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Abstract

A subset of the unit hypercube {0, 1}n is cube-ideal if its convex hull is described by hypercube and

generalized set covering inequalities. In this paper, we provide a structure theorem for cube-ideal sets S ⊆
{0, 1}n such that, for any point x ∈ {0, 1}n, S − {x} and S ∪ {x} are cube-ideal. As a consequence of the

structure theorem, we see that cuboids of such sets have the max-flow min-cut property.

1 Introduction

Take an integer n ≥ 1. A cuboid is a family C of subsets of [2n] := {1, . . . , 2n} such that

|C ∩ {1, 2}| = |C ∩ {3, 4}| = · · · = |C ∩ {2n− 1, 2n}| = 1 ∀C ∈ C.

C has a compact representation: There exists a unique S ⊆ {0, 1}n such that

{χC : C ∈ C} = {(z1, 1− z1, z2, 1− z2, . . . , zn, 1− zn) : z ∈ S}.

We will write C = cuboid(S). Introduced in [5] and studied in [3], cuboids form an important class of clutters,

to the extent that the major conjectures on clutters, namely the Replication Conjecture [6] and the τ = 2 Con-

jecture [8] and the f -Flowing Conjecture [13], can be phrased equivalently in terms of cuboids. In fact, for the

second and third conjectures, the equivalence goes beyond just a simple rephrasing and gets to the heart of the

conjectures; we refer the interested reader to [3].

Consider the following primal-dual pair of linear programs for w ∈ Z2n
+ :

(P )

min w>x

s.t. x(C) ≥ 1 C ∈ C
x ≥ 0

(D)

max 1>y

s.t.
∑

(yC : i ∈ C ∈ C) ≤ wi i ∈ [2n]

y ≥ 0.

C is ideal if (P ) has an integral optimal solution for all w ∈ Z2n
+ [9], while C has the max-flow min-cut property

if (D) has an integral optimal solution for all w ∈ Z2n
+ [7]. A classic result of Edmonds and Giles [10] and

Hoffman [11] tells us that the max-flow min-cut property implies idealness. The converse however does not

hold. In fact, understanding when the converse does hold is what the Replication and τ = 2 Conjectures

address. This is also what we address.
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Looking at the known examples of cuboids that are ideal and do not have the max-flow min-cut property, we

have noticed something curious:

Conjecture 1.1. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n such that cuboid(S) is ideal and does not have

the max-flow min-cut property. Then there exists a point x ∈ S such that cuboid(S − {x}) is nonideal.

For instance, consider the two sets

A := {000, 101, 110, 011} ⊆ {0, 1}3

B := {1010, 0110, 0001, 1101, 0011, 1011, 0111, 1111} ⊆ {0, 1}4.

These two examples are taken from a library of 745 strictly non-polar sets provided in [3]; they are sets number 1

and 9, respectively. Both of these sets have an ideal cuboid that does not have the max-flow min-cut property. In

the first example, cuboid(A− {x}) is nonideal for any point x ∈ A. In the second example, cuboid(B − {x})
is nonideal for any point x ∈ {1010, 0110, 0001, 1101}, while cuboid(B − {x}) is ideal for any point x ∈
{0011, 1011, 0111, 1111}.

In this paper, we prove the following weakening of Conjecture 1.1:

Theorem 1.2. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n such that cuboid(S) is ideal and does not have

the max-flow min-cut property. Then there exists a point x ∈ S such that cuboid(S − {x}) is nonideal, or there

exists a point x ∈ {0, 1}n − S such that cuboid(S ∪ {x}) is nonideal.

Our proof relies on a structure theorem, an intriguing fact in its own right. We need to set some notation and

make some definitions first.

Take an integer n ≥ 1. A sub-hypercube of {0, 1}n is a subset of the form{
x ∈ {0, 1}n : xi = 0 i ∈ I, xj = 1 j ∈ J

}
I, J ⊆ [n], I ∩ J = ∅;

its rank is n − |I| − |J |. Given a, b ∈ {0, 1}n, the distance between a and b, denoted dist(a, b), is the number

of coordinates a and b differ on. Denote by Gn the skeleton graph of [0, 1]n, whose vertices are the points in

{0, 1}n, where a, b ∈ {0, 1}n are adjacent if dist(a, b) = 1. For a subset X ⊆ {0, 1}n, denote by Gn[X] the

subgraph of Gn induced on vertices X , and we say that X is connected if Gn[X] is connected.

Take a set S ⊆ {0, 1}n. We refer to n as the dimension of S, to the points in S as feasible, and to the points

in S := {0, 1}n − S as infeasible. The connected components of Gn[S] are feasible components, while the

components ofGn[S] are infeasible components. Given x, y ∈ {0, 1}n, denote by x4y the coordinate-wise sum

of x, y modulo 2, and define S4y := {x4y : x ∈ S}. Take i ∈ [n]. Denote by ei the ith unit vector. To twist

coordinate i is to replace S by S4ei. A set S′ ⊆ {0, 1}n is isomorphic to S, displayed as S′ ∼= S, if S′ is

obtained from S after relabeling and twisting some coordinates.

Given integers n1, n2 ≥ 0 and S1 ⊆ {0, 1}n1 , S2 ⊆ {0, 1}n2 , the product of S1 and S2 is

S1 × S2 := {(x, y) : x ∈ S1, y ∈ S2} ⊆ {0, 1}n1+n2 .
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Figure 1: An illustration of C8. Round points are feasible while square points are infeasible.

Denote by 0,1 the all-zeros and all-ones vectors of appropriate dimensions, respectively; the dimension of the

vectors will be clear from the context.

We are now ready to state our structure theorem:

Theorem 1.3. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n such that cuboid(S) is ideal, cuboid(S − {x}) is

ideal for each x ∈ S, and cuboid(S ∪{x}) is ideal for each x ∈ S. Then one of the following statements holds:

(i) S ∼= Ak × {0, 1}n−k for some k ∈ {2, . . . , n}, where Ak = {0,1} ⊆ {0, 1}k,

(ii) S ∼= Bk × {0, 1}n−k for some k ∈ {3, . . . , n}, where Bk = {0, e1,1} ⊆ {0, 1}k,

(iii) S ∼= C8 × {0, 1}n−4, where C8 = {0000, 1000, 0100, 1010, 0101, 0111, 1111, 1011} ⊆ {0, 1}4,

(iv) S ∼= Dk × {0, 1}n−k for some k ∈ {3, . . . , n}, where Dk = {0, e2,1− e2,1− e2 − e3} ⊆ {0, 1}k,

(v) S is a sub-hypercube, or

(vi) every infeasible component of S is a sub-hypercube, and every feasible point has at most two infeasible

neighbors.

Next we explain the main idea behind the proofs of our two theorems.

1.1 The notion of ±1-resistance

Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. We say that S is cube-ideal if cuboid(S) is ideal. We have the

following nice characterization of cube-ideal sets:1

Theorem 1.4 ([3]). Take an integer n ≥ 1. Then a subset of {0, 1}n is cube-ideal if, and only if, its convex hull

is described by inequalities of the form

xi ≥ 0 and xi ≤ 1 i ∈ [n] := {1, . . . , n}∑
i∈I

xi +
∑
j∈J

(1− xj) ≥ 1 I, J ⊆ [n], I ∩ J = ∅.

1Just like idealness, it would be very useful to reformulate in terms of S what it means for cuboid(S) to have the max-flow min-cut

property. Unfortunately, we are not yet aware of such a characterization.
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The second type of constraints above are called generalized set covering inequalities [7]. Jon Lee refers to

generalized set covering inequalities as cropping inequalities, and he has shown that if every infeasible compo-

nent is a sub-hypercube, then S is cube-ideal [12].2 Notice that generalized set covering inequalities are precisely

the inequalities that cut off sub-hypercubes of {0, 1}n, providing yet another reason why cube-idealness is such a

natural geometric concept. To prove Theorem 1.2 and Theorem 1.3, however, we need to replace cube-idealness

by a weaker yet more tangible property. Let us elaborate.

Take i ∈ [n]. The set obtained from S ∩ {x : xi = 0} after dropping coordinate i is called the 0-restriction

of S over coordinate i, and the set obtained from S ∩ {x : xi = 1} after dropping coordinate i is called the

1-restriction of S over coordinate i. A restriction of S is a set obtained after a series of 0- and 1-restrictions. The

projection of S over coordinate i is the set obtained from S after dropping coordinate i. A minor of S is what is

obtained after a series of restrictions and projections. A minor is proper if at least one operation is applied.

Remark 1.5 ([3]). If a set is cube-ideal, then so is every isomorphic minor of it.

Hereinafter, the prefix “isomorphic” will be omitted from “isomorphic restriction” and “isomorphic minor”.

Let P3 := {110, 101, 011} ⊆ {0, 1}3 and S3 := {110, 101, 011, 111} ⊆ {0, 1}3. These two sets are not

cube-ideal because

conv(P3) =
{
x ∈ [0, 1]3 : (1− x1) + (1− x2) + (1− x3) = 1

}
conv(S3) =

{
x ∈ [0, 1]3 : (1− x1) + (1− x2) + (1− x3) ≤ 1

}
.

In fact, up to isomorphism, P3 and S3 are the only non-cube-ideal sets of dimension at most 3. As an immediate

consequence of Remark 1.5, a cube-ideal set has none of P3, S3 as a minor. We will replace cube-idealness by

the weaker yet more tangible property of having no P3, S3 minor. (This idea only works for tackling Theorem 1.2

and Theorem 1.3, and will not suffice for tackling Conjecture 1.1, because of B.)

We say that S is ±1-resistant if, for every subset X ⊆ {0, 1}n of cardinality at most one, S −X and S ∪X
have no P3, S3 minor. Notice that the set in Theorem 1.3 is±1-resistant. This observation is key as we will prove

stronger analogues of Theorem 1.2 and Theorem 1.3 for ±1-resistant sets. In §2 we prove that ±1-resistance is

a minor-closed property and provide an excluded minor characterization for it. In §3 we state and outline the

proof of an exact structure theorem for ±1-resistance, which will imply Theorem 1.3. The proof of the structure

theorem spans §4-§7. By using the structure theorem, we will prove in §8 that the cuboid of a ±1-resistant set

has the max-flow min-cut property, thereby implying Theorem 1.2.
2In fact, he proves that if every infeasible component is a sub-hypercube, then the canonical convex hull description of S is totally dual

integral [12]. This does not mean that cuboid(S) has the max-flow min-cut property, but that the blocker does.
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Our proofs heavily rely on another notion. S is 1-resistant if, for every subset X ⊆ {0, 1}n of cardinality at

most one, S ∪ X has no P3, S3 minor. Notice that a ±1-resistant set is 1-resistant. The notion of 1-resistance

was studied in [4] by us together with another author, though the prefix 1- was omitted there. It is worth pointing

out that 1-resistance was come across much later than and as a result of ±1-resistance, for the latter is a more

natural notion to define; we only arrived at it after studying ±1-resistance. Nevertheless, the following lemma

for 1-resistant sets will be used frequently throughout the paper:

Lemma 1.6 ([4]). Take an integer n ≥ 1 and a 1-resistant set S ⊆ {0, 1}n. If S ∩ {x : xn = 0} = ∅, then S is

a sub-hypercube.

The paper is notationally heavy. To help the reader we have summarized what the symbols refer to in the last

two pages of the manuscript.

1.2 Related notions and work

In [4] we showed that 1-resistance is a rich and multifaceted notion. We proved the Replication Conjecture and

the τ = 2 Conjecture for 1-resistant sets, but our attempts fell short of providing a structure theorem for these

sets. We showed that there are infinitely many 1-resistant sets with an ideal minimally non-packing cuboid, and

argued that in order to fully characterize the ideal minimally non-packing cuboids this class leads to, a structure

theorem is likely needed. This paper achieves just that for the subclass of ±1-resistant sets. There is another

subclass for which this is achieved. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. For an integer k ≥ 2, S is

k-resistant if, for every subset X ⊆ {0, 1}n of cardinality at most k, S ∪ X has no P3, S3 minor. In [2] we

described the structure of k-resistant sets for k ≥ 2, and showed as a result that there are exactly three 2-resistant

sets with an ideal minimally non-packing cuboid.

For an integer k ≥ 2, we may say that S is ±k-resistant if, for every subset X ⊆ {0, 1}n of cardinality at

most k, the symmetric difference S4X has no P3, S3 minor. Our structure theorem for ±1-resistant sets, or the

one for 2-resistant sets, can be used to recover the structure of ±k-resistant sets; we leave that to the interested

reader.

The notion of resistance came into being as we were looking for a counterexample among cuboids to the

τ = 2 Conjecture. We wrote a computer program to do this work for us, but to no avail. The theory of resistance

explains why our attempts failed; see [1], Chapter 6 for more detail.

2 An excluded minor characterization for ±1-resistant sets

Let us start with the following easy remark:

Remark 2.1 ([4]). If a set is 1-resistant, then so is every minor of it.

Take a set F ⊆ {0, 1}3 such that {101, 011} ⊆ F ⊆ {101, 011, 110, 111}. We refer to F , and any set

isomorphic to it, as fragile. Notice that F ∪ {110} is either P3 or S3, so F is not 1-resistant. We have the
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Figure 2: An illustration of a fragile set.

R1,1 F1 F2 F3

following excluded minor characterization of 1-resistance:

Theorem 2.2 ([4]). Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then the following statements are equivalent:

(i) S is 1-resistant,

(ii) S has no fragile restriction and no
{
0,1− e1

}
⊆ {0, 1}k, k ≥ 4 restriction,

(iii) S has no fragile minor.

Let us now turn to ±1-resistant sets. We have the following easy remark:

Remark 2.3. If a set is ±1-resistant, then so is every restriction of it.

The class of ±1-resistant sets turns out to be closed under projections as well, but the reason is not as

straightforward. Let

R1,1 := {000, 110, 101, 011} ⊆ {0, 1}3

F1 := {000, 100, 010, 111} ⊆ {0, 1}3

F2 := {000, 100, 010, 001, 111} ⊆ {0, 1}3

Fk := {0, e1, e2, e1 + e2,1− e1 − e2} ⊆ {0, 1}k k ≥ 3

Notice that for each k ≥ 4, Fk has an F3 projection obtained after projecting away coordinates 4, . . . , k.

Remark 2.4. The sets {R1,1} ∪ {Fk : k ≥ 1} are not ±1-resistant.

Proof. Notice thatR1,1−{000} = P3, F1−{000} ∼= P3, F2−{111} ∼= S3, and that for each k ≥ 3, Fk−{e1+
e2} has an S3 projection obtained after projecting away coordinates 4, . . . , k. As a result, {R1,1}∪{Fk : k ≥ 1}
are not ±1-resistant.

We are now ready to prove the following:

Theorem 2.5. Take an integer n ≥ 1 and a 1-resistant set S ⊆ {0, 1}n. Then the following statements are

equivalent:
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(i) S is ±1-resistant,

(ii) S has none of {R1,1} ∪ {Fk : 1 ≤ k ≤ n} as a restriction,

(iii) S has none of {R1,1, F1, F2, F3} as a minor.

Proof. By Remark 2.1, every minor of S is 1-resistant. We will use this throughout the proof.

(i)⇒ (ii) follows from Remark 2.3 and Remark 2.4.

(ii)⇒ (iii): We will need the following three claims:

Claim 1. Let R ⊆ {0, 1}4 be 1-resistant. Let N ⊆ {0, 1}3 be the projection of R over coordinate 4. Then the

following statements hold:

(1) if N = R1,1, then R has an R1,1 restriction,

(2) if N = F1, then R has an F1 restriction,

(3) if N = F2, then R has one of F1, F2 as a restriction.

Proof of Claim. For i ∈ {0, 1}, let Ri ⊆ {0, 1}3 be the i-restriction of R over coordinate 4. Notice that

R0 ∪ R1 = N . (1) In this case, R0, R1 ⊆ R1,1 = {000, 110, 101, 011}. As R0, R1 6∼= P3, it follows that

|R0|, |R1| 6= 3. In fact, since R0, R1 are 1-resistant, we must have that |R0| ∈ {0, 1, 4} and |R1| ∈ {0, 1, 4}.
Since |R0|+ |R1| ≥ 4, it follows that one of R0, R1 is R1,1, so R has an R1,1 restriction. (2) We may assume,

after possibly twisting coordinate 4, that 000 ∈ R0. Since the 0-restriction of R over coordinate 1 is 1-resistant,

it follows that 010 ∈ R0. Similarly, as the 0-restriction of R over coordinate 2 is 1-resistant, 100 ∈ R0. Because

R0 is 1-resistant, we have that R0 = F1, so R has an F1 restriction. (3) We may assume, after possibly twisting

coordinate 4, that 000 ∈ R0. Since R has no P3, S3 restriction, at least two of 100, 010, 001 must belong to R0.

Without loss of generality, 100, 010 ∈ R0. As R0 is 1-resistant, 111 ∈ R0, so R0 is either F1 or F2, implying in

turn that R has one of F1, F2 as a restriction. ♦

Claim 2. Let R ⊆ {0, 1}4 be 1-resistant and have no F1, F3 restriction. If the projection of R over coordinate 4

is F3, then R ∼= F4.

Proof of Claim. For i ∈ {0, 1}, let Ri ⊆ {0, 1}3 be the i-restriction of R over coordinate 4. Notice that

R0 ∪ R1 = F3. Assume in the first case that 110 ∈ R0 ∩ R1. Since 100 ∈ R0 ∪ R1 and the 1-restriction of

R over coordinate 1 is 1-resistant, it follows that 100 ∈ R0 ∩ R1. Similarly, 010 ∈ R0 ∩ R1. After possibly

twisting coordinate 4 of R, we may assume that 001 ∈ R0. This implies that R0 is isomorphic to either F1 or

F3, which is not the case as R has no F1, F3 restriction. Assume in the remaining case that 110 /∈ R0 ∩ R1.

After possibly twisting coordinate 4 of R, we may assume that 110 ∈ R0 and 110 /∈ R1. As 100 ∈ R0 ∪ R1

and the 1-restriction of R over coordinate 1 is 1-resistant, it follows that 100 ∈ R0 and 100 /∈ R1. Similarly,

010 ∈ R0 and 010 /∈ R1. Since R0 6∼= F1, F3, it follows that 001 /∈ R0 and so 001 ∈ R1. As R0 is 1-resistant,

000 ∈ R0. Since R has no F3 restriction, it follows that 000 /∈ R1, implying in turn that R ∼= F4, as required. ♦
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Claim 3. Take an integer k ≥ 4 and a 1-resistant set R ⊆ {0, 1}k+1 that has no F3, Fk restriction. If the

projection of R over coordinate k + 1 is Fk, then R ∼= Fk+1.

Proof of Claim. For i ∈ {0, 1}, let Ri ⊆ {0, 1}k be the i-restriction of R over coordinate k + 1. Then R0 ∪
R1 = Fk. For i ∈ {0, 1}, since Ri is 1-resistant, it follows that |Ri ∩ {0, e1, e2, e1 + e2}| 6= 3, and if

|Ri ∩ {0, e1, e2, e1 + e2}| = 2 then the two points in Ri ∩ {0, e1, e2, e1 + e2} are adjacent. Since the restriction

of R obtained after 0-restricting coordinates 3, . . . , k is not isomorphic to F3, one of the following holds:

• |R0 ∩ {0, e1, e2, e1 + e2}| = |R1 ∩ {0, e1, e2, e1 + e2}| = 2: in this case, the 0-restriction of R over

coordinates [k + 1]− {1, 2, 3, k + 1} is not 1-resistant,

• |R0 ∩ {0, e1, e2, e1 + e2}| = |R1 ∩ {0, e1, e2, e1 + e2}| = 4: in this case, one of R0, R1 is Fk,

• one of |R0 ∩ {0, e1, e2, e1 + e2}|, |R1 ∩ {0, e1, e2, e1 + e2}| is 2 and the other one is 4: in this case, the

0-restriction of R over coordinates [k + 1]− {1, 2, 3, k + 1} is not 1-resistant,

• one of |R0 ∩ {0, e1, e2, e1 + e2}|, |R1 ∩ {0, e1, e2, e1 + e2}| is 0 and the other one is 4.

Thus, the last case is the only possibility. In this case, since R has no Fk restriction, it follows that R ∼= Fk+1,

as required. ♦

Assume that S has anN ∈ {R1,1, F1, F2, F3}minor, obtained after applying ` single projections and n−3−`
single restrictions, for some ` ∈ {0, . . . , n − 3}. We need to show that S has one of R1,1, {Fk : 1 ≤ k ≤ n}
as a restriction. A repeated application of Claim 1 implies that if N ∈ {R1,1, F1, F2}, then S has one of

{R1,1, F1, F2} as a restriction. We may therefore assume that N = F3, and that S has no {R1,1, F1, F2}
restriction. If ` = 0, then S has an F3 restriction, so we are done. We may therefore assume that ` ≥ 1 and S has

no F3 restriction. If ` = 1, then by Claim 2, S has an F4 restriction and we are done. We may therefore assume

that ` ≥ 2 and S has no F3, F4 restriction. By repeatedly applying Claim 3, we see that S has one of F5, . . . , Fn

as a restriction, as required.

(iii)⇒ (i): Assume that S is not ±1-resistant. Since S is 1-resistant, there exists an x ∈ S such that S−{x}
has an N minor for some N ∈ {P3, S3}. Thus, for some point y ∈ {0, 1}3, S has an N ∪ {y} minor. Since S is

1-resistant, N ∪ {y} is 1-resistant, so N ∪ {y} must be isomorphic to one of R1,1, F1, F2, F3. Thus, S has one

of {R1,1, F1, F2, F3} as a minor.

As a consequence,

Corollary 2.6. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then the following statements are equivalent:

(i) S is ±1-resistant,

(ii) S has none of the following sets as a restriction:

{F : F is fragile} ∪
{{

0,1− e1
}
⊆ {0, 1}k : k ≥ 4

}
∪ {R1,1} ∪ {Fk : 1 ≤ k ≤ n},
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(iii) S has none of the following sets as a minor: {F : F is fragile} ∪ {R1,1, F1, F2, F3}.

In particular, ±1-resistance is a minor-closed property.

Proof. This is an immediate consequence of Theorem 2.2 and Theorem 2.5.

3 A structure theorem for ±1-resistant sets

In this section, we state and outline the proof of an exact structure theorem for ±1-resistant sets. We will need

the following three ingredients:

Theorem 3.1. Take an integer n ≥ 2 and a 1-resistant set S ⊆ {0, 1}n without an R1,1, F1, F2, F3 minor. If S

is not connected, then either

• S ∼= Ak × {0, 1}n−k for some k ∈ {2, . . . , n},

• S ∼= Bk × {0, 1}n−k for some k ∈ {3, . . . , n}, or

• S has a D3 minor.

Theorem 3.2. Take an integer n ≥ 3 and a 1-resistant set S ⊆ {0, 1}n without an R1,1, F1, F2, F3 minor. If S

has a D3 minor, then either

• S ∼= C8 × {0, 1}n−4, or

• S ∼= Dk × {0, 1}n−k for some k ∈ {3, . . . , n}.

Theorem 3.3. Take an integer n ≥ 1 and a 1-resistant set S ⊆ {0, 1}n without an R1,1, F1, F2, F3 minor. If S

is connected and has no D3 minor, then either

• S is a sub-hypercube, or

• every infeasible component of S is a sub-hypercube, and every feasible point has at most two infeasible

neighbors.

Assuming the correctness of these three results, let us state and prove an exact structure theorem for ±1-

resistant sets:
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Theorem 3.4. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then S is ±1-resistant if, and only if, one of the

following statements holds:

(i) S ∼= Ak × {0, 1}n−k for some k ∈ {2, . . . , n}, where Ak = {0,1} ⊆ {0, 1}k,

(ii) S ∼= Bk × {0, 1}n−k for some k ∈ {3, . . . , n}, where Bk = {0, e1,1} ⊆ {0, 1}k,

(iii) S ∼= C8 × {0, 1}n−4, where C8 = {0000, 1000, 0100, 1010, 0101, 0111, 1111, 1011},

(iv) S ∼= Dk × {0, 1}n−k for some k ∈ {3, . . . , n}, where Dk = {0, e2,1− e2,1− e2 − e3} ⊆ {0, 1}k,

(v) S is a sub-hypercube, or

(vi) every infeasible component of S is a sub-hypercube, and every feasible point has at most two infeasible

neighbors.

Proof of Theorem 3.4, assuming Theorem 3.1, Theorem 3.2 and Theorem 3.3. (⇒) Clearly, S is 1-resistant, so

by Theorem 2.5 (iii), S has no R1,1, F1, F2, F3 minor. If S is not connected and has no D3 minor, then (i) or (ii)

holds by Theorem 3.1. If S has a D3 minor, then (iii) or (iv) holds by Theorem 3.2. Otherwise, S is connected

and has no D3 minor, so (v) or (vi) holds by Theorem 3.3, as required. (⇐) We will need the following claim:

Claim. If S is ±1-resistant, then so is S × {0, 1}.

Proof of Claim. By Corollary 2.6 (ii), the excluded restrictions defining ±1-resistance are

{F : F is fragile} ∪
{{

0,1− e1
}
⊆ {0, 1}k : k ≥ 4

}
∪ {R1,1} ∪ {Fk : 1 ≤ k ≤ n}.

In particular, every excluded restriction of ±1-resistance is not isomorphic to F × {0, 1} for any set F . This

proves the claim. ♦

It can be readily checked that the sets {Ak : k ≥ 2}, {Bk, Dk : k ≥ 3} and C8 are ±1-resistant. Thus,

after repeatedly applying the claim above, we see that the four classes (i)-(iv) are ±1-resistant. It can also be

readily checked that (v) gives a ±1-resistant class. It remains to show that the restriction-closed class (vi) gives

is ±1-resistant. To this end, pick a set S satisfying (vi). Suppose for a contradiction that S is not ±1-resistant.

By Corollary 2.6 (ii), S has one of the following restrictions:

{F : F is fragile} ∪
{{

0,1− e1
}
⊆ {0, 1}k : k ≥ 4

}
∪ {R1,1} ∪ {Fk : 1 ≤ k ≤ n}.

Out of these sets, R1,1 is the only set whose infeasible components are sub-hypercubes. Thus S must have an

R1,1 restriction. However, R1,1 has a feasible point with three infeasible neighbors, implying in turn that S has

a feasible point with three infeasible neighbors, a contradiction.

To complete the proof of Theorem 3.4, it remains to prove Theorem 3.1, Theorem 3.2 and Theorem 3.3;

they are proved in §5, §6 and §7.1, respectively. Notice that Theorem 1.3 is an immediate consequence of

Theorem 3.4.
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4 Bridges

In this section we provide an ingredient needed for the proof of Theorem 3.1.

Take an integer n ≥ 2. For a point x ∈ {0, 1}n and distinct coordinates i, j ∈ [n] such that xi = xj = 0, we

refer to {x, x + ei, x + ej , x + ei + ej} as a square that initiates from x and is active in directions ei, ej . Two

squares are parallel if they are active in the same pair of directions. Two parallel squares are neighbors if the

points they initiate from are neighbors.

Take a set S ⊆ {0, 1}n. A bridge is a square that contains feasible points from different feasible components.

Notice that a bridge contains exactly two feasible points, which are non-adjacent and belong to different feasible

components. In this section, we will prove the following statement:

Take an integer n ≥ 3 and let S ⊆ {0, 1}n be a set that is 1-resistant and has no R1,1, F1, F2, F3

minor. Then every pair of bridges are parallel.

We will need three lemmas to prove this statement.

Lemma 4.1. Take an integer n ≥ 3 and a set S ⊆ {0, 1}n, where direction en is not active in any bridge. If S′

is obtained from S after projecting away coordinate n, then the feasible components of S project onto different

feasible components of S′.

Proof. For a point x ∈ {0, 1}n, denote by x′ ∈ {0, 1}n−1 the point obtained from x after dropping the nth

coordinate. To prove the lemma, we may assume that S is not connected. It suffices to show that if K is a

feasible component of S and x ∈ S −K, then dist(x′, y′) ≥ 2 for all y ∈ K. Well, since x does not belong to

the component K, dist(x, y) ≥ 2 for all y ∈ K, implying in turn that

dist(x′, y′) ≥ dist(x, y)− 1 ≥ 1 ∀ y ∈ K.

In particular, x′ /∈ {y′ : y ∈ K}. Suppose for a contradiction that dist(x′, y′) = 1 for some y ∈ K. As the

inequalities above are held at equality, there must be a coordinate i ∈ [n − 1] such that y = x4ei4en. But

then {x, x4ei, x4en, x4ei4en} would be a bridge that is active in direction en, contrary to our assumption.

Hence, dist(x′, y′) ≥ 2 for all y ∈ K, as required.

Lemma 4.2. Take an integer n ≥ 3 and a set S ⊆ {0, 1}n that is 1-resistant and has no R1,1, F1, F2 restriction.

Take a point x ∈ {0, 1}n and distinct coordinates i, j, k ∈ [n]. Then the following statements hold:

(i) If x4ei, x4ej , x4ek ∈ S, then
∣∣{x4ei4ej , x4ej4ek, x4ek4ei} ∩ S∣∣ ≤ 1.

(ii) If x ∈ S and {x, x4ei, x4ej , x4ei4ej} is a bridge, then {x4ei4ek, x4ej4ek} ∩ S = ∅.

(iii) If x ∈ S and {x, x4ei, x4ej , x4ei4ej} is a bridge, then
∣∣{x4ek, x4ei4ej4ek} ∩ S∣∣ ≥ 1.

Proof. After a possible twisting and relabeling, if necessary, we may assume that x = 0 and i = 1, j = 2, k = 3.

Let S′ ⊆ {0, 1}3 be the restriction of S obtained after 0-restricting coordinates 4, . . . , n.
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(i): Suppose that e1, e2, e3 ∈ S. Assume for a contradiction that two of e1+ e2, e2+ e3, e3+ e1, say e1+ e2
and e2 + e3, belong to S. If e1 + e3 ∈ S, then S′ is isomorphic to one of P3, S3, R1,1, F2, which cannot occur

as S is 1-resistant and has no R1,1, F2 restriction. Otherwise, e1 + e3 ∈ S. Since S′ 6∼= P3 and S is 1-resistant,

it follows that 0, e1 + e2 + e3 ∈ S, implying in turn that S′ ∼= F1, a contradiction as S has no F1 restriction.

(ii): Suppose that 0 ∈ S and {0, e1, e2, e1 + e2} is a bridge. Then e1 + e2 ∈ S and e1, e2 ∈ S. We

need to prove that {e1 + e3, e2 + e3} ∩ S = ∅. Suppose otherwise. After possibly relabeling coordinates

1, 2, we may assume that e1 + e3 ∈ S. Thus, since 0, e1 + e2 are in different feasible components, we must

have that |{e3, e1 + e2 + e3} ∩ S| ≤ 1. After possibly twisting coordinates 1, 2, we may assume that e3 ∈ S.

Since e1, e2, e3 ∈ S, we get from (i) that |{e1 + e2, e2 + e3, e3 + e1} ∩ S| ≤ 1, a contradiction. Thus,

{e1 + e3, e2 + e3} ∩ S = ∅, so (ii) holds.

(iii) Suppose that 0 ∈ S and {0, e1, e2, e1+e2} is a bridge. Then S∩{0, e1, e2, e1+e2} = {0, e1+e2}, and

{e1+ e3, e2+ e3}∩S = ∅ by (ii). Since S is 1-resistant, it follows immediately that {e3, e1+ e2+ e3}∩S 6= ∅,
so (iii) holds.

Lemma 4.3. Take a set S ⊆ {0, 1}5 that is 1-resistant, has no R1,1, F1, F2, F3 minor, and in every minor,

including S itself, every pair of bridges are parallel. If 0 ∈ S and {0, e1, e2, e1 + e2} is a bridge without

neighboring bridges, then after possibly twisting coordinates 1 and 2, we have that S = {0, e3, e1 + e2, e1 +

e2 + e4, e1 + e2 + e5, e1 + e2 + e4 + e5}:

Proof. Let B := {0, e1, e2, e1 + e2}. As B is a bridge and 0 ∈ S, e1 + e2 ∈ S and e1, e2 ∈ S. It follows from

Lemma 4.2 (ii) that e1 + e3, e2 + e3 ∈ S. By Lemma 4.2 (iii) and the fact that B has no neighboring bridge, we

get that exactly one of e3, e1 + e2 + e3 belongs to S. After twisting coordinates 1 and 2, if necessary, we may

assume that e3 ∈ S and e1 + e2 + e3 ∈ S. Moreover, by Lemma 4.2 (ii), we have that {e1 + e4, e2 + e4} ⊆ S.

Let S′ be the 0-restriction of S over coordinate 5, which looks as follows:

Claim 1. e4 ∈ S and e1 + e2 + e4 ∈ S.

Proof of Claim. Suppose otherwise. Since B has no neighboring bridge in S, it follows from Lemma 4.2 (iii)

that e4 ∈ S and e1 + e2 + e4 ∈ S. If e2 + e3 + e4 ∈ S, then the 0-restriction of S′ over coordinate 1 is either F1

or F3, which is not the case. Thus, e2+e3+e4 ∈ S. Since the 0-restriction of S′ over coordinate 1 is 1-resistant,
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it follows that e3 + e4 ∈ S. As the 0-restriction of S′ over coordinate 2 is not F3, we have e1 + e3 + e4 ∈ S.

Since the 1-restriction of S′ over coordinate 1 is 1-resistant, it follows that e1 + e2 + e3 + e4 ∈ S, so S′ looks

as follows:

Observe however now that F3 is obtained from S′ after projecting away coordinate 1, a contradiction. ♦

Claim 2. {e1 + e3 + e4, e2 + e3 + e4} ⊆ S.

Proof of Claim. Suppose otherwise. After interchanging the roles of 1, 2, if necessary, we may assume that

e1+ e3+ e4 ∈ S. If e3+ e4 ∈ S, then {0, e3} is a feasible component of S′, so the square initiating from e3 and

active in directions e1, e4 is a bridge of S′ that is not parallel to B, which is contrary to our assumption. Thus,

e3+e4 ∈ S. Since 0, e1+e2 belong to different feasible components of S, it follows that e1+e2+e3+e4 ∈ S,

so S′ looks as follows:

Observe however that S′ has two non-parallel bridges, namely B and the square that initiates from e1 + e4 and

is active in directions e2, e3, a contradiction. ♦

Claim 3. {e3 + e4, e1 + e2 + e3 + e4} ⊆ S.

Proof of Claim. Since the 0-restriction of S′ over coordinate 1 is 1-resistant, it follows that e3 + e4 ∈ S. Since

the 1-restriction of S′ over coordinate 1 is also 1-resistant, we see that e1 + e2 + e3 + e4 ∈ S, as required. ♦

We just determined the status of all the points in {x : x5 = 0}. A similar argument applied to {x : x4 = 0}
gives us the left figure below:

Consider the set obtained from S after 1-restricting over coordinate 1 and 0-restricting over coordinate 3; since

this set is 1-resistant and not isomorphic to F1, F3, we get that e1 + e4 + e5 ∈ S and e1 + e2 + e4 + e5 ∈ S.

As the 1-restriction of S over coordinates 1, 2 is not F3, we get that 1 ∈ S. Now consider the set obtained

from S after 1-restricting coordinate 2 and 0-restricting over coordinate 3; since this set is not F3, we get that
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e2+ e4+ e5 ∈ S. Note that {e1+ e2, e1+ e2+ e4, e1+ e2+ e5, e1+ e2+ e4+ e5} forms a feasible component

of S. Hence, as S does not have non-parallel bridges, it follows that e2 + e3 + e4 + e5, e1 + e3 + e4 + e5 ∈ S,

and also that e3+e4+e5 ∈ S. (See the right figure above.) Once again, as S does not have non-parallel bridges,

it follows that e4 + e5 ∈ S, thereby finishing the proof.

We are now ready to prove the main result of this section:

Proposition 4.4. Take an integer n ≥ 3 and let S ⊆ {0, 1}n be a set that is 1-resistant and has noR1,1, F1, F2, F3

minor. Then every pair of bridges are parallel.

Proof. Suppose for a contradiction that S has a pair of non-parallel bridges. (In particular, S is not connected.)

We may assume that in every proper minor of S, every pair of bridges, if any, are parallel.

Claim 1. Every direction is active in some bridge.

Proof of Claim. Suppose for a contradiction that direction en is not active in any bridge. For a point x ∈
{0, 1}n, denote by x′ ⊆ {0, 1}n−1 the point obtained from x after dropping the nth coordinate. Notice first

that by Lemma 4.1, the feasible components of S project onto different feasible components of S′, the subset of

{0, 1}n−1 obtained from S after projecting away coordinate n. We will derive a contradiction to the minimality

of S by showing that S′ has non-parallel bridges.

We will show that if B is a bridge of S, then B′ := {x′ : x ∈ B} is still a bridge of S′ that is active

in the same directions as before. Since en is not active in any bridge of S, we may assume that n ≥ 3 and

B = {0, e1, e2, e1 + e2} where 0, e1 + e2 belong to different feasible components of S, and e1, e2 ∈ S. It

follows from Lemma 4.2 (ii) that 0, e1 + e2 ∈ S′ and e1, e2 ∈ S′. Moreover, since the feasible components of S

project onto different feasible components of S′, we see that 0, e1 + e2 belong to different feasible components

of S′. Thus, B′ is still a bridge of S′ that is active in the same directions as before.

As a corollary, S′ still has non-parallel bridges, thereby contradicting the minimality of S. ♦

Claim 2. The following statements hold:

(i) if B,B′ are non-parallel bridges that are not active in direction ei, then {x : xi = 0} contains one of the

bridges and {x : xi = 1} contains the other one,

(ii) if B,B′, B′′ are pairwise non-parallel bridges, then every direction is active in one of the bridges, and

(iii) n ∈ {4, 5, 6}.

Proof of Claim. (i) For if not, then one of the restrictions of S over coordinate i contains B and B′, thereby

contradicting the minimality of S. (ii) Suppose for a contradiction that ei is not active in any of B,B′, B′′. Then

one of the hyperplanes {x : xi = 0}, {x : xi = 1} contains at least two of B,B′, B′′, thereby contradicting (i).

(iii) Let B,B′ be non-parallel bridges. It follows from Lemma 4.2 (ii) that n ≥ 4. If every direction is active in

one of B,B′, we get that n = 4. Otherwise, there is a direction ei inactive in both B,B′. By Claim 1, there is a
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bridge B′′ active in ei. Clearly, B,B′, B′′ are pairwise non-parallel bridges. It now follows from (ii) that n ≤ 6,

as required. ♦

Claim 3. n 6= 4.

Proof of Claim. Suppose for a contradiction that n = 4. LetB,B′ be non-parallel bridges of S. We may assume

thatB = {0, e1, e2, e1+e2}, 0, e1+e2 ∈ S and e1, e2 ∈ S. By Lemma 4.2 (ii), e1+e3, e2+e3, e1+e4, e2+e4 ∈
S:

Assume in the first case that B′ shares an active direction with B. After possibly relabeling coordinates 1, 2,

we may assume that B′ is active in directions e1, e3. It follows from Claim 2 (i) that B′ is contained in {x :

x4 = 1}. After possibly twisting coordinates 1, 2, we may assume thatB′ = {e4, e1+e4, e3+e4, e1+e3+e4}.
Since e1 + e4 ∈ S, it follows that e4, e1 + e3 + e4 ∈ S and e3 + e4 ∈ S. Applying Lemma 4.2 (ii), we get that

e3, e2 + e3 + e4, e1 + e2 + e4 ∈ S. Since the two restrictions of S over coordinate 4 are 1-resistant, it follows

that e1 + e2 + e3,1 ∈ S:

Observe, however, that 1-restricting S over coordinate 3 yields a set that is not 1-resistant, a contradiction.

Assume in the remaining case that B′ is active in directions e3, e4. Observe that B′ is not contained in

{x : x1 + x2 = 1}. After possibly twisting coordinates 1, 2, we may assume that B′ initiates from 0. This

means that e3, e4 ∈ S and e3 + e4 ∈ S. Applying Lemma 4.2 (iii), we get that e1 + e2 + e4 ∈ S and

e1 + e3 + e4, e2 + e3 + e4 ∈ S:

The 1-restriction of S over coordinate 4, however, is isomorphic to either F1 or F3, a contradiction. ♦

Thus, we have that n ∈ {5, 6}. It follows from Claim 1 that there are dn2 e = 3 pairwise non-parallel bridges

B1, B2, B3. We get from Claim 2 (ii) that, after a possible relabeling,B1 is active in e1, e2,B2 is active in e3, e4,

and

• if n = 5, then B3 is active in e3, e5,

• if n = 6, then B3 is active in e5, e6.

We can further say that,
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Claim 4. If B is a bridge different from B1, B2, B3, then n = 5.

Proof of Claim. Suppose for a contradiction that n = 6. It follows from Claim 2 (ii) that B is parallel to one

of B1, B2, B3. Consider the bridge B2. Since B2, B3 are inactive in e1, e2, it follows from Claim 2 (i) that the

hyperplanes {x : x1 = 0}, {x : x2 = 0} split B2, B3. Moreover, since B2, B1 are inactive in e5, the hyperplane

{x : x5 = 0} splits B2, B1. Hence, the square of B2 – and of any bridge parallel to it – is uniquely determined

once B1 and B3 are given, implying that B is not parallel to B2. By the symmetry between B1, B2, B3, we get

that B is not parallel to B1, B3 either, a contradiction. ♦

Claim 5. n 6= 5.

Proof of Claim. Suppose for a contradiction that n = 5. After twisting coordinates 3, 4, 5, if necessary, we may

assume that B1 initiates from 0. By Claim 2 (i), and after possibly twisting coordinates 1, 2, we may assume

that B2 initiates from e5. Another application of Claim 2 (i) tells us that B3 initiates from e1 + e2 + e4:

Assume in the first case that 0, e1 + e2 ∈ S and e1, e2 ∈ S. Then a repeated application of Lemma 4.2 (ii)

tells us that e3, e1 + e2 + e3, e5, e1 + e2 + e5, e4, e1 + e2 + e4 ∈ S. As a result, in the bridge B2, we have that

e3 + e5, e4 + e5 ∈ S:

Observe now that the restriction of S obtained after 0-restricting coordinates 1 and 2 is not 1-resistant, a contra-

diction.

Assume in the remaining case that 0, e1 + e2 ∈ S and e1, e2 ∈ S. A repeated application of Lemma 4.2 (ii)

to B1, followed by an application of it to B2, B3 gives us the left figure below:
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Applying Lemma 4.2 (ii) to B2, B3 gives us the right figure above, thereby yielding a contradiction as 0-

restricting coordinates 4, 5 of S yields a set that is not 1-resistant. This finishes the proof of the claim. ♦

Thus n = 6. After twisting coordinates 3, 4, 5, 6, if necessary, we may assume that B1 initiates from 0.

Applying Claim 2 (i), we see that after possibly twisting coordinates 1, 2, we may assume that B2 initiates from

e5 + e6. Using Claim 2 (i), we see that B3 must initiate from e1 + e2 + e3 + e4. (See Figure 3.)

e6
B1
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B3
<latexit sha1_base64="A+QrljSNd2wCgGfD3EU8PmDiVBE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOpF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh3r/sl+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophjd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVD236t1fVWr1PI4inMApnIMH11CDO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gC8ZY1s</latexit><latexit sha1_base64="A+QrljSNd2wCgGfD3EU8PmDiVBE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOpF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh3r/sl+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophjd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVD236t1fVWr1PI4inMApnIMH11CDO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gC8ZY1s</latexit><latexit sha1_base64="A+QrljSNd2wCgGfD3EU8PmDiVBE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOpF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh3r/sl+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophjd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVD236t1fVWr1PI4inMApnIMH11CDO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gC8ZY1s</latexit><latexit sha1_base64="A+QrljSNd2wCgGfD3EU8PmDiVBE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOpF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh3r/sl+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophjd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVD236t1fVWr1PI4inMApnIMH11CDO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gC8ZY1s</latexit>

Figure 3: The locations of the bridges B1, B2, B3 in {0, 1}6

Recall from Claim 4 that B1, B2, B3 are the only bridges of S. Let S′ ⊆ {0, 1}5 be the restriction of S

obtained after 0-restricting coordinate 6. By assumption, every minor of S′ has only parallel bridges. As a

bridge in S′ is not necessarily a bridge in S, we see that S′ may have bridges other than B1 (that will necessarily

be parallel to it).

Claim 6. B1 does not have a neighboring bridge in S′.

Proof of Claim. Suppose for a contradiction that B1 has a neighboring bridge B in S′. Since B is not a bridge

of S by Claim 4, it follows that the points in B ∩ S′ are in the same feasible component of S. After applying

Lemma 4.2 (ii) toB1, we see that the points inB1∩S′ also lie in this feasible component of S, a contradiction. ♦

We may now apply Lemma 4.3 to the bridge B1 of S′. Depending on which points of B1 are in S′, and how

coordinates 1, 2 are twisted, we get that S′ takes on one of the four possibilities shown below.
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Consider the 3-dimensional restriction F of S containingB2 andB24e6. If S′ takes one of the top-left, bottom-

left or bottom-right possibilities, then F is not 1-resistant, which is not possible. Otherwise, S′ takes the top-right

possibility, in which case F ∼= F1, a contradiction. This finally finishes the proof of Proposition 4.4.

5 Proof of Theorem 3.1

Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. S is polar if either there are antipodal feasible points, or the

feasible points agree on a coordinate:

{x,1− x} ⊆ S for some x ∈ {0, 1}n or S ⊆ {x : xi = a} for some i ∈ [n] and a ∈ {0, 1}.

This notion was introduced and studied in [3] and will be needed in this section.

We say that S is separable if there exist a partition of S into nonempty parts S1, S2 and distinct coordinates

i, j ∈ [n] such that either S1 ⊆ {x : xi = 0, xj = 1} and S2 ⊆ {x : xi = 1, xj = 0}, or S1 ⊆ {x : xi = xj =

0} and S2 ⊆ {x : xi = xj = 1}. Notice that if S is separable, then it is not connected.

Remark 5.1. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. If a projection of S is separable, then so is S.

Proposition 5.2. Take an integer n ≥ 2 and a 1-resistant set S ⊆ {0, 1}n. Suppose there is a partition of S into

nonempty parts S1, S2 such that S1 ⊆ {x : xn−1 = xn = 0} and S2 ⊆ {x : xn−1 = xn = 1}. Then S1 and S2

are sub-hypercubes. In particular, S is polar.

Proof. The sub-hypercube {x : xn−1 = 0, xn = 1} is infeasible. As S is 1-resistant, Lemma 1.6 implies that in

each of the parallel sub-hypercubes {x : xn−1 = xn = 0} and {x : xn−1 = xn = 1}, the feasible points form a

sub-hypercube. That is, the two sets S1 = S ∩ {x : xn−1 = xn = 0} and S2 = S ∩ {x : xn−1 = xn = 1} are

sub-hypercubes. We leave it as an easy exercise for the reader to check that S is polar.

We are now ready to prove Theorem 3.1:

18



Proof of Theorem 3.1. Take an integer n ≥ 2 and a set S ⊆ {0, 1}n that is 1-resistant, has no R1,1, F1, F2, F3

minor and is not connected. We will describe S exactly unless it has a D3 minor. Let us start with the following

claim:

Claim 1. S is separable.

Proof of Claim. Let k ≥ 2 be the number of feasible components of S. Let S′ ⊆ {0, 1}m be a projection

of S of smallest dimension with exactly k feasible components. It then follows from Lemma 4.1 that every

direction of {0, 1}m is active in a bridge of S′. However, as S′ is 1-resistant and has no R1,1, F1, F2, F3 minor,

Proposition 4.4 implies that every pair of bridges of S′ are parallel. As a result, m = k = 2 and S′ is either

{00, 11} or {10, 01}. In particular, S′ is separable, so S is separable by Remark 5.1. ♦

Thus, there is a partition of S into nonempty parts S1, S2 such that, after a possible twisting and relabeling,

S1 ⊆ {x : xn−1 = xn = 0} and S2 ⊆ {x : xn−1 = xn = 1}. As S is 1-resistant, Proposition 5.2 implies

that S1 and S2 are sub-hypercubes, and that S is polar. In particular, since S is not a sub-hypercube, Lemma 1.6

implies that the points in S do not agree on a coordinate; notice that this property is preserved in every projection

of dimension at least one.

Claim 2. Either S has a D3 minor, or one of S1, S2 is contained in the antipode of the other.

Proof of Claim. Suppose neither of S1, S2 is contained in the antipode of the other. As the points in the polar

set S do not agree on a coordinate, there exists a point x ∈ S1 such that 1 − x ∈ S2. As neither of S1, S2 is

contained in the antipode of the other, there exist distinct coordinates i, j ∈ [n−2] such that x4ei ∈ S1, x4ej /∈
S1,14x4ei /∈ S2 and 14x4ej ∈ S2. Let S′ be the minor of S obtained after projecting away coordinates

[n] − {i, j, n − 1, n}. It can be readily checked that S′ ∼= {0000, 1000, 1011, 1111} (note that S1, S2 are sub-

hypercubes). Clearly, S′ has a D3 projection, thereby proving the claim. ♦

If S has a D3 minor, then we are done. Otherwise, one of S1, S2 is contained in the antipode of the other.

After possibly relabeling S1, S2, we may assume that S2 is contained in the antipode of S1.

Claim 3. 2|S2| ≥ |S1| ≥ |S2|.

Proof of Claim. Clearly, |S1| ≥ |S2|. Suppose for a contradiction that |S1| ≥ 4|S2|. Since S2 is contained in

the antipode of S1, it can be readily checked that S has an F3 minor, a contradiction. ♦

As a result, either |S1| = |S2| or |S1| = 2|S2|. It can now be readily checked that either S ∼= Ak×{0, 1}n−k

for some k ∈ {2, . . . , n}, or S ∼= Bk × {0, 1}n−k for some k ∈ {3, . . . , n}, thereby finishing the proof of

Theorem 3.1.

19



D3 D?
3 C8

6 D3 minors and proof of Theorem 3.2

We will need four lemmas, the first of which is from another paper:

Lemma 6.1 ([4]). Take an integer n ≥ 1 and a set S ⊆ {0, 1}n, where for all x ∈ {0, 1}n and distinct i, j ∈ [n],

the following statement holds:

if x, x4ei, x4ej ∈ S then x4ei4ej ∈ S.

Then every feasible component of S is a sub-hypercube.

LetD?
3 := {010, 011, 111, 101} ⊆ {0, 1}3. Observe thatD?

3 is a twisting ofD3 = {000, 100, 010, 101}, and

C8 = (D3×{0})∪(D?
3×{1}). In the following lemma, we will use the following implication of Lemma 4.2 (i):

implies

Lemma 6.2. Let S ⊆ {0, 1}n be a set that is 1-resistant and has no R1,1, F1, F2, F3 minor, where the 0-

restriction of S over coordinates 4, . . . , n is either D3 or D?
3 . Then,

(i) every restriction of S over coordinates 4, . . . , n is either D3 or D?
3 , and

(ii) either S ∼= D3 × {0, 1}n−3 or S ∼= C8 × {0, 1}n−4.

Proof. (i) By a recursive argument, it suffices to show that each 3-dimensional restriction of S neighboring a

D3, D
?
3 restriction is also a D3 or a D?

3 . Thus, we may assume that n = 4. After twisting coordinates 1, 2, 3,

if necessary, we may assume that the 0-restriction of S over coordinate 4 is D3. So S ∩ {x : x4 = 0} =

{0000, 1000, 0100, 1010}:

Assume in the first case that {0111, 1111} ∩ S 6= ∅. After applying Lemma 4.2 (i) twice, we see that

{0111, 1111, 0011, 1101} ⊆ S:
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Since the two restrictions over coordinate 1 are 1-resistant, |{0101, 0001}∩S| 6= 1 and |{1001, 1011}∩S| 6= 1.

In fact, as S has no F3 minor, {0101, 0001} ⊆ S if and only if {1001, 1011} ⊆ S. Moreover, as the 0-

restriction of S over coordinate 3 is 1-resistant, it follows that {0101, 0001, 1001, 1011} ∩ S 6= ∅. As a result,

{0101, 0001, 1001, 1011} ⊆ S, implying in turn that 1-restricting S over coordinate 4 yields D3.

Assume in the remaining case that {0111, 1111} ∩ S = ∅. As the 1-restriction of S over coordinate 3 (resp.

coordinate 2) is not isomorphic to either of F1, F3, we get that 0011 ∈ S (resp. 1101 ∈ S).

Since S has noF1, F3, S3 restrictions, it follows that 0001, 1001 ∈ S. Since the 0-restriction of S over coordinate

2 (resp. coordinate 3) is 1-resistant, 1011 ∈ S (resp. 0101 ∈ S), implying in turn that 1-restricting S over

coordinate 4 yields D?
3 .

(ii) It follows from (i) that S =
⋃

y∈{0,1}n−3

(
F × {y} : F ∈ {D3, D

?
3}
)
. Let R ⊆ {0, 1}n−3 be the set of

points y such that S ∩ {x : xi = yi−3 4 ≤ i ≤ n} = D3 × {y}.

Claim 1. Every feasible component of R is a sub-hypercube. Similarly, every infeasible component of R is a

sub-hypercube.

Proof of Claim. By Lemma 6.1, it suffices to prove that for each y ∈ R and distinct coordinates i, j ∈ [n− 3], if

y, y4ei, y4ej ∈ R then y4ei4ej ∈ R. Suppose otherwise. After a possible twisting and relabeling, we may

assume that y = 0, i = 1, j = 2. Let S′ be the 0-restriction of S over coordinates 6, . . . , n:

Observe that the 0-restriction of S′ over coordinates 1, 2 is fragile and therefore not 1-resistant, a contradic-

tion. ♦

Claim 2. R is connected. Similarly, R is connected.

Proof of Claim. Suppose for a contradiction that R ⊆ {0, 1}n−3 is not connected. By Claim 1, every feasible

component of R is a sub-hypercube, each of which must have rank at most (n − 3) − 2 = n − 5. Thus, there

exist y ∈ {0, 1}n−3 and distinct coordinates i, j ∈ [n − 3] such that y ∈ R and y4ei, y4ej ∈ R. Since

every infeasible component of R is also a sub-hypercube by Claim 1, it follows that y4ei4ej ∈ R. After a

possible twisting and relabeling, we may assume that y = 0, i = 1, j = 2. Let S′ be the 0-restriction of S over

coordinates 6, . . . , n:
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Observe however that the 0-restriction of S′ over coordinates 1, 2 is fragile and therefore not 1-resistant, a

contradiction. ♦

As a result, both R,R are sub-hypercubes, implying in turn that R ∼= ∅, {0, 1}n−4 × {0}, {0, 1}n−3. If

R ∼= ∅, {0, 1}n−3 then S ∼= D3 × {0, 1}n−3, and if R ∼= {0, 1}n−4 × {0} then S ∼= C8 × {0, 1}n−4, thereby

finishing the proof.

For each k ≥ 4, recall that Dk = {0, e2,1− e2,1− e2 − e3} ⊆ {0, 1}k, and let D?
k := Dk4ek.

Lemma 6.3. Take integers n ≥ 3 and k ∈ {3, . . . , n}. Let S ⊆ {0, 1}n+1 be a set that is 1-resistant and has no

R1,1, F1, F2, F3 minor. Then the following statements hold:

(i) if the projection of S over coordinate n+ 1 is Dn, then S is either Dn+1, D
?
n+1 or Dn × {0, 1},

(ii) if the projection of S over coordinate k+1 is Dk×{0, 1}n−k, then S is either Dk+1×{0, 1}n−k, D?
k+1×

{0, 1}n−k or Dk × {0, 1}n−k+1.

Proof. In this proof, we use 1 to refer to the (n + 1)-dimensional vector of all-ones, and use 1′ to refer to the

n-dimensional vector of all-ones. (i) Assume that the projection of S over coordinate n+ 1 is Dn. Let

S0 := S ∩ {x : xi = 0, i 6= 2, 3, n+ 1} ⊆ {0, 1}n+1,

S1 := S ∩ {x : xi = 1, i 6= 2, 3, n+ 1} ⊆ {0, 1}n+1.

Then

• S = S0 ∪ S1,

• S0 ⊆ {0, e2, en+1, e2 + en+1}, and the projection of S0 over coordinate n+ 1 is {0, e2}, and

• S1 ⊆ {1− e2− en+1,1− e2− e3− en+1,1− e2,1− e2− e3}, and the projection of S1 over coordinate

n+ 1 is {1′ − e2,1′ − e2 − e3}.

After twisting coordinate n+1, if necessary, we may assume that 0 ∈ S0. Then, since S0 and S1 are 1-resistant,

we get that

S0 = {0, e2} or {0, e2, en+1, e2 + en+1}, and

S1 = {1− e2 − en+1,1− e2 − e3 − en+1} or {1− e2,1− e2 − e3} or

{1− e2 − en+1,1− e2 − e3 − en+1,1− e2,1− e2 − e3}.
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Claim 1. If S0 = {0, e2}, then S = Dn+1.

Proof of Claim. Suppose that S0 = {0, e2}.
Assume in the first case that n = 3. If S1 = {1−e2−e4,1−e2−e3−e4}, then the 0-restriction of S = S0∪S1

over coordinate 3 is not 1-resistant, which is not the case. If S1 = {1−e2−e4,1−e2−e3−e4,1−e2,1−e2−e3},
then the 0-restriction of S = S0 ∪ S1 over coordinate 2 is isomorphic to F3, which is again not the case.

Therefore, S1 = {1− e2,1− e2 − e3}, implying in turn that S = S0 ∪ S1 = D4, as claimed.

Assume in the remaining case that n ≥ 4. If S1 = {1− e2 − en+1,1− e2 − e3 − en+1}, then the points in

S = S0 ∪ S1 all agree on coordinate n + 1, so by Lemma 1.6, S is a sub-hypercube, which is not the case. If

S1 = {1−e2−en+1,1−e2−e3−en+1,1−e2,1−e2−e3}, then the projection of S = S0∪S1 over coordinates

[n+ 1]− {2, 3, n+ 1} is isomorphic to F3, which cannot be the case. Therefore, S1 = {1− e2,1− e2 − e3},
implying in turn that S = S0 ∪ S1 = Dn+1, as claimed. ♦

Claim 2. If S0 = {0, e2, en+1, e2 + en+1}, then S = Dn × {0, 1}.

Proof of Claim. Suppose that S0 = {0, e2, en+1, e2+en+1}. As the projection of S = S0∪S1 over coordinates

[n+ 1]− {2, 3, n+ 1} is not isomorphic to F3, it follows that S1 = {1− e2 − en+1,1− e2 − e3 − en+1,1−
e2,1− e2 − e3}, implying in turn that S = Dn × {0, 1}, as required. ♦

Thus, after twisting coordinate n+ 1, if necessary, S is either Dn+1 or Dn × {0, 1}, so (i) holds.

(ii) Assume that the projection of S over coordinate k+1 is Dk×{0, 1}n−k. For each point y ∈ {0, 1}n−k,

let Sy := S ∩ {x : xi+k+1 = yi, i ∈ [n − k]} ⊆ {0, 1}n+1. Notice that S =
⋃

y∈{0,1}n−k Sy . For each

y ∈ {0, 1}n−k, pick an appropriate S′y ⊆ {0, 1}k+1 such that Sy = S′y ×{y}. Notice that the projection of each

S′y over coordinate k + 1 is Dk. We therefore get from (i) that each S′y is either Dk+1, D?
k+1 or Dk × {0, 1}.

Claim 3. All of (S′y : y ∈ {0, 1}n−k) are equal to one another.

Proof of Claim. Suppose otherwise. Then there exists y1, y2 ∈ {0, 1}n−k such that dist(y1, y2) = 1 and S′y1
6=

S′y2
. In particular, S has either S′ := (Dk+1×{0})∪ (Dk×{01, 11}) or S′′ := (Dk+1×{0})∪ (D?

k+1×{1})
as a restriction. However, the restriction of S′ (resp. S′′) obtained after 0-restricting coordinates [n+1]−{3, k+
1, k + 2} is not 1-resistant, so S cannot have either of S′, S′′ as a restriction, a contradiction. ♦

As a consequence, S = Dk+1 × {0, 1}n−k, D?
k+1 × {0, 1}n−k or Dk × {0, 1}n−k+1, so (ii) holds.

Lemma 6.4. Take an integer n ≥ 5 and a set S ⊆ {0, 1}n that is 1-resistant and has no R1,1, F1, F2, F3 minor.

If the projection of S over coordinate n is C8 × {0, 1}n−5, then S = C8 × {0, 1}n−4.

Proof. It suffices to prove this for n = 5. Assume that the projection of S over coordinate 5 is C8 = (D3 ×
{0}) ∪ (D?

3 × {1}). For i, j ∈ {0, 1}, let Sij ⊆ {0, 1}3 be the restriction of S obtained after i-restricting

coordinate 4 and j-restricting coordinate 5. After twisting coordinate 5, if necessary, we may assume that 0 ∈ S.

Claim. S has a D3 restriction.
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Proof of Claim. Suppose for a contradiction that S does not have a D3 restriction. In particular, S00, S01 6= D3

and S10, S11 6= D?
3 . Thus by Lemma 6.3 (i),

(S00 × {0}) ∪ (S01 × {1}) = D4 or D?
4 ,

(S10 × {0}) ∪ (S11 × {1}) = D′4 or D′44e4,

whereD′4 = {0100, 0110, 1011, 1111} ⊆ {0, 1}4. Since 0 ∈ S, we must have that (S00×{0})∪ (S01×{1}) =
D4. Thus, S00 = {000, 010} and S01 = {100, 101}. Since the restriction of S obtained after 0-restricting

coordinates 1 and 5 is not isomorphic to D3, it follows that (S10 × {0}) ∪ (S11 × {1}) = D′44e4. So,

S10 = {101, 111} and S11 = {010, 011}:

S00

S01

S10

S11

Observe however that the 1-restriction of S over coordinates 2, 3 is not 1-resistant, a contradiction. ♦

Thus, S ∼= D3 × {0, 1}2 or C8 × {0, 1} by Lemma 6.2 (ii). It can be readily checked that S must be in fact

equal to C8 × {0, 1}, as required.

We are now ready to prove Theorem 3.2:

Proof of Theorem 3.2. Take an integer n ≥ 3 and a 1-resistant set S ⊆ {0, 1}n without an R1,1, F1, F2, F3

minor. Assume that S has a D3 minor. We will describe S exactly. Among all projections of S with a D3

restriction, pick one S′ ⊆ {0, 1}` of largest dimension ` ∈ {3, . . . , n}. We may assume, after a possible

relabeling, that S′ is obtained from S after projecting away coordinates [n]− [`]. It follows from Lemma 6.2 (ii)

that, after a possible twisting and relabeling, S′ = C8 × {0, 1}`−4 or S′ = D3 × {0, 1}`−3.

Claim. If S′ = C8 × {0, 1}`−4, then ` = n.

Proof of Claim. This follows immediately from Lemma 6.4 and the maximal choice of S′. ♦

Thus, if S′ = C8 × {0, 1}`−4, then S ∼= C8 × {0, 1}n−4. Otherwise, S′ = D3 × {0, 1}`−3. In this case,

a repeated application of Lemma 6.3 (ii) implies that S ∼= Dk × {0, 1}n−k for some k ∈ {`, . . . , n} (note that

Dk, D
?
k are isomorphic), thereby finishing the proof of Theorem 3.2.
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H1 H2 H?
2 H3

7 Infeasible sub-hypercubes and Theorem 3.3

Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. In this section, we will prove the following statement:

Assume that S is 1-resistant, has no R1,1, F1, F2, F3 minor and no D3 minor. Take a point x and

distinct coordinates i, j ∈ [n] such that x is infeasible while x4ei, x4ej , x4ei4ej are feasible.

Then the infeasible component containing x is a sub-hypercube.

Proving this statement requires three technical lemmas. Given i ∈ {0, 1}, denote by Si ⊆ {0, 1}n−1 the i-

restriction of S over coordinate n. Let

H1 := {100, 010, 101, 011} ⊆ {0, 1}3

H2 := {100, 010, 101, 011, 110} ⊆ {0, 1}3

H?
2 := {100, 010, 101, 011, 111} ⊆ {0, 1}3

H3 := {100, 010, 101, 011, 110, 111} ⊆ {0, 1}3

Lemma 7.1. Let S ⊆ {0, 1}4 be a set that is 1-resistant and has no R1,1, F1, F2, F3, D3 minor. If S0 ∈
{H1, H2, H

?
2 , H3}, then |{000, 001} ∩ S1| 6= 1.

Proof. Suppose, for a contradiction, that H1 ⊆ S0 ⊆ H3 and |{000, 001} ∩ S1| = 1. After twisting coordinate

3, if necessary, we may assume that 000 ∈ S1 and 001 ∈ S1. So S may be displayed as below:

Since the 0-restriction of S over coordinate 1 is not isomorphic to either F1 or F3, we get that 011 ∈ S1, and

since this restriction is not isomorphic to D3, we get that 010 ∈ S1. By the symmetry between coordinates

1, 2, we get that {100, 101} ⊆ S1. But then the 0-restriction of S over coordinate 3 is isomorphic to either

P3, R1,1, F1 or F2, a contradiction.

Lemma 7.2. Let S ⊆ {0, 1}4 be a set that is 1-resistant and has no R1,1, F1, F2, F3, D3 minor, where S0 ∈
{H2, H

?
2 , H3} and {000, 001} ∩ S1 = ∅. Then the following statements hold:

(i) S1 ∈ {H1, H2, H
?
2 , H3}, and

(ii) if S1 = H1, then S0 = H3.
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Proof. (i) After twisting coordinate 3, if necessary, we may assume that S0 ∈ {H2, H3}. We may therefore

display S as:

Since the 0-restriction of S over coordinate 1 is 1-resistant, it follows that |{010, 011} ∩ S1| 6= 1, and since the

0-restriction of S over coordinate 2 is 1-resistant, it follows that |{100, 101}∩S1| 6= 1. Thus, as the 0-restriction

of S over coordinate 3 is 1-resistant, either {010, 011} ⊆ S1 or {100, 101} ⊆ S1. After relabeling coordinates

1, 2, if necessary, {010, 011} ⊆ S1. Since the 0-restriction of S over coordinate 3 is not isomorphic to D3 or F3,

it follows that {100, 101} ⊆ S1 also:

Hence, S1 ∈ {H1, H2, H
?
2 , H3}. (ii) If S1 = H1, then as the 1-restriction of S over coordinate 1 is not

isomorphic to F3, it follows that 111 ∈ S0, so S0 = H3, as required.

Given that n ≥ 2 and i, j ∈ {0, 1}, denote by Sij ⊆ {0, 1}n−2 the restriction of S obtained after i-restricting

coordinate n− 1 and j-restricting coordinate n.

Lemma 7.3. Let S ⊆ {0, 1}5 be a set that is 1-resistant and has no R1,1, F1, F2, F3, D3 minor, where S00 =

H3, S10 = H1 and {000, 001} ∩ S11 = ∅. Then the following statements hold:

(i) S01, S11 ∈ {H1, H2, H
?
2 , H3}, and

(ii) if S11 = H1 then S01 = H3, and therefore S1 = S0.

Proof. (i) For i, j ∈ {0, 1}, denote by Rij ⊆ {0, 1}5 the restriction of S obtained after i-restricting coordinate 3

and j-restricting coordinate 5.

Notice thatR00 = R10 = H2 and 001 /∈ R01∪R11. It therefore follows from Lemma 7.1 that 000 /∈ R01∪R11.

We get from Lemma 7.2 (i)-(ii) that R01, R11 ∈ {H2, H
?
2 , H3}:
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As a result, S00, S11 ∈ {H1, H2, H
?
2 , H3}. (ii) If S11 = H1, then R01 and R11 must be equal to H2, implying

in turn that S01 = H3, as required.

We are now ready to prove the first main result of this section:

Proposition 7.4. Take an integer n ≥ 1 and a 1-resistant set S ⊆ {0, 1}n that has noR1,1, F1, F2, F3 and noD3

minor. Take a point x and distinct coordinates i, j ∈ [n] such that x is infeasible while x4ei, x4ej , x4ei4ej
are feasible. Then the infeasible component containing x is a sub-hypercube.

Proof. We prove this by induction on n ≥ 2. The base case n = 2 holds trivially. For the induction step, assume

that n ≥ 3. Let K be the infeasible component of S containing x. If every neighbor of x belongs to S, then

K = {x} and we are done. Otherwise, we may assume that x ∈ {0, e3} ⊆ K and i = 1, j = 2. For each

y ∈ {0, 1}n−3, let Sy := S ∩
{
x : x3+i = yi, i ∈ [n − 3]

}
and choose an appropriate Ry ⊆ {0, 1}3 such that

Sy = Ry × {y}.

Claim 1. R0 ∈ {H2, H
?
2 , H3}.

Proof of Claim. We know by assumption {000, 001} ⊆ R0. Assume in the first case x = 0. Then {100, 010,
110} ⊆ R0. Since R0 is 1-resistant, R0 ∩ {101, 011} 6= ∅. In fact, {101, 011} ⊆ R0 because R0 6∼= D3, F3.

Subsequently, R0 ∈ {H2, H3}. Assume in the remaining case x = e3. Then {101, 011, 111} ⊆ R0. Similar to

the first case, since R0 is 1-resistant, R0 ∩ {100, 010} 6= ∅. In fact, {100, 010} ⊆ R0 because R0 6∼= D3, F3.

Subsequently, R0 ∈ {H?
2 , H3}, as required. ♦

If n = 3, then K = {0, e3} by Claim 1, and the induction step is complete.

We may therefore assume that n ≥ 4. Let S′ be the projection of S over coordinate 3. Then S′ is 1-resistant

and has noR1,1, F1, F2, F3, D3 minor. Hence, since 0 ∈ S′ and {e1, e2, e1+e2} ⊆ S′, the induction hypothesis

implies that the infeasible component of S′ containing 0 – call itK ′ – is a sub-hypercube. For the next claim, call

a point y ∈ {0, 1}n−3 involved if Ry ∈ {H2, H
?
2 , H3} and 00y ∈ K ′. Notice that 0 ∈ {0, 1}n−3 is involved.

Claim 2. K consists precisely of the points in {0, 1}n projecting onto K ′.

Proof of Claim. (⊇) The set of points in {0, 1}n projecting onto a point in K ′ clearly belong to K and form

a sub-hypercube. (⊆) Suppose, for a contradiction, the reverse inclusion does not hold. Then there must exist

points z, z + e3 ∈ {0, 1}n satisfying |{z, z + e3} ∩ S| = 1 which project onto a point z′ ∈ {0, 1}n−1 such that

z′ belongs to S′ and is adjacent to a point in K ′. Notice that |{z, z + e3} ∩K| = 1.
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Pick a point t′ ∈ {0, 1}n−1 such that

i. t′ ∈ K ′,

ii. there exists an involved y? ∈ {0, 1}n−3 such that t′ = 00y, and

iii. dist(t′, z′) is minimized subject to i-ii, in this order of priority.

After a relabeling of the coordinates, if necessary, we may assume that t′ = 0 ∈ {0, 1}n−1. Since z′ /∈ K ′, we

get that dist(0, z′) ≥ 1. It follows from Lemma 7.1 that dist(0, z′) ≥ 2.

Since K ′ is a sub-hypercube, there exist an integer d ≥ 2 and distinct coordinates j1, j2, . . . , jd ∈ [n]− {3}
such that z′ =

∑d
i=1 eji and

k∑
i=1

eji ∈ K ′ k = 1, . . . , d− 1.

In words, there exists an infeasible path in S′ starting from 0, ending at z′, and of (the shortest possible) length

dist(0, z′) = d. In what follows, we essentially take a walk on this path starting from 0, repeatedly apply

Lemma 7.1, Lemma 7.2 and Lemma 7.3, prove that each Ry encountered on the path (i.e. 00y is a vertex on

the path) is one of H1, H2, H
?
2 , H3, thereby reaching a contradiction because this cannot be the case for the last

vertex z′.

Notice that
k∑

i=1

eji ∈ K and e3 +

k∑
i=1

eji ∈ K k = 1, . . . , d− 1.

Thus, since R0 ∈ {H2, H
?
2 , H3}, we have j1 ∈ [n]−{1, 2, 3}. After relabeling the coordinates, if necessary, we

may assume that j1 = 4. Since R0 ∈ {H2, H3} and {000, 001} ∩ Re1 = ∅, it follows from Lemma 7.2 (i) that

Re1 ∈ {H1, H2, H
?
2 , H3}. Our minimal choice of t′ = 0 implies that Re1 = H1 (otherwise, e4 would satisfy

i-ii and dist(e4, z
′) < dist(t′, z′), thereby contradicting the minimality of t′ = 0).

We now get from Lemma 7.2 (ii) thatR0 = H3, and from Lemma 7.1 that d ≥ 3. Since j2 ∈ [n]−{1, 2, 3, 4},
we may assume that j2 = 5. So e4 + e5 ∈ K ′. As 0, e4, e4 + e5 ∈ K ′ and K ′ is a sub-hypercube, it follows that

e5 ∈ K ′. Since {000, 001} ∩Re1+e2 = ∅, we get from Lemma 7.3 that either

• Re1+e2 ∈ {H2, H
?
2 , H3}, or

• Re2 = H3 and Re1+e2 = H1.

The first case is not possible as it contradicts the minimal choice of t′ = 0, for t′ = e4 + e5 would be a better

choice. However, the second case is not possible either as it also contradicts the minimal choice of t′ = 0, for

t′ = e5 would be a better choice. In both cases, we reached the desired contradiction, thereby finishing the proof

of Claim 2. ♦

Claim 2 completes the induction step as the set of points in {0, 1}n projecting onto a point in K ′ also forms

a sub-hypercube (whose rank is larger than K ′ by one). This finishes the proof of Proposition 7.4.
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7.1 Proof of Theorem 3.3

Take an integer n ≥ 1 and a 1-resistant set S ⊆ {0, 1}n without an R1,1, F1, F2, F3 minor. Assume that S is

connected and has no D3 minor.

Assume in the first case that there is an infeasible component K that is not a sub-hypercube. We will prove

that S is a sub-hypercube.

Claim 3. Take a point x and distinct coordinates i, j ∈ [n] such that x ∈ K and x4ei ∈ S. If x4ei4ej ∈ S,

then x4ej ∈ K.

Proof of Claim. For if not, x4ej ∈ S, so by Proposition 7.4, the infeasible component of S containing x, which

is K, is a sub-hypercube, a contradiction. ♦

This claim has the following subtle implication:

Claim 4. The points in S agree on a coordinate.

Proof of Claim. Take a point y ∈ K and a direction i ∈ [n] such that y4ei ∈ S. We may assume that y = 0

and i = 1. As S is connected, it follows from Claim 1 that S ⊆ {x : x1 = 1}, as required. ♦

As S is 1-resistant, it follows from Lemma 1.6 that S is a sub-hypercube, as required.

Assume in the remaining case that every infeasible component of S is a sub-hypercube. We claim that every

feasible point has at most two infeasible neighbors, thereby finishing the proof of Theorem 3.3. Suppose other-

wise. Then there is a feasible point xwith three infeasible neighbors x4ei, x4ej , x4ek, for distinct i, j, k ∈ [n].

Since every infeasible component is a sub-hypercube, it follows that x4ei4ej , x4ej4ek, x4ek4ei are feasi-

ble. But then the 3-dimensional restriction of S containing x4ei, x4ej , x4ek is isomorphic to either R1,1 or

F2, a contradiction.

8 The cuboid of a ±1-resistant set has the max-flow min-cut property.

Let us start with the following fascinating result:

Theorem 8.1 ([4]). A 1-resistant set is cube-ideal.

That is, the cuboid of a 1-resistant set is ideal. When does the cuboid have the max-flow min-cut property? This

has been answered partially. To elaborate, take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Recall from §5 that S is

polar if either there are antipodal feasible points, or the feasible points agree on a coordinate. S is strictly polar

if every restriction of it, including S itself, is polar [3]. The following highly nontrivial result was proved in [4]:

Theorem 8.2 ([4]). Let S be a 1-resistant set. Then cuboid(S) has the max-flow min-cut property if, and only

if, S is strictly polar.

Hence, to prove the title statement of this section, it suffices to prove that a ±1-resistant is strictly polar. We

need the following immediate remark:
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Remark 8.3. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. If S is strictly polar, then so is S × {0, 1}.

Lemma 8.4. Take an integer n ≥ 1 and a nonempty set S ⊆ {0, 1}n without an R1,1 restriction, where every

infeasible component is a sub-hypercube. Then

• |S| ≥ 2n−1, and

• if |S| = 2n−1, then S is either a sub-hypercube of rank n− 1 or the union of antipodal sub-hypercubes of

rank n− 2.

In particular, S is strictly polar.

Proof. We prove this by induction on n ≥ 1. The base cases n ∈ {1, 2} are clear as S 6= ∅. For the induction

step, assume that n ≥ 3. For i ∈ {0, 1}, let Si ⊆ {0, 1}n−1 be the i-restriction of S over coordinate n. If one of

S0, S1 is empty, then the other one must be {0, 1}n−1, so S is a sub-hypercube of rank n− 1 and the induction

step is complete. We may therefore assume that S0, S1 are nonempty. Since every infeasible component of

both S0, S1 is a sub-hypercube, we may apply the induction hypothesis. Thus, |S0| ≥ 2n−2 and |S1| ≥ 2n−2,

implying in turn that |S| = |S0| + |S1| ≥ 2n−1. Assume next that |S| = 2n−1. Then |S0| = |S1| = 2n−2,

so by the induction hypothesis, each Si is either a sub-hypercube of rank n − 2 or the union of antipodal sub-

hypercubes of rank n − 3. If one of S0, S1 is a sub-hypercube, then as every infeasible component of S is a

sub-hypercube, S is either a sub-hypercube of rank n−1 or the union of antipodal sub-hypercubes of rank n−2.

Otherwise, each one of S0, S1 is the union of two antipodal sub-hypercubes of rank n − 3. As S has no R1,1

restriction, it must be that S0 = S1, implying in turn that S is the union of antipodal sub-hypercubes of rank

n− 2, thereby completing the induction step.

We are now able to prove Theorem 8.5, stating that every ±1-resistant set is strictly polar:

Theorem 8.5. A ±1-resistant set is strictly polar.

Proof. Take an integer n ≥ 1 and a ±1-resistant set S ⊆ {0, 1}n. Then by Theorem 3.4, either

(i) S ∼= Ak × {0, 1}n−k for some k ∈ {2, . . . , n},

(ii) S ∼= Bk × {0, 1}n−k for some k ∈ {3, . . . , n},

(iii) S ∼= C8 × {0, 1}n−4,

(iv) S ∼= Dk × {0, 1}n−k for some k ∈ {3, . . . , n},

(v) S is a sub-hypercube, or

(vi) every infeasible component of S is a sub-hypercube, and every feasible point has at most two infeasible

neighbors.
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Observe that {Ak : k ≥ 2}, {Bk, Dk : k ≥ 3} and C8 are strictly polar sets. As a result, in cases (i)-(iv), the set

S is strictly polar by Remark 8.3. A sub-hypercube is strictly polar, so in case (v), S is strictly polar. For the last

case (vi), as S is ±1-resistant it has no R1,1 restriction by Remark 2.3, so Lemma 8.4 implies that S is strictly

polar, as required.

As a consequence,

Corollary 8.6. The cuboid of a ±1-resistant set has the max-flow min-cut property.

Proof. This follows from Theorem 8.2 and Theorem 8.5.

Theorem 1.2 follows immediately.
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Special operations

S4y = {x4y : x ∈ S}

S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2}

Special sets

R1,1 = {000, 101, 110, 011}

P3 = {110, 101, 011}

S3 = {110, 101, 011, 111}

C8 = {0000, 1000, 0100, 1010, 0101, 0111, 1111, 1011}

F1 = {000, 100, 010, 111}

F2 = {000, 100, 010, 001, 111}

F3 = {000, 100, 010, 001, 110}

D3 = {000, 100, 010, 101}

D?
3 = {010, 011, 111, 101}

D′4 = {0100, 0110, 1011, 1111}

H1 = {100, 010, 101, 011}

H2 = {100, 010, 101, 011, 110}

H?
2 = {100, 010, 101, 011, 111}

H3 = {100, 010, 101, 011, 110, 111}

Ak = {0,1} ⊆ {0, 1}k k ≥ 2

Bk = {0, e1,1} ⊆ {0, 1}k k ≥ 3

Dk = {0, e2,1− e2,1− e2 − e3} ⊆ {0, 1}k k ≥ 4

D?
k = Dk4ek k ≥ 4

Fk = {0, e1, e2, e1 + e2,1− e1 − e2} ⊆ {0, 1}k k ≥ 4
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Figures of special sets

A fragile set
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