a cluster type of estimator to account for the cross-sectional dependence.

We advocate to use an approach that does not require any ordering and/or selection of a bandwidth

parameter and also permits a more general spatio-temporal dependence than allowed by either

Driscoll and Kraay (1998) or Kim and Sun (2013) and permits the cross-sectional dependence

to be "long-memory" which latter work ruled out. Moreover our approach permits the temporal

dependence to be heterogeneous across individuals, which is more realistic.

Our approach can be regarded as a natural extension of the earlier work by Robinson (1998)

on inference without smoothing in a time series regression model context. In his case, abstracting

from cross-sectional dependence

Φ =: lim
n→∞

2π

n

n∑
p=1

fpp (0) .

Applying his estimator to our model, would yield the estimator

2π

n

n∑
p=1

1

T

T∑
j=1

Iu,p (λj) Ix,p (−λj) =
1

n

n∑
p=1

T−1∑
`=−T+1

γ̂x,p (`) γ̂u,p (`) , (2.16)

where γ̂x,p (j) and γ̂u,p (j) are respectively the standard sample moment estimators of γx,p (j) and

γu,p (j) and Iu,p (λ) = T−1
(∑T

t=1 upte
itλ
)(∑T

t=1 upte
−itλ

)′
with Ix,p (λ) similarly defined. When

cross-sectional dependence is allowed, the latter arguments suggest that (2.16) is not a consistent
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(cluster) estimator of Φ. The reason for this (see also the proof of Proposition 1) is that

1

n

n∑
p=1

T−1∑
`=−T+1

γx,p (`) γu,p (`) 9 Φ

as expected since the first moment of (2.16) does not capture the cross-sectional dependence.

The purpose of the next section is therefore to provide a consistent “cluster”estimator of Φ that

accounts for the presence of cross-sectional dependence.

2.1. Cluster estimator of Φ.
We shall present a simple cluster estimator of Φ using the “frequency”domain methodology.

Obviously, there is a time domain analogue, which we shall briefly describe at the end of the

section. Our cluster estimator appears to be the first one which permits both time and cross-

sectional dependence and gives a formal justification of its statistical properties. Our estimator

therefore becomes an extension of previous cluster estimators in the literature such as that in

Arellano (1987) (where only temporal dependence is present) or Bester, Conley and Hansen

(2011) (where only cross-sectional dependence is present).

Our main motivation to propose a cluster estimator using the frequency domain methodology

comes from the well known observation that for all j 6= k, Ju,p (λj) and Ju,q (λk) can be considered

as being uncorrelated although possibly heteroskedastic. This observation was employed in the

landmark paper by Hannan (1963) on adaptive estimation in a time series regression model.

The fact that we may therefore consider Jx̃,p (λj)Ju,p (−λj) as a sequence of uncorrelated and
heteroskedastic random variables in j, although not in p, suggests that, in a spirit similar to

White’s (1980) estimator, we may estimate Φ by

Φ̆ =
1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Jx̃,p (λj)Jû,p (−λj)

 1

n1/2

n∑
p=1

J ′x̃,p (−λj)Jû,p (λj)

 . (2.17)

Based on the DFT formulation, we denote the estimator of Σx by

Σ̃x =
1

nT

T−1∑
j=1

n∑
p=1

Jx̃,p (λj)J ′x̃,p (−λj) .

The following proposition establishes the consistency of our cluster estimator for the “average”

long-run variance of the sequences {zpt =: uptxpt}t∈Z, p ∈ N+.

Proposition 1. Under the conditions of Theorem 1, we have that

(a) Φ̆− Φ = op (1)

(b) Σ̃x − Σx = op (1) .

Denoting V̂=: Σ̃−1
x Φ̆Σ̃−1

x , we now obtain the following corollary.

Corollary 1. Under the conditions of Theorem 1, we have that

(nT )1/2 V̂
−1/2

(
β̃ − β

)
d→ N (0, I) .

Proof. The proof is standard from Theorem 1 and Proposition 1, and is therefore omitted. �
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We now describe the time domain analogue estimator of Φ. For that purpose, using
∑T

t=1 e
itλ` =

0 if 1 ≤ ` ≤ T − 1, we have after standard algebra that

Φ̆ =
1

n

n∑
p,q=1

T−1∑
|`|=0

γ̂x,pq (`) γ̂u,pq (`) ,

where due to (2.10)

γ̂x,pq (`) =
1

T

T−|`|∑
t=1

x̃ptx̃
′
q,t+`;

γ̂u,pq (`) =
1

T

T−|`|∑
t=1

ûptûq,t+`1 (` > 0) +
1

T

T−|`|∑
t=1

ûqtûp,t+`1 (` < 0) ,

and ûpt = ỹpt − β̃
′
x̃pt, p = 1, ..., n; t = 1, ..., T .

3. BOOTSTRAP SCHEMES

Our motivation to introduce bootstrap schemes emanates from findings in our Monte Carlo

experiment, which suggest that the asymptotic distribution of (nT )1/2V̂−1/2
(
β̃ − β

)
does not

appear to provide a good approximation of its finite sample distribution. In such situations,

the use of the bootstrap has been advocated as it has been shown to improve the finite sample

performance. The general spatio-temporal dependence inherent in our model suggests that a valid

bootstrap mechanism may not to be easy to implement since one of the basic requirements for its

validity is that it has to preserve the covariance structure of the data/model. Drawing analogies

from the time series literature, one might be tempted to use the block bootstrap (BB) principle

as it is not clear how the sieve bootstrap can be implemented under cross-sectional dependence

in the absence of a clear ordering of the data. Applying a BB in both dimensions, however,

would also be sensitive to the particular ordering chosen by the practitioner and be subject to

the absence of weak stationarity, where the dependence structure of say (xp1,t, ..., xp1+m,t)
′ and

(xp1+1,t, ..., xp1+m+1,t)
′ need not be identical.

Avoiding the need to establish a particular ordering of the cross sectional units, Gonçalves

(2011) proposes to apply a moving block bootstrap (MBB) to the vector containing all individual

observations for each t, that is it only applies a BB in the time dimension. The MBB, however,

does require the choice of the block size and is known to be sensitive to its choice in finite samples.

In the absence of temporal dependence, the block size equals one, and the approach is similar to

Hidalgo and Schafgans (2017).

Here we propose valid bootstrap schemes with the interesting feature that they are computa-

tionally simple (there is no need to estimate, either by parametric or nonparametric methods, the

time and/or cross-sectional dependence of the error term) and do not require the choice of any

bandwidth parameter for its implementation, thereby avoiding any level of arbitrariness.

Both bootstrap schemes considered are in the frequency domain. We recall the DFT for generic

sequences {ςpt}Tt=1, p ≥ 1, as Jς,p (λj) = 1
T 1/2

∑T
t=1 ςpte

−itλj , j = 1, ..., T̃ = [T/2], λj = 2πj
T , and

define its periodogram

Iς,p (λj) = |Jς,p (λj)|2 j = 1, ..., T̃ = [T/2], p = 1, ..., n.
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The first scheme, labelled the naïve bootstrap, imposes Condition C4 under which the time

dependence is assumed to be homogeneous across individuals. We relax this assumption in the

second scheme, labelled the wild bootstrap, in line with Conditions C1 and C2.

For homogeneous temporal dependence, therefore, we impose

Condition C4: Homogeneous time dependence: dk(p) and ck(p) defined in Conditions C1

and C2 do not vary over p.

Denoting σ2
u (p) = Eu2

pt and fu,p (λ) the spectral density function of the sequence {upt}t∈Z, for
any p = 1, 2, ..., Condition C4 ensures that

fu,p (λ)

σ2
u (p)

=: gu (λ) , p = 1, 2, 3, .... (3.1)

That is, the spectral density function normalized by the variance does not depend on p. This

enables us to use the average periodogram of standardized residuals in constructing the valid

bootstrap model. What really matters here is that the "correlation" structure is the same.

The naïve bootstrap, involves resampling from the residuals of the model3 and involves the

following simple 3 STEPS:

STEP 1 : Obtain the residuals

ûpt = ỹpt − β̃
′
x̃pt, p = 1, ..., n; t = 1, ..., T,

compute σ̃2
û (p) = T−1

∑T
t=1 û

2
pt, and obtain the standardized residuals

ǔpt = ûpt/σ̃û (p) .

STEP 2 : Denoting Ût = {ûpt}np=1, do standard random sampling from the empirical distri-

bution of the residuals {Ût}Tt=1. That is, we assign probability T
−1 to each n×1 vector Ût.

Denote the bootstrap sample by {U∗t }
T
t=1 , where U

∗
t =

{
u∗pt
}n
p=1

. Compute the bootstrap

analogue of (2.3) as

Jy∗,p (λj) = β̃
′Jx̃,p (λj) +

 1

n

n∑
q=1

Iǔ,q (λj)

1/2

Ju∗,p (λj)

for p = 1, ..., n and j = 1, ..., T − 1.

STEP 3 : Compute the corresponding bootstrap analogue of (2.7) as

β̃
∗

=

 n∑
p=1

T−1∑
j=1

Jx̃,p (λj)J ′x̃,p (−λj)

−1 n∑
p=1

T−1∑
j=1

Jx̃,p (λj)Jỹ∗,p (−λj)

 , (3.2)

with Jỹ∗,p (λj) = Jy∗,p (λj)− 1
n

∑n
q=1 Jy∗,q (λj).

Remark 4. Since ûp = 0 there is no need the recentre in Step 1. The standardization of the

residuals (the variance is not the same for all individuals) is used in Step 2 to impose the appro-

priate dependence structure on our bootstrap regression. As the bootstrap is done on the vector

containing all individual observations for each t there is no need for standardization otherwise.

3See also Remark 6.
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Remark 5. We use the average periodogram of the standardized residuals to impose the appro-

priate dependence structure on our bootstrap regression in Step 2. When the time dependence

is homogeneous among the cross-sectional units 1
n

∑n
q=1 Iǔ,q (λj) = σ−2

u (p)fu,p (λj) (1 + op(1)) =:

gu (λj) (1 + op (1)) , see also (3.1). That is, if the temporal dependence were given by an AR(1)

model, the right side becomes the spectral density function of an AR(1) sequence, where the in-

novation sequence has variance equal to 1. In addition, as we bootstrap from ûpt, which are the

residuals, we ensure that the variance of u∗pt is that of upt.

Remark 6. Alternatively, we could have used random sampling from the normalized DFT of the

residuals as considered by Hidalgo (2003). In that case, denoting Tû (λj) =
{
Jû,p (λj) /|Jû,p (λj) |

}n
p=1
,

Tu∗,p (λj) form independent draws from the empirical distribution of T̃û (λj) = (Tû (λj)− T̄û)/σ̂T

where T̄û = [T/2]−1∑T/2
j=1 Tû (λj) and σ̂2

T = [T/2]−1∑T/2
j=1

(
Tû (λj)− T̄

)2
. The bootstrap analogue

of (2.3) would then be obtained using Jy∗,p (λj) = β̃
′Jx̃,p (λj)+

(
1
n

∑n
q=1 Iǔ,q (λj)

)1/2
σ̃û (p) Tu∗,p (λj).

Our scheme uses Step 2, which has better finite sample properties as observed in Hidalgo (2003).

The key feature of this naïve bootstrap, is that there is no need to choose any bandwidth

parameter for its implementation. Under Condition C4, uniformly in j = 1, ..., T − 1, we have

that

Iǔ,p (λj) = σ̃−2
û (p)

{
Iu,p (λj) +

(
β̃ − β

)2
Ix,p (λj) +

(
β̃ − β

)
Jx,p (λj)Ju,p (−λj)

}
= σ−2

u (p) Iu,p (λj) (1 + op (1)) ,

and

EIu,p (λj) = fu,p (λj) (1 + o (1))

E∗ (Ju∗,p (λj)Ju∗,p (−λ`)) = 0, if j 6= `, σ2
u(p) otherwise

σ̃2
û (p) = σ2

u (p) (1 + op (1)) .

The last displayed expressions suggest that, under Condition C4, we can consider(
1
n

∑n
q=1 Iǔ,q (λj)

)1/2
Ju∗,p (λj) as some type of wild bootstrap in the frequency domain because

under homogeneous time dependence

E∗

∣∣∣∣∣∣∣
 1

n

n∑
q=1

Iǔ,q (λj)

1/2

Ju∗,p (λj)

∣∣∣∣∣∣∣
2

=
(
σ−2
u (p)fu,p (λj)

)
· σ2

u (p) . (1 + op (1))

= fu,p (λj) (1 + op (1)) .

The following theorem is used to establish the validity of our naïve bootstrap scheme.

Theorem 2. (Naïve Bootstrap) Under Conditions C1—C4, we have that in probability,

(nT )1/2
(
β̃
∗ − β̃

)
d∗→ N (0,V) .

With the bootstrap cluster estimator of the asymptotic covariance, given by,

Φ̆∗ =
1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Jx̃,p (λj)Jû∗,p (−λj)

 1

n1/2

n∑
p=1

J ′x̃,p (−λj)Jû∗,p (λj)

 (3.3)

the next proposition establishes the consistency of the bootstrap cluster estimator.
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Proposition 2. (Naïve Bootstrap) Under the assumptions of Theorem 2, we have

Φ̆∗ − Φ̆ = op∗ (1) .

The previous results can be extended to incorporate the more realistic situation where the

temporal dynamics might differ by individual, as allowed by Conditions C1 and C2. This boot-

strap, labelled the wild bootstrap, merges ideas from Hidalgo (2003) and Chan and Ogden (2009).

As the DFT residuals are heterogeneous whilst independent over the Fourier frequencies, it ap-

plies the wild-type bootstrap approach to the increasing dimensional vector {Jû,p (λj)}np=1. It

requires a modification of the above bootstrap, which primarily involves replacing STEP 2. For

completeness we provide all steps:

STEP 1 ′: Obtain the residuals

ûpt = ỹpt − β̃
′
x̃pt, p = 1, ..., n; t = 1, ..., T.

STEP 2 ′: Denote
{
ηj
}T̃
j=1

a sequence of independent identically distributed random vari-

ables with mean zero and unit variance. We then compute the bootstrap analogue of (2.3)

as

Jy∗,p (λj) = β̃
′Jx̃,p (λj) + Jû,p (λj) ηj ,

{
p = 1, ..., n
j = 1, ..., T − 1,

where Jy∗,p (λj) = Jy∗,p (λT−j) and ηj = ηT−j , for j = T̃ + 1, ..., T − 1.

STEP 3 ′: Compute the corresponding bootstrap analogue of (2.7) as

β̃
∗

=

 n∑
p=1

T−1∑
j=1

Jx̃,p (λj)J ′x̃,p (−λj)

−1 n∑
p=1

T−1∑
j=1

Jx̃,p (λj)Jỹ∗,p (−λj)

 ,

with Jỹ∗,p (λj) = Jy∗,p (λj)− 1
n

∑n
q=1 Jy∗,q (λj).

Remark 7. For a discussion regarding the requirement that ηj = ηT−j for j = T̃ + 1, ..., T − 1.,

we refer to Hidalgo (2003).

The validity of the wild bootstrap scheme follows from the following proposition.

Proposition 3. (Wild Bootstrap) Under Conditions C1—C3, in probability,

(nT )1/2
(
β̃
∗ − β̃

)
d∗→ N (0,V)

and Φ̆∗ − Φ̆ = op∗ (1) .

We conclude with the stating the validity of the standardized bootstrap statistic

Corollary 2. Under Conditions C1—C3, we have that in probability,

(nT )1/2 V̂
∗−1/2

(
β̃
∗ − β̃

)
d∗→ N (0, I) ,

where V̂∗ = Σ̃−1
x Φ̆∗Σ̃−1

x .

Proof. The proof is standard after Theorem 2 and Propositions 1, 2 and 3. �
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4. (CONDITIONAL) HETEROSKEDASTICITY

In this section, we extend our model to permit general forms of heteroskedasticity. Specifically,

we begin by considering

ypt = β′x́pt + ηp + αt + vpt, p = 1, ..., n, t = 1, ..., T , (4.1)

where

vpt =: σ1 (wp)σ2 (%t)upt. (4.2)

The error {upt}t∈Z, p ∈ N+satisfies the same regularity conditions given in Condition C1, exhibit-

ing general spatial and temporal dependence. The sequences {wp}p∈N and {%t}t∈Z, which can even
be functions of the fixed effects, are not required to be mutually independent of the regressors

{x́pt}t∈Z, p ∈ N+. Without loss of generality we will normalize σ2
u,p = 1 in Condition C1; σ2

u,p is

not separately identified from σ2
1(wp) and σ2

2 (%t). The error {upt}t∈Z, p ∈ N+ is assumed to be

independent of the regressors {x́pt}t∈Z, p ∈ N+, {wp}p∈N+ and {%t}t∈Z, see also footnote 2. Here
the errors vpt permit conditional heteroskedasticity. This is an extension of the so-called groupwise

heteroskedasticity, where observations belonging to different groups have distinct variances, see

for instance Greene (2018). This type of heteroskedasticity is not uncommon in applications such

as in development economics, where it has been suggested that observations within a villages or

strata would have the same (conditional) variance while differences over villages or strata exist

(Deaton, 1996), that is the variance depends on some specific village variable(s).

Before we modify our Condition C3 to ensure we can permit this generalization, it is useful to

introduce some notation. We shall denote {ẍpt}t∈Z , p ∈ N+, the sequence that applies the usual

transformation to remove the fixed effects, see (2.2), to the sequence {x́pt}t∈Z , p ∈ N+, such that

ẍpt = x́pt −
1

n

n∑
q=1

x́qt −
1

T

T∑
s=1

x́ps +
1

nT

n∑
q=1

T∑
s=1

x́qs.

Observe that as it happens with x̃pt, we can take E (ẍpt) = 0. Our new Condition C3′ is given

next.

Condition C3′: For all p ∈ N+, the sequence {upt}t∈Z is independent of {x́pt}t∈Z , {wp}p∈N
and {%t}t∈Z and

0 < max
1≤p≤n

n∑
q=1

‖ϕ (p, q)‖ <∞, (4.3)

where ϕ (p, q) := ϕu (p, q)ϕẍ (p, q) and

ϕẍ (p, q) = Cov
(
σ1 (wp) ẍpt;σ1 (wq) ẍ

′
qt

)
, for any p, q ≥ 1.

The requirement given in (4.3) limits the combined cross-sectional dependence in vpt and ẍpt
(x́pt) needed to ensure the existence of a consistent estimator of the “average”long-run variance

of the sequences {zpt =: vptẍpt}t∈Z, p ∈ N+ in this framework. This is an obvious extension of our
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previous Condition C3, since our expression for Φ under our generalization becomes

Φ = : lim
n→∞

lim
T→∞

1

nT
E


 n∑
p=1

T∑
t=1

ẍptvpt

 n∑
p=1

T∑
t=1

ẍ′ptvpt


= lim

n→∞
lim
T→∞

1

nT

n∑
p,q=1

T∑
t,s=1

E
(
{σ2 (%t)σ2 (%s)} {σ1 (wp) ẍpt}

{
σ1 (wq) ẍ

′
qs

})
E (uptuqs) .(4.4)

We shall now give some examples. We can allow

(i) x́pt =: xpt + h1 (wp) + h2 (%t) and (ii) x́pt =: h (wp; %t)xpt, (4.5)

for given h1, h2 and h, where xpt satisfies Condition C2. It is clear that under the additive

structure in (i), the transformed variables that account for the fixed effects, recall (2.2), satisfy

˜́xpt =: ẍpt ≡ x̃pt, p = 1, ..., n; t = 1, ..., T ,

which renders this, potentially, the most straightforward setting. In this case we have

Φ = : lim
n→∞

lim
T→∞

1

nT
E


 n∑
p=1

T∑
t=1

ẍptvpt

 n∑
p=1

T∑
t=1

ẍ′ptvpt


= lim

n→∞
lim
T→∞

1

nT
E


 n∑
p=1

T∑
t=1

xptσ1 (wp)σ2 (%t)upt

 n∑
p=1

T∑
t=1

x′ptσ1 (wp)σ2 (%t)upt


= lim

n→∞
lim
T→∞

1

nT

n∑
p,q=1

T∑
t,s=1

E
(
x̋ptx̋′qs

)
E (uptuqs) ,

where x̋pt = xptσ1 (wp)σ2 (%t). The behaviour of the second moments of x̋pt are essentially those

of xpt because

Cov (x̋pt, x̋qs) = E (σ1 (wp)σ1 (wq))E (σ2 (%t)σ2 (%s))Cov (xpt, xqs) .

Remark 8. In the last displayed assumption we have only assumed that

E (xpt | wp, %t) = 0; E (xptxqs | wp, w; %t, %s) = E (xptxqs) =: Cov (xpt, xqs)

so some type of dependence between xpt and (wp, %t) is still allowed.

With the multiplicative structure in (ii), it is basically the same since

Φ = : lim
n→∞

lim
T→∞

1

nT
E


 n∑
p=1

T∑
t=1

ẍptvpt

 n∑
p=1

T∑
t=1

ẍ′ptvpt


= lim

n→∞
lim
T→∞

1

nT
E


 n∑
p=1

T∑
t=1

xpth (wp; %t)σ1 (wp)σ2 (%t)upt

 n∑
p=1

T∑
t=1

x′pth (wp; %t)σ1 (wp)σ2 (%t)upt


= lim

n→∞
lim
T→∞

1

nT

n∑
p,q=1

T∑
t,s=1

E
(
x̋ptx̋′qs

)
E (uptuqs) ,

where now x̋pt = h (wp; %t)σ1 (wp)σ2 (%t)xpt,and |Cov (x̋pt, x̋qs)| ≤ K |Cov (xpt, xqs)| using Markov
inequality. The same caveats mentioned in the last remark apply in this case.
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We now turn to the consistent estimator of the “average” long-run variance of the sequences

{zpt =: vptẍpt}t∈Z, p ∈ N+ in this framework (recognizing that we have established the necessary

regularity conditions for its existence). Following a rescaling of our regressors,

ẋpt =: ẍptσ1 (wp)σ2 (%t) ,

for given σ1 (wp)σ2 (%t) , our estimator for Φ, see also (2.17) , becomes

Φ̆ =
1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

J˜̇x,p (λj)Jû,p (−λj)

 1

n1/2

n∑
p=1

J ′˜̇x,p (−λj)Jû,p (λj)

 , (4.6)

where ûpt := v̂pt/ (σ̂1 (wp) σ̂2(%t)) and ˜̇xpt = σ̂1 (wp) σ̂2(%t)
˜́xpt. Implementation of this estimator

only requires a consistent estimator of σ2
2 (%t) (up to unknown scale of proportionality), and a

natural estimator we can use is

σ̂2
2 (%t) =

1

n

n∑
p=1

v̂2
pt.

The estimator for σ2
1 (wp), σ̂2

1 (wp), indeed cancels out when considering the product J˜̇x,p (λj)Jû,p (−λj),
as

J˜̇x,p (λj)Jû,p (−λj) =
1

T 1/2

T∑
t=1

˜́xptσ̂1 (wp) σ̂2 (%t) e
−itλj

T∑
t=1

v̂pt
σ̂2 (%t) σ̂1 (wp)

e−itλj

=
1

T 1/2

T∑
t=1

˜́xptσ̂2 (%t) e
−itλj

T∑
t=1

v̂pt
σ̂2 (%t)

e−itλj

Moreover, this result shows that when σ2 (%t) is a constant, our results in Section 2 and 3 continue

to hold true. That is, our estimators in previous section are robust to groupwise heteroskedasticity

in the cross-sectional unit, a result supported by our Monte Carlo simulations in Table 4 in the

next section.

The intuition of the validity of this estimator comes from the standard observation that

σ̂2 (%t)

σ2
2 (%t)

P→ 1,

so that

ûpt =
v̂pt

σ̂2 (%t)
' vpt
σ̂2 (%t)

=
vpt

σ2 (%t)
(1 + op (1)) =: σ1 (wp)upt (1 + op (1)) ,

and
v̂pt

σ̂2 (%t)σ1 (wp)
=: upt (1 + op (1))

from the above arguments. Of course the details can be lengthy, but have been considered in

other contexts many times.

Our bootstrap algorithms also require some obvious and minimal change. The only adjustment

to the wild bootstrap algorithm relates to the use of the robust estimator of Φ provided in (4.6).

For the naïve bootstrap, a straightforward modification involves the following steps

STEP 1 ′′: Obtain the residuals

v̂pt = ỹpt − β̃
′˜́xpt, p = 1, ..., n; t = 1, ..., T,
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compute ̂σ2
1(wp)σ2

2(%t) = T−1
∑T

t=1 v̂
2
pt · n−1

∑n
p=1 v̂

2
pt, and obtain the standardized resid-

uals

ûpt = v̂pt/ ̂σ1(wp)σ2(%t)

STEP 2 ′′: Denoting Ût = {ûpt}np=1, do standard random sampling from the empirical dis-

tribution of the residuals {Ût}Tt=1. That is, we assign probability T−1 to each n × 1

vector Ût. Denote the bootstrap sample by {U∗t }
T
t=1 , where U

∗
t =

{
u∗pt
}n
p=1

. Let V ∗t ={
̂σ1(wp)σ2(%t)u

∗
pt

}n
p=1
Compute the bootstrap analogue of (2.3) as

Jy∗,p (λj) = β̃
′J˜́x,p (λj) +

 1

n

n∑
q=1

Iû,q (λj)

1/2

Jv∗,p (λj)

for p = 1, ..., n and j = 1, ..., T − 1.

STEP 3 ′′: Compute the corresponding bootstrap analogue of (2.7) as

β̃
∗

=

 n∑
p=1

T−1∑
j=1

J˜́x,p (λj)J ′˜́x,p (−λj)

−1 n∑
p=1

T−1∑
j=1

J˜́x,p (λj)Jỹ∗,p (−λj)

 ,

with Jỹ∗,p (λj) = Jy∗,p (λj)− 1
n

∑n
q=1 Jy∗,q (λj)

Remark 9. Step 2′′ assumes that the temporal dependence of the n×1 vector {vpt/(σ1(wp)σ2(%t))}np=1

is homogeneous so we can use the average periodogram to impose proper dependence structure on

u∗pt (drawings from the empirical distribution of {v̂pt/( ̂σ1(wp)σ2(%t))}np=1).

We now discuss the scenario where the conditional moment of the error term depends on the

regressors x́pt =: xpt themselves, i.e.,

ypt = β′x́pt + ηp + αt + vpt, with vpt =: σ(x́pt)upt

As mentioned in the introduction, this would require us to estimate the conditional expectation,

σ2 (x́pt) , nonparametrically. Several methods are available such as the Kernel regression method

or sieve estimation. As this approach would require the selection of a bandwidth parameter which

we set out to avoid in this paper, we do not consider this in detail although we outline how

to proceed. Regardless of the approach used, we anticipate that the estimator would be pretty

accurate as the number of observations in large panel data will normally be huge. For instance

in a typical data set, with T = 20 and n = 1000, we can use 20, 000 observations to estimate the

nonparametric function. The estimator for Φ, see also (4.6) , becomes

Φ̆ =
1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

J˜́x,p (λj)Jû,p (−λj)

 1

n1/2

n∑
p=1

J ′x́,p (−λj)Jû,p (λj)

 ,
where ûpt := v̂pt/σ̂ (x́pt) and ˜̇xpt = σ̂ (x́pt) x̃pt. For the associated naïve bootstrap procedure, we

can proceed as above where ̂σ1(wp)σ2(%t) is replaced by σ̂ (x́pt) .
4

4As this setting requires the use of a bandwidth, we may also consider an alternative bootstrap based on the

MBB methodology. For its validity, though, the resampling would need to be done on the residuals and regressors

jointly (a pairs MBB, see also Politis et al. (1997), that is we need to perform the bootstrap on {Zt}Tt=1, where
Zt =

{
(x́′pt, ûpt)

′}n
p=1

.
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5. FINITE SAMPLE BEHAVIOUR

In this section, we discuss the finite sample performance of our cluster-based inference proce-

dure in the presence of cross-sectional and temporal dependence of unknown form. We contrast

this performance with the HAC-based inference procedure proposed by Driscoll and Kraay (1998),

which unlike ours, requires the choice of smoothing parameters that may be arbitrary and erro-

neous. We also provide evidence of the potential finite sample improvements of our frequency

domain bootstrap schemes and implement the MBB time domain bootstrap to the vector con-

taining all individual observations for each t. Our frequency domain approaches have the benefit

that they do not rely on the choice of any smoothing parameter or require an ordering of cross-

sectional units, which, as we argued before, may be arbitrary and erroneous. Another benefit of

our estimator we address in our simulations is the fact that our estimator permits heterogeneity

in the temporal dependence. In our simulations, we also consider a multiplicative error structure

that permits groupwise heteroskedasticity and we reveal the robustness of our estimator to this

setting.

In our Monte Carlo experiments, we first consider the following data generating process

ypt = αt + ηp + βxpt + upt for p = 1, ..., n and t = 1, .., T.

The time fixed effects αt and individual fixed effects ηp are drawn independently (αt ∼ IIDN(1, 1)

and ηp ∼ IIDN(1, 1)) and are held fixed across replications and without loss of generality β is set

equal to zero. The independently drawn errors and regressors are postulated to exhibit a variety

of scenarios for the temporal and cross-sectional dependence that are assumed to be the same for

simplicity.

To evaluate the performance of our proposed cluster estimator, we analyze the empirical size

and power for testing the significance of our parameter, H0 : β = 0 against HA : β 6= 0, at the

nominal 5% level for various pairs of n and T using 5,000 simulations. In addition to presenting

the rejection rates based on the asymptotic distribution of the Wald statistic nT β̂
′
FEV̂

−1β̂FE ,

with V̂ =: Σ̃−1
x Φ̆Σ̃−1

x where Φ̆ is defined in (2.17) (or equivalently the asymptotic t-test as β is

scalar), we present rejection rates based on the empirical distribution of the bootstrapped test

statistic

nT
(
β̂
∗
FE − β̂FE

)′ [
V̂ ∗
]−1 (

β̂
∗
FE − β̂FE

)
,

where β̂
∗
FE and V̂

∗ are the bootstrapped estimators of β and V defined in Section 3. As inference
based on the asymptotic distribution might not provide a good approximation to the finite sample

one, this allows us to assess the finite sample improvements our bootstrap schemes may yield.

We compare the finite sample performance of our cluster-based inference procedure to the

HAC based inference procedure and select the bandwidth parameter, denoted mT , using the

parametric AR(1) plug-in method suggested in Andrews (1991) .5 This lag window is designed to

minimize (approximately) the mean square of the standard error.6 For the HAC based inference

we provide rejection rates of the Wald statistic nT β̂
′
FEV̂

−1
mT
β̂FE based on the asymptotic critical

5mT is chosen to be upward rounded integers.
6Kiefer and Vogelsang (2002) discuss the use of HAC estimators with bandwidth equal to the sample size (b = 1).

This bandwidth free approach does come at the cost of power relative to Andrews’popular data driven optimal

bandwidth selection, see also Vogelsang (2012).
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values (asy) and the critical values based on the fixed-b asymptotics (fixb) of Kiefer and Vogelsang

(2005) as this is shown to lead to more reliable inference, see also Vogelsang (2012). With

V̂mT =: Σ̃−1
x Φ̂mT Σ̃−1

x , Φ̂mT is defined as

Φ̂mT =
1

nT

n∑
p=1

n∑
q=1

T∑
t=1

T∑
s=1

K

(
|t− s|
mT

)
ẑptẑ

′
qs,

where ẑpt = x̃ptûpt and K(h) = (1− |h|)1 (|h| ≤ 1) is the Bartlett kernel. The fixed-b asymptotic

distribution is non-standard and our critical values are obtained by simulation.7

We also provide critical values for HAC based inference that rely on the pairs moving block

bootstrap proposed by Gonçalves (2011) . She obtained bootstrapped samples z∗it = (y∗it, x
∗′
it)
′

by arranging k resampled blocks of ` observations from the set of T − ` + 1 overlapping blocks

{B1,`, .., BT−`+1,`} with Bt,` = {zt,n, zt+1,n, .., zt+`−1,n} and zt,n = (z1t, .., znt)
′ in sequence (for

notational simplicity T = k`). When ` = 1 this corresponds to the standard iid bootstrap on

{zt,n}Tt=1. The MMB based critical value are based on the standardized test statistic T
(
β̂
∗
FE − β̂FE

)′[
V̂ ∗`

]−1 (
β̂
∗
FE − β̂FE

)
. Here V̂ ∗` =

(
Σ̃∗x

)−1
Φ̆∗`

(
Σ̃∗x

)−1
, Σ̃∗x = 1

nT

∑n
p=1

∑T
t=1 x̃

∗
ptx̃
∗
pt and

Φ̆∗` =
1

k

∑k
j=1

(
`−1/2∑`

t=1 n
−1ŝ∗n,(j−1)`+t

)(
`−1/2∑`

t=1 n
−1ŝ∗n,(j−1)`+t

)′
,

where ŝ∗nt =
∑n

p=1 x̃
∗
pt

(
ỹ∗pt − x̃∗′ptβ̂

∗
FE

)
with ỹ∗pt = y∗pt−y∗p·−y∗·t+y

∗
·· and x̃

∗
pt = x∗pt−x∗p·−x∗·t+x

∗
·· (see

also Götze and Künsch, 1996). The block size used is given by the integer part of the automatic

bandwidth chosen by the Andrews (1991) as proposed by Gonçalves (2011) .

5.1. Simulations with Homogeneous Time Dependence. In the first set of simulations, we
assume that the time dependence is homogeneous among individuals p = 1, .., n. In particular,

we assume that the error and regressors are mutually independent, homoskedastic, first order

autoregressive random variables with ρ = 0.7 or ρ = 0.9. The error term, therefore, takes the form

upt = ρup,t−1 +
√

1− ρ2ηpt, with ρ = 0.7, 0.9

where ηpt characterizes the spatial dependence inherent in the error.
8 We consider both a weak

and a strong cross-sectional dependence scenario for upt (ηpt). To describe the cross-sectional

dependence, we follow Lee and Robinson (2013) and draw random locations for individual units

along a line, denoted s = (s1, ...sn)′ with sp ∼ IIDU [0, n] for p = 1, .., n. Using the linear

time dependence representation, ηpt = σp (
∑∞

`=1 c` (p) e`t) with e`t ∼ IIDN(0, 1), we set c`(p) =

(1+|s`−sp|+)−10 to permit weak dependence; σp is such that V ar(ηpt) = 1. For the strong spatial

dependence setting, we use c`(p) = (1 + |s` − sp|+)−0.7 instead, see also Hidalgo and Schafgans

(2017). The same discussion holds for the independently drawn, strictly exogenous regressor xpt,

7Let Wq(r) denote a q dimensional vector of independent standard Wiener processes and define W̃q(r) =

Wq (r) − rWq (1) . The limiting distribution of the t-test is W1(1)/
√
C1 with Cq = 2

b

∫ 1
0
W̃q(r)W̃q(r)

′dr

− 1
b

∫ 1−b
0

[
W̃q(r + b)W̃q(r)

′ + W̃q(r)W̃q(r + b)′
]
dr given the use of the Bartlet kernel, where b ∈ (0, 1] with mT = bT

(see Theorem 4, Vogelsang, 2012); the limiting distribution of the Wald test is Wq(1)′C−1q Wq(1). We obtain the

critical values using 500,000 simulations.
8We generated the spatial data with 49 + T periods and take the last T periods as our sample using 0 as the

starting value.
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where, to allow for some time heterogeneity, we may, without loss of generality add µt, which is

independently drawn (µt ∼ IIDN(1, 1)) .

In Table 1, we report the empirical size for testing the significance of β at the 5% level of

significance based on our cluster estimator of the variance of β̃ in the columns labelled HS

(Cluster). In addition to presenting the rejection rates based on the asymptotic critical values

(asy), we report the empirical size based on the naïve bootstrap (nb), and the wild bootstrap

(nb). The empirical size based on the HAC based inference procedure proposed by Driscoll and

Kraay (1998) are reported in the columns labelled DK (HAC). For the HAC based inference, we

provide rejection rates based on the asymptotic critical values (asy), the critical values based on

the fixed-b asymptotics (fixb) of Kiefer and Vogelsang (2005), and Gonçalves’(2011) MBB (mbb).

We used the parametric AR(1) plug-in method suggested by Andrews (1991) to determine the

window lag mT and the block length `.

Insert Table 1 around here

The results from Table 1 reveal that our cluster based inference performs remarkably well even

in the presence of strong cross sectional dependence for moderately large panels. As before, the

rejection rates based on the asymptotic critical values tend to be closer to the nominal rejection

rates as n and T increase. The finite sample performance using these asymptotic critical values

does suffer, in particular, from T being small, more so when the temporal dependence is stronger.

This suggests that the cluster variance’s finite sample performance, in particular, appears to

require larger T , in order for us to be able to rely on the asymptotic critical value. Nevertheless,

finite sample improvements in inference can be made using either frequency domain bootstrap

schemes as rejection rates based on them are typically closer to the nominal rejection rates, with

the differences typically smaller as sample sizes increase. Given that we assume the temporal

dynamics to be the same for all individuals in this simulation, both bootstrap schemes are valid.

The naïve bootstrap approach tends to perform better in the sense of providing a size closer to

the nominal rejection rate.

Our cluster based inference, using the naïve bootstrap for small panels, suggests large im-

provements in size relative to HAC based inference. While the use of fixed-b asymptotic critical

values for HAC based inference does indeed improve its performance, in accordance with Vogel-

sang, (2012), the gains in improvement in size achieved by our cluster based estimator remain

significant and are larger when the temporal or spatial dependence is stronger. Our cluster based

inference, however, does not necessarily perform superior to the HAC based inference that use

the critical values based on Gonçalves’pairwise MBB. Her approach indeed performs very well

in this setting where the temporal dependence is homogeneous across individuals. As we will see

in Table 3 relaxing this assumption, which is more realistic, does reveal a marked improvement

of our cluster based performance over HAC based inference using the MBB. But even in the

homogeneus setting, it should be noted that the MBB approach is sensitive to the chosen block

size, and its selection here was appropriate given the imposed AR(1) temporal dependence (which

is unknown in practical applications). Contrary to the MBB we do not need to choose a block

size.
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In Table 2, we present the empirical power of our test for the significance of the slope when

β = 0.1 for a selection of (n, T ) pairs and compare the performance of our cluster-based inference

procedure to the HAC based inference procedure proposed by Driscoll and Kraay as before.

Insert Table 2 around here

The results from Table 2 show that our cluster based inference has good power to reject H0 :

β = 0 when β = 0.1 in both time dependence scenarios, even for small panels, in particular when

the spatial dependence is not strong. For the reported sample sizes, the cluster based inference

using the naïve bootstrap only showed limited size distortions. As expected its power approaches

one as the sample size, and therefore the precision of our estimator, increases. This improved

power performance comes about faster when the cross sectional and/or temporal dependence is

lower and improved power performance appears stronger with increases in T relative to n. The

power for our cluster based inference, using the naïve bootstrap, compares well with that of

power of HAC based inference. Where the size-distortions for HAC based inference are smallest,

any apparent power loss of cluster based inference disappears. Both cluster based inference and

HAC based inference have a comparable loss of power when both the spatial and the temporal

dependence are large.

5.2. Simulations with Heterogeneous Time Dependence. In our second set of simulations,
we allow individual heterogeneity in the time dependence of the error and the strictly exogenous

regressor. The error term upt is generated using various heterogeneous ARMA processes

(1− ρ1,pL)(1 + ρ2L+ ρ3L
2)upt = (1 + θ1,pL+ θ2L

2 + θ3L
3)ηpt,

with L denoting the lag operator, such that, e.g., Lupt = up,t−1, ρ1,p and θ1,p are individual

specific AR and MA coeffi cients, and (ρ2, ρ3) and (θ2, θ3) are additional non-varying higher order

AR and MA coeffi cients. As before ηpt characterizes the spatial dependence. A similar description

holds for the independently drawn, strictly exogenous regressor, xit, which is assumed to have the

same spatial temporal dependence as the error for simplicity. We allow the variance of upt to vary

across individuals p = 1, ..., n.

We consider four heterogeneous specifications: Mixed AR(1), Mixed AR(1)/MA(1), Mixed

AR(3), and Mixed AR(3)/MA(3). The individual specific parameters ρ1,p and θ1,p, where non-

zero, reflect equidistant points on [0.5, 0.9]. The full details of these heterogeneous specifications

are provided at the bottom of Table 3.

Insert Table 3 around here

In Table 3, we report the empirical size for testing the significance of β in the presence of

heterogeneous time dependence for panels where n = 100 and T = 64, 128, and 256. As before,

we consider both weak and strong spatial dependence scenarios. For HAC based inference we

used the parametric AR(1) plug-in method suggested by Andrews (1991) again, to determine

the window lag mT and the block length `. A common approach, which neither recognizes the

temporal heterogeneity nor the higher order (autoregressive) nature of the temporal dependence

under consideration.
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The results in Table 3 show that our cluster estimator of the variance is robust to the presence

of individual specific time dependence. The rejection rates based on the asymptotic critical values

in the heterogeneous AR(1) time dependence setting, with
{
ρ1,p

}n
p=1

in the range [0.5, 0.9], are

comparable to the rejection rates in the homogeneous AR(1) setting with ρ = 0.7.9 As in the

homogeneous time dependence setting, the rejection rates based on the asymptotic critical values

approach the nominal rejection rate of 5% as the sample size increases. The rejection rates based

on both frequency-based bootstrap schemes show that finite sample improvements in inference

can be made. The improvements achieved when applying the wild bootstrap, proven to be valid in

the heterogeneous time dependence scenario, are more modest than those suggested by the naïve

bootstrap, which assumes homogeneous time dependence. Our cluster based inference reveals a

similar pattern when we permit higher order heterogeneous autoregressive/moving average tem-

poral dependence with the naïve bootstrap performing remarkably well again, suggesting that the

naïve bootstrap may be robust to violations of the homogeneous time dependence such as those

considered in these simulations. Whereas the wild bootstrap does perform less well then expected,

in particular in the presence of strong spatial dependence, the discrepancy between the rejection

rates based on the two bootstrap schemes does appear to be smaller than in the homogeneous

time dependence scenario.

Importantly, our cluster based inference suggests large improvements over HAC based inference

in these heterogeneous time dependence settings, whether we use the asymptotic, the fixed-b

asymptotic critical values or base its rejection rates on the MBB. The inferior HAC based inference

may be explained by the inappropriate use of a single smoothing parameter in these heterogeneous

settings, as is common practice, in addition to the fact that the parametric AR(1) plug-in method

does not account for other, and possible higher order (autoregressive) processes, than AR(1). Our

cluster based inference benefits from not requiring the choice of any smoothing parameter, and

is therefore not subject to this deterioration in size. Aside from the ease of implementation, the

robustness of our approach to the presence of individual specific time dependence is a particularly

attractive feature of our cluster robust inference.

5.3. Simulations with (Conditional) Heteroskedasticity. Finally, we consider simulations
that make use of our "modified" cluster based inference that permits general forms of heteroskedas-

ticity. Here the data generating process is given by

ypt = αt + ηp + βx́pt + σ1 (wp)σ2(%t)upt for p = 1, ..., n and t = 1, .., T.

We consider both an additive and multiplicative specification for x́pt, in particular

x́pt = xpt + wp + %t and x́pt = xpt (wp%t)
2 .

Here upt and xpt are drawn independently with weak temporal and weak cross-sectional depen-

dence; wp and %t are additional regressors where wp exhibits strong spatial dependence and %t
follows an AR(1) with coeffi cient equal to 0.7. Without loss of generality β = 0 again. Due to the

presence of the multiplicative error σ1 (wp)σ2 (%t)upt := vt, this setting does permit (conditional)

9Associated simulations considering the power to reject H0 : β = 0 when β = 0.1 in the presence of heterogenous

temporal dependence show comparable results as in the homogenous time dependence setting, see also Hidalgo and

Schafgans (2018).
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heteroskedasticity with V ar (vpt|xpt, wp) = σ2
1 (wp)σ

2
2 (%t) after a normalization of the variance of

upt to one, for simplicity. In particular, we consider

σ1 (wp)σ2 (%t) = σ · [exp(δ1wp) + 1] [exp(δ2%t) + 1] with δ1 = 0.5, 2.0 and δ2 = 0, 0.2, 0.5.

The severity of heteroskedasticity, which we can measure using the coeffi cient of variation of

σ2
1 (wp)σ

2
2 (%t) , increases with the values of δ1 and δ2. The coeffi cient of variation is defined as the

ratio of the standard deviation of σ2
1 (wp)σ

2
2 (%t) to its mean. The average coeffi cient of variation of

σ2
1 (wp)σ

2
2 (%t) over our simulations with δ2 = 0.5 ranges from 42% (δ1 = 0.5) to 260% (δ1 = 2.0).

The constant σ in chosen in such a way that the expected variability of σ2
1 (wp)σ

2
2 (%t) , equals

one for comparability across simulations.

In Table 4, we report the empirical size for testing the significance of β in the presence of

(conditional) heteroskedasticity. The average coeffi cient of variation for each specification across

the simulations is given in the first column. We provide two sets of simulations for our cluster based

inference: first we apply the original cluster based inference, which is robust to the presence of

heteroskedasticity that is only cross-sectional in nature, followed by the heteroskedasticity robust

cluster based inference. In the top panel, we report the results based on the additive specification

of the regressor. The multiplicative specification of the regressors is in the bottom panel. As

before, we will compare the empirical size of our (robust) cluster based inference with the HAC

based inference, in particular those using the MMB based critical values. As we impose an AR(1)

temporal dependence, we have ensured that the use of the parametric AR(1) plug-in method

suggested by Andrews (1991) to determine the window lag mT and the block length ` required

for this approach is suitable.

Insert Table 4 around here

The results in Table 4 show that under the additive formulation of the regressor, the perfor-

mance of the cluster based inference and robust cluster based inference (which accounts for a

non-constant σ2 (ρt)), is quite similar. The robust cluster based inference is required for our first

three formulations, where σ(wp, %t) = σ1(wp)σ2(%t), whereas the final formulation permits the

original cluster based inference. Compared to the results in Table 1 (case with weak spatial and

temporal dependence), the rejection rates in the presence of (conditional) heteroskedasticity are

only slightly larger (in part explained by the need to use estimates for σ2 (ρt)). Since ˜́xpt = x̃pt

under the additive formulation of the regressor, a comparison with the results in Table 1 is more

straightforward here than under the multiplicative formulation. Rejection rates that rely on the

naïve bootstrap compare favourably with those of the HAC based inference that uses the MBB

and there does not appear a serious deterioration in the performance of the (robust) cluster based

inference when the severity of heteroskedasticity increases, either via δ1 or δ2, in this setting.

Under the multiplicative formulation of the regressor, the performance of the robust cluster

based inference is clearly superior in our first three specifications where robust cluster based

inference is required. The cluster based inference that does not account for (conditional) het-

eroskedasticity that is not purely cross-sectional in nature (i.e., in the presence of non-constant

σ2 (ρt)), deteriorates quite quickly with δ2 (parameter reflecting the severity of temporal het-

eroskedasticity). The rejection rates that use the robust estimator of the long-run variance, 4.6,
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are much closer to the nominal 5% rejection rates, whether we use the asymptotic critical values

or the bootstrap algorithms. In fact, rejection rates that rely on the naïve bootstrap compare

again quite well with the HAC based inference that uses the MBB, which reveals the robustness

of our estimator to this type of (conditional) heteroskedasticity.10 This is a welcome result, given

that our estimator is simple to apply and does not require the choice of any smoothing parameter.

6. CONCLUSIONS

In this paper we extend the literature on inference in panel data models in the presence of

both temporal and cross-sectional dependence of unknown form. While a standard methodology,

based on the HAC estimator, is often invoked and used in the context of time series regression

models, in the presence of cross-sectional dependence its implementation has only recently been

considered, see Kim and Sun (2013), Driscoll and Kraay (1998) or Vogelsang (2012). To deal with

various potential caveats of the HAC estimator, we propose a cluster based estimator which is

able to take into account both types of dependence and allows the temporal dependence to be

heterogeneous across individuals, extending the work of Arellano (1987) and Driscoll and Kraay

(1998) in a substantial way. We provide a new CLT that accounts for an unknown and general

temporal spatial dependence structure that permits strong spatial dependence. We thereby pro-

vide primitive conditions that guarantee Kim and Sun’s (2013) , Driscoll and Kraay’s (1998) and

Gonçalves’(2011) assumption of the existence of a suitable CLT.

Our approach is based on the insightful observation that the spectral representation of the fixed

effect panel data model is such that the errors become approximately temporally uncorrelated and

heteroskedastic allowing the use of a cluster estimator of the long run variance in the frequency

domain. As the cluster estimator may not be reliable in small samples, and therefore may not

provide a good approximation to make accurate inferences, we present and examine bootstrap

schemes in the frequency domain that are also bandwidth parameter free.

Our simulation results reveal that our cluster estimator performs quite well even in the presence

of strong spatial dependence. For large panels, inference based on our cluster estimator is properly

sized even in the presence of heterogeneous time dependence unlike Driscoll and Kraay’s HAC

based inference of cross sectional averages that ignores such heterogeneity. Our bootstrap schemes

provide small sample improvements, where inference that uses the naïve bootstrap, in particular,

is well sized, and reveal large improvement in size relative to HAC based inference when fixed-b

asymptotic critical values are used. Improvements over MBB based inference are more limited,

except in the presence of heterogeneous time dependence. We have shown the robustness of our

cluster based inference to the presence of “groupwise”heteroskedasticity. To enable us to adapt

to the presence of “groupwise” heteroskedasticity that is not purely cross-sectional in nature,

a simple robust cluster based inference procedure was proposed that also does not require the

selection of any smoothing parameter.

10While more general forms of heteroskedasticity could have been considered, this would have required non-

parametric estimates for σ(x́pt) and bandwidth selection (see also footnote 4) and was not attempted here. For

moderately large sized panels, there is no reason to expect the MBB to outperform our proposal.
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Appendix A: PROOF OF MAIN RESULTS

We first introduce some notation. For a generic function h, we shall abbreviate h (λj) by h (j)

and for generic sequences
{
ψpt
}T
t=1
, p = 1, ..., n,

Jψ,· (j) =
1

T 1/2

T∑
t=1

 1

n

n∑
q=1

ψqt

 e−itλj .

Using expression (10.3.12) of Brockwell and Davis (1991), we also have the useful relation

Ju,p (j) = Bu,p (−j)Jξ,p (j) + Yu,p (j) (A.1)

Jx,p (j) = Bx,p (−j)Jχ,p (j) + Yx,p (j) , p = 1, ..., n,

where Bu,p (j) =: Bu,p
(
eiλj

)
, Bx,p (j) =: Bx,p

(
eiλj

)
and

Yu,p (j) =

∞∑
`=0

d` (p) e−i`λj

(
1

T 1/2

{
T−∑̀
t=1−`

−
T∑
t=1

}
ξpte

−itλj

)
(A.2)

Yx,p (j) =

∞∑
`=0

c` (p) e−i`λj

(
1

T 1/2

{
T−∑̀
t=1−`

−
T∑
t=1

}
χpte

−itλj

)
.

Finally, we shall make use of the well know result

EJχ,p (j)Jχ,q (−k) = ϕx (p, q)1 (j = k) (A.3)

EJξ,p (j)Jξ,q (−k) = ϕu (p, q)1 (j = k) .

6.1. PROOF OF THEOREM 1.
For completeness, we provide the proof using the time domain estimator, β̂, and the frequency

domain estimator, β̃.
We begin with β̂. Without loss of generality assume that xpt is scalar. Using (2.2) and standard

arguments, we obtain

T∑
t=1

n∑
p=1

x̃ptũpt =

T∑
t=1

n∑
p=1

xptupt −
T∑
t=1

n∑
p=1

(x·t + xp· − x··)upt

−
T∑
t=1

n∑
p=1

(u·t + up· − u··)xpt + op

(
(nT )1/2

)
. (A.4)

Because the second and third terms on the right of (A.4) are handled similarly, we shall only look

at the second. Now

E

 T∑
t=1

n∑
p=1

x·tupt

2

=

T∑
t,s=1

n∑
p,q=1

E (x·tx·s) γu,pq (t− s)ϕu (p, q)

=
1

n2

n∑
p2,q2,p1,q1=1

ϕx (p2, q2)ϕu (p1, q1)

T∑
t,s=1

γx,p2q2 (t− s) γu,p1q1 (t− s)

≤ C
T

n2

 n∑
p2,q2=1

|ϕx (p2, q2)|

 n∑
p1,q1=1

|ϕu (p1, q1)|


= o (nT ) .
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The latter displayed expression holds true because Conditions C1 and C2 imply that

T∑
t,s=1

sup
p,q

∣∣γx,pq (t− s)
∣∣+ sup

p,q

∣∣γu,pq (t− s)
∣∣ < C, (A.5)

whereas Condition C3, see also Remark 2, implies that11

n∑
q=1

ϕu (p, q)
n∑
q=1

ϕx (p, q) = o (n) (A.6)

so that
n∑

p1,p2=1

ϕu (p1, p2)
n∑

q1,q2=1

ϕx (q1, q2) = o
(
n3
)
. (A.7)

Proceeding similarly with
∑T

t=1

∑n
p=1 xp·upt and x··

∑T
t=1

∑n
p=1 upt, we can conclude using (A.4)

that

1

(nT )1/2

T∑
t=1

n∑
p=1

x̃ptũpt =
1

(nT )1/2

T∑
t=1

n∑
p=1

xptupt + op (1)
d→ N (0,Φ)

by Lemma B.8. From here it is standard to conclude that (nT )1/2
(
β̂ − β

)
→d N

(
0,Σ−1ΦΣ−1

)
.

We now show that (nT )1/2
(
β̃ − β

)
→d N

(
0,Σ−1ΦΣ−1

)
. Proceeding similarly as we did above,

we shall examine

1

(nT )1/2

n∑
p=1

T−1∑
j=1

Jx,p (j)Ju,p (−j)− 1

(nT )1/2

n∑
p=1

T−1∑
j=1

Jx,p (j)Ju,· (−j) (A.8)

− 1

(nT )1/2

n∑
p=1

T−1∑
j=1

Jx,p (j)Ju,· (−j) .

The first term of (A.8) converges in distribution to N (0,Φ) by Lemma B.9. So, to complete the

proof it suffi ces to show that the last two terms of (A.8) are op (1). We examine the second term

only, with the third term being handled similarly. By standard algebra and (A.1), this term is

1

n3/2

n∑
p,q=1

1

T 1/2

T−1∑
j=1

Bx,p (j)Bu,q (j)Jχ,p (j)Jξ,q (−j)

+
1

n3/2

n∑
p,q=1

1

T 1/2

T−1∑
j=1

Bx,p (j)Jχ,p (j) {Ju,q (−j)− Bu,q (j)Jξ,q (−j)}

+
1

n3/2

n∑
p,q=1

1

T 1/2

T−1∑
j=1

Bu,p (j)Jξ,q (−j) {Jx,q (−j)− Bx,q (j)Jχ,p (j)} (A.9)

+
1

n3/2

n∑
p,q=1

1

T 1/2

T−1∑
j=1

(Jx,q (−j)− Bx,q (j)Jχ,p (j))× (Ju,q (−j)− Bu,q (j)Jξ,q (−j)) .

11For two nonnegative sequences {αp} and
{
βp
}
,
∑
αpβp < C implies that

∑
αp
∑
βp = o (n) if

∑(
αp + βp

)
=

o (n).
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We examine the second term of (A.9) first. Using (A.3), we have that its second moment is

bounded by

1

Tn3

n∑
p1,p2,q1,q2=1

ϕu (q1, q2)ϕx (p1, p2)
1

T

T−1∑
j=1

sup
p1,p2
|fx,p1p2 (j)|

=
1

Tn3

n∑
q1,q2=1

ϕu (q1, q2)
n∑

p1,p2=1

ϕx (p1, p2)

= o
(
T−1

)
,

by Lemma B.1 and (A.7). Likewise the third and fourth terms of (A.9) are op
(
T−1/2

)
. So to

complete the proof we need to examine the first term of (A.9), whose second moment is, by (A.7)

and using
(
supp,q |fx,pq (j)|+ supp,q |fu,pq (j)|

)
≤ C, bounded by

1

Tn3

T−1∑
j=1

sup
p,q
|fx,pq (j)| |fu,pq (j)|

n∑
p1,p2=1

ϕx (p1, p2)
n∑

q1,q2=1

ϕu (q1, q2) = o (1) .

This concludes the proof of the theorem. �

6.2. PROOF OF PROPOSITION 1.
We begin with part (a). We need to show that, for any k1, k2 = 1, ..., k,

Φ̆k1,k2 =
1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Jx̃,p,k1 (j)Jû,p (−j)

 1

n1/2

n∑
p=1

Jx̃,p,k2 (−j)Jû,p (j)


P→ Φk1,k2 .

To simplify the notation we shall assume that k = 1. Now, after observing that

Jû,p (j) = Jũ,p (j)−
(
β̃ − β

)
Jx̃,p (j) ,

we have that Φ̆ =: Φ̆1,1 is

1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Jx̃,p (j)Ju,p (−j)

 1

n1/2

n∑
p=1

Jx̃,p (−j)Ju,p (j)


+2
(
β̃ − β

) 1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Ix̃,p (j)

 1

n1/2

n∑
p=1

Jx̃,p (−j)Ju,p (j)


+
(
β̃ − β

)2 1

T

T−1∑
j=1

 1

n1/2

n∑
p=1

Ix̃,p (j)

2

. (A.10)

The third term of (A.10) is Op
(
T−1

)
by Lemma B.7 and β̃ − β = Op

(
(nT )−1/2

)
. The second

term of (A.10) is also op (1) by Cauchy-Schwarz inequality if we show that the first term converges

in probability to Φ. Since

Jx̃,p (j) = Jx,p (j)− Jx,· (j) , (A.11)

this result holds true if we show that

1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Jx,p (j)Ju,p (−j)

 1

n1/2

n∑
p=1

Jx,p (−j)Ju,p (j)

 P→ Φ (A.12)



30 JAVIER HIDALGO AND MARCIA SCHAFGANS

and

1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Jx,· (j)Ju,p (−j)

 1

n1/2

n∑
p=1

Jx,p (−j)Ju,p (j)


+

1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Jx,· (j)Ju,p (−j)

 1

n1/2

n∑
p=1

Jx,· (−j)Ju,p (j)


= op (1) . (A.13)

First we examine (A.13). We begin with the first term on the left of (A.13), whose first moment

is

1

T

T−1∑
j=1

n∑
p=1

E (Jx,· (j)Jx,p (−j))E (Ju,p (−j)Ju,p (j))

=
C

Tn2

T−1∑
j=1

n∑
p=1

n∑
r=1

ϕx (p, r)

n∑
q=1

ϕu (p, q)

{
1 +

C

T

}
.

using Lemma B.1, after we observe that the factor in brackets is n1/2Jx,· (j)Ju,· (−j). Using
(A.6) , we conclude that the last displayed expression is o (1). Next, we observe that Lemma B.5

implies, for instance, that

E (Ju,· (−j)Ju,p (j)Ju,· (−k)Ju,q (k))− E2 (Ju,· (−j)Ju,p (j))

= ϕu (p, q)
1

n2

n∑
p1,q1=1

ϕu (p1, q1)

{
1 (j = k) +

C

T

}
.

The variance of the first term on the left of (A.13) , therefore, is bounded by

1

T 2

T−1∑
j,k=1

n∑
p,q=1

ϕ (p, q)
1

n4

n∑
p1,q1=1

ϕu (p1, q1)
n∑

p2,q2=1

ϕx (p2, q2)

{
1 (j = k) +

C

T

}
= o

(
1

T

)
using Condition C3 and (A.7). Hence the first term on the left of (A.13) is op (1). The same

conclusion holds true for the second term of (A.13).

To complete the proof of part (a), it remains to show (A.12). Using (A.1), we have that (A.12)

holds true if the following expressions (A.14)− (A.16) are op (1);

1

nT

T−1∑
j=1


 n∑
p=1

Bx,p (−j)Bu,p (j)Jχ,p (j)Jξ,p (−j)


 n∑
p=1

Bx,p (−j)Bu,p (j)Jχ,p (j)Jξ,p (−j)

− Φ, (A.14)

1

nT

T−1∑
j=1

 n∑
p=1

Bx,p (−j)Jχ,p (j) Yu,p (−j)

 n∑
p=1

Bu,p (j)Jξ,p (−j) Yx,p (j)

 , (A.15)

1

nT

T−1∑
j=1

 n∑
p=1

Yx,p (j) Yu,p (−j)

 n∑
p=1

Yu,p (−j) Yx,p (j)

 (A.16)
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We begin by showing that (A.14) is op (1). First, the expectation of (A.14) is

1

n

n∑
p,q=1

ϕ (p, q)
1

T

T−1∑
j=1

Bx,p (−j)Bx,q (j)Bu,p (j)Bu,q (−j)− Φ = O
(
T−1

)
because, by continuous differentiability of fx,pq (−λ) fu,pq (λ), we have that

1

T

T−1∑
j=1

Bx,p (−j)Bx,q (j)Bu,p (j)Bu,q (−j)−
∫ 2π

0
fx,pq (−λ) fu,pq (λ) dλ = O

(
T−1

)
.

Next, because (A.3) implies that

E {(Jχ,p1 (j)Jξ,p1 (−j)Jχ,q1 (−j)Jξ,q1 (j)− E (·))

(Jχ,p2 (−k)Jξ,p2 (k)Jχ,q2 (k)Jξ,q2 (−k)− E (·))}

= ϕx (p1, p2)ϕx (q1, q2)ϕu (q1, p2)ϕu (p1, q2)1 (j = k)

+ϕx (p1, p2)ϕx (q1, q2)ϕu (p1, p2)ϕu (q1, q2)1 (j = k)

+2ϕx (p1, p2)ϕx (q1, q2)

∞∑
`=1

c` (p1) c` (p2) c` (q1) c` (q2)1 (j = k)

+
∞∑
`=1

c` (p1) c` (p2) c` (q1) c` (q2)
∞∑
`=1

d` (p1) d` (p2) d` (q1) d` (q2)
(
1 (j = k) +

κ4,ξκ4,χ

T

)
,

standard algebra yields that the second moment of (A.14) is o (1), when recognizing

∞∑
`=1

d` (p1) d` (p2) d` (q1) d` (q2) ≤
∞∑
`=1

d` (p1) d` (p2)
∞∑
`=1

d` (q1) d` (q2)

= ϕu (p1, p2)ϕu (q1, q2) (A.17)

∞∑
`=1

c` (p1) c` (p2) c` (q1) c` (q2) ≤
∞∑
`=1

c` (p1) c` (p2)
∞∑
`=1

c` (q1) c` (q2)

= ϕx (p1, p2)ϕx (q1, q2) (A.18)

and

n∑
p1=1

ϕx (p1, p2)ϕu (p1, q2) ≤

 n∑
p1=1

ϕ1/α
x (p1, p2)

α n∑
p1=1

ϕ1/1−α
u (p1, q2)

1−α

= O (1) (A.19)

since
∑n

p1=1 ϕx (p1, p2)ϕu (p1, p2) = O (1) implies ϕx (p1, p2) = O
(
p−α1

)
and ϕu (p1, p2) = O

(
p−β1

)
with α+ β > 1.

Next consider (A.15). Because supp |Bx,p (−j)Bu,p (j)| < C, the second moment of (A.15) is

bounded by

1

(nT )2

T−1∑
j,k=1

n∑
p1,q1,p2,q2=1

|E {Jχ,p1 (j)Jχ,q1 (−k) Yx,p2 (j) Yx,q2 (−k)}

E {Yu,p1 (−j) Yu,q1 (k)Jξ,p2 (−j)Jξ,q2 (k)}| .
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From here, proceeding as with (A.14) but using Lemmas B.1 and B.2 as needed, we easily conclude

that (A.15) = op (1) by Markov’s inequality, since for instance

E {Jχ,p1 (j)Jχ,q1 (k) Yx,p2 (−j) Yx,q2 (−k)}

= E (Jχ,p1 (j)Jχ,q1 (k))E (Yx,p2 (−j) Yx,q2 (−k))

+E (Jχ,p1 (j) Yx,p2 (−j))E (Jχ,q1 (k) Yx,q2 (−k))

+E (Jχ,p1 (j) Yx,q2 (−k))E (Jχ,q1 (k) Yx,p2 (−j))

+cum (Jχ,p1 (j) ;Jχ,q1 (k) ; Yx,p2 (−j) ; Yx,q2 (−k)) .

The proof of part (a) now concludes since (A.16) = op (1) by standard algebra and Lemmas B.1

and B.2.

Part (b). Because the continuous differentiability of fx,p (λ), we have that T−1
∑T

j=1 fx,p (j)→∫ 2π
0 fx,p (λ) dλ =: Σx,p, see Brillinger (1981, p. 15), so we can conclude by Lemma B.6 and (A.11),

that to finish the proof, it suffi ces to show that

1

nT

n∑
p=1

T−1∑
j=1

Ix,· (j) and
2

nT

n∑
p=1

T−1∑
j=1

Jx,· (j)Jx,p (j) = op (1) .

are both op (1). However this is the case proceeding similarly as with the proof of (A.13), so it is

omitted. �

6.3. PROOF OF THEOREM 2.
Because Lemma B.7 implies that (nT )−1∑n

p=1

∑T−1
j=1 Ix̃,p (j)

P→ Σx and abbreviating f̂u (j) =
1
n

∑n
q=1 Iû,q (j), it suffi ces to show

(i)
1

T 1/2n1/2

n∑
p=1

T−1∑
j=1

Jx̃,p (j)
(
f̂1/2
u (j)− f1/2

u (j)
)
Ju∗,p (−j) = op∗ (1) (A.20)

(ii)
1

T 1/2n1/2

n∑
p=1

T−1∑
j=1

Jx̃,p (λj) f
1/2
u (j)Ju∗,p (−j) d∗→ N (0,Φ) (A.21)

We begin with part (ii). The left hand side of (A.21) is

1

T 1/2n1/2

n∑
p=1

T−1∑
j=1

f1/2
u (j)Bx,p (j)Jχ,p (j)Ju∗,p (−j) (A.22)

+
1

T 1/2n1/2

n∑
p=1

T−1∑
j=1

f1/2
u (j)

(
Jx̃,p (j)− Bx,p (j)Jχ,p (j)

)
Ju∗,p (−j) .

The second (bootstrap) moment of the second term of (A.22) is

1

nT

n∑
p,q=1

T−1∑
j=1

fu (j) σ̂u,pq
(
Jx̃,p (j)− Bx,p (j)Jχ,p (j)

) (
Jx̃,q (−j)− Bx,q (−j)Jχ,q (−j)

)
(A.23)

using

E∗ (Ju∗,p (j)Ju∗,q (−k)) = σ̂u,pq1 (j = k) ; σ̂u,pq =
1

T

T∑
t=1

ûptûqt, (A.24)
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By Lemma B.1 and (A.1),

E
(
Jx̃,p (j)− Bx,p (j)Jχ,p (j)

) (
Jx̃,q (−j)− Bx,p (−j)Jχ,p (−j)

)
=
C

T
ϕx (p, q) ;

σ̂u,pq = ϕu (p, q)
(

1 +Op

(
T−1/2

))
.

Hence it easily follows that the expected value of equation (A.23) is o (1) and consequently the

second term of (A.22) is op∗ (1), after we observe that (A.23) is a nonnegative expression.

Turning to the first term of (A.22) , let us denote

Ξ∗s,t (n) =
1

n1/2

n∑
p=1

χpsu
∗
pt; G (j) =: Bx,p (j) f1/2

u,p (j) . (A.25)

Standard algebra yields that the first term of (A.22) is

1

T̃ 1/2

1

T

T∑
t,s=1

Ξ∗s,t (n)

T̃∑
j=1

G (j) ei(t−s)λj =
1

T 1/2

T∑
t,s=1

φ (|t− s|) Ξ∗s,t (n) +
C

T 3/2

T∑
t,s=1

Ξ∗s,t (n) , (A.26)

where to simplify the notation we assume that ϕx (p, p) = ϕu (p, p) = 1 for all p = 1, ..., n and

φ (r) is the rth Fourier coeffi cient of G (j). Hence the right hand side of (A.26) can now be written

as

φ (0)

T 1/2

T−∑̀
t=1

1

n1/2

n∑
p=1

χptu
∗
pt +

T−1∑
`=1

φ (`)

T 1/2

T−∑̀
t=1

1

n1/2


n∑
p=1

χptu
∗
p,t+` +

n∑
p=1

χp,t+`u
∗
pt

 . (A.27)

Because φ (r) = O
(
r−2
)
by Conditions C1 and C2, given the independence of the sequences of

random variables n−1/2
∑n

p=1 χptu
∗
p,t+` and n−1/2

∑n
p=1 χp,t+`u

∗
pt in t, to complete the proof of

part (ii), it suffi ces to show that

Λ∗t,n =:
1

n1/2

n∑
p=1

χptu
∗
p,t+`

d∗→ N

0,
T − `
T

lim
n→∞

1

n

n∑
p,q=1

ϕ (p, q)

 .
The second bootstrap moment of Λ∗t,n is

1

n

n∑
p,q=1

χptχqt
1

T

T−∑̀
r=1

ûp,r+`ûq,r+` =
1

n

n∑
p,q=1

χptχqt
1

T

T−∑̀
r=1

up,r+`uq,r+` (1 + op (1)) ,

by standard algebra and Theorem 1. Now, Conditions C1 and C2 imply that

1

n

n∑
p,q=1

{
E
(
χptχqt

) 1

T

T−∑̀
r=1

E (up,r+`uq,r+`)

}
=
T − `
T

1

n

n∑
p,q=1

ϕ (p, q) .
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Moreover, because E (up1,t+`uq1,t+`up2,s+`uq2,s+`) = E (up1tuq1tup2suq2s)

E

 1

n

n∑
p,q=1

χptχqt
1

T

T−∑̀
t=1

uptuqt

2

=
1

n2

n∑
p1,q1,p2,q2=1

E
(
χp1tχq1tχp2tχq2t

) 1

T 2

T−∑̀
t,s=1

E (up1tuq1tup2suq2s)

=
1

n2

n∑
p1,q1,p2,q2=1

1

T 2

T−∑̀
t,s=1

{
E
(
χp1tχq1t

)
E
(
χp2tχq2t

)
+ E

(
χp1tχq2t

)
E
(
χp2tχq1t

)
+E

(
χp1tχp2t

)
E
(
χq1tχq2t

)
+ cum

(
χp1t;χq1t;χp2t;χq2t

)}
×{E (up1tuq1t)E (up2suq2s) + E (up1tuq2s)E (up2suq1t)

+E (up1tup2s)E (uq1tuq2s) + cum (up1t;uq1t;up2s;uq2s)}

=
1

n2T 2

n∑
p1,q1,p2,q2=1

T−∑̀
t,s=1

E
(
χp1tχq1t

)
E
(
χp2tχq2t

)
E (up1tuq1t)E (up2suq2s) (1 + o (1))

=

T − `
T

1

n

n∑
p,q=1

ϕ (p, q)

2

(1 + o (1))

because E (upsuqr) = ϕu (p, q) γu,pq (r − s),
∑T

r,s=1

∣∣γu,pq (r − s)
∣∣ = O (T ) and (A.19). This shows

that the second moment converges to the square of the first moment, and hence E∗
∣∣Λ∗t,n∣∣2 −

T−`
T

1
n

∑n
p,q=1 ϕ (p, q) = op (1).

Thus, it remains to show the Lindeberg’s condition to complete the proof of part (ii). To that

end, it suffi ces to show that

1

n2

n∑
p=1

E∗
(
χptu

∗
p,t+`

)4
= op (1) .

The left hand side of the last displayed expression is

1

n2

n∑
p=1

∥∥χpt∥∥4 1

T

T−∑̀
t=1

û4
p,t+` =

1

n2

n∑
p=1

∥∥χpt∥∥4 1

T

T−∑̀
t=1

u4
p,t+` (1 + op (1))

= Op
(
n−1

)
,

which completes the proof of part (ii).

Next we prove part (i). The left side of (A.20) is

1

T 1/2n1/2

n∑
p=1

T−1∑
j=1

(
f̂1/2
u (j)− f1/2

u (j)
)
Bx,p (j)Jχ,p (j)Ju∗,p (−j) (A.28)

+
1

T 1/2n1/2

n∑
p=1

T−1∑
j=1

(
f̂1/2
u (j)− f1/2

u (j)
) (
Jx̃,p (j)− Bx,p (j)Jχ,p (j)

)
wu∗,p (−j) .

We shall only show explicitly that the first term of (A.28) is op∗ (1), the second term following

similarly if not easier proceeding as with the second term of (A.22) and Lemma B.1. Now by



INFERENCE WITHOUT SMOOTHING FOR PANELS 35

(A.24), the first term of (A.28) has second bootstrap moment given by

1

T

T∑
t=1

1

nT

T−1∑
j=1

{
f̂1/2
u (j)− f1/2

u (j)
}2
fx (j)

n∑
p,q=1

ûptûqtJχ,p (j)Jχ,q (−j) .

Because the last displayed expression is a nonnegative expression, to show that it is op (1), it

suffi ces to show that its first moment converges to zero. To that end, we first observe that

{
f̂1/2
u (j)− f1/2

u (j)
}2
≤

∣∣∣∣∣∣ 1n
n∑
q=1

Iû,q (j)− fu (j)

∣∣∣∣∣∣ = op (1) (A.29)

using standard arguments and Theorem 1 under Condition C4. On the other hand, proceeding

similarly as in Proposition 1, we obtain easily that

1

n

n∑
p,q=1

ûptJχ,p (j) ûqtJχ,q (−j) =
1

n

n∑
p,q=1

uptJχ,p (j)uqtJχ,q (−j) (1 + op (1)) ,

and thus the proof of part (i), and thereby the theorem, is completed if

E

 n∑
p,q=1

uptuqtJχ,p (j)Jχ,q (−j)

 = O (n) .

But the left hand side of the last displayed expression is

n∑
p,q=1

ϕu (p, q)
1

T

T∑
t,s=1

E (xptxqs) e
−i(t−s)λj = C

n∑
p,q=1

ϕu (p, q)ϕx (p, q) = O (n)

by Condition C3, which completes the proof of the theorem. �

6.4. PROOF OF PROPOSITION 2.
As with the proof of Proposition 1, we shall assume that k = 1. Now, after observing that

Ju∗p (j) = Jũ∗,p (j)−
(
β̃
∗ − β̃

)
Jx̃,p (j) ,

we have that Φ̆∗ equals the sum of the following expressions (A.30)− (A.32);

1

T

T−1∑
j=1

f̂u (j)

 1

n1/2

n∑
p=1

Jx̃,p (j)Ju∗,p (−j)

 1

n1/2

n∑
p=1

Jx̃,p (−j)Ju∗,p (j)

− Φ̆ (A.30)

2
(
β̃
∗ − β̃

) 1

T

T−1∑
j=1

f̂1/2
u (j)

 1

n1/2

n∑
p=1

Ix̃,p (j)

 1

n1/2

n∑
p=1

Jx̃,p (−j)Ju∗,p (j)

 (A.31)

(
β̃
∗ − β̃

)2 1

T

T−1∑
j=1

 1

n1/2

n∑
p=1

Ix̃,p (j)

2

. (A.32)

That (A.32) is op∗ (1) follows straightforwardly by Theorem 2 and Lemma B.7 and (A.31) is

op∗ (1) by Cauchy-Schwarz inequality if we show that (A.30) is op∗ (1). To that end, using (A.11)
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and (A.24), we have

E∗ (A.30) =
1

nT

T−1∑
j=1

f̂u (j)
n∑

p,q=1

Jx,p (j)Jx,q (−j) σ̂u,pq − Φ̆

+
1

nT

T−1∑
j=1

f̂u (j)
n∑

p,q=1

Jx,· (j)Jx,· (−j) σ̂u,pq.

Because σ̂u,pq = ϕu (p, q) (1 + op (1)) and Φ̆ − Φ = op (1) by Proposition 1, proceeding as in the

proof of Theorem 2 part (i), it suffi ces to examine the behaviour of

1

nT

T−1∑
j=1

fu (j)
n∑

p,q=1

{ϕu (p, q)Jx,p (j)Jx,q (−j)} − Φ (A.33)

+
1

T

T−1∑
j=1

fu (j)Jx,· (j)Jx,· (−j)
1

n

n∑
p,q=1

ϕu (p, q) . (A.34)

(A.34) is op (1) as we now show. As it is a nonnegative sequence, it suffi ces to show that its first

mean converges to zero. Using (A.1) and then Lemmas B.1 and B.2, we have that its first moment

is proportional to

1

n2

n∑
p,q=1

ϕx (p, q)
1

n

n∑
p,q=1

ϕu (p, q) = o (1)

by (A.6). Because the first moment of (A.33) is o (1), it then remains to show that the (boot-

strap) variance of (A.30) , with Jx̃,p (j) replaced by Jx,p (j) , converges to zero. Using (A.24), the

(bootstrap) variance is

1

T 2

T−1∑
j=1

f̂2
u (j)

 1

n2

n∑
p1,q1p2,q2=1

Jx,p1 (j)Jx,q1 (−j)Jx,p2 (−j)Jx,q2 (j) σ̂u,p1p2 σ̂u,q1q2


+
κ4,ξ (1 + op (1))

T 3n2

T−1∑
j,k=1

{
f̂u (j) f̂u (k)

×
n∑

p1,q1p2,q2=1

ϕu (p1, q1)ϕu (p2, q2)Jx,p1 (j)Jx,q1 (−j)Jx,p2 (−k)Jx,q2 (k)

 ,

with Lemma B.4 guaranteeing

cum∗
(
u∗p1t, u

∗
q1t, u

∗
p2t, u

∗
q2t

)
= κ4,ξϕu (p1, q1)ϕu (p2, q2) (1 + op (1)) .

From here we proceed as before after noticing that σ̂u,p1p2 = ϕu (p1, p2) (1 + op (1)). This com-

pletes the proof of the proposition. �

6.5. PROOF OF PROPOSITION 3.
As with the proof of Theorem 2, it suffi ces to show that

1

T 1/2n1/2

T−1∑
j=1

n∑
p=1

Jx̃,p (j)Jû,p (−j) ηj
d∗→ N (0,Φ) . (A.35)



INFERENCE WITHOUT SMOOTHING FOR PANELS 37

Because ηj are normally distributed it suffi ces to show

E∗

 1

T 1/2n1/2

T−1∑
j=1

n∑
p=1

Jx̃,p (j)Jû,p (−j) ηj

2

P→ Φ.

This is the case as we now show. The left hand side of the last displayed expression is

1

nT

T−1∑
j=1

n∑
p,q=1

Jx̃,p (j)Jx̃,q (−j)Jû,p (−j)Jû,q (j)

=
1

nT

T−1∑
j=1

n∑
p,q=1

Jx̃,p (j)Jx̃,q (−j)Ju,p (−j)Ju,q (j) + op (1)

as ûpt − upt =
(
β̃ − β

)
xpt and β̃ − β = Op

(
T−1/2n−1/2

)
. Using (A.11) and proceeding as in the

proof of part (a) of Proposition 1, we now have that the right hand side is

1

nT

T−1∑
j=1

n∑
p,q=1

Jx,p (j)Jx,q (−j)Ju,p (−j)Ju,q (−j)

+
2

nT

T−1∑
j=1

n∑
p,q=1

Jx,p (j)Jx,· (−j)Ju,p (−j)Ju,q (−j)

+
1

nT

T−1∑
j=1

n∑
p,q=1

Jx,· (j)Jx,· (−j)Ju,p (−j)Ju,q (−j) + op (1) .

The first term converges in probability to Φ, whereas the second term follows by Cauchy-Schwarz

inequality if the third term is also op (1). But that term is op (1) proceeding as in the proof of

part (a) of Proposition 1 using Lemma B.5. Again observe that the expression is nonnegative.

This concludes the proof. �

Appendix B: LEMMAS

First denotingΥ`,p (j) =
{∑T−`

t=1−`−
∑T

t=1

}
ξpte

−itλj andΨ`,p (j) =
{∑T−`

t=1−`−
∑T

t=1

}
χpte

−itλj ,

we have that Yu,p (j) and Yx,p (j) given in (A.2) can be decomposed as

Yu,p (j) = Y(1)
u,p (j) + Y(2)

u,p (j) (B.1)

Yx,p (j) = Y(1)
x,p (j) + Y(2)

x,p (j) ,

where

Y(1)
u,p (j) =

1

T 1/2

T∑
`=0

d` (p) e−i`λjΥ`,p (j) ; Y(2)
u,p (j) =

1

T 1/2

∞∑
`=T+1

d` (p) e−i`λjΥ`,p (j)

Y(1)
x,p (j) =

1

T 1/2

T∑
`=0

c` (p) e−i`λjΨ`,p (j) ; Y(2)
x,p (j) =

1

T 1/2

∞∑
`=T+1

c` (p) e−i`λjΨ`,p (j) .

Lemma B.1. Assuming C1 and C2, we have that for p, q = 1, .., n and some υu, υx > 0 finite,

E
(

Y(1)
w,p (j) Y(1)

w,q (−k)
)

=
υwϕw (p, q)

T
; w =: u or x (B.2)

E
(

Y(2)
w,p (j) Y(2)

w,q (−k)
)

= o
(
T−2

)
ϕw (p, q)1 (j = k) ; w =: u or x. (B.3)
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Proof. We examine only the case when w =: u, with the proof for w =: x similarly handled. We

begin with (B.3). Because for ` ≥ T , E (Υ`,p (j) Υ`,q (−k)) = 2Tϕu (p, q)1 (j = k), we obtain that

the left hand side of (B.3) is

2
∞∑

`1,`2=T+1

d`1 (p) d`2 (q)ϕu (p, q)1 (j = k) .

The conclusion then follows because Condition C1 implies that
∑∞

`=T+1 supp |d` (p)| = o
(
T−1

)
.

Next we consider (B.2). By definition, the left side is

1

T

T∑
`1,`2=0

d`1 (p) d`2 (q)E (Υ`,p (j) Υ`,q (−k)) = ϕu (p, q)
υu
T

since Υ`,p (j) =
{∑0

t=1−`−
∑T

t=T−`+1

}
ξpte

itλj when ` ≤ T , so that

E (Υ`,p (j) Υ`,q (−k)) = 2ϕu (p, q)
∑̀
t=1

eit(λj−λk).

We now conclude because
∑∞

`=0 ` supp |d` (p)| <∞ by Condition C1. �

Lemma B.2. Assuming C1 and C2, we have that for p, q = 1, .., n,

(a) E
(

Y(1)
u,p (j)Jξ,q (−k)

)
= ϕu (p, q)

1

T

T∑
`=0

d` (p) e−i`λj
∑̀
t=1

eitλj−k

E
(

Y(2)
u,p (j)Jξ,q (−k)

)
= ϕu (p, q)1 (j = k) o

(
T−2

)
(b) E

(
Y(1)
x,p (j)Jχ,q (−k)

)
= ϕx (p, q)

1

T

T∑
`=0

c` (p) e−i`λj
∑̀
t=1

eitλj−k

E
(

Y(2)
x,p (j)Jχ,q (−k)

)
= ϕx (p, q)1 (j = k) o

(
T−2

)
.

Proof. As in the proof of Lemma B.1 we shall only show part (a). To that end, we first notice

that Condition C1 implies that

E (Υ`,p (j)Jξ,q (−k)) =
ϕu (p, q)

T 1/2

(
1 (j = k)1 (` ≥ T ) +

T∑
t=T−`+1

eitλj−k1 (` < T )

)
.

From here the proof concludes by standard algebra. �

Lemma B.3. Assuming C1 and C2, we have that∣∣cum (ξp1t; ξp2t; ξp3t; ξp4t)∣∣ ≤ |κ4,ξ|ϕu (p1, p2)ϕu (p3, p4)∣∣cum (χp1t;χp2t;χp3t;χp4t)∣∣ ≤ |κ4,χ|ϕx (p1, p2)ϕx (p3, p4) (B.4)

Proof. Using inequality (A.17) , the proof follows easily since by definition

cum
(
ξp1t; ξp2t; ξp3t; ξp4t

)
= κ4,ξ

∞∑
`=1

a` (p1) a` (p2) a` (p3) a` (p4) .

The proof is similar for the second expression in (B.4), where inequality (A.18) is used instead of

(A.17). �
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Lemma B.4. Assuming C1 and C2, for some τ > 2,

|cum (up1t1 ;up2t2 ;up3t3 ;up4t4)| ≤ C
|κ4,ξ|ϕu (p1, p2)ϕu (p3, p4)

(t2 − t1)τ (t3 − t1)τ (t4 − t1)τ

|cum (xp1t1 ;xp2t2 ;xp3t3 ;xp4t4)| ≤ C
|κ4,χ|ϕx (p1, p2)ϕx (p3, p4)

(t2 − t1)τ (t3 − t1)τ (t4 − t1)τ
.

Proof. As in the proof of Lemma B.3, we handle the first displayed inequality only. Without loss

of generality we take t1 ≤ t2 ≤ t3 ≤ t4. Condition C1 and the definition of the fourth cumulant

then yield that

cum (up1t1 ;up2t2 ;up3t3 ;up4t4) =

∞∑
k=1

dk (p1) dk+t2−t1 (p2) dk+t3−t1 (p3) dk+t4−t1 (p4)

×cum
(
ξp1t; ξp2t; ξp3t; ξp4t

)
.

From here we conclude using Lemma B.3 and the fact that Condition C1 implies that supp |dk (p)| =
O (k−τ ) for some τ > 2. �

Lemma B.5. Assuming C1 and C2, we have that for w =: u or x,

E (Jw,p1 (j)Jw,p2 (−k)) = fw,p1p2 (j)ϕw (p1, p2)

{
1 (j = k) +

C

T

}
(B.5)

and

E (Jw,p1 (j)Jw,p2 (−j)Jw,p3 (k)Jw,p4 (−k)) (B.6)

= ϕw (p1, p2)ϕw (p3, p4)

{
1+1 (j = k) +

C

T

}
.

Proof. Consider w =: u, say. By (A.1), we have that the left hand side of (B.5) is

E ((Bu,p1 (−j)Jξ,p1 (j) + Yu,p1 (j)) (Bu,p2 (k)Jξ,p2 (−k) + Yu,p2 (−k))) ,

which using (A.3) equals the right hand side of (B.5) by Lemmas B.1 and B.2.

Next, the left hand side of (B.6) is

E (Ju,p1 (j)Ju,p2 (−j))E (Ju,p3 (k)Ju,p4 (−k)) + E (Ju,p1 (j)Ju,p3 (k))E (Ju,p2 (−j)Ju,p4 (−k))

+E (Ju,p1 (j)Ju,p4 (−k))E (Ju,p3 (k)Ju,p2 (−j)) + cum (Ju,p1 (j) ;Ju,p2 (−j) ;Ju,p3 (k) ;Ju,p4 (−k)) .

Using (B.5) , the first three terms of the last displayed expression are proportional to

fu,p1p2 (j) fu,p3p4 (j)ϕu (p1, p2)ϕu (p3, p4)1 (j = k) ,

while the absolute value of the last term is bounded by

1

T 2

T∑
t1,t2,t3,t4=1

|cum (up1t1 ;up2t2 ;up3t3 ;up4t4)| ≤ C
|κ4,ξ|
T 2

T∑
t1,t2,t3,t4=1

ϕu (p1, p2)ϕu (p3, p4)

(t2 − t1)τ (t3 − t1)τ (t4 − t1)τ

≤ C

T
ϕu (p1, p2)ϕu (p3, p4)

because τ > 2 using Lemma B.4. From here the conclusion follows easily. �
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Lemma B.6. Assuming C2—C3, we have that as n, T →∞,

E

 1

n

n∑
p=1

Ix,p (j)− fx,p (j)

2

= o (1) . (B.7)

Proof. Standard algebra yields that the left hand side of (B.7) is bounded by

E

 1

n

n∑
p=1

{
Jx,p (j)J ′x,p (−j)− E

(
Jx,p (j)J ′x,p (−j)

)}2

+

 1

n

n∑
p=1

EIx,p (j)− fx,p (j)

2

.

Now n−1
∑n

p=1EIx,p (j) − fx,p (j) = O
(
T−1

)
is standard as fx,p (λ) is twice continuously differ-

entiable, whereas Lemma B.5 implies that the first term of the last displayed expression is

C

n2

n∑
p,q=1

ϕ2
x (p, q)

(
1 +

C

T

)
= o (1)

by Condition C3, see also Remark 1. �

Lemma B.7. Under C1—C3, we have that as n, T →∞,

1

T

T−1∑
j=1

 1

n

n∑
p=1

Ix̃,p (j)

2

−

 1

n

n∑
p=1

Ix,p (j)

2

= op (1) (B.8)

1

T

T−1∑
j=1

 1

n

n∑
p=1

Ix,p (j)

2

−
∫ π

−π

 lim
n→∞

1

n

n∑
p=1

fx,p (λ)

2

dλ = op (1) . (B.9)

Proof. Noticing that

1

n

n∑
p=1

Ix̃,p (j)− Ix,p (j) = −Ix,· (j) ,

we obtain that the left hand side of (B.8) equals

1

T

T−1∑
j=1

I2
x,· (j)−

2

T

T−1∑
j=1

Ix,· (j)
1

n

n∑
p=1

Ix,p (j) .

We shall examine the first term of the last displayed expression, with the second one being handled

similarly, if not easier. Now, by definition

Ix,· (j) =
1

n2

n∑
p,q=1

Jx,p (j)Jx,q (−j) ,

so that Lemma B.5, in particular (B.6), implies that

EI2
x,· (j) =

1

n4

n∑
p1,...,p4=1

ϕx (p1, p2)ϕx (p3, p4)

{
1+1 (j = k) +

C

T

}
= o (1)

because n−2
∑n

p1,p2=1 ϕx (p1, p2) = o (1) by ergodicity. This completes the proof of (B.8).
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Regarding (B.9), it suffi ces to show that

1

T

T−1∑
j=1

 1

n

n∑
p=1

Ix,p (j)− E (Ix,p (j))

2

= op (1) (B.10)

1

T

T−1∑
j=1

 1

n

n∑
p=1

Ix,p (j)− E (Ix,p (j))

 1

n

n∑
p=1

E (Ix,p (j)) = op (1) , (B.11)

because the continuous differentiability of fx,p (λ) implies

1

T

T−1∑
j=1

1

n

n∑
p=1

E (Ix,p (j))−
∫ π

−π
lim
n→∞

1

n

n∑
p=1

fx,p (λ) = o (1)

by standard arguments. Now (B.10) holds true by Lemma B.6 and (B.11) follows by Cauchy-

Schwarz inequality. �

The next lemma extends a Central Limit Theorem in Phillips and Moon (1999) when their

independence condition fails.

Lemma B.8. Let {upt}t∈Z and {xpt}t∈Z, p ∈ N+, satisfy Conditions C1—C3. Then as n, T →∞,

1

T 1/2

T∑
t=1

1

n1/2

n∑
p=1

xptupt
d→ N (0,Φ) . (B.12)

Proof. First, Hidalgo and Schafgans’(2017) Theorem 1 implies that

zn,t =
1

n1/2

n∑
p=1

xptupt
d→ N (0,Ωt) , t = 1, ..., T , (B.13)

and also for any r, s ≥ 0,

1

n1/2

n∑
p=1

χp,t+rξp,t+s
d→ N (0,Ωt,r,s) .

Now, Phillips and Moon’s (1999) Theorem 2 cannot be employed as the latter result requires that

the left hand side of (B.13), that is {zn,t}t≥1, is a sequence of independent random variables.

Dropping the subscript “p”for notational convenience, we have that

utxt = (Du (L) ξt) (Cx (L)χt) , (B.14)

where

Du (L) =

∞∑
`=0

d`L
`; Cx (L) =

∞∑
`=0

c`L
`

by Conditions C1 and C2. We now employ a “second-order”BN decomposition similar to that

in Phillips and Solo (1992, pp. 978-979). First, we notice that standard algebra yields that the
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right hand side of (B.14) is

∞∑
`=0

d`c`ξt−`χt−` +

( ∞∑
`=0

∞∑
k=`+1

+
∞∑
k=0

∞∑
`=k+1

)
d`ckξt−`χt−k

=

∞∑
`=0

d`c`ξt−`χt−` +

∞∑
k=1

( ∞∑
`=0

d`c`+kξt−`χt−k−`

)
+

∞∑
`=1

( ∞∑
k=0

ckdk+`χt−kξt−k−`

)

=
∞∑
`=0

d`c`ξt−`χt−` +
∞∑
k=1

( ∞∑
`=0

d`c`+kL
`

)
ξtχt−k +

∞∑
`=1

( ∞∑
k=0

ckdk+`L
k

)
χtξt−`

= %0 (L) ξtχt +

∞∑
k=1

%k (L) ξtχt−k +

∞∑
`=1

g` (L)χtξt−`,

where %k (L) =
∑∞

`=0 d`c`+kL
` and g` (L) =

∑∞
k=0 ckdk+`L

k. Observe that %0 (L) = g0 (L).

Next, because for a generic polynomial h (L) =
∑∞

`=0 h`L
`, we have the identity h (L) =

h (1)− (1− L) h̃ (L), where h̃ (L) =
∑∞

`=0 h̃`L
` with h̃` =

∑∞
p=`+1 hp, we can write the right hand

side of the last displayed equality as

%0 (1) ξtχt + ξt

∞∑
k=1

%k (1)χt−k + χt

∞∑
`=1

g` (1) ξt−` (B.15)

− (1− L)

∞∑
k=1

d̃ckξt−kχt−k − (1− L)

∞∑
k=1

%̃k (L) ξtχt−k − (1− L)

∞∑
`=1

g̃` (L)χtξt−`.

Observe that

d̃ck = %̃0 (L) , %̃k (L) =
∞∑
`=0

υ̃`,kL
` with υ̃`,k =

∞∑
p=`+1

dpcp+k,

g̃` (L) =
∞∑
k=0

ω̃k,`L
` with ω̃k,` =

∞∑
p=k+1

cpdp+`,

and ξt
∑∞

k=1 %k (1)χt−k and χt
∑∞

`=1 g` (1) ξt−` are mutually independent martingale differences.

Given (B.15) , we can write the left hand side of (B.12) as the sum of six terms. The contribution

due to the fourth term of (B.15) is
∞∑
k=1

d̃ck
1

T 1/2

1

n1/2

n∑
p=1

ξp,t−kχp,t−k = Op

(
T−1/2

)
because E

(
n−1/2

∑n
p=1 ξp,t−kχp,t−k

)2
< C and by summability of the sequence

{
d̃ck

}
k∈N+

. Next,

the contribution due to the fifth and sixth terms of (B.15) follow similarly and hence they are

op (1).

So, we need to examine the contribution due to the first three terms of (B.15) on the left side

of (B.12), that is

%0 (1)

(Tn)1/2

T∑
t=1

n∑
p=1

ξptχpt +
1

(Tn)1/2

T∑
t=1

n∑
p=1

ξptχ̃pt +
1

(Tn)1/2

T∑
t=1

n∑
p=1

ξ̃ptχpt, (B.16)

where

χ̃pt =:
∞∑
k=1

%k (1)χp,t−k; ξ̃pt =:
∞∑
`=1

g` (1) ξp,t−`.
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The result that the first term of (B.16) converges to a normal random variable follows by (the

proof of) Hidalgo and Schafgans’(2017) Theorem 1 and Phillips and Moon’s (1999) Theorem 2 as

n−1/2
∑n

p=1 ξptχpt are independent sequences in t. Because the second and third terms of (B.16)

are similar, we only handle the second one explicitly. Now, that term is

K∑
k=1

%k (1)
1

(Tn)1/2

T∑
t=1

n∑
p=1

ξptχp,t−k +

∞∑
k=K+1

%k (1)
1

(Tn)1/2

T∑
t=1

n∑
p=1

ξptχp,t−k. (B.17)

By summability of %k (1) and given that

E

 1

(Tn)1/2

T∑
t=1

n∑
p=1

ξptχp,t−k

2

=
1

Tn

T∑
t=1

∑
p,q

ϕ (p, q) ≤ C

by Condition C3, we obtain that by choosing K large enough the second term of (B.17) is op (1).

The first term of (B.17) on the other hand converges to a normal random variable proceeding as

with the first term of (B.16). The proof is then completed using Bernstein’s lemma. �

Lemma B.9. Under the same conditions of Lemma B.8, we have that

1

T̃ 1/2

T̃∑
j=1

1

n1/2

n∑
p=1

Jx,p (j)Ju,p (−j) d→ N (0,Φ) . (B.18)

Proof. Using (A.1) and (B.5) of Lemma B.5, we have that the left side of (B.18) is governed by

1

T̃ 1/2

T̃∑
j=1

1

n1/2

n∑
p=1

Bx,p (j)Bu,p (−j)Jχ,p (j)Jξ,p (−j)

=
1

T̃ 1/2

T̃∑
j=1

1

T

T∑
t,s=1

Ξs,t (n; j) ei(t−s)λj , (B.19)

where

Ξs,t (n; j) =
1

n1/2

n∑
p=1

Gp (j)χpsξpt; Gp (j) =: Bx,p (j)Bu,p (−j) . (B.20)

Because
{
χpt
}
t∈Z and

{
ξpt
}
t∈Z, p ∈ N

+, are mutually independent iid zero mean sequences, we

have that Ξs,t (n) is independent of Ξr,m (n) if s 6= r and t 6= m and uncorrelated if s 6= r and

t = m or s = r and t 6= m. By Lemma B.8, it follows that Ξs,t (n; j)→d N
(

0, Ṽ (j)
)
, where

Ṽ (j) = lim
n→∞

1

n

n∑
p,q=1

fx,pq (j) fu,pq (j)ϕ (p, q)

and E ‖Ξs,t (n)‖4 < C.

Next, the right hand side of (B.19) is

21/2

T 3/2

T∑
t,s=1

1

n1/2

n∑
p=1

χpsξpt


T̃∑
j=1

gp (j) ei(t−s)λj


=

1

T 1/2

T∑
t,s=1

1

n1/2

n∑
p=1

φp (t− s)χpsξpt
(

1 +
C

T

)
(B.21)
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using Brillinger’s (1981) Exercise 1.7.14(b), where φp (s) denotes the s-th Fourier coeffi cient of

gp (λj) defined in (B.20). Note also that Parseval’s equality, see Fuller’s (1996) Theorem 3.1.6,

implies that
∞∑

`=−∞
φ2
p (`) =

1

2n

∫ π

−π
g2
p (λ) dλ =

1

2π

∫ π

−π
fx,p (λ) fu,p (λ) dλ.

Now, the right hand side of (B.21) can be written as

1

T 1/2

T−∑̀
t=1

1

n1/2

n∑
p=1

φp (0)χptξpt +
1

T 1/2

T−1∑
`=1

T−∑̀
t=1

1

n1/2


n∑
p=1

φp (`)
(
χptξp,t+` + χp,t+`ξpt

) .
From here, we conclude the proof proceeding as we did in Lemma B.8 since, say,

1

n1/2

n∑
p=1

φp (`)χptξp,t+`

is a sequence of independent random variables in the t dimension which converges to a Gaussian

random variable by arguments similar to those in the proof of Hidalgo and Schafgans’ (2017)

Theorem 1 and
1

T 1/2

T−1∑
`=b

T−∑̀
t=1

1

n1/2

n∑
p=1

φp (`)χptξp,t+` = op (1)

by choosing b large enough since φp (`) = O
(
`−2
)
. �
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Table 1. Monte Carlo Simulations with Homogeneous Time Dependence

Empirical size of test for significance of β

Spatial Weak Spatial Dependence Strong Spatial Dependence
Dependence
Estimator HS (Cluster) DK (HAC) HS (Cluster) DK (HAC)

asy nb wb asy fixb mbb asy nb wb asy fixb mbb

(n, T ) Time Dependence: AR(1), ρ = 0.7
(50, 16) .180 .074 .134 .253 .163 .028 .177 .068 .133 .261 .176 .030
(50, 32) .126 .067 .091 .192 .131 .042 .129 .056 .091 .210 .148 .043
(50, 64) .080 .054 .068 .128 .092 .049 .091 .050 .076 .158 .119 .056
(50, 128) .067 .049 .062 .108 .084 .056 .068 .046 .057 .116 .089 .060
(50, 256) .055 .048 .055 .087 .073 .058 .060 .051 .050 .096 .083 .065

(100, 16) .172 .070 .120 .249 .153 .033 .183 .073 .134 .261 .174 .031
(100, 32) .122 .057 .094 .185 .126 .050 .121 .053 .088 .200 .143 .037
(100, 64) .082 .056 .070 .132 .098 .064 .096 .055 .084 .153 .110 .054
(100, 128) .065 .047 .056 .108 .082 .066 .072 .052 .060 .114 .091 .062
(100, 256) .058 .050 .063 .088 .074 .065 .062 .054 .058 .089 .078 .059

(n, T ) Time Dependence: AR(1), ρ = 0.9
(50, 16) .320 .131 .276 .410 .258 .009 .312 .106 .257 .415 .279 .013
(50, 32) .242 .097 .189 .327 .209 .013 .260 .093 .201 .368 .246 .022
(50, 64) .168 .058 .107 .261 .169 .026 .174 .068 .124 .281 .195 .037
(50, 128) .111 .057 .084 .192 .132 .046 .115 .059 .089 .199 .147 .050
(50, 256) .081 .055 .067 .142 .107 .062 .085 .055 .069 .149 .114 .061

(100, 16) .316 .125 .254 .414 .255 .007 .302 .130 .253 .400 .268 .011
(100, 32) .252 .084 .204 .350 .224 .017 .242 .086 .173 .344 .229 .015
(100, 64) .174 .067 .118 .249 .167 .026 .174 .069 .139 .269 .188 .033
(100, 128) .112 .054 .091 .181 .131 .052 .118 .060 .083 .198 .140 .056
(100, 256) .075 .049 .068 .132 .096 .057 .088 .047 .071 .146 .115 .061
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Table 2. Monte Carlo Simulations with Homogeneous Time Dependence

Empirical Power of test for significance of β when β = 0.1

Spatial Weak Spatial Dependence Strong Spatial Dependence
Dependence
Estimator HS (Cluster) DC (HAC) HS (Cluster) DK (HAC)

asy nb wb asy fixb mbb asy nb wb asy fixb mbb

(n, T ) Time Dependence: AR(1), ρ = 0.7
(50, 64) .852 .794 .830 .919 .882 .802 .243 .158 .212 .337 .277 .162
(50, 128) .980 .971 .979 .992 .986 .978 .386 .322 .357 .465 .428 .356
(50, 256) 1.00 1.00 1.00 1.00 1.00 1.00 .549 .527 .525 .619 .588 .558

(100, 64) .972 .959 .967 .991 .987 .971 .318 .239 .297 .418 .354 .241
(100, 128) 1.00 1.00 1.00 1.00 1.00 1.00 .451 .395 .426 .539 .495 .429
(100, 256) 1.00 1.00 1.00 1.00 1.00 1.00 .690 .662 .675 .747 .721 .679

(n, T ) Time Dependence: AR(1), ρ = 0.9
(50, 64) .605 .401 .513 .707 .605 .232 .248 .116 .195 .359 .268 .065
(50, 128) .716 .575 .659 .812 .745 .539 .253 .164 .214 .361 .287 .133
(50, 256) .884 .849 .867 .942 .917 .856 .290 .227 .253 .381 .333 .231

(100, 64) .784 .602 .710 .872 .799 .408 .287 .142 .238 .402 .305 .082
(100, 128) .926 .857 .905 .969 .949 .867 .288 .184 .230 .401 .321 .152
(100, 256) .995 .989 .994 .999 .998 .995 .348 .256 .319 .453 .393 .272
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Table 3. Monte Carlo Simulations with Heterogeneous Time Dependence

Empirical size of test for significance of β

Spatial Weak Spatial Dependence Strong Spatial Dependence
Dependence
Estimator HS (Cluster) DC (HAC) HS (Cluster) DK (HAC)

asy nb wb asy fixb mbb asy nb wb asy fixb mbb

(n, T ) Time Dependence: Mixed AR(1)
(100, 64) .101 .055 .079 .189 .132 .062 .114 .065 .094 .207 .148 .052
(100, 128) .082 .055 .071 .144 .114 .078 .079 .055 .067 .146 .116 .065
(100, 256) .064 .046 .052 .121 .098 .073 .069 .053 .066 .117 .098 .073

(n, T ) Time Dependence: Mixed AR(1)/MA(1)
(100, 64) .080 .049 .066 .176 .132 .083 .092 .061 .087 .185 .136 .064
(100, 128) .068 .051 .059 .149 .120 .097 .069 .053 .063 .140 .110 .074
(100, 256) .058 .049 .052 .112 .095 .084 .067 .053 .063 .111 .095 .081

(n, T ) Time Dependence: Mixed AR(3)
(100, 64) .064 .051 .062 .147 .135 .120 .074 .055 .062 .150 .134 .125
(100, 128) .057 .048 .056 .146 .137 .122 .062 .052 .056 .143 .134 .121
(100, 256) .053 .048 .050 .137 .132 .127 .063 .061 .063 .138 .133 .135

(n, T ) Time Dependence: Mixed AR(3)/MA(3)
(100, 64) .068 .048 .062 .134 .113 .094 .072 .058 .068 .148 .129 .106
(100, 128) .057 .049 .049 .109 .094 .089 .063 .052 .057 .120 .107 .091
(100, 256) .053 .046 .050 .094 .087 .080 .061 .056 .061 .106 .098 .094
Note: With (1− ρ1,pL)(1 + ρ2L+ ρ3L

2)upt = (1 + θ1,pL+ θ2L
2 + θ3L

3)ηpt, the follo-
wing parameterizations are used: Denoting ρp =

(
ρ1,p, ρ2, ρ3

)′ and θp = (θ1,p, θ2, θ3)′

Mixed AR(1):
{
ρp =

(
0.5 + 0.4 p−1

n−1 , 0, 0
)′
, θp = 0

}n
p=1

Mixed AR(1)/MA(1):
{
ρp =

(
0.5 + 0.4 p−1

n/2−1 , 0, 0
)′
, θp = 0

}n/2
p=1{

ρp = 0, θp =
(

0.5 + 0.4p−n/2−1
n/2−1 , 0, 0

)}n
p=n/2+1

Mixed AR(3):
{
ρp =

(
0.5 + 0.4 p−1

n−1 , 0.3, 0.6
)′
, θp = 0

}n
p=1

Mixed AR(3)/MA(3):
{
ρp =

(
0.5 + 0.4 p−1

n/2−1 , 0.3, 0.6
)′
, θp = 0

}n/2
p=1{

ρp = 0, θp =
(

0.5 + 0.4p−n/2−1
n/2−1 , 0.3, 0.6

)}n/2
p=1
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Table 4. Monte Carlo Simulations with Conditional Heteroskedasticity

Empirical size of test for significance of β

Spatial Dep. Weak Spatial Dependence

Estimator HS (Cluster)orig HS (Cluster)robust DC (HAC)
asy nb wb asy nb wb asy fixb mbb

CV x́ - additive
(n, T ) σ (wp, %t) = σ · [exp(0.5wp) + 1] [exp(0.2%t) + 1]
(100, 64) .428 .085 .054 .068 .089 .054 .068 .138 .100 .052
(100, 128) .424 .069 .053 .058 .071 .052 .060 .110 .089 .065
(100, 256) .432 .060 .052 .059 .062 .052 .060 .090 .076 .061
(n, T ) σ (wp, %t) = σ · [exp(0.5wp) + 1] [exp(0.5%t) + 1]
(100, 64) .733 .086 .054 .068 .089 .052 .069 .132 .100 .055
(100, 128) .760 .069 .053 .060 .073 .056 .061 .109 .087 .061
(100, 256) .788 .059 .050 .060 .060 .050 .060 .086 .074 .060
(n, T ) σ (wp, %t) = σ · [exp(2wp) + 1] [exp(0.5%t) + 1]
(100, 64) 2.560 .090 .057 .070 .099 .055 .073 .133 .098 .051
(100, 128) 2.626 .068 .054 .058 .075 .053 .060 .106 .086 .063
(100, 256) 2.588 .055 .047 .056 .062 .045 .059 .086 .074 .062
(n, T ) σ (wp, %t) = σ · [exp(2wp) + 1]
(100, 64) 2.117 .088 .052 .070 .093 .050 .070 .134 .101 .056
(100, 128) 2.135 .068 .052 .056 .074 .050 .057 .106 .085 .057
(100, 256) 2.074 .059 .052 .059 .066 .054 .063 .088 .075 .064

CV x́ - multiplicative
(n, T ) σ (wp, %t) = σ · [exp(0.5wp) + 1] [exp(0.2%t) + 1]
(100, 64) .428 .077 .062 .077 .070 .057 .069 .160 .142 .066
(100, 128) .424 .076 .065 .081 .065 .054 .073 .143 .129 .079
(100, 256) .432 .067 .062 .069 .057 .057 .056 .105 .098 .068
(n, T ) σ (wp, %t) = σ · [exp(0.5wp) + 1] [exp(0.5%t) + 1]
(100, 64) .733 .128 .113 .125 .076 .063 .071 .162 .140 .051
(100, 128) .760 .134 .122 .137 .063 .052 .064 .141 .131 .055
(100, 256) .788 .141 .137 .145 .057 .057 .057 .105 .098 .056
(n, T ) σ (wp, %t) = σ · [exp(2wp) + 1] [exp(0.5%t) + 1]
(100, 64) 2.560 .131 .115 .123 .077 .063 .069 .162 .140 .049
(100, 128) 2.626 .135 .130 .133 .070 .061 .062 .138 .123 .049
(100, 256) 2.588 .145 .139 .146 .062 .058 .055 .108 .102 .054

σ (wp, %t) = σ · [exp(2wp) + 1]
(100, 64) 2.117 .074 .049 .067 .086 .051 .068 .129 .099 .063
(100, 128) 2.135 .064 .052 .060 .075 .053 .059 .111 .093 .077
(100, 256) 2.074 .052 .049 .052 .061 .051 .053 .084 .076 .071
Note: The time dependence assumed is AR(1) with ρ = 0.7.
σ is chosen to ensure that the expected σ2

(
wp)σ

2(%t
)
equals 1.


