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Abstract

We study the market for a risky asset with uncertain heterogeneous valuations.
Agents seek to learn about their own valuation by acquiring private information
and making inferences from the equilibrium price. As agents of one type
gather more information, they pull the price closer to their valuation and
further away from the valuations of other types. Thus they exert a negative
learning externality on other types. This in turn implies that a lower cost
of information for one type induces all agents to acquire more information.
Private information production is typically not socially optimal. In the case of
two types who differ in their cost of information, we can always find a Pareto
improvement that entails an increase in the aggregate amount of information,
with a higher proportion produced by the low-cost type.
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1 Introduction

We study the market for a risky asset in which agents have private correlated valua-
tions for the asset. Each agent collects private information about his own valuation,
and the equilibrium price reflects some of this information. Our aim is to investi-
gate the externalities that arise in this setting, and in particular how they affect the
equilibrium allocation of private information and the welfare of market participants.

Heterogeneity in valuations can be due to different uses that agents have for
the asset, motivated by speculation, hedging or liquidity considerations, because of
differing investment opportunities or constraints, or for purely behavioral reasons.
Alternatively, we can think of the agents as producers in different industries, and
interpret the asset as an input into an industry-specific stochastic production tech-
nology.1 In these examples, each agent belongs to a group (e.g. producers who operate
in the same industry) that is distinguished by its own uncertain valuation for the
asset, has access to private information about this valuation, and seeks to glean the
wisdom of the crowd regarding the same valuation from the equilibrium price.

We analyze competitive rational expectations equilibria in a linear-normal model.
To understand the mechanics of this model, suppose there are two types of agents,
with uncertain valuations θ1 and θ2. Agents of type i (i = 1, 2) choose the precision
τi of a private signal about their valuation θi, at a cost that is increasing in the
precision. For any given choice of precisions, τ1 and τ2, the price function takes the
form p = µ[τ1θ1 + τ2θ2], for some constant µ.2 The optimal choice of τi by agents
of type i in turn depends on how much these agents learn about θi from the price.3

Assuming that the correlation between θ1 and θ2 is nonnegative, agents of type 1
learn more, and agents of type 2 learn less, about their own valuation the greater is
the ratio τ1/τ2.

Now consider an equilibrium (τ1, τ2), and suppose there is a decrease in the cost
of information for type 1. This induces type 1 agents to collect more information
(increasing τ1), thus reducing price informativeness for type 2. As a result, type 2
agents collect more information as well (increasing τ2). This reinforces the incentive
of type 1 agents to accumulate more information, increasing τ1 even further. The
resulting feedback loop leads to an equilibrium in which both types gather more

1Rostek and Weretka (2012) provide examples of heterogeneous valuations for an asset based
on group affiliations or on the geographic location of traders. Rahi and Zigrand (2018) show how
diversity in valuations can be microfounded by adding hedgers to a model along the lines of Gross-
man and Stiglitz (1980) or Hellwig (1980). In Mendel and Shleifer (2012), one group of investors
cares only about the fundamental, while a second group bases its decisions on a sentiment shock.
We discuss some examples of heterogeneous valuations in a production economy with uncertain
cost or demand in Section 2.

2We assume that agents have the same constant absolute risk aversion coefficient r. Then the
aggregate trade of type i is linear in θi and p, with the coefficient of θi equal to r−1τi. In equilibrium,
the sum of the trades of the two types is zero, giving us a price function that takes the stated form.

3While all agents of type i choose the same precision τi in equilibrium, an individual agent’s
choice has no impact on the price function.
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information. The effect is more pronounced for type 1 agents: τ1/τ2 is higher at the
new equilibrium. Consequently, type 1 agents learn more from the price and type 2
agents learn less.

More generally, this monotone comparative statics property, whereby a lower cost
of information for one type results in more information production by all types, holds
if the economy exhibits strategic complementarities in information acquisition. At
the new equilibrium, the type whose cost is reduced learns more from the price while
all other types learn less. There are strategic complementarities in the two-type
case if and only if the correlation between the valuations of the two types exceeds a
(negative) lower bound ρ. With arbitrarily many types, strategic complementarities
arise if pairwise correlations exceed ρ and, in addition, do not vary too much.

Next, we turn to the question of social optimality of private information acquisi-
tion. In particular, we examine the welfare effects of a change in the precision vector
τ := (τ1, . . . , τN) in the neighborhood of an equilibrium. There are two factors at
play here. All else equal, agents are better off if they are better informed. At the
same time, they stand to gain more from trade the greater the distance between their
own valuation and the overall market valuation, given by the equilibrium price. For
each type, the overall welfare effect can be written as the sum of a learning effect
and a gains from trade effect.

There is a fundamental tension between these two effects. The price p is more
informative about the valuation θi only if it tracks θi more closely. To take an
extreme example, if p = θi, the price is fully revealing for type i, but type i agents
gain nothing from trading at this price; indeed, their optimal trade is zero.

This tradeoff can be seen most clearly in a symmetric economy in which all types
have the same cost of information and the correlation between valuations is the
same for any pair of types. Such an economy has a unique equilibrium at which all
types choose the same precision. At this equilibrium, the learning and gains from
trade effects are collinear but opposite in sign. Moreover, the gains from trade effect
dominates the learning effect, so that the types that are better off after perturbing
τ are precisely those for whom price informativeness is lower. Price informativeness
cannot be lower for all types, however, and hence a perturbation of τ cannot make
all types better off.

The possibility of a Pareto improvement arises in the non-symmetric case. We
consider an economy with two types who differ in their cost of information. For
example, suppose type 2 has the lower cost. Then there is a unique equilibrium at
which τ1 < τ2. The low-cost type produces more private information as intuition
would suggest. But a Pareto improving allocation of information can always be
found. It entails more information production in the aggregate, a higher proportion
of which is acquired by the low-cost type, i.e. a higher τ1+τ2 and a higher τ2/(τ1+τ2).

To summarize, our comparative statics results imply that negative learning ex-
ternalities across types lead to information acquisition decisions that are clustered
together — if one type gathers more or less information, other types respond by mov-
ing in the same direction. Our welfare results show that this clustering is excessive
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from the social point of view.

Related Literature:

A growing strand of literature starts from the premise that agents have correlated
private valuations for a traded asset, and each agent has private information about
his own valuation. In a seminal contribution, Vives (2011) studies strategic supply
function competition among agents facing an uncertain cost.4 Vives (2014) uses a
perfectly competitive version of this model to study information revelation in the
market for a risky asset. Rostek and Weretka (2012, 2015) extend the Vives (2011)
setup to investigate the effect of market size on information aggregation and market
power. Glebkin (2019) considers the case of two types, one of which consists of large
strategic traders while the other is perfectly competitive, to analyze the interplay
between liquidity and price informativeness. Bergemann et al. (2020) and Heumann
(2020) introduce multidimensional signals into the Vives (2011) model; the first
paper retains the strategic interaction of Vives (2011), while the second considers
the perfectly competitive case. In Babus and Kondor (2018), dealers engage in
bilateral trading in a network.

These papers employ a linear-Gaussian framework with exogenously specified
valuations that vary across agents, just as in the present paper, but with more
stringent assumptions on the correlations between these valuations. Vives (2011,
2014), Bergemann et al. (2020), Heumann (2020), and Babus and Kondor (2018)
assume that the correlations are the same for any pair of agents or agent types; this is
also true in Glebkin (2019) since there are only two types. Rostek and Weretka (2012,
2015) present a convincing argument for a general correlation structure, but restrict
their analysis to the “equicommonal” case, wherein the average correlation between
the valuation of a trader and that of the remaining traders is the same for all traders.
Moreover, the symmetry assumptions imposed in all these papers ensure that price
informativeness is the same for all agents, with the exception of Babus and Kondor
(2018) who use an aggregate measure of constrained informational efficiency.5 This is
a key difference with respect to our setup where price informativeness can change in
opposite directions for agents with different valuations, and learning spillovers play
an important role in both comparative statics and welfare.

Private information is exogenous in the papers cited above, apart from Vives
(2011, 2014). While these two papers differ in terms of market structure (imper-
fect vs perfect competition), the informational properties of the equilibrium are the
same. As long as the marginal cost of information is sufficiently low, so that agents
acquire at least some information, the price reveals the average signal, which for any

4Vives (2011) can be thought of as a generalization of Kyle (1989), incorporating a private value
component in the asset payoff and thereby dispensing with the need for noise traders.

5Other papers in which agents have heterogeneous valuations and equilibrium prices convey
information include Bernhardt and Taub (2015) on learning about common and private values in
a duopoly, and Du and Zhu (2017) on the optimal frequency of trading. Kyle et al. (2018) discuss
the similarities between a model with heterogeneous valuations and one with overconfident traders
who agree to disagree.
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individual agent is a sufficient statistic for the information of all other agents (Vives
calls this a “privately revealing” equilibrium). In other words, there are no learning
externalities in this setting. The perfectly competitive economy of Vives (2014) is ex
post efficient regardless of how much information agents collect in equilibrium (this
follows from the “private revelation” property and the first welfare theorem).

Learning externalities take center stage in Rahi and Zigrand (2018) (henceforth
RZ), which serves as our point of departure, and from which we borrow some results
(Lemma 2.1, Proposition 2.2 and Lemma 3.1) on rational expectations equilibrium
with exogenously given signal precisions. The two papers diverge on the question
of private information production. RZ study a binary information acquisition de-
cision, wherein agents either acquire a piece of information at some cost or remain
uninformed. In the present paper, we allow agents to choose the precision of their
signal at a cost that increases in the precision. We assume that there is no fixed
cost so that all types acquire some information. As such, our results complement
those of RZ. Our welfare results, in particular, provide a different perspective on
the Pareto inefficiency of the equilibrium allocation of private information. RZ show
that discouraging information production can be Pareto improving if private signals
are sufficiently noisy. In this paper, in contrast, the precision of private signals is en-
dogenous, and there always exists a Pareto improvement that involves an increase in
the total amount of information. We discuss this point further at the end of Section
5.

There is a large literature on the social value of public information in a pure ex-
change economy. More information can reduce risk-sharing opportunities (or, indeed,
destroy them altogether, as in Hirshleifer (1971)). If markets are incomplete, it can
also allow agents to construct better hedges. The overall impact on agents’ welfare
can be in any direction (Gottardi and Rahi (2014)). Much less is known about the
welfare properties of asset markets in which information is endogenous and asym-
metric. Most of the rational expectations literature relies on exogenous noise trade
and hence does not provide a suitable framework for welfare analysis. There are
some papers with fully optimizing traders but, apart from a few exceptions,6 they
do not ask if the amount of information produced by agents is socially optimal.

A number of papers feature a complementarity in information acquisition that
arises because prices become less informative as more agents acquire information.
The underlying mechanism differs across these papers. In Barlevy and Veronesi
(2000, 2008) price informativeness falls with the incidence of informed trading be-
cause the asset payoff is negatively correlated with the noise trade, in Ganguli and
Yang (2009) and Manzano and Vives (2011) because agents have two sources of in-
formation (about the asset payoff and the asset supply), in Goldstein et al. (2014)
because agents with different investment opportunities trade on the same information
in opposite directions, and in Breon-Drish (2012) due to non-normality of shocks.
These papers use complementarity in information acquisition as a vehicle for gen-

6These exceptions include Vives (2014) and Rahi and Zigrand (2018) discussed above, as well
as Dow et al. (2017) who study the informational feedback from asset prices to real investment.
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erating multiple equilibria. In contrast, strategic complementarities in our paper
actually describe the “well-behaved” case — if there are two types (which is the
closest analog to the papers discussed here), the economy exhibits strategic comple-
mentarities if and only if the correlation between the valuations of the two types is
not too negative; moreover, for such an economy, there is a unique equilibrium. The
issue is partly a terminological one. We use strategic complementarities as a label
to describe the case where higher information production by one type lowers price
informativeness for the other type. But this is precisely the case in which higher
information production by a given type increases price informativeness for that type
itself. It is worth noting that the multiplicity of equilibria in Rahi and Zigrand
(2018), which has the same flavor as the multiplicity found in the papers discussed
above, requires a within-type complementarity which is ruled out by the across-type
complementarity assumption that we make in this paper.

Another line of research investigates the interaction between private and public
information in a coordination setting in which agents wish to align their actions
with the actions of others. Some of this work touches on themes that run through
the present paper. For example, Colombo et al. (2014)) show that increasing the
informativeness of an exogenous public signal reduces the incentive of agents to
collect private information. But our framework is quite different from theirs. The
asset trading stage in our model cannot be reduced to a coordination game, and the
public signal is the equilibrium price, which is endogenous. The welfare problem that
we analyze is also more involved as agents in our setting are not ex ante identical;
welfare depends not only on how much information is produced but also by whom it
is produced.

We now lay out a brief road-map for the rest of the paper. In the next section,
we describe the basic setup and the price function for given signal precisions for each
type. We endogenize these precisions in Section 3. In Section 4 we characterize
equilibrium for the two-type case. A welfare analysis follows in Section 5. In Sec-
tion 6, we provide sufficient conditions on the primitives for the economy to exhibit
strategic complementarities. This forms the basis of the existence and comparative
statics results in Section 7. Proofs are in the Appendix.

2 The Economy

There is a single risky asset in zero net supply, and a riskfree asset with the interest
rate normalized to zero. There are N types of agents, N ≥ 2, and a continuum of
agents of unit mass of each type. The valuation of an agent of type i for the risky
asset is given by a random variable θi. Prior to trade, type i agents can acquire a
private signal about θi. For agent n of type i (agent in for short) this signal takes
the form

sin = θi + εin,

where εin is independent of θi.
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For random variables x and y, let τx := [Var(x)]−1, and τx|y := [Var(x|y)]−1. We
will use the shorthand notation τin for τεin , which is equal to τsin|θi . Thus τin is the
precision of agent in’s signal, conditional on his valuation θi. For brevity, we will
refer to it simply as the precision of his signal. The cost of this signal is Ci(τin). For
now we will assume that all agents of type i choose the same precision τi, and that
τi > 0. Later, when we impose some conditions on the function Ci and endogenize
precision choice, we will see that this assumption is indeed satisfied.

The random variables {θi, {εin}n∈[0,1]}i=1,...,N are joint normal with mean zero.
Let θ := (θi)

N
i=1. For each type i, the signal shock εin is independent of θ, and the

signal shocks across agents, {εin}n∈[0,1], are independent. Given the assumption that
τin is the same for all n, these signal shocks are in fact i.i.d., and hence the average
signal of agents of type i,

∫
n
sindn, is equal to θi. To ensure that the problem is

nontrivial, we assume that the covariance matrix of θ is positive definite. We also
assume that the variance of θi is the same for all i. We denote the correlation matrix
of θ by R, with ij’th element ρij := corr(θi, θj), and the i’th column of R by Ri. Due
to the symmetry of R, the i’th row of R is R>i .

If agent in buys qin units of the risky asset at price p, his wealth is

Win = (θi − p)qin − Ci(τin). (1)

He has CARA utility with risk aversion coefficient r. He solves

max
qin

E[− exp(−rWin)|sin, p].

Agents have rational expectations: they know the price function, which depends on
the valuations of all agents in the economy, and condition on the price when making
their portfolio decisions.

An equilibrium consists of a vector of precisions τ := (τi)
N
i=1 and a price function

p such that agents optimize and markets clear. Agent optimization requires that
each agent in is happy with his choice of precision τin given the price function p, and
subsequently, for any realization of sin and p, he chooses an optimal portfolio qin.
Letting qi :=

∫
n
qindn, the aggregate trade of type i, the market-clearing condition

is
∑

i qi = 0.
We begin by solving for a rational expectations equilibrium (REE) price function

for given τ ∈ RN
++. We conjecture that it takes the form

p = a>θ,

for some nonzero vector a in RN , and that it is not fully revealing for any type,
i.e. Var(θi|p) > 0, or equivalently τθi|p is finite, for all i. We verify this conjecture
later (in Proposition 2.2). As is standard in the CARA-normal setting, the optimal
portfolio of agent in is

qin =
E(θi|sin, p)− p
rVar(θi|sin, p)

. (2)
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Using the projection theorem for normals, we have

E(θi|sin, p) = (τi + τθi|p)
−1
[
τisin + τθi|pγθi,p p

]
,

Var(θi|sin, p) = (τi + τθi|p)
−1,

where γθi,p := Cov(θi, p)/Var(p), the least-squares projection of θi on p. The details
of this calculation can be found in Rahi and Zigrand (2018). Substituting into (2),
we see that the optimal portfolio of an agent is linear in his signal and the price:

Lemma 2.1 (Optimal portfolios) Agent in’s optimal portfolio is given by

qin = r−1(τisin − µip),

where
µi = τi + τθi|p(1− γθi,p). (3)

Integrating over n gives us the aggregate trade of type i agents,

qi = r−1(τiθi − µip), (4)

which is linear in θi and p. We can now solve for the price function using the
market-clearing condition

∑
i qi = 0. It has a simple characterization that involves

a parameter µ defined as

µ :=
∑
k

βk
R>k τ

τ>Rτ
, (5)

where

βk :=
τk + τθk|p∑
j(τj + τθj |p)

.

A key feature of this economy is that different agents extract different information
from the equilibrium price. We define price informativeness for agents of type i by

Vi :=
Var(θi)− Var(θi|p)

Var(θi)
. (6)

Proposition 2.2 (REE) For a given vector of precisions τ ∈ RN
++, there is a unique

linear equilibrium price function,

p = µ τ>θ, (7)

provided µ 6= 0. Price informativeness for type i is given by

Vi =
(R>i τ)2

τ>Rτ
. (8)
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The proposition describes the linear REE price function for an arbitrary exogenously
given precision vector τ , with τi > 0 for all i. There is no equilibrium if µ = 0. This is
clearly a knife-edge case, and we will proceed under the assumption that µ is nonzero.
Later we shall see that in an economy that exhibits strategic complementarities, R>i τ
must be positive for all i, thus ensuring that µ is positive.

The price function does not fully reveal θi for any i; hence Vi ∈ [0, 1). This is a
consequence of the assumption that τi > 0 for all i and that the correlation matrix
R is positive definite. Price informativeness for any type is homogeneous of degree
zero in τ . Thus scaling the vector τ leaves price informativeness unchanged for all
types.

Some examples of the economy described above can be found in Rahi and Zigrand
(2018). In these examples, heterogeneity in valuations arises from different hedging
needs. Here we provide two examples in which we interpret the asset as a good
with an uncertain marginal cost of production, or as an input that can be deployed
in multiple activities that generate a stochastic return. As in any linear-Gaussian
model, we cannot ensure that equilibrium quantities of inputs or outputs are always
positive, but it is a simple matter to relax our assumption that all random variables
have zero mean and that the asset (or good) is in zero net supply in order to generate
plausible outcomes. We assume for simplicity that the demand for the good in the
first example, and the supply of the input in the second example, are perfectly
inelastic. A straightforward extension of our setup can accommodate demand or
supply functions that are affine in the price.

Example 2.1 There is a single homogeneous good supplied by perfectly competitive
risk-averse producers. Demand is perfectly inelastic. There are N types of producers.
Producers of type i face a constant marginal cost θi, which is uncertain and about
which they can collect private information. The wealth of producer n of type i
is given by (1), where p is the price of the good and −qin is the amount sold. The
equilibrium price of the good is given by (7); it is a linear combination of the marginal
costs (θi)

N
i=1 of the different producer types. Each producer makes inferences about

his own marginal cost from the price.
This example is a variant of the Vives (2011) model, but with multiple types,

perfect competition, and different parametric assumptions (risk aversion instead of
quadratic costs). As in Vives (2011), θi lends itself to several interpretations, for
instance as an ex post pollution levy that depends on the production technology.
‖

Example 2.2 There are N goods (outputs) all of which are produced from the same
input or resource using a constant returns to scale technology. For good i, one unit
of the input yields bi units of the good. The demand for the good is perfectly elastic
at price vi. Thus the revenue per unit of input is θi := bivi. There is a continuum of
risk-averse producers of good i each of whom collects private information about θi
before deciding how much of the input to buy. We can think of this as information
about either bi (information about a productivity shock) or vi (information about
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a demand shock), with the other parameter taken to be fixed. The supply of the
input is perfectly inelastic. The wealth of producer n of type i is given by (1), where
p is the price of the input and qin is the amount bought. The equilibrium price of
the input is given by (7). It aggregates (imperfectly) the information of different
producers on the stochastic return from using the input. ‖

3 Information Acquisition

We now endogenize the choice of precision. Agent in pays the cost Ci(τin) for a signal
of precision τin. We assume that the function Ci takes the form Ci(τin) := αiCi(τin),
for some αi ∈ [α, ᾱ], ᾱ > α > 0. Let α := (αi)

N
i=1 and let A denote the N -fold

Cartesian product of [α, ᾱ]. We specify cost functions in this way as we will be
interested in comparative statics with respect to α ∈ A. We impose the following
conditions on Ci:

The function Ci : [0,∞)→ [0,∞) is twice-differentiable and satisfies

i. Ci(0) = 0;

ii. C ′i(0) = 0, and C ′i(x) > 0 for x > 0;

iii. C ′′i > 0.

In particular, we assume that there are no fixed costs and that obtaining a small
amount of information is cheap. This ensures that each agent acquires some infor-
mation.

It is convenient to use the following monotonic transformation of ex ante expected
utility:

Uin :=
(
E[exp(−rWin)]

)−2
.

From Lemma 6.1 in Rahi and Zigrand (2018), we have:

Lemma 3.1 (Utilities) For a given vector of precisions τ ∈ RN
++, agent in’s utility

is
Uin = exp

[
−2rαiCi(τin)

]
(τin + τθi|p) Var(θi − p).

This is the indirect utility of agent in for an exogenously specified precision vector τ ,
and the REE price function associated with this τ . It depends on the agent’s cost of
acquiring information, through the term exp[−2rαiCi(τin)], on how much he learns
about his valuation, given by [Var(θi|sin, p)]−1 = τin+τθi|p, and on Var(θi−p), which
captures his “gains from trade”. We defer a discussion of gains from trade to Section
5. They play no role in the agent’s choice of precision, which is governed solely by
the tradeoff between learning and the cost of information.

Maximizing Uin with respect to τin, we obtain:
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Lemma 3.2 (Optimal precisions) Agent in’s optimal precision is the unique so-
lution τin to

2rαiC
′
i(τin)(τin + τθi|p) = 1. (9)

This solution is positive and the same for all n.

Equation (9) follows directly from the first-order condition for the agent’s maximiza-
tion problem. We write the solution as τin(τ) to indicate the dependence on τ . In
equilibrium τi = τin(τ) for all i, so that all agents of type i have the same utility,
which we denote by Ui:

Ui = exp
[
−2rαiCi(τi)

]
(τi + τθi|p) Var(θi − p). (10)

Moreover, from (9),
2rαiC

′
i(τi)(τi + τθi|p) = 1. (11)

From (6), we see that
τθi|p = τθ[1− Vi(τ)]−1, (12)

where τθ = τθi , assumed to be the same for all i, and Vi(τ) is given by (8). Substi-
tuting this expression into (11) gives us:

Lemma 3.3 (Equilibrium precisions) A vector τ ∈ RN
++ is an equilibrium vector

of precisions if and only if it is a solution to the following system of equations:

2rαiC
′
i(τi)

[
τi + τθ[1− Vi(τ)]−1

]
= 1, i = 1, . . . , N. (13)

We are now ready to characterize the equilibrium allocation of private infor-
mation, in particular the relationship between the cost of information production,
precision choice, and price informativeness. We study the two-type case in the next
section, deferring the general case to later sections.

4 Equilibrium: The Two-Type Case

Suppose N = 2 and let ρ be the correlation between the valuations of the two types.
From Proposition 2.2, for any given precisions τ1 and τ2 there is a unique linear
equilibrium price function,

p = µ[τ1θ1 + τ2θ2],

and price informativeness for the two types is given by

V1 =
(τ1 + ρτ2)2

τ 2
1 + τ 2

2 + 2ρτ1τ2

, and V2 =
(ρτ1 + τ2)2

τ 2
1 + τ 2

2 + 2ρτ1τ2

. (14)

Price informativeness depends on (τ1, τ2) only through the ratio τ1/τ2. Differentiating
with respect to τ1/τ2, we get the following result:
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Proposition 4.1 (Learning externalities: two types) Suppose N = 2 and ρ ≥
0. Then

∂V1

∂(τ1/τ2)
> 0 and

∂V2

∂(τ1/τ2)
< 0. (15)

If ρ is nonnegative, agents of type 1 learn more from the price the greater is τ1/τ2,
while the opposite is true for type 2 agents. A change in (τ1, τ2) either leaves price
informativeness unchanged for both types (if τ1/τ2 is unchanged), or price informa-
tiveness moves in opposite directions for the two types. There are negative learning
externalities across types: if agents of one type gather more information, price infor-
mativeness goes down for the other type. This property underlies the results in this
section, and also the inefficiency result in the next section (Proposition 5.4). The
assumption that ρ ≥ 0 is sufficient for negative learning externalities but it is not
necessary. We will provide a weaker condition, which is necessary and sufficient, in
Section 6.

The discussion so far applies for any exogenously given precisions τ1 and τ2. We
now characterize an equilibrium (τ1, τ2).

Proposition 4.2 (Equilibrium precisions: two types) Suppose N = 2 and ρ ≥
0. Then there is a unique equilibrium (τ1, τ2) ∈ R2

++. If the functions C1 and C2 are
the same, the equilibrium (τ1, τ2) satisfies the following properties:

i. α1 = α2 ⇔ τ1 = τ2 ⇔ V1 = V2;

ii. α1 > α2 ⇔ τ1 < τ2 ⇔ V1 < V2.

The equivalence between the statements about precisions and price informativeness
in (i) and (ii) follows from (14). The equivalence of these with the statement about
the cost parameters α1 and α2 follows from (13), using the assumption that the
functions C1 and C2 are the same. Thus if the two types have the same cost function,
they gather the same amount of information and learn the same amount from the
equilibrium price. If, on the other hand, the cost function of one type is uniformly
higher than that of the other, the higher cost type gathers less information and, as
a consequence, the price is less informative about the valuation of this type.

Next, we study the comparative statics of precision choice and price informative-
ness with respect to the cost parameters. We consider a change in α1; comparative
statics with respect to α2 are analogous. For this result we do not need to assume
that C1 and C2 are the same.

Proposition 4.3 (Comparative statics: two types) Suppose N = 2 and ρ ≥ 0.
Let τ(α1, α2) be the equilibrium vector of precisions for cost parameters (α1, α2). We
have the following comparative statics with respect to α1, α1 ∈ (α, ᾱ):

i.
∂τ1

∂α1

< 0,
∂τ2

∂α1

< 0, and
∂(τ1/τ2)

∂α1

< 0;
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ii.
∂V1

∂α1

< 0 and
∂V2

∂α1

> 0.

Consider a decrease in α1. This represents a downward shift in the cost of information
for type 1. In response, type 1 agents increase τ1. The resulting price function is
less informative for type 2 agents, who react by increasing τ2. But this reduces price
informativeness for type 1 agents, inducing them to increase τ1 even further. While
both types accumulate more information, the impact on type 1 is greater, due to the
lower cost borne by this type. This means that τ1/τ2 is higher, and consequently
price informativeness is higher for type 1 and lower for type 2 (from (15)).

Proposition 4.3 generalizes to the case of arbitrarily many types. This requires
a careful, and somewhat technical, analysis of strategic complementarities, however.
So we present our welfare analysis first.

5 Welfare

The plan for this section is to begin with a general analysis, for arbitrary N , of how
welfare depends on the vector of precisions in the neighborhood of an equilibrium,
followed by an inefficiency result for the two-type case. We will need some more
notation. Consider a function f : X → R, where X is an open subset of Rn. We
denote by ∂zf(x) the directional derivative of f at x in the direction z ∈ Rn, i.e.

∂zf(x) :=
∑
k

zk
∂f

∂xk
(x).

We say that A ∝ B if A and B have the same sign (A = λB, for some λ > 0).
Given an equilibrium vector of precisions τ , we investigate the welfare effects that

arise when we perturb this vector, and thereby perturb the REE associated with it
(for any given vector of precisions there is a unique linear REE, by Proposition 2.2).
In other words, a hypothetical planner chooses the signal precision for each type,
after which the market mechanism takes over. The cost functions {Ci}Ni=1 remain
unaltered in this exercise. Each agent pays the cost associated with the precision
assigned to him by the planner.

We define the gains from trade for type i as

Gi :=
Var(θi − p)

Var(θi)
.

Agents of type i have more profitable trading opportunities the greater the distance
between their own valuation θi and the overall market valuation, given by the equi-
librium price.7 We can decompose the effect of a local change in τ on the welfare of

7In our model, the distance between two random variables is measured by the variance of the
difference between these random variables.
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type i into two components, one arising from a change in price informativeness Vi
(the learning effect) and the other from a change in Gi (the gains from trade effect):

Lemma 5.1 (Welfare effects) At an equilibrium τ , we have

∂z logUi(τ) =
τθi|p

(1− Vi)(τi + τθi|p)
∂zVi(τ)︸ ︷︷ ︸

learning effect

+
1

Gi

∂zGi(τ)︸ ︷︷ ︸
gains from trade effect

.

All else equal, agents are better off if they are better informed. They are also better
off if they can reap higher gains from trade. The sign of the learning effect cannot
be the same for all types:

Lemma 5.2 (Learning effects) Consider a vector of precisions τ ∈ RN
++ such that

R>i τ > 0 for all i. Then ∂zVi(τ) ∝ ∂zVj(τ), for all i, j, if and only if ∂zVk(τ) = 0,
for all k.

In other words, a local change in τ cannot increase price informativeness for all
types, nor can it reduce price informativeness for all. The vector τ need not be an
equilibrium; the result applies for any τ ∈ RN

++ satisfying R>i τ > 0 for all i. We will
have more to say about this condition in the next section. For now we just note that
it holds if ρij ≥ 0 for all i, j.

Returning to Lemma 5.1, the key question is how the learning and gains from
trade effects interact. Indeed, there is a fundamental tension between them. If
the equilibrium price tracks the valuation of an agent closely, it will reveal more
information about that valuation. But the agent has more to gain from trade the
further his valuation is from the price. To take a stark example, suppose p = θi.
Then price informativeness is maximal for type i agents (Vi = 1), but there are no
gains from trade for these agents (Gi = 0); their optimal trade is zero. Such a price
function cannot arise in our model, of course (the price does not fully reveal θi for any
i, and gains from trade are positive for all i), but it serves to illustrate the tradeoff
between learning from prices and gains from trade.

A useful benchmark for investigating this tradeoff is a symmetric economy, by
which we mean an economy in which cost functions and pairwise correlations are the
same across types (Ci is the same for all i, and ρij = ρ for all i 6= j).

Proposition 5.3 (Symmetric economy) Consider a symmetric economy with cor-
relation parameter ρ ≥ 0. Then there is a unique equilibrium τ with the following
properties:

i. τi = τj, for all i, j;

ii. ∂zGi(τ) = −∂zVi(τ) and ∂z Ui(τ) ∝ −∂zVi(τ), for all i.

At the equilibrium of a symmetric economy, the learning and gains from trade effects
are collinear but of the opposite sign,8 with the latter dominating the first. A local

8An alternative way to express this relationship is ∇Gi(τ) = −∇Vi(τ), where ∇ denotes the
gradient vector with respect to τ .
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change in τ makes type i agents better off if and only if these agents learn less
from the price. This also means that at least one type must be worse off since
price informativeness cannot go down for all types (by Lemma 5.2). In other words,
different types exert externalities on each other in an exactly offsetting way, so that
the equilibrium allocation of private information is locally Pareto efficient.9

The welfare changes described in Proposition 5.3 are reminiscent of the so-called
Hirshleifer effect, insofar as better informed agents are worse off. However, in the
symmetric economy considered here, this effect does not go in the same direction
for all types. Indeed, a local change in τ either has no welfare effect, or the welfare
effects are of opposite sign for at least two types.

One way to interpret the local efficiency result for a symmetric economy is that
the planner has only N − 1 tools to control the N -dimensional objective {Ui}Ni=1.
Locally, utility depends only on price informativeness (the gains from trade effect
being collinear with the learning effect), which is homogeneous of degree zero in
τ . While the planner is free to choose any τ in a neighborhood of the equilibrium,
scaling this vector has no effect on the welfare of any agent. The aggregate amount
of information

∑
i τi is welfare-neutral; only the relative values of the τi’s matter.

Once we depart from symmetry, however, the possibility of a local (and hence
also global) Pareto improvement arises. In a non-symmetric economy, the planner
has an additional tool, the amount of information

∑
i τi, which affects the gains from

trade for each type. Our next result shows that a Pareto improvement can always
be found in the non-symmetric two-type case (with τ1 6= τ2; the assumption in the
proposition that τ1 < τ2 is without loss of generality):

Proposition 5.4 (Welfare) Suppose N = 2 and ρ ≥ 0. Consider an equilibrium
at which τ1 < τ2. Then there exists a strict local Pareto improvement which entails
an increase in both τ1 + τ2 and τ2/(τ1 + τ2).

By Proposition 4.2, there is a unique equilibrium. For ease of interpretation, let
us assume that C1 = C2. Then we have τ1 < τ2 at the equilibrium if and only
if α1 > α2. Thus type 2 can unambiguously be identified as the low-cost type.
Proposition 5.4 says that we can always find a local Pareto improvement that entails
more information production in the aggregate, with a higher proportion of that
information produced by the low-cost type.

Under the assumption of nonnegative ρ, there are negative learning externalities
across types. If one type acquires more information, the other type has an incentive
to acquire more information as well. Conversely, if one type cuts back on information
production, the other type will also want to do that. This suggests that, in equi-
librium, information acquisition decisions are more closely aligned than is socially
optimal. Proposition 5.4 tells us that this is indeed true: a Pareto improvement
entails a greater differentiation between the two types in terms of the proportion of

9However, it is not Pareto efficient in general. It is easy to check numerically that, for some
parameter values, a large (non-local) change in τ can make all types better off.
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information they collect, with the low-cost type acquiring a greater proportion of the
total than in equilibrium.10

It is instructive to compare this inefficiency result with the one in Rahi and Zi-
grand (2018)(RZ). In RZ, all private signals have the same exogenously specified
precision. Agents of type i can either pay a fixed cost ci for their signal, or remain
uninformed; the highest cost is borne by type N . In equilibrium, the proportion of
informed agents of type i is λi. RZ consider a corner equilibrium in which λi = 1
for all i 6= N , and perturb λN while keeping the remaining λi’s fixed at 1. They
show that, if private signals are sufficiently noisy, a reduction in λN is Pareto im-
proving. This suggests that there is overproduction of information in equilibrium,
while Proposition 5.4 points to the opposite conclusion. The two results should be
considered complementary rather than contradictory, however, since they apply in
different settings (binary vs continuous choice of information). The results do share
one common feature — the proposed Pareto improvement involves pushing the in-
formation choices of different types further apart (increasing λi−λN , i 6= N , in RZ’s
result, and (τ2 − τ1)/(τ1 + τ2) in Proposition 5.4).

6 Strategic Complementarities

In this section we lay the groundwork for a general analysis of equilibrium with
arbitrarily many types. Recall that τin(τ) is the optimal precision for agent in, given
the precision choices of all other agents.

Definition 6.1 The economy exhibits strategic complementarities in information ac-
quisition if ∂τin(τ)/∂τj > 0, for all i 6= j.

Henceforth, we will drop the modifier “in information acquisition” for the sake of
brevity. There are strategic complementarities if the optimal precision choice for any
agent is increasing in the precision choices of agents of other types. This is a key
property that underlies (most of) our results. The following lemma is immediate
from (9) and (12):

Lemma 6.1 (Strategic complementarities) The economy exhibits strategic com-
plementarities if and only if ∂Vi/∂τj < 0 for all i 6= j.

Thus strategic complementarities are equivalent to negative learning externalities
across types. The assumption of nonnegative ρ is sufficient for strategic complemen-
tarities in the two-type case (Proposition 4.1). We will generalize this condition to

10Since there are negative learning externalities, one might surmise that agents collect too much
information in equilibrium, and welfare gains can be realized by curbing this activity. This reasoning
is flawed on several counts. First, scaling down (τ1, τ2) has no effect on price informativeness.
Second, a change in the ratio τ1/τ2 leads to price informativeness going up for one type and down
for the other. Third, higher price informativeness does not necessarily make agents better off;
indeed, in the symmetric case, agents who learn more from prices are worse off (Proposition 5.3).
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allow for negative correlation, and provide conditions for three or more types. These
conditions involve restrictions on the correlation matrix R that get more stringent as
the number of types increases. Roughly speaking, strategic complementarities arise
if the correlations between types exceed a lower bound ρ (which is negative), and are
close to each other.

A change in the precision of type i’s signal affects price informativeness for all
types. We refer to ∂Vi/∂τi as an “own-effect” and to ∂Vi/∂τj for i 6= j as a “cross-
effect”. Lemma 6.1 says that the economy exhibits strategic complementarities if
and only if all cross-effects are negative. Since Vi is homogeneous of degree zero in
τ , we have ∑

j

τj
∂Vi
∂τj

= 0,

by Euler’s theorem. It follows that, in an economy that exhibits strategic comple-
mentarities, ∂Vi/∂τi > 0 for all i. In other words, if all cross-effects are negative,
then all own-effects must be positive. For N = 2, the converse is true as well.

We will analyze these effects shortly. But first we need to take a closer look at
the relationship between correlations and precisions.

Lemma 6.2 Suppose the economy exhibits strategic complementarities for any vec-
tor of precisions τ ∈ RN

++. Then, if N = 2, we must have ρ ≥ 0. If N ≥ 3, we must
have ρij = 0 for all i 6= j.

In other words, if we insist on strategic complementarities for any (positive) vector
of precisions, we cannot improve upon the nonnegative correlation condition that
we used in our earlier results for the two-type case. Moreover, if there are three
or more types, we have to reconcile ourselves to the rather stringent requirement of
uncorrelated valuations. Lemma 6.2 is essentially a consequence of having to allow
precisions that are arbitrarily close to zero. Fortunately, by imposing a mild condition
on R that bounds it away from singularity, we can ensure that an equilibrium vector
of precisions is bounded away from zero. We can then provide additional conditions
on R such that the economy exhibits strategic complementarities. These conditions
are much weaker than those in Lemma 6.2.

Let R be the set of N -dimensional positive definite correlation matrices, an open
convex set. The closure of R, denoted by cl(R), is the set of positive semidefinite
correlation matrices. The boundary of R is the set of correlation matrices in cl(R)
with zero determinant. Let Rη be the subset of R consisting of correlation matrices
R for which det(R) ≥ η for some η ∈ (0, 1). As η goes to zero, Rη approaches R.

Lemma 6.3 (Precision bounds) Suppose R ∈ Rη for some η ∈ (0, 1). Then there
are positive scalars τ and τ̄ , that are independent of R ∈ Rη and α ∈ A, such that
τi ∈ [τ , τ̄ ] for all i. We have limη→0 τ = 0. Furthermore, if Ci is the same for all
types, then limτθ→0(τ/τ̄) > α/ᾱ.

Let T := N
i=1[τ , τ̄ ], the N -fold Cartesian product of the interval [τ , τ̄ ]. Lemma 6.3

tells us that if R ∈ Rη, then τ ∈ T . If η is close to zero, so is the lower bound τ .
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This is essentially a Grossman-Stiglitz paradox in the limit: an agent has very little
incentive to gather information if his valuation is almost perfectly correlated with
that of some other agent who does acquire information.

Henceforth, when we invoke the assumption that R ∈ Rη, we presuppose some
fixed level of η ∈ (0, 1). If ρij = ρ for all i 6= j, R is positive definite if and only if

− 1

N − 1
< ρ < 1 (16)

(see Rahi and Zigrand (2018), Lemma 6.5); in this case R ∈ Rη amounts to the
assumption that ρ ∈ [κ, κ̄], for some κ, κ̄ satisfying −(N − 1)−1 < κ < κ̄ < 1.
Specializing further to the case of N = 2, the condition R ∈ Rη is equivalent to
|ρ| ≤

√
1− η.

With τ restricted to T , we look for conditions on R under which the economy
exhibits strategic complementarities, or equivalently negative cross-effects.11 A nec-
essary condition is positive own-effects. Own-effects are positive on T if correlations
exceed a threshold level ρ given by

ρ := − τ

(N − 1)τ̄
.

Lemma 6.4 (Positive own-effects) ∂Vi/∂τi > 0 if and only if R>i τ > 0. Further-
more, if R ∈ Rη, a sufficient condition for R>i τ > 0 for all i and all τ ∈ T is ρij > ρ
for all i, j.

The lower bound ρ satisfies

− 1

N − 1
< ρ < 0.

Note that if all pairwise correlations are the same, this common value must be greater
than −(N − 1)−1 for R to be positive definite (condition (16)). Also, ρ converges
to zero as η goes to zero (due to the corresponding limiting property of τ noted in
Lemma 6.3).

Positive own-effects imply that the coefficient µ of the price function p = µ τ>θ
is positive:

Lemma 6.5 (Price function) Consider a vector of precisions τ ∈ RN
++ such that

R>i τ > 0 for all i. Then the coefficient µ of the price function is positive.

This is immediate from the expression for µ, given by (5). Moreover, since Cov(θi, p) =
µR>i τ , positive own-effects imply that the valuation of any type is positively corre-
lated with the REE price function. Another consequence of positive own-effects,
from Lemma 5.2, is that price informativeness cannot change in the same direction
for all types when we perturb τ .

11Even though we restrict τ to lie in the compact set T , the derivative ∂Vi/∂τj is well-defined on
an open set containing T , and hence on the boundary of T .
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To summarize the discussion so far, strategic complementarities are equivalent
to negative cross-effects (if one type gathers more information, price informativeness
goes down for all other types). A necessary condition for this is positive own-effects (if
a given type gathers more information, price informativeness goes up for that type).
Positive own-effects imply that the coefficient µ of the price function is positive. They
also imply that a local change in precisions leads to price informativeness going up
for some types and down for others (or remaining unchanged for all types, as in the
case of the precision vector τ being scaled up or down).

As we noted earlier, in the two-type case positive own-effects are not only nec-
essary for strategic complementarities, but also sufficient (due to Euler’s theorem).
By Lemma 6.4, the condition that all correlations exceed ρ suffices for positive own-
effects on T . In the two-type case, this lower bound condition is in fact necessary:

Proposition 6.6 (Complementarities: two types) Suppose N = 2 and |ρ| ≤√
1− η , for some η ∈ (0, 1). Then the economy exhibits strategic complementarities

on T if and only if ρ > ρ.

Propositions 4.1, 4.2, 4.3 and 5.4 rely on strategic complementarities, for which
ρ ≥ 0 is a sufficient condition. In light of Proposition 6.6, we can generalize these
results by replacing the nonnegative ρ assumption with the weaker assumption that
|ρ| ≤

√
1− η for some η ∈ (0, 1), and ρ > ρ. The latter condition reduces to ρ ≥ 0

if we take η to be arbitrarily small, since limη→0 ρ = 0.12

When there are three or more types, we need additional restrictions on R to ensure
that cross-effects are negative. Recall that, under the assumption that R ∈ Rη, we
have τi ∈ [τ , τ̄ ] for all i. Let

δ :=
τ

τ̄
.

The parameter δ lies in (0, 1).

Proposition 6.7 (Complementarities: three or more types) Suppose N ≥ 3
and R ∈ Rη. Then the economy exhibits strategic complementarities on T if any of
the following conditions is satisfied:

i. For all i 6= j,

ρ < ρij ≤
ρ2

ρ2 + (1− ρ2)(N − 2)2
; (17)

ii. δ ≥ 1/2 and, for all i 6= j,

ρ̌ ≤ ρij ≤ 1− (1− ρ̌2)(N − 2)2

(1 + ρ̌)δ2 + 2ρ̌(N − 2)δ + (N − 2)2
, (18)

for some ρ̌ ∈ [0, 1);

12We can also relax the assumption of nonnegative ρ in Proposition 5.3, assuming instead that
R ∈ Rη and ρ > ρ, which implies that own-effects are positive on T . We do not need strategic
complementarities for this result.
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iii. For all i 6= j, ρij = ρ > ρ. Furthermore, if δ < 1/2, then

ρ ≤ δ2

(1− 2δ)(N − 1)
. (19)

GivenR ∈ Rη, the condition that ρij > ρ for all i, j ensures that all own-effects are
positive on T , by Lemma 6.4. For cross-effects to be negative on T , low or negative
correlations suffice (condition (i)). An alternative condition is that δ ≥ 1/2, and
all correlations are nonnegative and close to each other (condition (ii)); we provide
examples below. Note that the upper bound in (18) is decreasing in N . If ρij = ρ
for all i 6= j, two cases arise. If δ ≥ 1/2, there is no further restriction. If δ < 1/2,
we require an upper bound on ρ, given by (19).

The conditions in Proposition 6.7 involve the precision bounds τ and τ̄ , since
δ = τ/τ̄ and ρ = −(N − 1)−1τ/τ̄ . This is to be expected since these are conditions

for negative cross-effects on T := N
i=1[τ , τ̄ ]. The precision bounds depend on the

exogenous primitives r, α, ᾱ, {Ci}Ni=1, τθ, and η (see the proof of Lemma 6.3). By
Lemma 6.3, if Ci is the same for all types, then limτθ→0 δ > α/ᾱ. Therefore, δ ≥
1/2 if α/ᾱ ≥ 1/2, the functions {Ci} are not very dissimilar across types, and the
uncertainty regarding valuations is large (τθ is small).

While there is no explicit solution for δ or ρ in terms of the primitives, we can
check if the conditions in the proposition are satisfied for a particular economy, as
we illustrate in the following example:

Example 6.1 For this example, we need to refer to the proof of Lemma 6.3, in
particular to equations (35)–(37).

Suppose r = 1, Ci(τi) = (1/12)τ 2
i for all i, and α = 3. Suppose further that

τθ = 1 − V̄ , where V̄ is the maximal price informativeness for any type, as defined
by (36).13 From (35) and (37), the bounds for τi are given by

τ̄ = 1, τ =
1

2

[
−1 +

√
1 +

12

ᾱ

]
.

Therefore, δ = τ/τ̄ ≥ 1/2 if and only if ᾱ ∈ (α, 4] = (3, 4].
Now suppose N = 3. If we take ᾱ = 4, we get δ = 1/2 and ρ = −δ/2 = −1/4.

Condition (17) reduces to
ρ < ρij ≤ ρ2,

while condition (18) becomes

0 ≤ ρ̌ ≤ ρij ≤ 0.2 + 0.8ρ̌.

The economy exhibits strategic complementarities if R ∈ Rη and any of the following
conditions holds for all i 6= j:

13This choice of τθ is convenient since it implies that τ , and hence ρ, does not depend on η. It
does mean, however, that τθ depends on η, with limη→0 τθ = 0.
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i. ρij ∈ (−0.25, 0.0625];

ii. ρij ∈ [0.25, 0.4], or ρij ∈ [0.75, 0.8];

iii. ρij = ρ ∈ (−0.25, 1).

In (ii), we have chosen two values of ρ̌, 0.25 and 0.75, for illustration. The restriction
R ∈ Rη can be written as det(R) ≥ η, or equivalently

ρ2
12 + ρ2

13 + ρ2
23 − 2ρ12ρ13ρ23 ≤ 1− η. (20)

Suppose we choose η = 0.1. Then it is easy to check that any R satisfying condition
(i) or (ii) also satisfies (20). If ρij = ρ for i 6= j, (20) is satisfied if ρ ∈ [−0.47, 0.8];
for comparison, the positive definiteness condition is ρ ∈ (−0.5, 1), from (16). Thus,
while any R satisfying (iii) is positive definite, imposing (20) restricts ρ to the interval
(−0.25, 0.8]. ‖

7 Equilibrium: The General Case

In this section we characterize the equilibrium allocation of private information for
arbitrarily many types, providing conditions for existence of equilibrium, and study-
ing comparative statics with respect to the cost parameters α ∈ A. Our comparative
statics results generalize those that we obtained earlier for the two-type case (Propo-
sition 4.3).

We say that an equilibrium τ (which must be in RN
++) satisfies the monotone

comparative statics (MCS) property if τ is decreasing in α, α ∈ A. It satisfies
the strong MCS property if ∂τi/∂αj < 0, for all αj ∈ (α, ᾱ), and for all i, j. An
equilibrium τ̂ is the highest equilibrium if τ̂ ≥ τ for any equilibrium τ . Similarly, an
equilibrium τ̌ is the lowest equilibrium if τ̌ ≤ τ for any equilibrium τ .

Proposition 7.1 (Existence, comparative statics) Suppose R ∈ Rη and the
economy exhibits strategic complementarities on T . Then there exists a highest equi-
librium τ̂ and a lowest equilibrium τ̌ . Both τ̂ and τ̌ satisfy the MCS property.

The highest and lowest equilibrium may coincide, in which case there is a unique
equilibrium (as in the two-type case; see Proposition 4.2). The MCS property is
valid for any change of α in A, not just for a local change. It relies on a theorem in
Milgrom and Shannon (1994). In our model the MCS property can be strengthened
to the strong MCS property:

Lemma 7.2 (Strong MCS) Suppose R ∈ Rη and the economy exhibits strategic
complementarities on T . Then an equilibrium τ satisfies the MCS property if and
only if it satisfies the strong MCS property.
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Thus ∂τi/∂αj < 0, for all αj ∈ (α, ᾱ), and for all i, j. A decrease in αj induces all
agents to collect more private information. Type j agents increase τj in response
to the lower αj. This makes prices less informative for all other types, who in turn
gather more information. This feeds back into less informative prices for type j
agents, causing them to increase τj further.

It is apparent from (13) that for types other than j a higher precision choice
must be accompanied by a decrease in price informativeness — since there is no
change in the cost function of these agents, they can only be induced to collect more
private information if they learn less from the price. But price informativeness cannot
decrease for all types (Lemma 5.2), so it must go up for type j. This is formalized
in our last result (remember that the thought experiment here involves a decrease in
αj):

Proposition 7.3 (Comparative statics II) Suppose R ∈ Rη and the economy
exhibits strategic complementarities on T . Then, for any equilibrium that satisfies
the MCS property, we have ∂Vj/∂αj < 0 and ∂Vi/∂αj > 0, for all αj ∈ (α, ᾱ) and
for all i 6= j.

8 Concluding Remarks

In an economy with heterogeneous valuations, agents make inferences about their
own valuation from the equilibrium price. Under natural conditions, more informa-
tion acquisition by one type leads to lower price informativeness for all other types.
One consequence of this externality is that a lower cost of information for one type
induces all agents to produce more information.

Lower price informativeness tends to raise welfare. This is because gains from
trade for an agent are higher the further away his valuation is from the equilibrium
price. In general, an equilibrium allocation of private information is Pareto inefficient.
In the case of two types who differ in their cost of information, we can always find a
Pareto improvement that entails an increase in the aggregate amount of information,
with a higher proportion produced by the low-cost type.

Our existence and comparative statics results are fairly general (for the linear-
normal setting). But the welfare analysis is harder and leaves a number of ques-
tions unanswered. For the two-type case we describe a Pareto improvement in the
neighborhood of an equilibrium. Characterizing the Pareto frontier remains an open
question, however, as does the case of more than two types.
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Appendix

In the proofs it will often be useful to work with relative precisions, given by

τ̊i :=
τi∑
k τk

,

for type i. We denote the vector of relative precisions by τ̊ := (̊τi)
N
i=1.

Proof of Proposition 2.2 Conjecturing that the price function takes the form
p = a>θ for some nonzero vector a, and that Var(θi|p) > 0 for all i, we showed in
the main text that qi is given by (4). Using the market-clearing condition

∑
i qi = 0,

we obtain the price function p = µ̂ τ>θ, where µ̂ := (
∑

i µi)
−1. This verifies the

conjecture, provided µ̂ is well-defined (i.e. finite) and nonzero. Assuming that these
conditions are satisfied, we proceed to calculate µ̂. From (3),

µi = τi + τθi|p

[
1− µ̂−1 R>i τ

τ>Rτ

]
.

Therefore,

µ̂−1 =
∑
i

µi =
∑
i

(τi + τθi|p)− µ̂−1
∑
i

τθi|p
R>i τ

τ>Rτ
.

It follows that

µ̂ =
1 +

∑
k τθk|p

[
R>
k τ

τ>Rτ

]
∑

j(τj + τθj |p)

=

∑
k(τk + τθk|p)

R>
k τ

τ>Rτ∑
j(τj + τθj |p)

=
∑
k

βk
R>k τ

τ>Rτ
,

which is equal to µ (defined in (5)). This expression is clearly finite. We do, however,
need to assume that it is nonzero. If µ = 0, there is no equilibrium; calculating qi
when p ≡ 0, we can easily verify that this price function does not clear markets.

The price function can also be obtained directly from Proposition 3.2 of Rahi and
Zigrand (2018) (RZ), applying this result for the case in which all types are differen-
tially informed and all agents of all types acquire information (in RZ’s notation, we
set σ2

ηi
= 0, λi = 1, and ri = r, for all i).14 RZ show that this is the unique linear

REE. In particular, there is no linear equilibrium in which the price is fully revealing
for some type. Price informativeness Vi is the same as in RZ, with τ playing the role

14RZ’s result requires the assumption that the coefficient µ of the price function (which is k in
their notation) is nonzero, a point that they overlook.
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of RZ’s λ. �

Proof of Lemma 3.2 Equation (9) follows from the first-order condition:

∂Uin
∂τin

= exp
[
−2rαiCi(τin)

][
1− 2rαiC

′
i(τin)(τin + τθi|p)

]
Var(θi − p) = 0.

Since C ′ is increasing and C ′(0) = 0, there is a unique solution τ ∗in to (9), and it is
positive. Furthermore,

∂2Uin
∂τ 2

in

∝ −C ′(τin)
[
1− 2rαiC

′
i(τin)(τin + τθi|p)

]
− C ′′i (τin)(τin + τθi|p)− C ′i(τin),

which is negative at τ ∗in since C ′ ≥ 0 and C ′′ > 0 (the symbol ∝ means “has the same
sign as”). Hence, τ ∗in is a local maximum. Indeed, it must be the global maximum
because ∂Uin/∂τin is positive for τin ∈ [0, τ ∗in) and negative for τin ∈ (τ ∗in,∞). �

Proof of Proposition 4.2 Existence follows from Proposition 7.1 which we prove
later. The argument for properties (i) and (ii) is in the main text. To show unique-
ness, consider equilibria (τ1, τ2) and (τ ′1, τ

′
2), with corresponding price informativeness

(V1,V2) and (V ′1,V ′2). Suppose τ1/τ2 6= τ ′1/τ
′
2; without loss of generality, suppose that

τ1/τ2 > τ ′1/τ
′
2. This gives us the following chain of implications (the subscripted

number indicates the equations/inequalities from which the implication follows):

τ1

τ2

>
τ ′1
τ ′2

⇒(15) V1 > V ′1, V2 < V ′2 ⇒(13) τ1 < τ ′1, τ2 > τ ′2 ⇒ τ1

τ2

<
τ ′1
τ ′2
,

a contradiction. Hence,

τ1

τ2

=
τ ′1
τ ′2

⇒(14) V1 = V ′1, V2 = V ′2 ⇒(13) τ1 = τ ′1, τ2 = τ ′2,

thus proving uniqueness. �

Proof of Proposition 4.3 Suppose ∂τ2/∂α1 ≥ 0. Then we have the following
chain of implications (the subscripted number indicates the equations/inequalities
from which the implication follows):

∂τ2

∂α1

≥ 0 ⇒(13)
∂V2

∂α1

≤ 0 ⇒(15)
∂V1

∂α1

≥ 0 ⇒(13)
∂τ1

∂α1

< 0.

The first and last inequalities together imply that

∂(τ1/τ2)

∂α1

< 0 ⇒(15)
∂V1

∂α1

< 0,

which contradicts the sign of ∂V1/∂α1 in the previous chain. Hence ∂τ2/∂α1 < 0,
giving us the following chain:

∂τ2

∂α1

< 0 ⇒(13)
∂V2

∂α1

> 0 ⇒(15)
∂V1

∂α1

< 0 ⇒(15)
∂(τ1/τ2)

∂α1

< 0.
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The first and last inequalities in this chain imply that ∂τ1/∂α1 < 0. �

Proof of Lemma 5.1 The indirect utility of type i, for any τ ∈ RN
++, is given by

(10). Using the definition of Gi and taking logs, we have

logUi = log(τi + τθi|p) + logGi − 2rαiCi(τi)− log τθ.

Differentiating this expression with respect to τk, and using (11), we obtain (the
indicator function 1i=k takes value 1 when i = k, and is 0 otherwise):

∂ logUi
∂τk

= (τi + τθi|p)
−1

[
1i=k +

∂τθi|p
∂τk

]
+G−1

i

∂Gi

∂τk
− 2rαiC

′
i(τi)1i=k

= (τi + τθi|p)
−1 ∂τθi|p

∂τk
+G−1

i

∂Gi

∂τk
.

Recalling that τθi|p = τθ(1− Vi)−1, we have

∂τθi|p
∂τk

= τθ(1− Vi)−2 ∂Vi
∂τk

= τθi|p(1− Vi)−1 ∂Vi
∂τk

.

Hence,
∂ logUi
∂τk

=

[
τθi|p

(1− Vi)(τi + τθi|p)

]
∂Vi
∂τk

+G−1
i

∂Gi

∂τk
.

The result follows. �

Proof of Lemma 5.2 Differentiating (8), we obtain:

∂Vi
∂τj

=
2ρij(τ

>Rτ)(R>i τ)− 2(R>i τ)2(R>j τ)

(τ>Rτ)2

=
2

τ>Rτ

[
ρijR

>
i τ − Vi(R>j τ)

]
. (21)

Hence we can write ∂zVi as follows:

∂zVi :=
∑
j

zj
∂Vi
∂τj

=
2

τ>Rτ

[
(R>i τ)(R>i z)− Vi(τ>Rz)

]
=

2(R>i τ)(τ>Rz)

τ>Rτ

[
R>i z

τ>Rz
− R>i τ

τ>Rτ

]
.

Invoking the assumption that R>i τ > 0 for all i, we have∑
i

τi
R>i τ

(∂zVi) = 0.
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The result follows. �

Proof of Proposition 5.3 Consider a symmetric economy with cost function C
for all types. From Lemma 3.3, τ is an equilibrium vector of precisions if and only if

2rC ′(τi)
[
τi + τθ(1− Vi)−1

]
= 1, (22)

for all i. Also, since ρij = ρ for all i 6= j, price informativeness for type i (from (8))
is given by

Vi =

[
(1− ρ)τi + ρ

∑
k τk
]2

(1− ρ)
∑

k τ
2
k + ρ

(∑
k τk
)2 . (23)

We claim that at an equilibrium τ , τi = τj for all i, j. Suppose not. Then τi > τj
for some i, j, and hence, from (23), Vi > Vj (using the assumption that ρ ≥ 0). But
then (22) implies that τi < τj, a contradiction. This proves that τi is the same for
all i, which we denote by τ ∗. From (23), Vi is also the same for all i, and is given by

V∗ :=
1 + ρ(N − 1)

N
,

which does not depend on τ ∗. From (22), τ ∗ is the unique solution to

2rC ′(τ ∗)
[
τ ∗ + τθ(1− V∗)−1

]
= 1.

In order to prove statement (ii) of the proposition, we first compute Gi. We do
this for an arbitrary τ ∈ RN

++, as we will need the general expression for our later
results. It is convenient to write the price function as p = ξ τ̊>θ, where ξ := µ

∑
k τk

(recall the τ̊ is the vector of relative precisions, defined at the beginning of the
Appendix). We have

Var(θi − p) = Var(θi) + Var(p)− 2Cov(θi, p)

= Var(θi)
[
1 + ξ2τ̊>R τ̊ − 2ξR>i τ̊

]
,

so that

Gi :=
Var(θi − p)

Var(θi)
= 1 + τ̊>R τ̊

[
ξ2 − 2ξ

R>i τ̊

τ̊>R τ̊

]
= 1− (R>i τ̊)2

τ̊>R τ̊
+ τ̊>R τ̊

[
ξ2 − 2ξ

R>i τ̊

τ̊>R τ̊
+

(
R>i τ̊

τ̊>R τ̊

)2
]

= 1− Vi + (̊τ>R τ̊)φ2
i , (24)

where

φi := ξ − R>i τ̊

τ̊>R τ̊
.
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From (5),

ξ := µ
∑
k

τk =
∑
k

βk
R>k τ̊

τ̊>R τ̊
.

Hence we can write φi as follows:

φi =

∑
k βk(Rk −Ri)

>τ̊

τ̊>R τ̊
. (25)

We now apply these results to a symmetric economy with equilibrium τ . Since
all pairwise correlations are the same, and all types choose the same precision, R>k τ̊
is the same for all k. From (25), φi = 0, and hence, from (24), ∂Gi/∂τj = −∂Vi/∂τj
for all j, or equivalently ∂zGi = −∂zVi for all directions z ∈ RN . Using Lemma 5.1,
we have

∂z logUi(τ) =

[
τθi|p

(1− Vi)(τi + τθi|p)
− 1

Gi

]
∂zVi(τ).

Since Gi = 1− Vi, from (24), ∂z logUi(τ) ∝ −∂zVi(τ). �

Proof of Proposition 5.4 For this proof it is convenient to parametrize agents’
welfare by τ̊1 := τ1/(τ1 + τ2) and ψ := τ1 + τ2 (instead of τ1 and τ2), and define
∂zf := z1

∂f
∂τ̊1

+ z2
∂f
∂ψ

. We have

R>i τ̊ = (1− ρ)̊τi + ρ,

τ̊>R τ̊ = (1− ρ)(̊τ 2
1 + τ̊ 2

2 ) + ρ,

so that

1− Vi = 1− (R>i τ̊)2

τ̊>R τ̊
=

(1− ρ2)̊τ 2
j

τ̊>R τ̊
, j 6= i, (26)

which does not depend on ψ. Differentiating with respect to τ̊1, we obtain

∂zV1 =
∂V1

∂τ̊1

z1 =
2(1− ρ2)(R>1 τ̊ )̊τ2

(̊τ>R τ̊)2
z1 =

2(1− V1)(R>1 τ̊)

τ̊2(̊τ>R τ̊)
z1, (27)

and, similarly,

∂zV2 =
∂V2

∂τ̊1

z1 = −2(1− V2)(R>2 τ̊)

τ̊1(̊τ>R τ̊)
z1. (28)

From (25),

φ1 = −(1− ρ)(̊τ1 − τ̊2)β2

τ̊>R τ̊
,

φ2 =
(1− ρ)(̊τ1 − τ̊2)β1

τ̊>R τ̊
.

Hence, from (24),
Gi = 1− Vi +Hβ2

j , j 6= i,
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where

H :=
(1− ρ)2(̊τ1 − τ̊2)2

τ̊>R τ̊
.

Since H does not depend on ψ, we have

∂zH =
∂H

∂τ̊1

z1 =
2(1− ρ)2(1 + ρ)(̊τ1 − τ̊2)

(̊τ>R τ̊)2
z1,

and hence (for j 6= i),

∂zGi = −∂zVi + β2
j ∂zH + 2Hβj∂zβj

= −∂zVi +
2(1− ρ)2(̊τ1 − τ̊2)βj

[
(1 + ρ)βjz1 + (̊τ1 − τ̊2)(̊τ>R τ̊)∂zβj

]
(̊τ>R τ̊)2

.

Using Lemma 5.1 (for j 6= i),

∂zUi ∝ τθi|pGi ∂zVi + (1− Vi)(τi + τθi|p) ∂zGi

=
[
τθi|p(1− Vi +Hβ2

j )− (1− Vi)(τi + τθi|p)
]
∂zVi + (1− Vi)(τi + τθi|p)

[
∂zVi + ∂zGi

]
=
[
Hβ2

j τθi|p − (1− Vi)τi
]
∂zVi + (1− Vi)(τi + τθi|p)

[
∂zVi + ∂zGi

]
∝
[
(1− ρ)(̊τ1 − τ̊2)2β2

j τθi|p − (1 + ρ)τiτ̊
2
j

]
(̊τ>R τ̊)∂zVi

+ 2(1− ρ)(1− Vi)(τi + τθi|p)(̊τ1 − τ̊2)βj
[
(1 + ρ)βjz1 + (̊τ1 − τ̊2)(̊τ>R τ̊)∂zβj

]
∝
[
(1− ρ)(τ1 − τ2)2β2

j τθi|p − (1 + ρ)τiτ
2
j

]
(̊τ>R τ̊)∂zVi

+ 2(1− ρ)(1− Vi)(τi + τθi|p)(τ
2
1 − τ 2

2 )βj
[
(1 + ρ)βjz1 + (̊τ1 − τ̊2)(̊τ>R τ̊)∂zβj

]
.

Substituting from (27) and (28), we obtain ∂zUi ∝ Li, where

L1 :=
[
(1− ρ)(τ1 − τ2)2β2

2τθ1|p − (1 + ρ)τ1τ
2
2

]
(R>1 τ)τ1z1

+ (1− ρ)(τ1 + τθ1|p)(τ
2
1 − τ 2

2 )τ1τ2β2

[
(1 + ρ)β2z1 + (̊τ1 − τ̊2)(̊τ>R τ̊)∂zβ2

]
=
(

(1− ρ)(τ1 − τ2)τ1β
2
2

[
(τ>Rτ)τθ1|p + (1 + ρ)(τ1 + τ2)τ1τ2

]
− (1 + ρ)(R>1 τ)τ 2

1 τ
2
2

)
z1

+ (1− ρ)(τ1 + τθ1|p)(τ1 − τ2)2(̊τ>R τ̊)τ1τ2β2(∂zβ2),

L2 := −
[
(1− ρ)(τ1 − τ2)2β2

1τθ2|p − (1 + ρ)τ 2
1 τ2

]
(R>2 τ)τ2z1

+ (1− ρ)(τ2 + τθ2|p)(τ
2
1 − τ 2

2 )τ1τ2β1

[
(1 + ρ)β1z1 + (̊τ1 − τ̊2)(̊τ>R τ̊)∂zβ1

]
=
(

(1− ρ)(τ1 − τ2)τ2β
2
1

[
(τ>Rτ)τθ2|p + (1 + ρ)(τ1 + τ2)τ1τ2

]
+ (1 + ρ)(R>2 τ)τ 2

1 τ
2
2

)
z1

+ (1− ρ)(τ2 + τθ2|p)(τ1 − τ2)2(̊τ>R τ̊)τ1τ2β1(∂zβ1)

=
(

(1− ρ)(τ1 − τ2)τ2β
2
1

[
(τ>Rτ)τθ2|p + (1 + ρ)(τ1 + τ2)τ1τ2

]
+ (1 + ρ)(R>2 τ)τ 2

1 τ
2
2

)
z1

− (1− ρ)(τ1 + τθ1|p)(τ1 − τ2)2(̊τ>R τ̊)τ1τ2β2(∂zβ2).

The last equality follows from the observation that (τ1 + τθ1|p)β2 = (τ2 + τθ2|p)β1, and
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∂zβ1 + ∂zβ2 = 0. We can write the equations for L1 and L2 compactly as follows:[
L1

L2

]
=

[
a1 b
a2 −b

] [
z1

∂zβ2

]
(29)

=

[
a1 b
a2 −b

] [
1 0
∂β2
∂τ̊1

∂β2
∂ψ

] [
z1

z2

]
, (30)

where

a1 = (1− ρ)(τ1 − τ2)τ1β
2
2

[
(τ>Rτ)τθ1|p + (1 + ρ)(τ1 + τ2)τ1τ2

]
− (1 + ρ)(R>1 τ)τ 2

1 τ
2
2 ,

a2 = (1− ρ)(τ1 − τ2)τ2β
2
1

[
(τ>Rτ)τθ2|p + (1 + ρ)(τ1 + τ2)τ1τ2

]
+ (1 + ρ)(R>2 τ)τ 2

1 τ
2
2 ,

b = (1− ρ)(τ1 + τθ1|p)(τ1 − τ2)2(̊τ>R τ̊)τ1τ2β2.

A direction z is strictly Pareto improving if and only if both L1 and L2 are positive.
We claim that both the 2 × 2 matrices in (30) are nonsingular. As to the first

matrix, we have b 6= 0, given our assumption that τ1 < τ2, so it suffices to show that
a1 + a2 6= 0. Indeed,

a1 + a2 = (1− ρ)(τ1 − τ2)

·
(

(τ>Rτ)
[
τ1β

2
2τθ1|p + τ2β

2
1τθ2|p

]
+ (1 + ρ)τ1τ2

[
(τ1 + τ2)(τ1β

2
2 + τ2β

2
1)− τ1τ2

])
.

Moreover,

(τ1 + τ2)(τ1β
2
2 + τ2β

2
1)− τ1τ2 ∝ τ̊1β

2
2 + τ̊2β

2
1 − τ̊1τ̊2

= τ̊1β
2
2 + (1− τ̊1)β2

1 − τ̊1(1− τ̊1)

= τ̊1(β2
2 − β2

1 − 1 + τ̊1) + β2
1

= τ̊1(̊τ1 − 2β1) + β2
1

= (̊τ1 − β1)2,

which is nonnegative. Therefore, a1 + a2 ∝ τ1 − τ2 < 0. Turning now to the second
matrix, we have

β2 =
τ2 + τθ2|p

τ1 + τ2 + τθ1|p + τθ2|p

=
ψ(1− τ̊1) + τθ2|p
ψ + τθ1|p + τθ2|p

. (31)

Using (12) and (26),

∂β2

∂ψ
=

β1 − τ̊1

ψ + τθ1|p + τθ2|p

∝
τ1 + τθ1|p

ψ + τθ1|p + τθ2|p
− τ1

ψ

∝ τ2τθ1|p − τ1τθ2|p

∝ τ2(1− V1)−1 − τ1(1− V2)−1

∝ τ1 − τ2, (32)
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which is nonzero. This completes the verification of the claim that both the 2 × 2
matrices in (30) are nonsingular. Hence, there exists a vector z such that L1 and L2

are both positive. This is a strictly Pareto improving direction. Moreover, for any
such direction z, L1 + L2 must be positive. Since

L1 + L2 = (a1 + a2)z1 ∝ (τ1 − τ2)z1,

it follows that z1 < 0.
In order to determine the sign of z2, we invoke the assumption that ρ ≥ 0, which

implies that both R>1 τ̊ and R>2 τ̊ are positive. Then a1 < 0. We also have b > 0 (this
is true even without the assumption of nonnegative ρ), while the sign of a2 is not
pinned down. From (31), we have

∂β2

∂τ̊1

=
−ψ + β1

∂τθ2|p
∂τ̊1
− β2

∂τθ1|p
∂τ̊1

ψ + τθ1|p + τθ2|p
.

Using (12), (27) and (28),

∂τθ1|p
∂τ̊1

∝ ∂V1

∂τ̊1

> 0,

∂τθ2|p
∂τ̊1

∝ ∂V2

∂τ̊1

< 0.

It follows that ∂β2/∂τ̊1 < 0. From (32), ∂β2/∂ψ < 0 as well.
Now consider a strictly Pareto improving direction z. We have already established

that such a direction exists, and it has the property that z1 < 0. Recall that a1 < 0
and b > 0. Two cases arise, depending on the sign of a2. If a2 < 0, we can choose
z2 such that ∂zβ2 = 0. From (29), Li = aiz1, which is positive for both types. If, on
the other hand, a2 ≥ 0, we have a2z1 ≤ 0. Hence, in this case, a necessary condition
for z to be strictly Pareto improving is ∂zβ2 < 0.

Thus we have shown that there is a Pareto improving direction z with the property
that z1 < 0 and ∂zβ2 ≤ 0. Since

∂zβ2 = z1
∂β2

∂τ̊1

+ z2
∂β2

∂ψ
,

and both the partial derivatives are negative, z1 < 0 and ∂zβ2 ≤ 0 together imply
that z2 > 0. �

Proof of Lemma 6.2 Suppose the economy exhibits strategic complementarities.
Then own-effects must be positive. From (21), the own-effect for type i is given by

∂Vi
∂τi

=
2R>i τ(1− Vi)

τ>Rτ
, (33)

which is positive if and only if R>i τ > 0. Hence, a necessary condition for strategic
complementarities is R>i τ > 0 for all i. For this to be true for any τ ∈ RN

++, we must
have ρij ≥ 0 for all i, j.
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Now suppose N ≥ 3, and consider cross-effects. From (21),

∂Vi
∂τj

=
2R>i τ

τ>Rτ

[
ρij − Vi

R>j τ

R>i τ

]

=
2R>i τ

τ>Rτ

[
ρij − Vi

√
Vj
Vi

]

=
2R>i τ

τ>Rτ

[
ρij −

√
ViVj

]
. (34)

Since R>i τ > 0, ∂Vi/∂τj < 0 if and only if ρij <
√
ViVj . Let i and j be a pair of

types such that ρij is the highest pairwise correlation, and let k be any other type.
We consider limits as all precisions go to zero except for τk. From (8),

lim
τ`→0,∀ 6̀=k

Vk = 1, and lim
τ`→0,∀`6=k

Vm = ρ2
mk, m 6= k.

If the economy exhibits strategic complementarities for all τ ∈ RN
++, all pairwise

correlations must be nonnegative, and ρij <
√
ViVj for all τ ∈ RN

++. It follows that

ρij ≤ lim
τ`→0,∀`6=k

√
ViVj

= ρikρjk

≤ ρ2
ij,

which implies that ρij = 0. But ρij is the highest pairwise correlation. Therefore, all
pairwise correlations are zero. �

Proof of Lemma 6.3 An equilibrium value of τi satisfies (13). In particular, for
any given Vi, τi is decreasing in αi and τθ. Thus τi ≤ τ̄i, where τ̄i is the solution to

2rαC ′i(τi)τi = 1. (35)

Let τ̄ := maxi τ̄i.
We now show that there exists ζi > 0 such that τi ≥ ζi for all (R,α) ∈ Rη A.

Suppose not. Then we can find a sequence of economies {(R(k), α(k))} inRη A, and
a corresponding sequence of precisions for type i, {τi,k}, such that limk→∞ τi,k = 0.
Let Vi,k be the price informativeness for type i in the economy (R(k), α(k)). Using
(13), and the assumption that R(k) ∈ Rη for all k,

lim
k→∞

τi,k = 0 ⇒ lim
k→∞
Vi,k = 1

⇒ lim
k→∞

τj,k = 0, ∀j 6= i

⇒ lim
k→∞
Vj,k = 1, ∀j 6= i.
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(The first and last implications follow from (13), and the second implication follows
from the observation that the price function cannot fully reveal θi if it puts any
weight on θj for j 6= i (given that τi,k is bounded)). Thus in the limit the price
function is fully revealing for all types, a contradiction.

While the above argument establishes a lower bound for τi, we will go one step
further and choose a lower bound that can be explicitly characterized, in order to
prove the limit results in the lemma. Let T̂ := N

i=1[ζi, τ̄ ] and let

V̄ := max
τ∈T̂ ,R∈Rη

Vi. (36)

This maximum exists since both T̂ and Rη are compact, and is strictly less than
one. Since τi solves (13) and is decreasing in αi and Vi, it follows that τi ≥ τ i, where
τ i solves

2rᾱC ′i(τi)
[
τi + τθ(1− V̄)−1

]
= 1. (37)

Let τ := mini τ i. As η → 0, V̄ → 1, and hence τ → 0.
Now suppose that Ci = C for all i. Let limτθ→0 τ := t (note that τ̄ does not

depend on τθ). Then, from (35) and (37), we have,

2rαC ′(τ̄)τ̄ = 1,

2rᾱC ′(t)t = 1.

Clearly, t < τ̄ . Therefore,

lim
τθ→0

(τ
τ̄

)
=
t

τ̄
=
α

ᾱ

C ′(τ̄)

C ′(t)
>
α

ᾱ
.

This proves the result. Note that the assumption that R ∈ Rη is only needed to
obtain the lower bound τ , not the upper bound τ̄ . �

Proof of Lemma 6.4 From equation (33) we already know that ∂Vi/∂τi > 0 if and
only if R>i τ > 0. Now suppose R ∈ Rη. Using the bounds for τi given by Lemma
6.3, we have

τ̊i ≥ τ̊ :=
τ

τ + (N − 1)τ̄
.

We can write ρ in terms of τ̊ as follows:

ρ := − τ

(N − 1)τ̄
= − τ̊

1− τ̊
.
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Let ρ̌ := mini,j ρij. Then,

R>i τ̊ = τ̊i +
∑
k 6=i

ρikτ̊k

≥ τ̊i + ρ̌(1− τ̊i)

= (1− τ̊i)
[
ρ̌+

τ̊i
1− τ̊i

]
≥ (1− τ̊i)

[
ρ̌+

τ̊

1− τ̊

]
= (1− τ̊i)(ρ̌− ρ).

Therefore, R>i τ > 0 for all i and all τ ∈ T if ρ̌ > ρ, or equivalently if ρij > ρ for all
i, j. �

Proof of Proposition 6.6 Suppose N = 2. Then, by Euler’s theorem, the economy
exhibits strategic complementarities if and only if both own-effects are positive on
T , which is equivalent to R>i τ > 0 for both values of i and for all τ ∈ T (Lemma
6.4). We have, for j 6= i,

R>i τ = τi + ρτj

∝ ρ+
τj
τi

≥ ρ+
τ

τ̄
= ρ− ρ.

Hence, R>i τ is positive for both values of i and all τ ∈ T if and only if ρ > ρ. �

Proof of Proposition 6.7 In all three conditions in the statement of the proposi-
tion, ρij > ρ for all i, j. By Lemma 6.4, R>i τ > 0 for all i and for all τ ∈ T . From

(34), ∂Vi/∂τj < 0 if and only if ρij <
√
ViVj, or equivalently

D :=
[√
ViVj − ρij

]
τ>Rτ > 0.

This inequality is clearly satisfied if ρij ≤ 0; hence we only need to consider the case
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where ρij > 0 (i 6= j). We have

D = (R>i τ)(R>j τ)− ρij(τ>Rτ)

=
[
τi + ρijτj +

∑
k 6=i,j

ρikτk

][
τj + ρijτi +

∑
k 6=i,j

ρjkτk

]
− ρijτi

[
τi + ρijτj +

∑
k 6=i,j

ρikτk

]
− ρijτj

[
τj + ρijτi +

∑
k 6=i,j

ρjkτk

]
− ρij

∑
6̀=i,j

τ`

[
ρ`iτi + ρ`jτj +

∑
k 6=i,j

ρ`kτk

]
= (τi + ρijτj)(τj + ρijτi) + (τi + ρijτj)

∑
k 6=i,j

ρjkτk + (τj + ρijτi)
∑
k 6=i,j

ρikτk

+
[∑
k 6=i,j

ρikτk

][∑
k 6=i,j

ρjkτk

]
− ρijτi(τi + ρijτj)− ρijτi

∑
k 6=i,j

ρikτk − ρijτj(τj + ρijτi)− ρijτj
∑
k 6=i,j

ρjkτk

− ρijτi
∑
6̀=i,j

ρi`τ` − ρijτj
∑
`6=i,j

ρj`τ` − ρij
∑
` 6=i,j

τ`

[∑
k 6=i,j

ρ`kτk

]
= (1− ρ2

ij)τiτj + (τi − ρijτj)
∑
k 6=i,j

ρjkτk + (τj − ρijτi)
∑
k 6=i,j

ρikτk

+
[∑
k 6=i,j

ρikτk

][∑
k 6=i,j

ρjkτk

]
− ρij

∑
`6=i,j

τ`

[∑
k 6=i,j

ρ`kτk

]
= (1− ρ2

ij)τiτj + (τi − ρijτj)Sj + (τj − ρijτi)Si + SiSj − ρij
∑
`6=i,j

τ`S`, (38)

where
Sm :=

∑
k 6=i,j

ρmkτk.

Note that Sm <
∑

k 6=i,j τk, for all m. We consider condition (ii) of the proposition
first, followed by (i) and (iii).

Proof of (ii):
Let ρ̌ := mink,` ρk`, and suppose that ρ̌ ≥ 0. Then, for m = i, j,

Sm ≥ ρ̌
∑
k 6=i,j

τk ≥ ρ̌(N − 2)τ .

From (38),

∂D

∂Si
= τj − ρijτi + Sj

≥ τ − ρij τ̄ + ρ̌(N − 2)τ

∝
[
1 + ρ̌(N − 2)

]
δ − ρij,
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which is nonnegative if
ρij ≤

[
1 + ρ̌(N − 2)

]
δ. (39)

Assuming that (39) holds, D is increasing in Si, and by symmetry in Sj as well.
Also, D is decreasing in S`, ` 6= i, j. Hence, from (38),

D > D1 := (1− ρ2
ij)τiτj + ρ̌(τi − ρijτj)

∑
k 6=i,j

τk + ρ̌(τj − ρijτi)
∑
k 6=i,j

τk

+ ρ̌2
[∑
k 6=i,j

τk

]2

− ρij
[∑
k 6=i,j

τk

]2

= (1− ρ2
ij)τiτj + ρ̌(1− ρij)(τi + τj)

∑
k 6=i,j

τk + (ρ̌2 − ρij)
[∑
k 6=i,j

τk

]2

. (40)

Moreover, since D1 is increasing in τi and τj,

D1 ≥ D2 := (1− ρ2
ij)τ

2 + 2ρ̌(1− ρij)τ
∑
k 6=i,j

τk + (ρ̌2 − ρij)
[∑
k 6=i,j

τk

]2

. (41)

For m 6= i, j,

∂D2

∂τm
= 2ρ̌(1− ρij)τ + 2(ρ̌2 − ρij)

∑
k 6=i,j

τk

≤ 2ρ̌(1− ρij)τ + 2(ρ̌2 − ρij)(N − 2)τ

∝ ρ̌(1− ρij) + (ρ̌2 − ρij)(N − 2)

≤ ρ̌(1− ρ̌) + (ρ̌2 − ρ̌)(N − 2)

= −ρ̌(1− ρ̌)(N − 3)

≤ 0.

Therefore, from (41),

D2 ≥ D3 := (1− ρ2
ij)τ

2 + 2ρ̌(1− ρij)τ(N − 2)τ̄ + (ρ̌2 − ρij)(N − 2)2τ̄ 2. (42)

Combining (40), (41), and (42), we have

D > D3 ∝ (1− ρ2
ij)δ

2 + 2ρ̌(1− ρij)(N − 2)δ + (ρ̌2 − ρij)(N − 2)2

≥ (1− ρij)(1 + ρ̌)δ2 + 2ρ̌(1− ρij)(N − 2)δ + (ρ̌2 − ρij)(N − 2)2,

which is greater than equal to zero if

ρij ≤ 1− (1− ρ̌2)(N − 2)2

(1 + ρ̌)δ2 + 2ρ̌(N − 2)δ + (N − 2)2
. (43)

Thus D > 0, for all i 6= j and all τ ∈ T , if (39) and (43) hold.
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Finally, we show that if δ ≥ 1/2, we can drop condition (39), since in this case
the upper bound in (39) exceeds the upper bound in (43), i.e.

[
1 + ρ̌(N − 2)

]
δ ≥ 1− (1− ρ̌2)(N − 2)2

(1 + ρ̌)δ2 + 2ρ̌(N − 2)δ + (N − 2)2
.

Letting M := N − 2, we can write this inequality as follows:

K := (1+ρ̌)(1+ρ̌M)δ3+
[
2ρ̌M(1+ρ̌M)−(1+ρ̌)

]
δ2+M

[
M(1+ρ̌M)−2ρ̌

]
δ−ρ̌2M2 ≥ 0.

We have

∂K

∂δ
= 3(1 + ρ̌)(1 + ρ̌M)δ2 + 2

[
2ρ̌M(1 + ρ̌M)− (1 + ρ̌)

]
δ +M

[
M(1 + ρ̌M)− 2ρ̌

]
,

∂2K

∂δ2
= 6(1 + ρ̌)(1 + ρ̌M)δ + 2

[
2ρ̌M(1 + ρ̌M)− (1 + ρ̌)

]
.

Henceforth, we assume that δ ≥ 1/2. Then, ∂K/∂δ is increasing in δ, and therefore

∂K

∂δ
≥ ∂K

∂δ

∣∣∣
δ= 1

2

=
3

4
(1 + ρ̌)(1 + ρ̌M) +

[
2ρ̌M(1 + ρ̌M)− (1 + ρ̌)

]
+M

[
M(1 + ρ̌M)− 2ρ̌

]
=

3

4
(1 + ρ̌)(1 + ρ̌M) + 2ρ̌2M2 + (M2 − 1) + ρ̌(M3 − 1)

> 0.

Thus K is increasing in δ, and therefore

K ≥ K
∣∣
δ= 1

2

∝ (1 + ρ̌)(1 + ρ̌M) + 2
[
2ρ̌M(1 + ρ̌M)− (1 + ρ̌)

]
+ 4M

[
M(1 + ρ̌M)− 2ρ̌

]
− 8ρ̌2M2

= (1 + ρ̌)(ρ̌M − 1) + 4M(1 + ρ̌M)(M − ρ̌)

≥ (1 + ρ̌)
[
(ρ̌M − 1) + 4M(M − ρ̌)

]
∝ 4M2 − 3ρ̌M − 1,

which is nonnegative as desired.

Proof of (i):
Now we assume only that ρk` > ρ. Recall that ρ = −(N−1)−1δ. The proof proceeds

along the same lines as for condition (ii), with D̃1, D̃2 and D̃3 taking the place of D1,
D2 and D3, respectively; D̃i is the same expression as Di except that ρ̌ is replaced
by ρ.

For m = i, j, we have

Sm ≥ ρ
∑
k 6=i,j

τk ≥ ρ(N − 2)τ̄.
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From (38),

∂D

∂Si
= τj − ρijτi + Sj

≥ τ − ρij τ̄ + ρ(N − 2)τ̄

∝ δ + ρ(N − 2)− ρij
= −ρ− ρij.

Assuming that ρij ≤ −ρ, D is increasing in Si and, by symmetry, in Sj as well.
Moreover, D is decreasing in S`, ` 6= i, j. Hence, from (38),

D > D̃1 := (1− ρ2
ij)τiτj + ρ(1− ρij)(τi + τj)

∑
k 6=i,j

τk + (ρ2 − ρij)
[∑
k 6=i,j

τk

]2

. (44)

Differentiating, we see that

∂D̃1

∂τi
= (1− ρ2

ij)τj + ρ(1− ρij)
∑
k 6=i,j

τk

≥ (1− ρ2
ij)τ + ρ(1− ρij)(N − 2)τ̄

∝ (1 + ρij)δ + ρ(N − 2)

= δρij − ρ
> 0.

Thus D̃1 is increasing in τi and, by symmetry, in τj as well. Hence, from (44),

D̃1 ≥ D̃2 := (1− ρ2
ij)τ

2 + 2ρ(1− ρij)τ
∑
k 6=i,j

τk + (ρ2 − ρij)
[∑
k 6=i,j

τk

]2

. (45)

For m 6= i, j,
∂D̃2

∂τm
= 2ρ(1− ρij)τ + 2(ρ2 − ρij)

∑
k 6=i,j

τk,

which is negative if ρij ≥ ρ2. If ρij < ρ2, we have

∂D̃2

∂τm
≤ 2ρ(1− ρij)τ + 2(ρ2 − ρij)(N − 2)τ̄

∝ ρ(1− ρij)δ + (ρ2 − ρij)(N − 2)

= ρ
[
δ + ρ(N − 2)

]
− ρij

[
(1 + ρδ) + (N − 3)

]
= −ρ2 − ρij

[
(1 + ρδ) + (N − 3)

]
,

which again is negative. Thus D̃2 is decreasing in τm, for m 6= i, j. Therefore, from
(45),

D̃2 ≥ D̃3 := (1− ρ2
ij)τ

2 + 2ρ(1− ρij)τ(N − 2)τ̄ + (ρ2 − ρij)(N − 2)2τ̄ 2. (46)
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Combining (44), (45), and (46), we have

D > D̃3 ∝ (1− ρ2
ij)δ

2 + 2ρ(1− ρij)(N − 2)δ + (ρ2 − ρij)(N − 2)2

> (1− ρij)δ2 + 2ρ(1− ρij)(N − 2)δ + (ρ2 − ρij)(N − 2)2,

which is greater than equal to zero if

ρij ≤
δ2 + 2ρ(N − 2)δ + ρ2(N − 2)2

δ2 + 2ρ(N − 2)δ + (N − 2)2

=

[
δ + ρ(N − 2)

]2[
δ + ρ(N − 2)

]2
+ (1− ρ2)(N − 2)2

=
ρ2

ρ2 + (1− ρ2)(N − 2)2
. (47)

Notice that (47) strengthens our earlier assumption that ρij ≤ −ρ. Thus D > 0, for
all i 6= j and all τ ∈ T , if (47) holds. This gives us condition (17) in the proposition.

Proof of (iii):
Suppose ρij = ρ for all i 6= j. Then,

Si = Sj = ρ
∑
k 6=i,j

τk,

and for ` 6= i, j,

S` = (1− ρ)τ` + ρ
∑
k 6=i,j

τk.

There is nothing to prove if ρ ≤ 0. If ρ > 0, we have, from (38),

D = (1− ρ2)τiτj + ρ(1− ρ)(τi + τj)
∑
k 6=i,j

τk − ρ(1− ρ)
∑
k 6=i,j

τ 2
k

∝ (1 + ρ)τiτj + ρ(τi + τj)
∑
k 6=i,j

τk − ρ
∑
k 6=i,j

τ 2
k (48)

≥ (1 + ρ)τ 2 + 2ρτ
∑
k 6=i,j

τk − ρ
∑
k 6=i,j

τ 2
k (49)

≥ (1 + ρ)τ 2 + 2ρτ(N − 2)τ̄ − ρ(N − 2)τ̄ 2

∝ δ2 +
[
δ2 + (2δ − 1)(N − 2)

]
ρ (50)

> δ2 + (2δ − 1)(N − 1)ρ,

where we have used the fact that (48) is increasing in τi and τj, while (49) is decreas-
ing in τk, k 6= i, j. Hence, D > 0 if δ ≥ 1

2
. If δ < 1

2
, D > 0 if (19) holds. Note that a

less stringent condition on ρ can be derived from (50), but (19) is easier to interpret.
�
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Proof of Proposition 7.1 Substituting (12) into (9), we obtain:

2rαiC
′
i(τin)

[
τin + τθ[1− Vi(τ)]−1

]
= 1.

Since the economy exhibits strategic complementarities on T , τin is decreasing in τi
and increasing in τ−i := (τj)j 6=i, for τ ∈ T . Moreover, τin is decreasing in αi.

The following argument is similar to the one used by Milgrom and Shannon (1994)
for general equilibrium with gross substitutes. For given α, consider the fictitious
game Γ(α) with N players in which player i chooses τi ∈ [τ , τ̄ ] and has payoff

πi(τi, τ−i, α) = −|τi − τin(τi, τ−i, α)|.

Let ti := (τ−i,−α) and fi(τi, ti) := τi − τin(τi, τ−i, α). Player i’s payoff can then be
written as

πi(τi, ti) = −|fi(τi, ti)|.
For any given ti, fi is continuous in τi, with f(τ , ti) ≤ 0 and f(τ̄, ti) ≥ 0. Hence,
there exists a τi such that πi(τi, ti) = 0. It follows that a profile of precisions τ is an
equilibrium of our economy if and only if it is a pure strategy Nash equilibrium of
Γ(α). Note that the function fi is strictly increasing in τi, and decreasing in ti.

We claim that πi satisfies the single-crossing property in (τi, ti), i.e. for all τ̆i >
τi, t̆i > ti:

πi(τ̆i, ti)− πi(τi, ti) ≥ (>) 0 ⇒ πi(τ̆i, t̆i)− πi(τi, t̆i) ≥ (>) 0,

or, equivalently,

−|fi(τ̆i, ti)|+|fi(τi, ti)| ≥ (>) 0 ⇒ −|fi(τ̆i, t̆i)|+|fi(τi, t̆i)| ≥ (>) 0. (51)

Since fi is strictly increasing in τi, fi(τ̆i, ti) > fi(τi, ti). Hence, in order for the
supposition in (51) to be true, we must have fi(τi, ti) < 0. In fact, since fi is
decreasing in ti, fi(τi, t̆i) ≤ fi(τi, ti) < 0. Therefore, we can write (51) as follows:

|fi(τ̆i, ti)|+ fi(τi, ti) ≤ (<) 0 ⇒ |fi(τ̆i, t̆i)|+ fi(τi, t̆i) ≤ (<) 0. (52)

Now note that fi(τ̆i, t̆i) ≤ fi(τ̆i, ti). Thus if fi(τ̆i, t̆i) ≥ 0, (52) is satisfied (both terms
in the implication are lower than the corresponding terms in the supposition). If
fi(τ̆i, t̆i) < 0, we must have fi(τi, t̆i) < fi(τ̆i, t̆i) < 0, so the implication in (52) holds.
This verifies the single-crossing property.

Thus {Γ(α)}α is a family of games with strategic complementarities satisfying the
single-crossing property, as defined by Milgrom and Shannon (1994). Hence there is
a highest equilibrium τ̂(α) and a lowest equilibrium τ̌(α), and both satisfy the MCS
property. �

Proof of Lemma 7.2 Consider an economy that exhibits strategic complementar-
ities, and an equilibrium τ that satisfies the MCS property. Thus we have, for all
i, j,

∂Vi
∂τi

> 0;
∂Vi
∂τk

< 0, k 6= i;
∂τi
∂αj
≤ 0, αj ∈ (α, ᾱ). (53)
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We show that the last inequality is strict. Differentiating (13) with respect to αj, we
obtain:

C ′′(τi)
∂τi
∂αj

[
τi+ τθ(1−Vi)−1

]
+C ′(τi)

[
∂τi
∂αj

+ τθ(1− Vi)−2 ∂Vi
∂αj

]
= 0, i 6= j, (54)

and [
αjC

′′
j (τj)

∂τj
∂αj

+ C ′j(τj)

] [
τj + τθ(1− Vj)−1

]
+ αjC

′
j(τj)

[
∂τj
∂αj

+ τθ(1− Vj)−2∂Vj
∂αj

]
= 0. (55)

Suppose ∂τj/∂αj = 0. Then,

∂Vj
∂αj

=
∑
k 6=j

∂Vj
∂τk

∂τk
∂αj

,

which is nonnegative due to (53). But then (55) is not satisfied, a contradiction. It
follows that ∂τj/∂αj < 0. Now suppose there is an i 6= j such that ∂τi/∂αj = 0.
Then,

∂Vi
∂αj

=
∑
k 6=i

∂Vi
∂τk

∂τk
∂αj

,

which is positive due to (53) and the fact that ∂τj/∂αj < 0. This implies that (54)
is not satisfied, a contradiction. Therefore, ∂τi/∂αj < 0 for all i. �

Proof of Proposition 7.3 Consider an equilibrium τ that satisfies the MCS prop-
erty, and hence the strong MCS property by Lemma 7.2. From (54), it follows that
∂Vi/∂αj > 0, for all αj ∈ (α, ᾱ), and for all i 6= j. Hence, ∂Vj/∂αj < 0 for all
αj ∈ (α, ᾱ), due to Lemma 5.2 (note that, since Vi depends on αj only through τ ,
∂Vi/∂αj = ∂zVi for some direction z, for all i). �
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