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Abstract—We examine competition between two Internet Ser-
vice Providers (ISPs), where the first ISP provides basic Internet
service, while the second ISP provides Internet service plus
content, i.e., enhanced service, where the first ISP can partner
with a Content Provider to provide the same content as the
second ISP. When such a partnering arrangement occurs, the
Content Provider pays the first ISP a transfer price for delivering
the content. Users have heterogeneous preferences, and each
in general faces three options: (1) buy basic Internet service
from the first ISP; (2) buy enhanced service from the second
ISP; or (3) buy enhanced service jointly from the first ISP
and the Content Provider. We derive results on the existence
and uniqueness of a Nash equilibrium, and provide closed-form
expressions for the prices, user masses, and profits of the two
ISPs and the Content Provider. When the first ISP has the ability
to choose the transfer price, then when congestion is linear in
the load, it is never optimal for the first ISP to set a negative
transfer price in the hope of attracting more revenue from
additional customers desiring enhanced service. Conversely, when
congestion is sufficiently super-linear, the optimal strategy for the
first ISP is either to set a negative transfer price (subsidizing the
Content Provider) or to set a high transfer price that shuts the
Content Provider out of the market.

Index Terms—communication networks, competition, content
provider, optimal pricing, Nash equilibrium, profit

I. INTRODUCTION

Several years ago, Comcast complained to the FCC that
Netflix was asking for special access to its broadband network.
Comcast said that the issue could cause a financial dispute,
but it did not require the involvement of regulators. Netflix’s
response to the FCC was that it was not seeking special
treatment, and was being pressured by large operators having
market power to pay for improved delivery of its content [1].

In this paper we address questions of pricing and compe-
tition in a market where users connect to a service provider
that either offers basic Internet service or enhanced service,
i.e., Internet service plus content. This could be low bit-rate
stream content, such as audio and certain types of video, or
high bit-rate stream content, such as high-definition television.

We characterize the enhanced service by the relative band-
width, b, it requires as compared with basic service. If the
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relative bandwidth b=1, this means that the enhanced service
takes essentially the same bandwidth as the basic service,
i.e., the content requires negligible additional bandwidth; for
example, when the service consists of streaming music over
a well-provisioned fixed network. If the bandwidth b>1, this
means that the enhanced service places an extra load on the
network. In cases where the relative bandwidth b is large, this
implies that the content requires high bandwidth compared
to basic Internet usage; for example, delivering movies over
the existing infrastructure. (Relative bandwidth b is defined
precisely in Section III.)

In our model we consider the existence of an ISP that offers
basic Internet service (network 1) competing with a second
ISP (network 2) that offers Internet service plus content. In
addition, we assume the existence of a third-party Content
Provider (CP) that offers the same content as is provided by
network 2, and which can partner with network 1 to jointly
provide the content to consumers, where network 1 charges the
Content Provider a transfer price for delivering the content.
We make no restrictions on the transfer price; in particular, it
can be positive, negative—i.e., a subsidy, perhaps imposed by
a regulator—or zero.

Users will generally differ in their willingness to pay, w,
for content. Each user has, in general, three options: (Option
1) buy basic Internet service from network 1 at price p1,
(Option 2) buy enhanced service from network 2 at price p2,
or (Option 3) buy enhanced service jointly from network 1
and the Content Provider at price p1 + p3. In choosing which
network to join, a user takes into consideration not only the
type of service and total price he would need to pay, but also
the level of congestion on the network.

As an example of this scenario, consider an Internet Service
Provider (network 1) partnering with Netflix (CP), where Sky
Broadband (network 2) is also available to users. Netflix offers
television programs plus movies, but no basic Internet service;
thus, users need to make arrangement with the Internet Service
Provider in order to access the Netflix content. Sky Broadband
provides a package of basic Internet service plus content,
where the content is essentially the same as that provided by
Netflix. The Internet Service Provider offers a choice to each
user of either: (Option 1) basic Internet service at around p1
= $40 per month; or (Option 3) basic Internet service plus
content from Netflix, at p1 + p3 = $50 per month, $40 of
which goes to the Internet Service provider (p1) and $10 goes
to Netflix (p3). Sky Broadband offers basic Internet service
together with content, at around p2 = $50 per month (option 2).
The ISP currently charges Netflix a proprietary per-subscriber
monthly transfer fee, but is considering dropping it, or even
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replacing it with a subsidy, in order to increase its own network
traffic.

We consider the following questions: What will be the prices
charged to users in equilibrium by the basic service ISP, the
ISP offering its own content, and the Content Provider? Under
what conditions will the Nash equilibrium be unique? In a
scenario where network 1 can choose the transfer price as
leader in a Stackelberg game with the objective of maximizing
its own revenue, will network 1 ever find it optimal to set a
negative transfer price in the hope of attracting more revenue
from the additional customers desiring enhanced service? Will
network 1 ever decide to not charge a transfer price?

Not charging a transfer price has an interpretation in terms
of net neutral pricing. It is interesting to note that while
the initial meaning of a “net neutral” traffic regime was one
that does not discriminate in terms of transmission based on
packet content, the debate has enlarged to the point where the
phrase can now refer to a regime that does not discriminate
in terms of price based on packet content [2]. In late 2016,
Comcast and Netflix announced a tie-up to allow Comcast
customers to access Netflix services through Comcast’s set-
top box, causing some to argue that the set-top box is the
new frontier for net neutrality [3]. Economides and Hermalin
[2] stress the importance of competition in the context of
net-neutral pricing, and emphasize that the price a customer
pays to an ISP for Internet access depends crucially on the
availability of competing ISPs for this customer.

Our results are as follows. When the transfer price is fixed
and known ex ante by all three firms, if a Nash equilibrium in
positive prices exists with users on each of the three services,
then the equilibrium will be unique, and we provide closed-
form expressions for the prices, user masses, and profits of
the two networks and the Content Provider. We also provide
necessary and sufficient conditions for the prices to constitute
a Nash equilibrium in which networks 1 and 2 and the Content
Provider all have users. Further, we characterize the degenerate
equilibria and provide closed form expressions for them.

The shape of the congestion function affects the impact of
the transfer price in the Stackelberg game. First, we consider
the case of linear congestion, reflecting a situation where
both network providers have well-provisioned networks. We
show that in this case it is never optimal for network 1
to set a negative transfer price in the hope of attracting
more revenue from the additional customers desiring enhanced
service. Neither is it ever optimal for network 1 to set a zero
transfer price. The optimal transfer price uniquely determines
one of two outcomes: either it enables all three parties to make
a profit, or it shuts out the Content Provider, thereby creating
a duopoly. We characterize the transfer price associated with
each of these two outcomes, and also describe necessary and
sufficient conditions for each outcome to occur.

Second, we consider the case of non-linear congestion, re-
flecting situations where the networks are not well provisioned
or where demand exceeds supply. We show that, as soon as
congestion becomes sufficiently non-linear (e.g., quadratic), if
network 1 does not shut out the Content Provider with a high
price, then network 1’s optimal strategy is to subsidize the
Content Provider (i.e., set a negative transfer price) to capture

extra revenue for the additional customers desiring enhanced
service.

The remainder of the paper is organized as follows. In
Section II, we discuss the related literature. In Section III, we
present the base model. In Section IV, we consider optimizing
the transfer price in a Stackelberg game. In Section V, we
relax the assumptions of the base model, by allowing the
sensitivity to congestion to be service dependent, and by
considering non-linear congestion. We conclude in Section VI.
In the interest of concision, almost all proofs in the text are
sketch proofs, where the complete proofs are given in the
Supplementary Material. The only exceptions are Theorem
III.16 where the proof is short and is given in its entirety in
the text, and Theorem IV.2, which is a compilation of several
results proved earlier in the paper.

II. RELATED LITERATURE

This paper is related to both the literature on charging
schemes for congestible resources, and the literature on con-
gestion games in communication networks. From the charging
scheme literature, the most relevant paper to our work is de
Palma and Leruth [4], which examined duopoly outcomes for
two firms in a setting similar to our base model. However, [4]
models two firms offering an identical service, in contrast to
our model in which one firm offers a basic service and the
other firm offers an enhanced service, but the first firm can
offer the enhanced service by partnering with a third firm.

The literature on congestion games in communication net-
works is large and growing rapidly. Marden and Wierman [5]
considered a game-theoretic approach to the study of utility
design for distributed resource allocation. They introduced a
class of games they refer to as “distributed welfare games,”
and demonstrate that cost sharing methodologies are beneficial
for utility design. Their work has a broad range of applications
that includes communication networks.

Gibbens, Mason and Steinberg [6] considered competition
between two networks, each of which may offer multiple
services classes generated by subdivision of the network into
subnetworks, differentiated only by capacity, price, and the
consequent level of congestion, i.e., “Paris Metro pricing.”
Specifically, their model has two competing, profit-maximizing
Internet Service Providers, each of which may offer either one
or two service classes. In the case where an ISP chooses to
offer two service classes, it forms them by logically dividing
its network in two, and charging separate prices on each
subnetwork. Congestion on a subnetwork is determined in
equilibrium by the fraction of the first ISP’s total network
capacity allocated to a subnetwork, and the number of users
on the subnetwork. The main result is that, in the unique
equilibrium outcome, neither ISP subdivides its network and
the two firms charge the same price. These results tend to
indicate that Paris Metro Pricing will not be viable in a
competitive market.

Shetty, Schwartz and Walrand [7] considered a scenario of
multiple identical competing ISPs, where each provides the
same two services. The main focus is on capacity investment,
which occurs in the first stage of the model, where the
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ISPs simultaneously and independently invest in irreversible
capacity and observe the total capacity among all the ISPs.
In the second stage, each firm allocates its capacity to the
services. In the third stage of the model, the ISPs make pricing
decisions, where the access price of each service is identical
for all the ISPs, which is taken to be the minimum price among
the ISPs.

Johari, Weintraub and Roy [8] studied oligopolistic com-
petition in service industries with congestion effects. They
showed that, in settings that exhibit non-increasing returns to
investment, if a pure-strategy Nash equilibrium exists, then it is
unique. Their paper also provides conditions for the existence
of a pure-strategy Nash equilibrium. Finally, they extend
their model to one in which providers can decide whether
to enter the market. The authors find that the equilibrium
number of entrants exceeds the socially efficient level, but
that entry becomes efficient asymptotically as the sunk entry
cost becomes small. They conclude by stating that their work
leaves many significant directions for future research. The
first direction they discuss arises from their assumption that
consumers have homogeneous preferences. The write: “We
leave for future research study of a model where consumers
have heterogeneous preferences.”

In our model, we consider a form of oligopolistic competi-
tion with congestion effects, where consumers have heteroge-
neous (dis)preferences for congestion. We provide conditions
for the existence and uniqueness of a pure-strategy Nash
equilibrium, as well as closed-form expressions for the prices,
user masses, and profits.

Ma and Misra [9] look at related issues, although their
setting is different than ours. They consider consumer utility
as their primary objective, rather than provider profit. In their
model, ISPs offer two classes of service to Content Providers,
ordinary and premium, where CPs get charged extra for
sending traffic in the premium class. The authors consider both
monopolistic and oligopolistic scenarios; in their oligopolistic
scenario they allow a different Quality of Service mechanism
for premium, whereas we use sharing at the packet or bit level.
They have elastic demand, dependent on capacity provided
for the service; in contrast, we have user demand directly
affected by prices. In their scenario, they find allocations being
proportional to the capacity of the Internet Service Providers.

In a more recent paper, Ma [10] looks at subsidizing com-
petition among Content Providers. He models a single (access)
ISP serving users who access a set of service providers, with
different groups of users associated with each CP, where each
CP can subsidize its users by a fixed amount. Ma first assumes
the CPs bid strategically and the ISP’s price is fixed. He
shows that a Nash equilibrium exists under mild conditions,
and that subsidies are either the maximum allowable subsidy,
or a function of the profit margin of the CP and its elasticity
metrics. He then considers a sequential game in which the
regulator sets the maximum allowable subsidy, the ISP sets the
price, and the CPs react. In this scenario he finds that allowing
more competition will increase welfare, but also will provide
the ISP with an incentive to raise prices, discouraging user
demand, subsidies, and throughput. In contrast, we consider
competition among ISPs and a CP, where one ISP can be

considered both an ISP and a CP. Unlike Ma’s model, the
users pay both the CP for the enhanced service and the ISP for
carrying the traffic. We allow the ISPs to charge an additional
transfer price to a CP: a positive transfer price passes money
from the CP to the ISP. This is like a subsidy in Ma’s model
but, unlike Ma’s model, the transfer price doesn’t affect the
price users pay. In contrast to Ma, we also allow negative
transfer prices, whereby the ISP subsidizes the CP, like a price
rebate. A distinctive feature of our approach is that we show
the critical role played by network congestion in determining
a firm’s behavior. Specifically, we find that when congestion is
linear, the optimal strategy for the ISP is to set a non-negative
transfer price, i.e., extract money from the CP—equivalent to
a CP in Ma’s model subsiding users—or to price the CP out of
the market. However, when congestion is superlinear, it can be
beneficial for the ISP to subsidize the CP to encourage traffic.

III. THE MODEL

We model a setting where three firms compete to maximize
individual profits: Network 1 provides basic service, network 2
provides enhanced service, and a Content Provider provides
enhanced service over network 1. As discussed in [6], there
is good reason to suppose that, under certain circumstances,
industries with congestion may have very concentrated market
structure; that is, there exist a small number of firms collec-
tively having a large market share. (See for example [11],
[12].) Further, as Gibbens et al. [6] point out, this setting is
the most transparent environment in which to study the effect
of competition on the use of multiple service classes.

We assume that a user pays a price per unit time for the
right to be connected to and receive service or services from
network i. Thus, network prices are subscription-based. In
[13], Cachon and Feldman consider the question, “How should
a firm price its service when congestion is an unavoidable
reality?” They point out that some firms sell subscriptions for
their service, citing as an example the Internet Service Provider
AOL. AOL initially charged customers per-use access fees, but
later switched to subscription pricing in the form of a monthly
fee with no usage limitation. The authors find that subscription
pricing is more effective at earning revenue than per-use access
fees. They conclude that subscription pricing can be effective
even if congestion is relevant for the overall quality of the
service.

A. The users

On joining network i, a user w receives quasi-linear utility
U(w; i) per unit time, which has four components: (i) a
positive benefit V of receiving Internet service; (ii) a dis-
benefit depending on the degree of congestion on the network
ki, scaled by the sensitivity to congestion g; (iii) a dis-benefit
from having to pay a price pi≥0 to network i; and, if network
i is providing enhanced service, (iv) a positive benefit w which
is the consumer willingness to pay for the content.

A user generally has three options: (Option 1) purchase
basic service from network 1 at price p1, (Option 2) purchase
enhanced service from network 2 at price p2, and (Option 3)
purchase enhanced service from network 1 and the Content
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Provider, consisting of basic service from network 1 at p1 and
content from the Content Provider at price p3. However, it is
possible that the third option is unavailable. (See §B, below.)

We will assume that the user sensitivity to congestion is the
same for both basic and enhanced services, i.e., gE=gB≡g,
and that congestion is a function of the load, ρ on the network,
defined below. We refer to the quantity

Ki := Ki(g, ρi) = k(gρi) (1)

as the scaled congestion on the network i where ρi is the load
on network i, and k a non-negative function.

The utility to a user w choosing Option 1, 2, or 3, respec-
tively, is:

U(w,B; 1) = V −K1 − p1 (2)
U(w,E; 2) = V −K2 − p2 + w (3)
U(w,E; 3) = V −K1 − p1 − p3 + w. (4)

We assume that each user joins one and only one network, i.e.,
the covered market assumption. In our scenario, this means
that, for given parameter values, the benefit of Internet service,
V , is sufficiently large relative to the congestion cost and price.

Users differ in their willingness to pay for enhanced ser-
vice. Those receiving little utility from enhanced service
will have low values of w, and those receiving great utility
will have high values of w. We assume that there is a
continuum of users whose w parameters form a population
distribution that is given by a uniform probability distribution
with support [0, wmax]. (See Gibbens et al. (2000) for a
discussion of the choice of the uniform distribution in this
context.) We normalize by taking the support to be [0, 1], under
the mapping V 7→ V/wmax, g 7→ g/wmax, pi 7→ pi/wmax,
w 7→ w/wmax. Thus, 0 ≤ w ≤ 1.

B. The firms

Costs to each firm of providing their service are assumed
sunk, and thus for simplicity all costs are set to zero. We allow
network 1 to charge the Content Provider a transfer price t.
For now, in this base model, we assume that the transfer price
is fixed and known ex ante by all three firms. This could occur,
for example, in the situation where the transfer price is set by
an outside agency such as a regulator. (Later, in Section IV,
we allow network 1 to optimize the price.) Specifically, the
Content Provider will be obliged to pay network 1 the sum
tQ13 for delivering the content for a user mass of size Q13.
A negative transfer price is possible, in which case network 1
is paying a subsidy s :=−t to the Content Provider in order
to carry its service. A zero transfer price is possible. It is
also possible that network 1 chooses to set a sufficiently high
transfer price that the Content Provider is priced out of the
market. In such a case, the users’ third option is eliminated,
viz., users will not have the option of purchasing enhanced
service from network 1 together with the Content Provider,
although they will still have the option of purchasing enhanced
service from network 2.

It is worth stressing that, throughout this paper, the extra
service that customers are prepared to pay for is content,
and not simply an improvement in Quality of Service for

basic Internet service. Moreover, we assume that the quality
of service seen by the differing services offered is identical
when they are carried on the same network, and hence there
is non-discrimination at the service level.

Let Q11 denote the mass of users that buys basic service
from network 1; let Q2 denote the mass of users that buys
enhanced service from network 2; and let Q13 denote the mass
of users that buys enhanced service jointly from network 1 and
the Content Provider. Then Q1 = Q11 + Q13 is the mass of
users making use of network 1.

Each user of basic service over a network requires expected
bandwidth bB , while each user of enhanced service over a
network requires expected bandwidth bE , with bE ≥ bB .
Further, congestion on network i is a convex function of the
load, ρi, on the network. defined to be the sum of the expected
bandwidth per user on the network, bx, times the mass of users
on the network, all divided by the capacity of the network, Ci,
i.e.

ρ1 =
bBQ11 + bEQ13

C1
, ρ2 =

bEQ2

C2
. (5)

For now we assume the function k(·) is linear and, without
loss of generality, we assume k(x) = x. From (1) and (5), the
expressions for the Ki are:

K1 = g
bBQ11 + bEQ13

C1
, K2 = g

bEQ2

C2
. (6)

With these assumptions, the profit generated for network i
is given by

π1 = p1Q1 + tQ13, π2 = p2Q2, π3 = (p3−t)Q13. (7)

To ease exposition and without loss of generality, we shall
normalize masses and capacities so that the size of the market,
i.e., the total mass Q, is 1. Therefore the Qi represent the
fraction of the market that firm i has captured. This is
equivalent to scaling both Qi and Ci by 1/N , where N
is the number of users in the market. Under this scaling,
(where Q = 1), the profit π represents the per-user profit,
and needs to be scaled back by N to recover the total profit.
We have scaled Ci, Qi so that the total mass of users (Q) is
1, hence Q1+Q2 = 1. Note that by virtue of our previous
normalization of w, we now have a unit mass of users whose
w parameters are uniformly distributed on [0, 1]. (There is no
loss in generality by normalizing on both the willingness-to-
pay and the size of the market, due to the fact that these are
independent parameters of the problem.)

We define the effective capacities, Ĉ1 and Ĉ2, which are
dimensionless quantities, as follows:

Ĉ1 :=
C1

bBg
, Ĉ2 :=

C2

bEg
. (8)

The effective capacity of a network can be interpreted as the
mass of users that network i can tolerate before “saturating,”
taking into account not only bandwidth dependent on service
provided, but also the important factor of sensitivity to price.

We define the effective capacity ratio, r, as:

r := Ĉ2/Ĉ1. (9)
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The utilities, and hence the solution, will depend on the Ĉi
and r, and also on the relative bandwidth:

b := bE/bB . (10)

Substituting for the Ki from (6), and using the definitions of
Ĉi, r, and b from (8), (9) (10), allows us to write:

K2−K1 =
1

rĈ1

[Q2 − r(Q11+bQ13)]. (11)

This expression will enable us to eliminate the congestion
terms in most of the expressions we derive in the remainder
of the paper.

C. User choices

We assume that users are utility maximizers, and hence
choose the option (1, 2, or 3) that is individually best for
them. Users who are more willing to pay for content will be
more willing to choose network 2 over network 1, depending
on the differences in scaled congestion and in the prices on
the two networks. Similarly, users who are more willing to
pay for content will be more willing to choose option 3
over network 1; specifically, a user will choose option 3 over
network 1 if their willingness to pay for content exceeds
the Content Provider’s price. In other words, there are two
critical values, denoted ∇12 and ∇13, whereby users with a
willingness to pay of at least ∇12 weakly prefer network 2 to
network 1, and users with a willingness to pay of at least ∇13

weakly prefer option 3 to network 1. These critical values are,
from (2), (3), (11), and from (2), (4), respectively:

∇12 = K2−K1 + p2−p1

=
1

rĈ1

[Q2−r(Q11+bQ13)] + p2 − p1 (12)

∇13 = p3. (13)

By comparing user preferences, it is straightforward to show:

Lemma III.1. In equilibrium:

1) If [Q2− r(Q11+bQ13)]/rĈ1 < p1+p3−p2 (equivalently,
∇12<∇13), each user chooses network 1 or network 2,
according to whether w is, respectively, smaller or larger
than ∇12.

2) If [Q2− r(Q11+bQ13)]/rĈ1 > p1+p3−p2 (∇12>∇13),
each user chooses network 1 or option 3, according to
whether w is, respectively, smaller or larger than ∇13.

3) If [Q2− r(Q11+bQ13)]/rĈ1 = p1+p3−p2 (∇12=∇13),
each user with w < ∇12=∇13 chooses network 1. Users
with w>∇12=∇13 split between network 2 and option 3.

D. Prices

A set of prices p = {pi}, i=1, 2, 3 is feasible if the user
masses Q = {Q11, Q13, Q2} are non-negative and together

cover the market, and if the profits of the firms πi, i=1, 2, 3
are non-negative. I.e.,

Q11 ≥ 0 (14)
Q13 ≥ 0 (15)
Q2 ≥ 0 (16)

Q11 +Q13 +Q2 = 1 (17)
πi ≥ 0 i = 1, 2, 3 (18)

We now show that any non-negative set of prices will result
in user masses that are non-negative and cover the market, and
will partition the non-negative orthant {pi ≥ 0} in price space.
Furthermore, for a given transfer price t, feasibility partitions
the non-negative orthant into three regions of feasible prices
p corresponding to the three cases of Lemma III.1:

Case 1: Region 1, where ∇12<∇13.
Users split between Options 1 and 2, i.e., Q13=0.

Case 2: Region 2, where ∇12>∇13.
Users split between Options 1 and 3, i.e., Q2=0.

Case 3: Region 3, where ∇12=∇13.
Users indifferent between Options 2 and 3.

Throughout the paper we use the terminology “Case 1” as
defined above, and similarly for Cases 2 and 3.

Note that for a given transfer price t, there can be “holes”
in feasible p space that represent infeasible prices (where the
allocations are non-negative but one or more of the firms’
profits are negative).

The demand allocations are determined by users selfishly
seeking to maximize their own utility, i.e., a Wardrop equi-
librium [14] for a continuum of users where user w chooses
option i if U(w, i)≥U(w, j) ∀j. Existence of such an equi-
librium in our setting follows from the standard results.

Theorem III.2. Existence and Uniqueness of User Masses.
Given any feasible vector of prices p and any transfer price
t, there exists a unique vector of user masses Q.

Note that it is the user masses Qi that are uniquely deter-
mined, which are given respectively by the Lebesgue measure
of the corresponding user choice sets, rather than the individual
user choices.

Corollary III.3. When t≥0, the feasible region in 3 dimen-
sional price space pi is the union of three polyhedrons, each
of which corresponds to one of the three cases of Lemma
III.1. Each volume is formed by the intersection of half-planes
generated by hyperplanes, each hyperplane corresponding to
one of the conditions (14) to (18). When t<0, a similar result
holds, except the region corresponding to Case 3 of Lemma
III.1 is convex but not in general polyhedral. For all t, the
feasible support for each πi(pi) : R 7→ R is a convex interval
on the line.

Sketch Proof. In each of the three cases of Lemma III.1, Q
is an affine function of p. Hence in all cases, each constraint
on the users masses, (14) to (17), corresponds to a separating
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hyperplane in p-space. In the case t = 0, each of the profit
constraints (18) corresponds to a separating hyperplane or the
space formed by intersecting hyperplanes (e.g., for π2 ≥ 0
is equivalent to p2 ≥ 0 and Q2 ≥ 0). The same holds true
when t ≥ 0, apart from the constraint for π1 ≥ 0 for Case 3,
which is quadratic in p1 but which reduces to an intersection
of hyperplanes. When t < 0, it is straightforward to show
the region is convex. Combining these statements proves the
corollary.

E. Nash equilibria

Definition III.4. (Nash equilibrium) Given a transfer price
t, a vector of prices p∗(t) = (p∗1(t), p

∗
2(t), p

∗
3(t)) is a Nash

equilibrium if for all pi(t) (i = 1, 2, 3),

πi(p
∗
i (t); p

∗
−i(t)) ≥ πi(pi(t); p∗−i(t)) (19)

where p∗−i(t) is the vector of prices p∗(t) excluding p∗i (t).

Thus for a given transfer price t, in a Nash equilibrium no
firm can increase its own profits by unilaterally changing its
price pi. Note this assumes that the networks employ pure
strategies. As pointed out by Gibbens et al. (2000), a standard
criticism of mixed strategy equilibria is that they impose too
large an informational burden on users. In choosing a network
to join, users are faced with price distributions from which the
final prices will be drawn, rather than specified price levels.
Moreover, in order for users to decide which network to join,
they must be aware not only of the equilibrium strategies of
the networks, which are probability distributions over prices,
but also of the choices of all other users. It is seems highly
unlikely that actual users would be capable of performing
this task. See also chapters 8 and 10 of [15]. A strategy for a
user is a choice of network to join, given the prices quoted
by the network. We now characterize the Nash equilibria.

Theorem III.5. Uniqueness of the Nash Equilibrium. If
a Nash equilibrium exists with positive prices {p∗i }, with net-
works 1 and 2 and the Content Provider each having users and
making positive profit, then there will be a unique equilibrium:

p∗1 =
(2+br)[2/r+1+b+Ĉ1] + [(b−1−5Ĉ1)(1+r)− 4Ĉ2

1r] t

2Ĉ1[3 + (2+b+2Ĉ1)r]
(20)

p∗2 =
2/r + 2(1+2b+Ĉ1) + b(3+b+3Ĉ1)r −A t

2Ĉ1[3 + (2+b+2Ĉ1)r]
(21)

where A := [(b−1+Ĉ1)(1+r)− 2bĈ1r]

p∗3 =
(2+br) + [3 + r(3+4Ĉ1)] t

2[3 + (2+b+2Ĉ1)r]
(22)

with user masses:

Q∗1 =
rĈ1

1+br
(p∗1+t), Q∗2 =

rĈ1

1+br
p∗2,

Q∗13 =
1+r(1+Ĉ1)

1+br
(p∗3−t) (23)

where the profits π1, π2, and π3 can be calculated from (7).

Sketch Proof. Only in Case 3 of Lemma III.1 do network 1,
network 2, and the Content Provider all have users. There, by
direct calculation, it is straightforward to show profit functions
πi(pi) are strictly concave, Hence a local optimum, and thus
a candidate Nash equilibrium, exists when the first order
conditions are satisfied, resulting in prices p∗i as stated.

Technical Remark III.6. The optimal allocation can also be
expressed terms of the optimal prices alone. In the case t = 0,

Q∗1 =
p∗1

p∗1+p
∗
2

, Q∗2 =
p∗2

p∗1+p
∗
2

,

Q∗13 =
p∗1

p∗1+p
∗
2

− p∗3 (24)

Theorem III.9 given below, shows that a Nash equilibrium
will exist where all three firms have customers and make a
profit, provided certain conditions are satisfied. The conditions
can be expressed as bounds on t related to the parameters
of the problem, but only in the t=0 case is there a simple
characterization of sufficient conditions for the bounds to be
met.

Example III.7. We now consider the case where the networks
have the same capacity, C2 = C1, and set Ĉ1=1, hence
r=1/b. If t is negative, and hence a subsidy, then the amount
of users on network 1 (taking only basic service) decreases
compared to the case of no transfer price, while the mass of
users availing themselves of the Content Provider increases,
and the mass of users on network 2 increases slightly. When t
is positive, the reverse is true. A subsidy (negative t) has the
effect of decreasing the profit of network 1, while increasing
the profits of network 2 and the Content Provider, while the
converse is true for positive t. The percentage profit difference
is most marked for the Content Provider.

Figure 1 illustrates how the combined profit of network 1
and the Content Provider (π∗1 + π∗3) compares with that of
network 2 (π∗2) as we vary both the relative bandwidth, b, and
transfer price t, with r= 1/b. Here, b varies between 1 and
6, t varies between −0.5 and 0.5, and Ĉ1 = 1. The case of
no transfer-price corresponds to the line t = 0 in this figure.
The effect of b can be clearly seen. Note that increasing b
appears to provide larger profits. Indeed, in any setting where
prices increase with congestion, there is an apparent incentive
to decrease capacity and hence increase prices and thus profit.
However, this ignores the fact that users will only be prepared
to endure a certain level of congestion before opting out of the
service entirely. The latter scenario corresponds to leading to
a reduction in user mass. Thus, the graphs in this paper need
to be interpreted primarily as illustrating behavior among the
users conditioned on their parameters, rather than comparing
results at different parameter values.

Definition III.8. (ε-equilibrium) Given a transfer price
t, a vector of prices p∗(t) = (p∗1(t), p

∗
2(t), p

∗
3(t)) is an

ε-equilibrium for ε≥0 if, for all pi(t) (i = 1, 2, 3),

πi(p
∗
i (t); p

∗
−i(t)) ≥ πi(pi(t); p

∗
−i(t))− ε (25)
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Fig. 1. π1 + π3 vs. π2 as b and t vary. Solid lines show b=1 and t = 0
boundaries.

where p∗−i(t) is the vector of prices p∗(t) excluding p∗i (t).

Thus for a given transfer price t, in an ε-equilibrium no firm
can increase its own profits by more than ε by unilaterally
changing its price pi. (See [16] and [17].)

The first part of the following theorem providers a necessary
condition on the transfer price to ensure that a Nash equilib-
rium exists with positive prices {p∗i }, and both networks 1 and
2 having users and the Content Provider also having users.
The second part of the theorem provides sufficient conditions
for the existence of an ε-equilibrium. Further, it provides
sufficient conditions for networks 1 and 2 and the Content
Provider to all have users. Finally, it provides necessary and
sufficient conditions to ensure that the prices {p∗i } constitute a
Nash equilibrium in which networks 1 and 2 and the Content
Provider all have users.

Theorem III.9. Existence of a Nash Equilibrium.
1) If a Nash equilibrium exists with positive prices {p∗i },

with networks 1 and 2 and the Content Provider each
having users and making positive profit, then the transfer
price satisfies

− 2 + br

3 + r(3+4Ĉ1)
< t <

2 + br

3 + r + 2br
. (26)

2) When (26) holds and the expression for p∗1 in (20) is
positive, then the {p∗i } given by (20), (21), (22) constitute
an ε-equilibrium, all the prices {p∗i } are positive, and
networks 1 and 2 and the Content Provider all have users.

3) Necessary and sufficient conditions for the {p∗i } in (20),
(21), (22) to constitute a Nash equilibrium in which
networks 1 and 2 and the Content Provider all have users
is that t falls within a specified subinterval of (26).

Sketch Proof. The candidate solution {p∗i } is a local optimum
for each i. The requirement that the p∗ induce a feasible

solution with each user making a positive profit yields (26) and
p∗1 ≥ 0. The remaining feasibility conditions give the second
equality for t. If the conditions in (26) are satisfied, then either
the {p∗i } constitute a Nash equilibrium, or they are such that
either network 1 or 2 could improve its profits by deviating, in
which case p∗i is an ε-equilibrium. This proves parts 1 and 2 of
the theorem. The proof of part 3 involves finding, for each i,
conditions on b, Ĉ1, r, t such that π∗i (t) is a Nash equilibrium.

The specific conditions, as well as characterization of ε, are
given in the Supplementary Material.

Corollary III.10. When (26) holds, and t≤0 or b>1+Ĉ1, then
the {p∗i } given by (20), (21), (22) constitute an ε-equilibrium.

Sketch Proof. From (20) and the conditions of the corollary,
we obtain p∗1>0. The result follows from part 2 of the
theorem.

If the conditions of Theorem III.9 do not hold, there still
remains the possibility of degenerate equilibria. We call a
Nash equilibrium degenerate when at least one of the firms
has no users, or at least one of the firms sets its price at
zero. These—the only remaining possibilities for equilibria—
are characterized by the following theorem.

Theorem III.11. Degenerate Equilibria. There are only three
possibilities for degenerate equilibria. Specifically, there exists
a value tA (which can be computed) such that:

1) If t ≥ tA, there exists a Nash equilibrium in which the
Content Provider prices itself out of the market by setting
p∗3 = t, Q∗13 = 0. The network prices are

p1
∗ =

2 + r + rĈ1

3rĈ1

, p2
∗ =

1 + 2r + 2rĈ1

3rĈ1

(27)

the user masses are

Q∗1 =
2 + r + rĈ1

3(1 + r + rĈ1)
, Q∗2 =

1 + 2r + 2rĈ1

3(1 + r + rĈ1)
(28)

and the profits are

π∗1 =
(2 + r + rĈ1)

2

9rĈ1(1+r+rĈ1)
, π∗2 =

[1 + 2(1+Ĉ1)r]
2

9rĈ1(1+r+rĈ1)
.

(29)

2) If t < 0, network 1 provides a per-unit subsidy s :=−t to
the Content Provider. If s ≥ 2+br

3+r(3+4Ĉ1)
, then there is a

unique Nash equilibrium where the Content Provider sets
its price p∗3=0 and Q∗11=0. There are two subcases:

a) If s≤ 2+br

rĈ1
, then the network prices are

p∗1 =
2 + r(b+2Ĉ1s)

3Ĉ1r
, p∗2 =

1 + r(2b+Ĉ1s)

3Ĉ1r
(30)

the user masses are

Q∗13 =
2 + r(b− Ĉ1s)

3(1+br)
, Q∗2 =

1 + r(2b+ Ĉ1s)

3(1+br)
(31)
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and the profits are

π1 =
[2 + r(b−Ĉ1s)]

2

9rĈ1(1+br)
,

π2 =
[1 + r(2b+Ĉ1s)]

2

9rĈ1(1+br)
,

π3 =
[2 + r(b−Ĉ1)]s

3(1+br)
.

(32)

b) If s > 2+br

rĈ1
, then network 1 chooses p∗1 ≥ s. Con-

sequently, Q∗2=1, and p∗1 = s, p∗2 = s− 1

rĈ1
, with

network 2 capturing all the profit, π∗2 = s− 1

rĈ1
.

3) If − 2+br

3+r(3+4Ĉ1)
< t < tA, there exists a set of parametric

conditions, which includes t > 0, under which a Nash
equilibrium exists where network 1 sets p∗1 = 0.

Sketch Proof. No Nash equilibrium is possible in
Region 2, since the feasibility condition will be
p2 > p1 + p3 + p3 + b(1−p3)/Ĉ1 > 0, and network 2
can decrease its price until equality holds, attracting users
and moving out of Region 2 into Region 3. If t is very large,
the Content Provider will be shut out of the market, since
p3 ≥ t implies Q13 = 0, and we are in Case 1 of Lemma
III.1. The equations for non-degenerate Case 1, and the first
order conditions for the profits, give part 1 of the theorem.
A sufficient condition for the solution of these first order
conditions to constitute a Nash equilibrium is t ≥ tA where
tA depends upon b, Ĉ1, r (and satisfies tA ≤ 1); tA is given
explicitly in the Supplementary Material.

Clearly there are potential Nash equilibria satisfying the
conditions of Part 2 or 3 of the theorem; their existence under
certain conditions is proved in the Supplementary Material.

Part 3 requires π1≥0. A necessary condition for existence
here is that the transfer price is positive. Requiring the Nash
prices to be optimal for networks 2 and the Content Provider
requires that network 1 has sufficient capacity to carry all
the content traffic, Ĉ1 > b+ 1/r; equivalently, the maximum
amount users are prepared to pay for service exceeds the
sum of the maximum possible congestion costs of networks
1 and network 2. The remaining condition to ensure a Nash
equilibrium lead to constraints on t, detailed in the Supple-
mentary Material. For fixed b, c, r satisfying Ĉ1 > b+ 1/r,
the necessary and sufficient conditions for existence of this
degenerate equilibrium reduce to t lying in a given positive
interval.

Finally, there cannot be a Nash equilibrium under any of
the remaining boundary conditions, all of which must be in
Region 3. Since the profit functions πi(pi) are strictly concave
in Region 3, the only possible Nash equilibria in this case
occur either at a unique interior point of the feasible region
or at the boundaries of their support. It can be shown that no
degenerate Nash can exist at these boundary points.

Discussion. The theorem can be summarized as follows. There
are three circumstances, which depend on the transfer price,
for which a degenerate Nash equilibrium can exist. First,

when the transfer price is so high (e.g., tA = 1) that the
Content Provider has no alternative but to charge a price that
is sufficiently high as to price itself out of the market.

Second, if the transfer price is negative, i.e., is in fact a
subsidy, and that subsidy is sufficiently great, then there will
be a unique Nash equilibrium where the Content Provider sets
its price to zero, and no users choose to take basic service
from network 1. There are two subcases. If the subsidy, while
sufficiently high, does not exceed the bound 2+br

rĈ1
, then there

will be users choosing network 1 for additional service via the
Content Provider. If however the subsidy exceeds this bound,
then there will be no users whatsoever choosing the content
in this way (and hence all the users go to network 2).

When the transfer price t has a positive “intermediate” value
then, as in Theorem III.9 (Existence of a Nash Equilibrium),
it is possible that no Nash equilibrium exists, and only an
ε-equilibrium exists, as seen from the following example.

Example III.12. Consider the case Ĉ1=1, r=3, b=4,
t=1/4, which violates the conditions necessary for p∗2 to
be optimal. Using (20), (21), (22) gives the candidate Nash
equilibrium point:

{p∗i } =
265

162
,
793

324
,
10

27
≈ 1.64, 2.45, 0.37

{π∗i } =
25477

34992
,
48373

34992
,

91

11664
≈ 0.73, 1.38, 0.0078.

These are optimal responses for network 1 and the Content
Provider. However, network 2 can lower its price, and increase
its return: if network 2 lowers its price to 589/324 ≈ 1.82,
then it shuts the Content Provider out of the market, and
increases its own profit to 346921/244944 ≈ 1.42. Hence
the candidate solution is not a Nash equilibrium, only an
ε−equilibrium, where ε = 1385

40824 ≈ 0.034. With these values of
b, Ĉ1, r, t, there is a unique minimum-price best response by
each network to the prices of the other two networks. However,
this does not lead to a fixed point when the responses are
iterated.

F. In the absence of a transfer price

There can be circumstances under which there is no transfer
price (equivalently, t ≡ 0). In that case, the necessary and
sufficient conditions for the existence of a Nash equilibrium
remain complex. However, there exists a simple sufficient
condition:

Theorem III.13. Existence of a Nash Equilibrium (no
transfer price). In the absence of a transfer price, a
sufficient condition for a Nash equilibrium to exist is
b ≤ 2(1+Ĉ1) + 1/r.

Sketch Proof. This theorem, and subsequent Corollary, is a
special case of Theorem III.9 (Existence of a Nash Equilib-
rium) where t = 0. When t = 0, the conditions for profits π∗

and prices p∗ to be non-negative are always satisfied, as is the
condition for p∗1 to be optimal, leaving only the condition p∗2
to be optimal. However, a sufficient conditions for p∗2 to be
optimal is b ≤ 2(1 + Ĉ1) + 1/r.
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In particular, the condition of the theorem is satisfied
whenever the relative bandwidth is less than twice the effective
capacity of network 1, or is less than 2, which would hold for
many realistic settings.

The condition will fail to hold in situations where the
bandwidth of the content is very high compared to “normal”
service (b � 1), and the capacity of the enhanced network
is much greater than that of the “normal” network (r� 1).
In fact, there is a simple sufficient condition for a Nash
equilibrium not to exist, as shown in the following corollary
(for proof, see Supplementary Material).

Corollary III.14. In the absence of a transfer price, a
sufficient condition for a Nash equilibrium not to exist is
b > 4(1+Ĉ1) + 1/r and r > 1.

In particular, there will not exist a Nash equilibrium when-
ever the relative bandwidth is greater than four times the
effective capacity of network 1, and the effective capacity of
network 2 is greater than the effective capacity of network 1.

Example III.15. Consider the case Ĉ1=1 and C2=C1, hence
r=1/b, when there is no transfer price. In this case the profits
of the three firms are given by 9b(2+3b)2

128(1+b)2 ,
b(10+7b)2

128(1+b)2 ,
9b(2+b)

128(1+b)2

respectively. This example can be compared with what occurs
when there is no Content Provider, when from (29) we have
π∗1 = 4(1+b)2

9(2+b) , π∗2 = (4+b)2

9(2+b) . The introduction of the Content
Provider decreases the difference in profits between networks
1 and 2, increases profits for both networks 1 and 2 when
b > 2, and decreases profits for both networks when b < 2.
When b = 2, the introduction of a Content Provider leaves the
profits of networks 1 and 2 unaltered (and identical, equal to
1), with the Content Provider making a small profit (of 1/16).

In the case where there is no transfer price, we show that
no firm can dominate the market:

Theorem III.16. User Masses (no transfer price). In the
absence of a transfer price, when a Nash equilibrium exists, at
least one-quarter of users are carried on network 1 (including
those choosing enhanced service from the Content Provider),
but neither of the two types of users on network 1 can
constitute a majority of all users. At least one-twelfth of users
choose enhanced service from the Content Provider, and at
least one-third choose enhanced service from network 2.

In detail, we have the bounds:

0 < Q∗11 < 1/2

1/12 < Q∗13 < 1/2

1/3 < Q∗2 < 3/4.

Proof. Proof Putting t = 0 in (23) gives

Q∗11 =
br + 2

2r(b+ 2Ĉ1 + 2) + 6

Q∗13 =
(br + 2)(Ĉ1r + r + 1)

2(br + 1)(r(b+ 2Ĉ1 + 2) + 3)

Q∗2 =
br2(b+ 3Ĉ1 + 3) + 2r(2b+ Ĉ1 + 1) + 2

2(br + 1)(r(b+ 2Ĉ1 + 2) + 3)
.

The bounds on the Q∗i follow in a straightforward way, by
considering limiting behavior under the constraints b ≥ 1,
r > 0 and Ĉ1 > 0. (For example, the Q∗2 bounds follow by
taking the limit as r↓0 or r↑∞). The lower bound for Q∗13 of
1/12 follows by noting that Q13 is decreasing in b, and putting
b = 4(1 + Ĉ1) + 1/r, since from Corollary III.14 a necessary
condition for a Nash equilibrium to exist is b ≤ 4(1+Ĉ1)+1/r
or r ≤ 1.

IV. OPTIMIZING THE TRANSFER PRICE

We now allow network 1 to choose the transfer price. This
reflects a regulatory setting where there are no restrictions
on network 1 charging the Content Provider for access to its
network.

The choice of transfer price is modeled as a Stackelberg
leader-follower game [14]:
• First: Network 1 sets and publicly announces a transfer

price, which may be positive or negative (i.e., a subsidy).

• Then: Network 2 and the Content Provider set their
prices to maximize their respective revenues. Network
1 simultaneously sets its network price to maximize its
revenue.

The solution to this game, called the Stackelberg-Nash equi-
librium, is the vector (t∗, p1(t∗), p2(t∗), p3(t∗)).

The following theorem shows that, when network 1 has the
ability to choose the transfer price in this setting, there exists
a unique Stackelberg-Nash equilibrium, where the form of the
equilibrium depends upon the relationship among b, r and Ĉ1.

Theorem IV.1. Uniqueness of the Transfer Price. There
exists a unique solution to the transfer price Stackelberg game.
There are two cases: Either all three parties make a positive
profit, or the two networks make positive profit and the Content
Provider is shut out of the market. In both cases, network 1
sets a strictly positive transfer price t∗.

Sketch Proof. We consider two subcases: b ≤ 1 + Ĉ1 and
b > 1 + Ĉ1. When b ≤ 1 + Ĉ1, recall that in this case the
profit for network 1 is smaller with t = 0 than without the
Content Provider. On calculating the profits from (7) using the
prices and user masses from Theorem III.5 (Uniqueness of the
Nash Equilibrium), we can see that π1(p∗1(t), p

∗
2(t), p

∗
3(t)) is

quadratic in t. By direct calculation, it is straightforward to
see that

∂2

∂t2
π1(p

∗
1(t), p

∗
2(t), p

∗
3(t)) < 0

for 1 ≤ b ≤ 1 + Ĉ1. Hence any local optimum satisfying the
first order conditions will be a global optimum within the
feasible region of Case 3. Solving the first order conditions
gives tO as the solution to

∂

∂t
π1(p

∗
1(t), p

∗
2(t), p

∗
3(t)) = 0.

Either this is the optimal value, or under certain conditions
network 1 can be better off raising the transfer price to shut
out the Content Provider, and hence will set a value t ≥ tA

and Theorem III.11 (Degenerate Equilibria), applies.
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When b > 1 + Ĉ1 and when a Nash equilibrium exists
in Case 3, i.e., in Region 3, it is always advantageous for
network 1 to have the Content Provider use its network.
That is, the profit for network 1 is greater with t = 0 than
with shutting the Content Provider out of the market. It is
straightforward to show that, given b > 1 + Ĉ1, it follows that
∂
∂tπ1(p

∗
1(t), p

∗
2(t), p

∗
3(t))|t=0 > 0. Hence, if a Nash equilib-

rium exists for a given value of t, then t should be strictly
positive. In this case (i.e., Nash equilibrium and in Region 3),
there are two possible cases

1) t can be t∗ = tO, i.e., solution to first order conditions

2) t∗ = tB is on the boundary of the Nash equilibrium
boundary, the critical point at which network 2 is indif-
ferent between competing with the Content Provider, or
lowering its price to drive out the Content Provider.

More precise specification of conditions under which the
alternative holds are given in the following theorem, which is a
compilation of several results proved earlier in the paper.

Theorem IV.2. Specification of the Transfer Price. The two
cases for the transfer price, described in Theorem IV.1, can
be specified as follows:

1) The prices, user masses, and profits are given by The-
orem III.5 (Uniqueness of the Nash Equilibrium) with
t = tBor tO, where:
a) tO solves the first-order profit maximization conditions

This reduces to an affine equation in t as function of
b, Ĉ1 and r

b) tB is the point at which network 2 is indifferent be-
tween competing with the Content Provider or lowering
its price to drive it out of the market.. (Here tB natu-
rally satisfies the feasibility constraint tB≤ 2+br

3+r+2br .)
Sufficient conditions for this case to exist are that
b∗(r, Ĉ1) ≤ b ≤ 1+Ĉ1 OR 1+Ĉ1 < b ≤ 2(1+Ĉ1)+1/r
where b∗ is the root of a cubic.

2) The prices, user masses and profits are given by Theorem
III.11 (Degenerate Equilibria), with t∗ ≥ tA, where tA is
defined in Theorem III.11. There are two subcases:
a) b is small, satisfying 1 ≤ b ≤ b∗(r, Ĉ1) where b∗ is the

root of a cubic equation, with the bound b∗ < 1+ Ĉ1.

b) b is large, for which sufficient conditions are
b > 4(1+Ĉ1) + 1/r and r > 1 (c.f. Corollary III.14).

Discussion. These two theorems show that is never optimal
for network 1 to set a negative transfer price in the hope
of attracting more revenue from the extra customers desiring
enhanced service. There are instances where network 1 is
better off using a subsidy (i.e., a negative transfer price) rather
that setting a zero transfer price: but in each such instance,
network 1 can do even better by raising the transfer price to
such a level as to shut the Content Provider out of the market.

We have also shown that it is never optimal to set a zero
transfer price, since t∗ > 0.

The degenerate case, part 2, occurs when b is either small
or is large. When b is small, less than 1 + Ĉ1, (subcase 2a),
network 1 makes strictly greater profit than having a small

5 10 15 20
0
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6

8

10

b

C
1

r=1/b

t
*=tB

t
*=tO

t
*=tA

Fig. 2. Nash equilibria when r = 1/b as b, Ĉ1 vary.

positive transfer price that allows the Content Provider to
compete. When b is large and r is greater than 1 (subcase 2b),
network 1 cannot attain the higher profits that could otherwise
be gained by not shutting out the Content Provider. Subcase 2b
involves a social dilemma: network 1 (and network 2) would
be better off at one of the Pareto optimal solutions where a
small non-negative transfer price is set (e.g. t = 0) and all
three parties are involved; however at any such transfer price,
there is no Nash equilibrium in prices (e.g. at vector of prices
(p∗i (0)) network 2 has an incentive to lower its price to shut
the Content Provider out).

A. Example: The case of equal capacities: r = 1/b

Consider the case when r = 1/b, corresponding to the two
networks having equal capacity C. In this case the social
dilemma instance of preemptive pricing does not exist.

The three regions corresponding to the different equilibria
are shown in Figure 2, and the optimal choice of t is shown
in Figure 3 when, in addition, b = 10. In the latter figure we
show all possible values of t∗ ≥ tA that correspond to “shut-
out values” (the shaded, rectangular region of the graph), rather
than just t∗ = tA.

The transitions between the regions t∗ = tO and t∗ = tB is
smooth (the value of t∗ is uniquely defined on the boundary),
whereas the transition between t∗ = tO and the shut-out region
(labeled t∗ = tA in Figure 2) is not smooth: there is a phase
transition at this point, as can be clearly seen in Figure 3. For
this special case, direct calculation and algebraic manipulation
shows that sufficient conditions for t∗ = tO are

1 + Ĉ1 ≤ b ≤ 1 + 3Ĉ1 (33)

and tO(b, Ĉ1) increases with b and decreases with Ĉ1 in this
region.

V. LOOSENING THE ASSUMPTIONS

We now discuss what happens when we relax the assump-
tions of our base model. Specifically, we consider when (i)
when the sensitivity to congestion is service dependent (ii)
the congestion function is non-linear. We show that our as-
sumption of making the congestion sensitivity (g) independent
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Fig. 3. Optimal t∗ when r = 1/b, b = 10 as Ĉ1 varies.

of the service is essentially without loss of generality. How-
ever, allowing non-linear congestion functions has nuanced
implications; in particular, the optimal transfer price t∗ and
accompanying resulting type of equilibria depends upon the
congestion function, producing qualitatively different behavior
according to whether the convex congestion function is “close”
to linear or steeper.

A. Service Dependent Sensitivity to Congestion

Allowing the sensitivity to congestion to be service depen-
dent leads to qualitatively similar results. Suppose that gB

and gE denote the sensitivity to congestion for the basic
service and enhanced service, respectively. Then the user
utilities would be modified accordingly. Define the “relative
sensitivity” by g = gE/gB , and modify the effective capacities
in the obvious way, i.e., Ĉi = Ci/b

BgB , with the effective
capacity ratio r defined in terms of these new quantities. Then
Lemma III.1 still holds, with the critical value ∇12 defined as
before, but now ∇13 = p3 + (g−1)[Q11 + bQ13/Ĉ1]. Hence
for a given user mass on network 1 and a given price of
content from the Content Provider, when the relative sensitivity
exceeds one, more users prefer basic from service network 1
to going with the Content Provider than they would with a
relative sensitivity of precisely one. The qualitative results of
Section III that were derived previously about Nash equilibria
continue to hold, but now there will be a dependence upon
the relative sensitivity. For example, the prices in Theorem
III.5 (Uniqueness of the Nash Equilibrium) will now depend
on the relative sensitivity; however, the Nash equilibrium with
positive prices will still be unique, and as before users masses
will be linear functions of the prices.

B. Non-linear congestion costs

Consider the case of a general congestion function
k : R≥0 7→ R≥0, where k is convex and strictly increasing
(instead of linear). Using the notation of Section III, writing
Ki as shorthand for Ki(ρi),

K1 = K

(
Q11 + bQ13

Ĉ1

)
, K2 = K

(
Q2

rĈ1

)
(34)

where K(ρ) = k(gρ). We can still write ∇12 = (K2−K1) +
p2−p1, ∇13 = p3 and Lemma III.1 holds under this mapping.
Moreover, Theorem III.2 (Existence and Uniqueness of User
Equilibrium) is also true.

When t = 0, as for the case of linear congestion func-
tions, the only possible Nash equilibria are when all prices
are positive, and each user makes a positive profit. When
t 6= 0, then degenerate equilibria can exist; for example, as
in Theorem III.11, when the transfer price is sufficiently large
(part 1), a degenerate equilibrium exists when the Content
Provider is shut out of the market. In this degenerate case,
the expressions for the prices, and user masses become con-
siderably more complicated, and depend on the function K,
however qualitative behavior is the same (see below).

C. Non-linear congestion costs and no transfer price

For linear costs, uniqueness of the Nash equilibrium in
Theorem III.5 followed from concavity of the profit functions.
Concavity is a sufficient condition for uniqueness, and we now
investigate how the shape of profit functions is affected by
non-linear congestion costs.

It follows by differentiating the implicit equation defining
Case 3, (K2−K1) + p2−p1 = p3, that when t = 0 for any
(increasing) function K, in Case 3,

0 >
∂Q1

∂p1
=
∂Q2

∂p2
=
∂Q13

∂p3
+

K ′2 + rK1′

K ′2 + brK1′
, (35)

where K ′1 := K ′(ρ1), ρ1 := Q11+bQ13

Ĉ1
, with K ′2 defined anal-

ogously; it also follows that when the first order conditions
are satisfied, the user masses are related to prices via (24).

It also follows from the implicit equation that

∂2π1
∂p21

=
∂Q1

∂p1

[
2 +

(
b2K ′′1 −

K ′′2
r2

)
p1

Ĉ2
1

(
∂Q1

∂p1

)2
]

(36)

and hence π1 will be a concave function of p1 when
b2K ′′1 −K ′′2 /r2 > −ε for a suitably defined small ε > 0. At
a turning point (p∗i ),

∂2π1

∂p∗1
2 = − 1

p∗1+p
∗
2

[
2 +

(
b2K ′′1 −

K ′′2
r2

)
1

Ĉ2
1

p∗1

(p∗1+p
∗
2)

2

]
(37)

and hence we can derive sufficient conditions for this to be
a local optimum by substituting for the allocations Q∗ and
calculating K ′′i explicitly. Since

∂2Q1

∂p21
= −∂

2Q2

∂p22
(38)

similar remarks apply to π2 as a function of p2.
For π3, we can show

∂2π3
∂p23

=
p3

Ĉ2
1

(
K ′′2
r2
−K ′′1

)
+ (39)

∂Q13

∂p3

[
2
p3

Ĉ2
1

(
K ′′2
r2
− bK ′′1

)
+ 2+ (40)

+
p3

Ĉ2
1

∂Q13

∂p3

(
K ′′2
r2
− b2K ′′1

)]
(41)
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and so sufficient conditions for π3 to be concave function of
p3 are when |b2K ′′1 −K ′′2 /r2| < ε and |K ′′1 −K ′′2 /r2| < ε for
small ε.

To summarize, unlike the linear case (when K ′′ ≡ 0) the
profit functions are not necessarily concave, but will be around
the point b2K ′′1 = K ′′2 /r

2 (with an additional condition to
ensure π3 is semi-concave) , which for bounded congestion
costs implies when r ≈ 1/b. Hence in these circumstances the
(non-degenerate) Nash equilibrium of Theorem III.5 will be
unique.

D. Quadratic congestion costs

Let us look at the quadratic congestion case, K(ρ) = κρ2,
in more detail. We can put κ = 1 without loss of generality,
by redefining Ĉ1 =

√
κC1

bBg
. When r = 1/b and we are in Case

3 (all networks make a positive profit), we have shown that π1
and π2 are concave functions (of p1, p2 respectively). Refining
the analysis given above, we can show that π3 is a concave

function when r = 1/b provided b <

√
3 + Ĉ2

1 , and will be
quasi-concave if p3 < 2/3.

Now Theorem III.5 needs to be amended to say that there
are sufficient conditions for a unique Nash equilibrium (i.e.,

it will be if r = 1/b, b <
√
3 + Ĉ2

1 or p∗3 < 2/3), but the
corresponding expressions for p∗ are complicated.

Corresponding to Theorem III.11, there will be a degenerate
equilibrium if t ≥ tA shutting out the Content Provider. Here,
the qualitative behavior is the same as under linear congestion
costs. For example, taking K(ρ) = ρ2 and putting r = 1/b, we
can show that network 1 has at least 1/3 of the users and at
most 60% of users (hence network 2 has at least 40% of users),
whereas for linear congestion, taking the limits in Theorem
III.11, part 1, network 1 takes between 1/3 and 2/3 of the
users.

There also two degenerate cases corresponding to parts (2)
and (3) of Theorem III.11.

However, when optimizing over t, we have different behav-
ior to the linear congestion case. In particular, it can be optimal
for network 1 to offer a subsidy to the Content Provider to
increase its profits. As an example when r = 1/b, the case of
equal capacity C, when b = 10 we show the optimal choice
of t in Figure 4 which can be directly compared with Figure
3. The corresponding profits are shown in Figure 5.

What is happening is that for quadratic congestion, if
network 1 sets a small negative transfer price rather than 0,
this allows the Content Provider to lower its price, thereby
attracting more traffic (increasing Q13). The effect of this extra
traffic will cause more congestion (if p3+Q13 = Q1 increases)
on network 1, which has the effect of raising equilibrium prices
on networks 1 and 2; the increase in the product p1Q1 is larger
than the decrease tQ13, so network 1 makes a higher profit. If
the overall capacity of the networks C1+C2 is comparable to
the maximum enhanced service demand, gbE , then it becomes
more advantageous for network 1 to shut out the Content
Provider, by setting a high transfer price.

With equal capacities and quadratic congestion, network 1’s
optimal strategy is simply described. When the capacity is
small compared to b, its optimal strategy is to set a negative

2 4 6 8 10
C

1

-1.0

-0.5

0.0

0.5

1.0

1.5
t
*

Optimal t, quadratic loss, b=10

Fig. 4. Optimal t∗ a when r = 1/b , b = 10 as Ĉ1 varies.

0 2 4 6 8 10
C

1

0

5

10

15

20
π
1

*

Optimal profit, quadratic loss, b=10

Fig. 5. Optimal π∗
1 a when r = 1/b , b = 10 as Ĉ1 varies.

transfer price, i.e., subsidize the Content Provider; when the
capacity is large compared to b, network 1’s optimal strategy
is to shut out the Content Provider by setting a high transfer
price and sharing the profits with network 2. More formally,
we have:

Theorem V.1. Quadratic Costs and Equal Capacities. For
quadratic congestion costs and equal capacities, if network 1
does not shut out the Content Provider with a high price, then
network 1’s optimal strategy is to set a negative transfer price
t∗ = tO(b, Ĉ1).

Sketch Proof. The proof consists of showing that
d
dtπ
∗
1(t)|t=0 < 0, and that π∗1(t) is concave, or that

d
dtπ
∗
1(t) < 0 for all t ≥ 0. This will establish that setting a

shut out value t∗= tA becomes increasingly attractive as Ĉ1

increases; that is, the revenue benefit of setting a shut out
value over setting a transfer price increases with Ĉ1. When
in Case 3 of Lemma III.1, putting r = 1/b, using Q11 = p3,
and substituting in the defining conditions, gives Q13 as the
solution to a quadratic equation, which reduces to a linear
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equation with solution

Q13 =
b2(1− p3)2 − p23 − Ĉ2

1 (p1 − p2 + p3)

2b(b(1− p3) + p3)
.

We have seen that π1(p1) and π2(p2) are concave when r =
1/b, and that π3(p3) is in general quasi-concave, hence we
can find the optimum by considering the first order conditions.
This leads to a set of equations that reduce to a cubic in p3,
where p∗3 is the real root in [0, 1]. Using Mathematica [18],
one can show that d

dtπ
∗
1(t)|t=0 < 0.

Technical Remark V.2. We can also prove an analogous
result to Theorem V.1 for the case r = 1 (rather than r = 1/b),
i.e., again for quadratic congestion the optimal strategy is to
subsidize the Content Provider. Recall that r = 1 corresponds
to network 2 being able to provide all users with enhanced
traffic at a level of congestion equal to that of network 1,
were network 1 to carry all the users with basic service.

E. General convex congestion costs

Consider a general superlinear congestion function
K(ρ) = ρ1+α for α ≥ 0. Thus, α = 0 corresponds to linear
congestion costs, and α = 1 to quadratic. The general
behavior for fixed t is similar to that for the linear or
quadratic case; namely, there are conditions under which a
non-degenerate Nash equilibrium exists, which is “in general”
unique. Non-degenerate Nash equilibria exist, for example
when the transfer price is sufficiently high as to shut out the
Content Provider.

What happens when network 1 chooses t optimally?
There are then two distinct scenarios. For given param-
eters b, r, and Ĉ1, there is some value of α ∈ [1, 2],
α∗(b, r, Ĉ1), such that: (1) for α < α∗, the optimal deci-
sion shares the same property with linear congestion costs
(α ≡ 0), viz., either set a positive transfer price, or set the
price so high so as to shut out the Content Provider; and
(2) for α ≥ α∗, the optimal decision shares the same property
with quadratic congestion costs (α ≡ 1), viz., either set a
negative transfer price and thus subsidize the Content Provider,
or set the price so high so as to shut out the Content Provider.

VI. CONCLUDING REMARKS

This paper considers an ISP providing basic Internet service
(at price p1) competing with an ISP that provides enhanced
service, i.e., both Internet service and content (at price p2),
where the basic service ISP can partner with a Content
Provider, who charges each user an additional price (p3) for the
content, where the Content Provider pays the basic service ISP
a transfer price (t) for delivering the content. The transfer price
can be positive, negative, or zero. A positive transfer price
could be a termination fee reflecting discriminatory pricing by
network 1 against the Content Provider; note that this would
contravene the zero-price rule interpretation of net neutrality
[19], [9]. Alternatively, the positive transfer price may be
compensation paid to network 1 mandated by a regulator, or an
agreed transfer price negotiated bilaterally between network 1
and the Content Provider.

This gives rise to questions of when a Nash equilibrium
in prices will exist, whether the Nash equilibrium will be
unique, and what prices will be charged by the networks and
the Content Provider, and whether each of them will make a
profit. When network 1 has the ability to choose the transfer
price, there is the question of whether and when the transfer
price should be negative (i.e., a subsidy),

We find that answers to these questions can be expressed
concisely by defining three intermediate concepts. The first is
the effective capacity of a network, Ĉi (i = 1, 2), which is the
capacity of the network divided by product of the expected
bandwidth per user and the user sensitivity to congestion on
the network. The effective capacity can be interpreted as the
mass of users that the network can tolerate before “saturating,”
taking into account not only bandwidth but also the service-
dependent sensitivity to price. The second concept is that of
the effective capacity ratio, r, which is the effective capacity
of the ISP providing its own content (network 2) divided by
the effective capacity the ISP providing only basic Internet
service (network 1). The third is that of the relative bandwidth,
b, the ratio of enhanced service bandwidth to basic service
bandwidth.

Our results are as follows. When the transfer price is fixed
and known ex ante by all three firms, then in a well provisioned
network where the congestion is linear, there are closed-
form necessary and sufficient conditions under which a Nash
equilibrium will exist. If an equilibrium exists with positive
prices where the two networks and the Content Provider all
have users and make a profit, then the equilibrium will be
unique. In this case, we can provide closed-form expressions
for all three equilibrium prices, p1, p2, and p3. We also provide
bounds on the transfer price, t.

The relative bandwidth, b, plays a key role in the charac-
terization of the equilibrium. This relationship can be seen
most clearly when there is no transfer price, i.e., t = 0, in
which case a sufficient condition for a Nash equilibrium to
exist is b ≤ 2(1 + Ĉ1) + 1/r, where Ĉi is the effective
capacity of network i, and r is effective capacity ratio Ĉ2/Ĉ1.
This condition holds whenever the relative bandwidth is less
than twice the effective capacity of network 1, or is less than
2, which would be the case for many realistic settings. For
example, when content is relatively low bit-rate stream, we
would have b ≤ 2.

The paper of Johari, Weintraub and Roy [8] is complemen-
tary to ours, in that it considers the question of investment as
well as price setting, and for homogeneous rather than hetero-
geneous users. We can deal with homogeneous users in our
model by setting the continuous preference space w to a point
mass, w0, and carrying through our analysis for this degenerate
case. However, the presence of the Content Provider, which
has no capacity of its own, means that in general user masses
will no longer be uniquely defined. Nevertheless, when there
is no transfer price and where b=1, our results carry over with
the appropriate adjustments, and we can show that, analogous
to Theorem III.5, there exists a unique Nash equilibrium with
networks 1 and 2 and the Content Provider each having users,
provided that a simple condition is satisfied (w0Ĉ1 ≤ 1+2/r).
In this setting, the Content Provider has no choice other than
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to price at p3 = w0. For our homogeneous model we can
characterize and establish the uniqueness of a pure-strategy
Nash equilibrium, and we find that cost structure has a critical
impact on market outcomes, both of which were results of the
Johari, Weintraub and Roy [8] model.

When network 1 has the ability to choose the transfer price,
we model the problem as a Stackelberg leader-follower game
in which, first network 1 sets and publicly announces the
transfer price, and then network 2 and the Content Provider
set their prices to maximize their respective revenues, with
network 1 simultaneously setting its network price. Here,
the results are dependent upon the shape of the congestion
function. If the congestion function is linear, as would likely
be the case where both networks are well-provisioned, then it
is never optimal for network 1 to set a negative transfer price
in the hope of attracting more revenue from the additional
customers desiring enhanced service. Further, it is optimal
for network 1 to set a strictly positive transfer price; in
other words, net neutral pricing is not optimal for network 1.
The optimal transfer price uniquely determines one of two
outcomes: either it enables all three parties to make a profit,
or it shuts out the Content Provider, creating a duopoly. We
provide necessary and sufficient conditions for each outcome
to occur, and characterize the transfer price for each outcome.

When the congestion function is non-linear, the equilibria
and qualitative results differ according to whether the convex
congestion function is “close” to linear or whether it is steeper.

When the congestion function is quadratic, and the capac-
ities of the two networks are the same, then if network 1
does not shut out the Content Provider with a high price, then
the optimal strategy for network 1 is to subsidize the Content
Provider, i.e., set a negative transfer price.

If, on the other hand, the congestion function is
superlinear—up to quadratic—reflecting a possible restricted
capacity in the network, then the general behavior for fixed
transfer price t is similar to that of the linear or quadratic
cases, depending on whether the congestion function is, re-
spectively, closer to linear, or close to quadratic. However, the
characterization of the optimal transfer price strategy changes.
When the capacities of the two networks are the same, then
the optimal strategy for network 1 is to either subsidize the
Content Provider (set a negative transfer price) or shut out the
Content Provider. We conjecture that this result for superlinear
congestion costs extends to general convex congestion costs.

Finally, we have not considered investment incentives and
market structure. This seems like an important area for future
work, although the models are likely to be complex. A good
place to begin would be the paper of Johari, Weintraub and
Roy.
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SUPPLEMENTARY MATERIAL
PROOFS OF THEOREMS AND COROLLARIES

A. Proof of Lemma III.1

Using (11) with the definitions of ∇12 and ∇13 given in
(12) and (13), a comparison of utilities from (2) and (3), (2)
and (4), and (3) and (4), respectively, yields the following.

In equilibrium, a user with willingness to pay w will weakly
prefer:

i) Network 1 to network 2 if w ≤ ∇12, network 2 over
network 1 if w≥∇12

ii) Network 1 to option 3 if w≤∇13, option 3 over network 1
if w≥∇13

iii) Network 2 to option 3 if ∇12 ≤ ∇13, option 3 over
network 2 if ∇12 ≥∇13, regardless of w in both cases,
and strict preference obtains when the corresponding
inequality is strict.

Consider Case 1 of Lemma III.1. By iii, all users prefer
network 2 to option 3. Thus, any users taking option 3
would migrate from network 1 to network 2. Hence Q13

would decrease and Q2 would increase, until either there is
equality or until Q13 is zero. (The preference for network 1
or network 2 is given by i.)

In Case 2 of the Lemma, by iii all users prefer option 3
to network 2; thus, any users on network 2 would migrate to
network 1 to choose option 3. Hence Q2 decreases and Q1

increases until either there is equality, or until Q2 is zero.
For the equality of Case 3 of the Lemma, it follows from iii

that at equilibrium all users are indifferent between network 2
and option 3, but clearly they will not all choose one or
another, since otherwise some could reduce their cost by
choosing the empty network.

B. Proofs of Theorem III.2 and Corollary III.3

1) Proof of Theorem III.2:

Proof. We prove uniqueness and existence of Q by explicitly
characterizing Q11, Q13, Q2 in Theorem III.2 in the three
mutually exclusive cases of Lemma III.1. In each case, we first
show that Q11, Q13, Q2 are uniquely determined—specifically,
the solution of an appropriate system of linear equations; we
then establish feasibility, and hence the existence of the unique
solution.

Case 1: No users join the Content Provider, because the
price is too high, hence Q13=0. From Lemma III.1, it follows
that given a vector of prices p, the vector Q must satisfy

Q13 = 0 (S.1)

∇12 =
1

rĈ1

(Q2 − rQ11) + p2 − p1 (S.2)

Q11 = [∇12]
1
0 (S.3)

Q2 = 1−Q11. (S.4)

where [x]ul denotes the function equal to x when l ≤ x≤ u,
equal to l when x < l, and equal to u when x > u. Solving
(S.1)–(S.4) yields:

(Q1, Q2) =


(1, 0)

( 1+Ĉ1(p2−p1)r
1+r+Ĉ1r

, [1−Ĉ1(p2−p1−1)]r
1+r+Ĉ1r

)

(0, 1)

(S.5)

if, respectively, p2−p1 > 1+ 1

Ĉ1
, 1+ 1

Ĉ1
≥ p2−p1 ≥ − 1

rĈ1
,

and − 1

rĈ1
> p2−p1. The profits are:

π1 = p1Q1 (S.6)
π2 = p2Q2 (S.7)
π3 = 0. (S.8)

We have from (S.2) and (S.5):

∇12 =


− 1

Ĉ1
+ p2 − p1 if p2−p1 > 1+ 1

Ĉ1

1+Ĉ1(p2−p1)r
1+r+Ĉ1r

if 1+ 1

Ĉ1
≥ p2−p1 ≥ − 1

rĈ1
1

rĈ1
+ p2 − p1 if − 1

rĈ1
> p2−p1

(S.9)

which correspond to the three regions of ∇12, respectively,
being less than 1, in the closed interval [0, 1], and smaller
than 1.

Feasibility: From (14) and (15) and substituting into (S.6)
and (S.7) gives the necessary and sufficient conditions: p1≥0
and p2 ≥ 0. From (S.9) and (13), and using the defining ex-
pression for Case 1, which is given in terms of the user masses
and the prices, we have an alternative defining expression for
Case 1 in terms of the prices alone:

p3 >


− 1

Ĉ1
+ p2 − p1 if p2−p1 > 1+ 1

Ĉ1

1+Ĉ1(p2−p1)r
1+r+Ĉ1r

if 1+ 1

Ĉ1
≥ p2−p1 ≥ − 1

rĈ1
1

rĈ1
+ p2 − p1 if − 1

rĈ1
> p2−p1

.

(S.10)

Case 2: No users join network 2 because the price is too high.
Using (13):

Q11 = [p3]
1

Q13 = 1− [p3]
1

where [x]u denotes the function equal to x when x≤ u, and
equal to u when x > u. The requirement that firms 1 and 3
make non-negative profits, and the expressions for profits, (7),
yields:

p1 + t(1−[p3]1) ≥ 0 (S.11)

(p3−t)(1−[p3]1) ≥ 0. (S.12)

Feasibility: This region is feasible if the demand allocations
are feasible and profits are non-negative, and in addition the
defining condition for Case 2 holds. Using (S.12), (S.11), and
the defining condition for Case 2, the conditions are:

p3 ≥ t (S.13)

p1 + t(1−[p3]1) ≥ 0 (S.14)

p2 − p1 >
b+ Ĉ1p3 + (1−b)[p3]1

Ĉ1

. (S.15)
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Case 3: From (13) ∇13 = p3, and since Q11 = [∇13]
1, we

have:
Q11 = [p3]

1 (S.16)

and also have:

Q2 = 1− (Q11+Q13). (S.17)

Subcase A: 0 ≤ p3 ≤ 1: Solving simultaneously the defin-
ing condition for Case 3, (S.16), (S.17) together with (6) and
(10) yields:

Q11 = p3 (S.18)

Q13 =
1 + rĈ1(p2−p1)− (1+r+rĈ1)p3

1 + br
(S.19)

Q2 =
r[b− Ĉ1(p2−p1) + (1−b+Ĉ1)p3]

1 + br
(S.20)

Q1 =
1 + rĈ1(p2−p1)− r(1−b+Ĉ1)p3

1 + br
. (S.21)

Feasibility: For the demand allocations to be feasible given
the prices, we require (18) to hold. The nonnegativity condi-
tions on the Q’s given by (14), (15), and (16) imply necessary
and sufficient conditions for Case 3 to be feasible. These
conditions are that the pi satisfy:

0 ≤ p3 ≤ 1 (S.22)

p3 ≤
1 + r(p2−p1)Ĉ1

1 + r + rĈ1

(S.23)

(p2−p1)Ĉ1 − b ≤ (1−b+Ĉ1)p3 (S.24)

0 ≤ p1

[
1 + r(p2−p1)Ĉ1 − r(1−b+Ĉ1)p3

]
+t
[
1 + r(p2−p1)Ĉ1 − (1+r+rĈ1)p3

]
(S.25)

0 ≤ p2

[
rb− rĈ1(p2−p1) + r(1−b+Ĉ1)p3

]
(S.26)

0 ≤ (p3 − t)
[
1 + rĈ1(p2−p1)− (1+r+ rĈ1)p3

]
.

(S.27)

Note that the defining condition for Case 3 is satisfied by the
Q’s by construction.

Note also that in the “fully non-boundary” case, when all
the user masses are strictly positive, the conditions simplify to

0 < p3 < 1

p3 <
1 + r(p2−p1)Ĉ1

1 + r + rĈ1

r[(p2−p1)Ĉ1 − b] < r(1−b+Ĉ1)p3

−p1
1 + r(p2−p1)Ĉ1 − r(1−b+Ĉ1)p3

1 + r(p2−p1)Ĉ1 − (1+r+rĈ1)p3
≤ t

0 ≤ p2

t ≤ p3 .

Subcase B: p3 > 1: Solving simultaneously the defining
condition for Case 3, (S.16), (S.17) together with (6) and (10)
yields:

Q11 = 1 (S.28)
Q13 = 0 (S.29)
Q2 = 0 (S.30)
Q1 = 1. (S.31)

Feasibility: These conditions are that the pi satisfy:

p2−p1−p3 =
1

Ĉ1

(S.32)

p1 ≥ 0 (S.33)
p3 > 1. (S.34)

2) Proof of Corollary III.3:

Proof. The characterization of the constraints corresponding
to (14) to (18), for each of the three cases of Lemma III.1, is
given above in part 1, “Proof of Theorem III.2.” When t = 0,
each of the constraints corresponds to a separating hyperplane
or the space formed by intersecting hyperplanes (e.g., (S.26)
is equivalent to p2 ≥ 0 and (S.24)). The same holds true when
t > 0, apart from the constraint for π1 ≥ 0 for Case 3, (S.25),
which is quadratic in p1 but which reduces to an intersection
of hyperplanes. When t < 0, it is straightforward to show
the region is convex. Combining these statements proves the
corollary.

C. Proof of Theorem III.5
The system {(S.18), (S.20), (S.19)} in matrix form is:

Ĉ1(1+br)Q = c + q·p. Equivalently:

Ĉ1(1+br)

 Q11

Q2

Q13

 =

 c1
c2
c3

+ (qij).

 p1
p2
p3

 (S.35)

where

c =

 0

bĈ2

Ĉ1

, q =

 0 0 (1+br)Ĉ1

Ĉ1Ĉ2 −Ĉ1Ĉ2 (Ĉ1−b+1)Ĉ2

−Ĉ1Ĉ2 Ĉ1Ĉ2 −(1+r+rĈ1)Ĉ1

 .

(S.36)
Using (7) together with (S.35) gives:

Ĉ1(1+br)

π1π2
π3

 = Ĉ1(1+br)P·Q

=

p1 0 p1 + t
0 p2 0
0 0 p3 − t

· (c + q·p).

Taking derivatives

Ĉ1(1+br)


∂π1

∂p1
∂π2

∂p2
∂π3

∂p3

 =

1 0 1
0 1 0
0 0 1

· (c+ q · p)

+

q11 + q31 0 0
0 q22 0
0 0 q33

· p+ t

 q31
0
−q33

 . (S.37)
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Hence at the potential N.E. where ∂πi
∂pi

= 0 for all i, a
simultaneous turning point, the p∗i will satisfy

t

−q310
q33

−
1 0 1
0 1 0
0 0 1

 · c
=

1 0 1
0 1 0
0 0 1

 · q·p +

q11 + q31 0 0
0 q22 0
0 0 q33

 · p
=

2(q11 + q31) q12 + q32 q13 + q33
q21 2q22 q23
q31 q32 2q33

 .p

= q̃ · p
(S.38)

Now it follows from (S.37) that
∂2π1

∂p21
∂2π2

∂p22
∂2π3

∂p23

 = 2

q11 + q31 0 0
0 q22 0
0 0 q33

 (S.39)

= 2

−Ĉ1Ĉ2 0 0

0 −Ĉ1Ĉ2 0

0 0 −(1+r+rĈ1)Ĉ1


(S.40)

has strictly negative entries, (where we have used the def-
initions for qij in (S.36)) hence the profit functions are
strictly concave (in this Case 3), and hence there is a unique
maximum. From (S.36), here q̃ is given by:

q̃ = Ĉ2

−2C1 Ĉ1 −Ĉ1 + b− 1

Ĉ1 −2Ĉ1 Ĉ1 − b+ 1

−Ĉ1 Ĉ1 −2( 1r + 1 + Ĉ1)


and hence det q̃ = −2Ĉ5

1r
2[3 + r(2+ b+2Ĉ1)] < 0 (recall

Ĉ2 = rĈ1). The left hand side of (S.38) is−tq13 − c1 − c3−c2
tq33 − c3

 = −Ĉ1

 1− Ĉ2t
br

1 + (1 + r + Ĉ2)t

 .

Using Cramer’s rule

p∗1 =
rĈ2

1

det q̃
det

 Ĉ1rt Ĉ1 −[Ĉ1 − (b−1)]r

−(br + 2)Ĉ1 −2Ĉ1 [Ĉ1 − (b−1)]r

−(1 + r + rĈ2)tĈ1 Ĉ1 −2(1 + r + Ĉ2)

 .

Simplifying gives

p∗1 =
1

2Ĉ1r[3 + r(2+b+2Ĉ1)]

(
(2+br)[2 + br + r(1+Ĉ1)]

+rt
[
(1+r)(b− 1)− Ĉ1 [5(1+r) + 4rĈ1]

])
.

Hence if t = 0, it follows that p∗1 will be positive. Similarly,

p∗2 =
1

2Ĉ1r[3 + r(2+b+2Ĉ1)]

(
2 + 2(1+2b+Ĉ1)r

+ b(3+b+3Ĉ1)r2

−tr
[
b− 1 + Ĉ1 + (b− 1− Ĉ1 + 2bĈ1)r

])
(S.41)

Hence

p∗2 > 0⇔ 0 ≤ t < 2 + 2(1 + 2b+ Ĉ1)r + b(3 + b+ 3Ĉ1)r2

r(b− 1 + Ĉ1 + (b− 1− Ĉ1 + 2bĈ1)r)
.

Similarly,

p∗3 =
2 + br + (3 + 3r + 4Ĉ1r)t

6 + 2r(2 + b+ 2Ĉ1)
(S.42)

and hence p∗3 > 0 for all t≥0.

D. Proof of Theorem III.9 and Corollary III.10
The following Lemma proves parts 1 and 2 of Theorem III.9.

The candidate solution {p∗i } is a local optimum for each i. The
requirements that the p∗ induce a feasible solutions result in the
condition (26) together with the requirement that p∗1 ≥ 0. If
these conditions are satisfied, then either the p∗i constitute a Nash
equilibrium, or, they are such that either network 1 or 2 could improve
their profits by deviating, in which case p∗i is an ε-equilibrium. In
Lemma S.2 we prove part 3 of Theorem III.9, and also characterize
the ε of part 2. Note that we first prove the theorems for general
transfer price t, which includes the special case t = 0 (c.f. Section
F of this Supplementary Material).

1) Proof of part 1 and 2 of Theorem III.9:

Lemma S.1. If a Nash equilibrium exists with positive prices {p∗i },
given by (20), (21), (22), with both networks 1 and 2 and the Content
Provider having users and each making positive profit, then the
transfer price satisfies

− 2 + br

3 + r(3+4Ĉ1)
< t <

2 + br

3 + r + 2br
. (S.43)

Conversely, when (26) is satisfied and the expression for p∗1 in (20)
is positive, then the {p∗i } given by (20), (21), (22) constitute an ε-
equilibrium where ε ≥ 0. Further, all the prices {p∗i } are positive,
and networks 1 and 2 and the Content Provider all have users.

Proof. Since the prices {p∗i } are a local optimum for each i, it
follows that the p∗i will be a non-degenerate ε−equilibrium if and
only if the prices are positive, the market is covered (Q1+Q2 = 1),
the user masses are positive (Q11, Q13, Q2 > 0), and the profits
are positive. Since we solve the equations for the Qi ensuring the
constraint Q11 + Q13 + Q2 = 1 is met, necessary and sufficient
conditions are that each Q∗

11, Q
∗
13, Q

∗
2 is in (0, 1), pi∗ > 0 and

π∗
i > 0.
i) Since Q∗

11 = p∗3, the condition Q∗
11 ∈ (0, 1) is equivalent to,

0 < p∗3 < 1 (S.44)

ii) Using (23), Q∗
13 ∈ (0, 1) is equivalent to

0 < p∗3 − t <
1 + br

1 + r + rĈ1

(S.45)

iii) By construction Q∗
2 + Q∗

1 = 1, hence the requirement Q∗
2 ∈

(0, 1) is equivalent to requiring Q∗
1 ∈ (0, 1), which from (23)

is equivalent to

0 < p∗1 + t <
1 + br

rĈ1

(S.46)

These three conditions, together with the requirement that p∗1 ≥ 0
also ensure that each p∗i ≥ 0 and each π∗

i ≥ 0. Using inequality
(S.44) and substituting from (S.42) gives the condition

− 2 + br

3 + r(3+4Ĉ1)
< t <

4 + r(4+b+4Ĉ1)

3 + r(3+4Ĉ1)
(S.47)
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Using expression (S.45) and substituting from (S.42) gives the
condition

−4 + r(2 + 7b+ 2Ĉ1 + b(3 + 2b+ 3Ĉ1)r)

(3+r+2br)(1 + r + Ĉ1r)
< t <

2 + br

3 + r + 2br
(S.48)

The conjunction of (S.47) and (S.48) gives the condition

− 2 + br

3 + r(3+4Ĉ1)
< t <

2 + br

3 + r + 2br
.

This condition also ensures that (S.46) is satisfied, completing the
proof of the lemma.

2) Proof of part 3 of Theorem III.9, and characterization
of ε of part 2.:

Lemma S.2. A Nash equilibrium exists if t satisfies (S.43) and in
addition:([

(2+br)(2 + br + r(1+Ĉ1))
]

+ (S.49)

rt
[
(1+r)(b− 1)− Ĉ1

(
5(1+r) + 4rĈ1

)]
≥ 0

(S.50)

or t ≤ 0
)

[ condition for p∗1 to be positive]

and

(
t ≥ 2 + br

1 + r(1+Ĉ1)
or (S.51)

t ≤ (2+br)(2 + (1+Ĉ1+b)r)

6 + r(11 + b+ 15Ĉ1 + (b+ 2bĈ1 + (1+Ĉ1)(5 + 8Ĉ1))r)
(S.52)

or t satisfies expression (S.56)
)

[ for p∗1 to be optimal]

and
(
t ≤ −1 + r

br
or (S.53)

t ≤
4 + r

(
−b2r − b[2 + r(1+Ĉ1)] + 4(1+Ĉ1)[2 + r(1+Ĉ1)]

)
6 + r(11 + b+ 9Ĉ1 + (b+ (1+Ĉ1)(5+4Ĉ1))r)

(S.54)

or t satisfies expression (S.58)
)

[ cond. for p∗2 to be optimal]

Proof. We prove that p∗ is a Nash equilibrium by fixing two of
{p∗1, p∗2, p∗3} while allowing the other pi to vary, then showing
conditions under which p∗i is optimal for πi.

p∗
1 is optimal for network 1. With p2 = p∗2, p3 = p∗3, as we

increase p1 from p∗1 we either stay in Region 3, or potentially move
into Region 1. There are three mutually exclusive cases we need to
consider:

i) For all p1 ≥ p∗1 we remain in Region 3 and never move to
Region 1, and hence p∗1 is optimal.
The boundary between Regions 3 and 1 occurs when, from
(S.23) and (S.10), p1 = pB1 solves p∗3 = [1 + r(p∗2 −
p1)Ĉ1]/[1 + r(1 + Ĉ1)], (c.f. (S.73)), which substituting gives
pB1 = [2 + br− [1 + r(1+2Ĉ1)]t]/2rĈ1. Hence p1 will stay in
Region 3 if the boundary point is infeasible, pB1 ≤ 0, that is, if
t ≥ 2+br

1+r(1+Ĉ1)
, i.e., (S.51).

ii) πi(p1) is decreasing in Region 1 and hence π1(p1) <
π1(p∗1) ∀p1 ∈ Region 1.
Since π1(p1) is convex in Region 1, a sufficient condition for
this is ∂π1

∂p1
|p1=pB1

≤0, which substituting and taking derivatives
in (S.6), using (S.5) and substituting p2 = p∗2, p3 = p∗3,
p1 = p1 = pB1 gives (S.52).

iii) There is a feasible local maximum for π1 in Region 1, where
the profit is given by π̆1 = p̆1Q̆1, but

π∗
1 = p∗1Q

∗
1 + tQ∗

13 ≥ π̆1, (S.55)

and hence again p∗1 is optimal for π1. The point p̆1 is where
∂π1
∂p1

= 0, that is when 0 =
1+r(p∗2−p̆1)Ĉ1

1+r(1+Ĉ1)
− p̆1

rĈ1

1+r(1+Ĉ1)
and

hence p̆1 =
1+rĈ1p

∗
2

2rĈ1
. At this point, the profit is given by

π̆1 = p̆1Q̆1, which is

π̆1 = p̆2
1

rĈ1

1 + r(1+Ĉ1)
=

(1 + rĈ1p
∗
2)2

4rĈ1(1 + r(1+Ĉ1))
.

Substituting for Q∗
1 from (23) in (S.55) gives the full condition

as following the quadratic relation on t,

p∗1
rĈ1

1+br
(p∗1+t)+t

1+r(1+Ĉ1)

1+br
(p∗3−t) ≥

(1 + rĈ1p
∗
2)2

4rĈ1(1 + r(1+Ĉ1))
(S.56)

where p∗i are given in (20),(21),(22).
In the case that (S.56) does not hold (which necessarily also
requires that (S.51) and (S.52) are not satisfied), define

ε1 :=
(1 + rĈ1p

∗
2)2

4rĈ1(1 + r(1+Ĉ1))
− p∗1

rĈ1

1+br
(p∗1 +t)

+ t
1+r(1+Ĉ1)

1+br
(p∗3−t).

Finally, if we decrease, p1, we potentially move to Region 2. But
we know that π1 is decreasing in Region 2, and hence π1(p1) ≤
π(pB23

1 ) < π1(p∗1) f or all p1 ∈ Region 2 where pB23
1 is the value

of p1 at the boundary of Regions 2 and 3.
p∗
2 is optimal for network 2. The proof mirrors the arguments

for showing p∗1 is optimal for network 1. With p1 = p∗1, p3 = p∗3,
as we decrease p3 from p∗2 we either stay in Region 3, or move
into Region 1. There are three mutually exclusive cases we need to
consider:

i) For p2 ≤ p∗2 we remain in Region 3 and never move to Region
1.
At the boundary point, pB2 solves p∗3 =

1+r(p2−p∗1)Ĉ1

1+r(1+Ĉ1)
, that is,

pB2 = t+r(b+t)

2Ĉ1r
. The condition that is infeasible (pB2 < 0) or

zero gives condition (S.53)
ii) π2(p2) is increasing Region 1 and hence π2(p2) <

π2(p∗2) ∀p2 ∈ Region 1, since π2(p2) is concave in the interior
of Region 1 .
Now using (S.7), differentiating and substituting p1 = p∗1, p2 =
pB2 , p3 = p∗3 gives that ∂π2

∂p2
|pB2 = 1− p∗3 − t+r(b+t)

2[1+r(1+Ĉ1)]
which

will be non-negative if and only if (S.54) holds.
iii) There is a feasible local maximum for π2 in Region 1 at the

point p̆2, with profit given by by p̆2Q̆2, but for which

π̆2 ≤ π∗
2 = p∗2Q

∗
2 (S.57)

and hence p∗2 is optimal for π2. p̆2 is the point in Region 1 at
which ∂π2

∂p2
= 0, which using (S.7) and (S.5) gives the point

p̆2 =
1+Ĉ1+Ĉ1p

∗
1

2Ĉ1
. Using (20) gives the profit

π̆2 =

(
1 + Ĉ1 + Ĉ1p

∗
1

2Ĉ1

)2
rĈ1

1 + r(1+Ĉ1)
.

Q∗
2 is given by (21), and (23) and hence substituting (S.57) is

the condition(
1 + Ĉ1 + Ĉ1p

∗
1

2Ĉ1

)2
rĈ1

1 + r(1+Ĉ1)
≤ p∗2

rĈ1

1+br
p∗2 (S.58)

a quadratic in t, where the p∗i are given in (20),(21).
In the case that (S.58), (S.53), (S.54) all fail to hold, define

ε2 := p∗2
rĈ1

1+br
p∗2 −

(
1 + Ĉ1 + Ĉ1p

∗
1

2Ĉ1

)2
rĈ1

1 + r(1+Ĉ1)
.

Finally, if network 2 increases its price above p∗2, it potentially moves
to region 2; but network 2 receives zero profit in Region 2, hence
network 2 has no incentive to increase its price above p∗2.
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p∗
3 is optimal for the Content Provider. We show that under the

conditions of the lemma, p∗3 is optimal for the Content Provider with
no further restrictions.

i) If Ĉ1 ≥ b − 1: As we decrease p3, we remain in Region 3
and hence p∗3 is optimal for all p3 ≤ p∗3. Moving to Region 2
is not possible since the boundary is infeasible: the Region 2-3
boundary is the point p3 ≥ t which satisfies pB3 =

(p∗2−p
∗
1)−b

1−b+Ĉ1
.

Substituting for p∗1 and p∗2 gives

pB3 =
(
−1− br(3 + (1+Ĉ1+b)r)

+(2Ĉ1 + 1− b)r[1 + r(1+Ĉ1)]t
)

÷
(

(Ĉ1 + 1− b)r[3 + (2 + b+ 2Ĉ1)r]
)

(S.59)

and when − 2+br

3+3r+4rĈ1
≤ t ≤ 2+br

3+r+2br
, this implies pB3 < t,

and hence we never move to Region 2. Conversely, increasing
p3 either causes us to remain in Region 3, or move potentially
move to Region 1 where the Content Provider receives zero
profit, hence p∗3 is optimal for all p3 > p∗3.

ii) Ĉ1 < b − 1: the only way to violate (S.24) is to increase p3.
In this scenario with p∗1 and p∗2 then (S.59) with the condition
0 ≤ t ≤ 2+br

3+r+2br
implies p3 ≥ 1 and hence π3 = 0. If instead

− 2+br

3+3r+4rĈ1
≤ t < 0, then to have an interior maximum in

Region 2, it is necessary for both pB3 <1 and p3 < (1+t)/2, and
we can show that these three conditions cannot simultaneously
hold, and hence if we enter Region 2, the value of π3 will
decrease. Hence p∗3 is optimal .

Summary. Necessary and sufficient conditions for a non-
degenerate Nash equilibrium to exist at p∗ in are that Lemma S.2
holds, i.e., (S.43) and {(S.50) or t ≤ 0} and {(S.51) or (S.52) or
(S.56)} and { (S.53) or (S.54) or (S.58)} hold.

When only the necessary conditions hold ( (S.43) and
{(S.50) or t ≤ 0}) but not all the other conditions for Lemma S.2,
(so either {(S.51) and (S.52) and (S.56)} are all false, or {(S.53) and
(S.54) and (S.58)} are all false,) then p∗ is an ε-equilibrium, not a
Nash equilibrium, where ε = max{ε1, ε2}.

3) Proof of Corollary III.10:

Proof. From (20) and the conditions of the corollary, we obtain p∗1>
0. The result follows from part 2 of Theorem III.9.

E. Proof of Theorem III.11
We provide here a more detailed presentation of Theorem III.11

than is given in Section III.

THEOREM III.11. There are only three possibilities for degenerate
equilibria. Specifically, there exists a value tA (which can be com-
puted) such that:

1) If t ≥ tA, then there exists a Nash equilibrium in which the
Content Provider prices itself out of the market by setting p∗3 = t,
Q∗

13 =0, and for networks 1 and 2, the prices, user masses, and
profits are given by

p1
∗ =

2 + r + rĈ1

3rĈ1

, p2
∗ =

1 + 2r + 2rĈ1

3rĈ1

(S.60)

where the user masses are

Q∗
1 =

2 + r + rĈ1

3(1 + r + rĈ1)
Q∗

2 =
1 + 2r + 2rĈ1

3(1 + r + rĈ1)
(S.61)

and the profits are

π∗
1 =

(2 + r + rĈ1)2

9rĈ1(1+r+rĈ1)
π∗

2 =
[1 + 2(1+Ĉ1)r]2

9rĈ1(1+r+rĈ1)
.

(S.62)

2) If t < 0, then network 1 provides a subsidy to the Content
Provider for each user, i.e., let s := −t. Then if the subsidy
s is sufficiently great, viz., it is at least 2+br

3+r(3+4Ĉ1)
, then there

will be a unique Nash equilibrium where the Content Provider
sets p∗3 =0, and Q∗

11 =0. There are two subcases:
a) If s≤ 2+br

rĈ1
, then the equilibrium is:

p∗1 =
2 + r(b+2Ĉ1s)

3Ĉ1r
, p∗2 =

1 + r(2b+Ĉ1s)

3Ĉ1r
(S.63)

where

Q∗
13 =

2 + r(b− Ĉ1s)

3(1+br)
, Q∗

2 =
1 + r(2b+ Ĉ1s)

3(1+br)
(S.64)

with profits given by

π1 =
[2 + r(b−Ĉ1s)]

2

9rĈ1(1+br)
,

π2 =
[1 + r(2b+Ĉ1s)]

2

9rĈ1(1+br)
,

π3 =
[2 + r(b−Ĉ1)]s

3(1+br)
.

(S.65)

b) If s > 2+br

rĈ1
, then network 1 chooses a price of at least s;

in consequence all users will choose network 2, Q∗
2 =1, and

the equilibrium is: p∗1 = s, p∗2 = s − 1

rĈ1
, with network 2

capturing all the profit, π∗
2 = s− 1

rĈ1
.

3) If − 2+br

3+r(3+4Ĉ1)
< t < tA, there exists a set of parametric

conditions under which a Nash equilibrium exists where the
optimal strategy for network 1 is to set its price to zero.
Specifically, these are:

Ĉ1 > b+ 1/r (S.66)

(2+br)(2 + br + (1+Ĉ1)r)

r{(1+r)(1− b) + Ĉ1 [5(1+r) + 4Ĉ1r]}

≤ t <
2 + br

2 + br + (1+Ĉ1)r
(S.67)

[(2+br)(1−t)− (1+Ĉ1)rt]t

1 + br
≥ [2(2+br) + (1+Ĉ1−b)rt)]2

4Ĉ1r(4 + [3(1+Ĉ1) + b] r)
,

(S.68)
which necessarily imply t > 0. The unique equilibrium is:

p∗1 = 0 (S.69)

p∗2 =
1 + b+ Ĉ1 + 2br(1+Ĉ1) + (1 + Ĉ1 − b)[1 + r(1+Ĉ1)]t

Ĉ1 (4 + [3(1+Ĉ1) + b] r)
(S.70)

p∗3 =
2 + br + 2[1 + r(1+Ĉ1)]t

4 + [3(1+Ĉ1) + b] r
, (S.71)

where

Q∗
11 = p∗3, Q∗

2 =
rĈ1

1+br
p∗2, Q∗

13 =
1+r(1+Ĉ1)

1+br
(p∗3−t),

and where the profits π1, π2, and π3 can be calculated from
(7).

Proof. First note that no Nash equilibrium is possible in Region 2,
where ∇12>∇13, since in that case the feasibility condition is p2 >
p1 + p3 + p3 + b(1−p3)/Ĉ1, where the r.h.s is strictly greater than
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zero, and thus network 2 can decrease its price until equality holds,
attracting users and moving out of Region 2 into Region 3. We first
consider the three parts of the theorem, and then show that no other
degenerate Nash equilibria exist.

1) t ≥ tA: If the transfer price t is sufficiently large, the
condition p3 ≥ t implies Q13 = 0, and hence we are in Case 1
of Lemma III.1.

From (A.9), we have in the non-degenerate case the optimal critical
value of w, is given by:

∇12 =
(p2−p1)rĈ1 + 1

rĈ1 + r + 1
.

The profits are π1 = p1∇12 = p1

[
(p2−p1)rĈ1+1

rĈ1+r+1

]
, and π2 =

p2(1−∇12) = p2

[
[1−(p2−p1)]rĈ1+r

rĈ1+r+1

]
. From the first derivatives, we

obtain the unique optimal prices (S.60), (optimal since the second
derivatives are negative). The optimal critical value of w, i.e., the
optimal value of ∇12, is given by:

∇∗
12 =

2 + r + rĈ1

3(1 + r + rĈ1)
=

2 + r + Ĉ2

3(1 + r + Ĉ2)
. (S.72)

By (S.5), the mass of users on the networks at equilibrium are given
by (S.61).

The optimal choice of p1, p2, namely p∗1, p∗2, are given by (S.60)
and the Q∗

i from (S.61). Since Q13 = 0 and Q11 = Q1, we know
that (S.60) and p∗3 ≥ t constitute a local equilibrium. To prove that
these values constitute a Nash equilibrium, we need to show that for
t ≥ tA, given p∗2 and p3

∗, network 1 cannot benefit by altering its
price from p∗1, with corresponding statements for network 2 and the
Content Provider.

p∗
3 = t is optimal for the Content Provider. At this value the

Content Provider has zero profit. For the Content Provider to have a
nonzero profit, we require p3≥ t, hence the Content Provider cannot
lower its price below this value. With the given values of p∗1, p∗2,
rasing the price above t also generates zero profit. Hence p3 = t is
optimal for the Content Provider.

By Lemma III.1, we must have: Q∗
2/rĈ1 − gQ∗

1/Ĉ1 < p∗1+p3−
p∗2. Substituting in (27) implies this will hold iff p3 is greater than
[2+r(1+Ĉ1)]/[3(1+r(1+Ĉ1))]. Hence we must have

tA >
2 + r(1+Ĉ1)

3[1 + r(1+Ĉ1)]
,

since otherwise the Content Provider could lower its price, p3, below
this value to attract users until equality holds.

p∗
1 is optimal for network 1.

For the given values p∗1 and p∗2, we are in the middle subcase of
the alternative defining condition for Case 1 of Lemma III.1, (S.10).
If network 1 raises its price from p∗1, it will remain in Case 1 and
hence p∗1 will remain the optimal response to p∗2.

If network 1 decreases its price from p∗1, it is possible that
π1(p1; p∗2; p∗3) > π1(p∗1; p∗2; p∗3), in which case p∗1 is not an equi-
librium. It is straightforward to shown that this can only happen if
p1 moves to be in Region 3, and has a greater local optimum in
region 3 . We need to consider the cases (A) p∗3 = t ≤ 1 and (B)
t > 1 separately.

We consider subcase B first.

(B) p∗3 > 1. In this subcase, the first inequality in (S.10) is violated
by becoming an equality as p1 is decreased. By (S.31), Q1 =1, and

by (S.32), at this point p1 = p∗2 − p∗3 − 1

Ĉ1
, with profit π1 less than

the profit at p∗1, i.e.

π1 = p1Q1 = p1 < p∗2 − 1− 1

Ĉ1

=
1− r − rc

3rĈ1

<
(2 + r + rĈ1)2

9rĈ1[1 + r(1+Ĉ1)]
= p∗1Q

∗
1.

If we were to reduce p1 even further, then we would immediately
move to Case 2 Theorem III.1, since (S.32) is an equality, where
π1(p1) decreasing as we decrease p1. Hence no higher value of the
profit is possible in case B.

(A) p∗3 ≤ 1. For this to have a local maximum in Region 3 such
that π1(p1; p∗2; p∗3) > π1(p∗1; p∗2; p∗3) we require:

(i) The boundary between Region 1 and Region 3 to be feasible
for p1. At this boundary point the second inequality in (S.10)
is violated by becoming an equality,

t = p∗3 =
1 + r(p∗2−p13

1 )Ĉ1

1 + r(1+Ĉ1)
. (S.73)

Substituting for p∗2 from (27) and simplifying gives the condi-
tion that p13

1 > 0 if and only if

t <
4 + 2r + 2rĈ1

3 + 3r + 3rĈ1

. (S.74)

(ii) The derivative of the profit ∂π1/∂p1 at the boundary p13
1 is

negative. It follows from (7), (S.21), (S.19), (S.18), and from
Q13 =0, and (S.73), that:

∂π1

∂p1
|p131 = p1

∂Q1

∂p1
+Q1 + t

∂Q13

∂p1
= t− (p13

1 +t)
rĈ1

1+br
.

Substituting for p1 from (S.73) and for p∗2 from (27) yields the
condition:

t <
2(2 + r + rĈ1)

3(2 + r + br)
⇐⇒ ∂π1

∂p1
< 0. (S.75)

(iii) There is a feasible local optimum in region 3. Taking derivatives
∂π1/∂p1 using (7), (S.21), (S.19), (S.18), and solving for p0

1

such that ∂p1π1|p0
1 = 0, gives on substituting p∗3 = t,

p0
1 =

1 + p∗2rĈ1 + (b− 1− 2Ĉ1)rt

2rĈ1

and hence substituting for p∗2

t(3r[1− b+ 2Ĉ1]) < 2(2 + 2r + 2rĈ1) ⇐⇒ p0
1 > 0.

(S.76)
(iv) The feasible local optimum generates higher profit. That is

π1(p0
1; p∗2; p∗3) > π1(p∗1; p∗2; p∗3). Substituting gives the condi-

tion

1

36rĈ1(1 + br)

(
4(2 + r + rĈ1)2+

12(b− 1)r(2 + r + rĈ1)t+ 9r
(
(b− 1)2r − 4c(1 + br)

)
t2
)

>
(2 + r + rĈ1)2

9rĈ1(1 + r + rĈ1)

which is equivalent to the condition{
t < tl(b, r, Ĉ1) OR t > tu(b, r, Ĉ1) if (b− 1)2r ≥ 4Ĉ1(1 + br)

tl(b, r, Ĉ1) < t < tu(b, r, Ĉ1) if (b− 1)2r < 4Ĉ1(1 + br)
(S.77)
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where tl, tu are the upper and lower roots of the equation

9
(

(b− 1)2r − 4Ĉ1(1 + br)
)
t2

+ 12(b− 1)(2 + r(1 + Ĉ1))t−
4

1 + r(1 + Ĉ1)
(b− 1− c)(2 + r(1 + Ĉ1))2 = 0.

With a slight abuse of notation, we shall let (S.74) etc to refer to the
conditions on t: hence p∗1 is not optimal for network 1 only if (S.74)
AND (S.75) AND (S.76) AND (S.77) hold, thus p∗1 is optimal if
NOT ((S.74) AND (S.75) AND (S.76) AND (S.77)).

p∗
2 is optimal for network 2.

The proof mirrors that for showing p∗1 is optimal. For network 2,
if we decrease p2 from p∗2, we remain in Case 1 of Theorem III.1,
and hence cannot improve upon π2(p∗2).

As we increase p2 above p∗2 it is possible π2(p∗1; p2; p∗3) >
π2(p∗1; p∗2; p∗3), in which case p∗2 is not an equilibrium. For this to
happen, p2 must force a move to region 3, and network 2 must have
a greater local optimum in that region. We need to consider the cases
(A) p∗3 = t ≤ 1 and (B) t > 1 separately.

For case (B), p∗3 = p2 − 1

Ĉ1
+ p∗1 . At boundary point π2 =0 and

as we increase π2 still further we move into Case 2, hence no greater
profit for network 2 is possible in this case.

(A) π2(p∗1; p2; p∗3) > π2(p∗1; p∗2; p∗3) for some p2 requires
(i) The boundary between Region 1 and Region 3 to be feasible

for p2. At the boundary p2 = p13
2 solves

t = p∗3 =
1 + r(p13

2 −p∗1)Ĉ1

1 + r + rĈ1

. (S.78)

Substituting p∗1 from (27), and simplifying gives the condition
that p13

2 will be positive is

t >
1− r − Ĉ1r

3 + 3r + 3Ĉ1r
. (S.79)

(ii) The derivative ∂π2/∂p2 at the boundary p2 = p13
2 is positive.

Now
∂π2

∂p2
= −p2

rĈ1

1 + br
+ (1− p∗3).

Using (S.78) and (27), this will be positive if

t = p∗3 <
4 + 3br − (1+Ĉ1)r

3[2 + br + (1+Ĉ1)r]
. (S.80)

(iii) There is a feasible local optimum in region 3. The local
optimum for π2 in region occurs at the price p0

2 where
∂p2π2|p0

2 = 0, which substituting gives the value

p0
2 =

2 + r + 3br + rĈ1 + 3(1− b+ Ĉ1)rt

6rĈ1

which will be feasible provided that

2 + r + 3br + rĈ1 + 3(1− b+ Ĉ1)rt > 0. (S.81)

(iv) The feasible local optimum generates higher profit. The profit
at p0

2 is given by

π2(p∗1; p0
2; p∗3) =

(2 + r + 3br + rĈ1 + 3(1− b+ Ĉ1)rt)2

36rĈ1(1 + br)

and this will be greater than π2(p∗1; p∗2; p∗3) = (1+2(1+Ĉ1)r)2

9rĈ1(1+r+rĈ1)

provided that

t < tl(b, r, Ĉ1) OR t > tu(b, r, Ĉ1) (S.82)

where tl, tu are the upper and lower roots of the quadratic in t

(2 + r + 3br + rĈ1 + 3(1− b+ Ĉ1)rt)2

=
4(1 + br)(1 + 2(1 + Ĉ1)r)2

1 + r + rc
.

Hence p∗2 is not optimal only if (S.79) AND (S.80) AND (S.81)
AND (S.82) hold, and hence p∗2 is optimal if NOT ( (S.79) AND
(S.80) AND (S.81) AND (S.82) ).

p∗
3 is optimal for the Content Provider. Trivial.

Summarizing, hence necessary and sufficient conditions for a
Nash equilibrium to exist in this case are that NOT ( (S.79) AND
(S.80) AND (S.81) AND (S.82) ) AND NOT ( (S.74) AND (S.75)
AND (S.76) AND (S.77)). Hence by choosing the simpler conditions
in this expression, it follows that sufficient conditions for a Nash
equilibrium to exist with these p∗i are that t ≥ tA, where

tA = min

{
1,

max

(
4 + 3br − (1+Ĉ1)r

3[2 + br + (1+Ĉ1)r]
,

2 + r(1+Ĉ1)

3[1 + r(1+Ĉ1)]
,

2[2 + r(1+Ĉ1)]

3[2 + br + r]

)
,

max

(
4 + 3br − (1+Ĉ1)r

3[2 + br + (1+Ĉ1)r]
,

2[2 + r(1+Ĉ1)]

3[1 + r(1+Ĉ1)]

)}
. (S.83)

2) t < 0, s = −t ≥ 2+br

3+r(3+4Ĉ1)
: e

When the subsidy is large enough, the Content Provider can set
its price p3 to zero. Now when p3 =0, then by (S.16), Q11 =0, and
basic service is never used in this case. First consider the case

2 + br

rĈ1

≥ s ≥ 2 + br

3 + r(3+4Ĉ1)

corresponding to subcase 2(a) of Theorem III.5.

Proof. Proof of subcase 2(a) of III.11 It is straightforward to check
that the pi in the system (30) with the corresponding Q’s are given
in (31) are consistent with being in Region 3, and moreover p∗1, p∗2
satisfy the first order conditions for π1, π2, i.e., ∂πi

∂pi
=0, when p3 =

0. The second order conditions are also satisfied for networks 1 and
2. The condition for π3 to have a maximum at p3 =0 is that ∂p3

∂π3
≤ 0.

For this to hold when p=p∗ requires:

∂π3

∂p3

∣∣∣∣
p=p∗

= s
∂Q13

∂p3
+Q13 =

2 + br − (3 + 3r + 4Ĉ1r)s

3 + 3br
≤ 0

(S.84)
and hence

s ≥ 2 + br

3 + r(3+4Ĉ1)
. (S.85)

The requirement that Q13 ≥ 0 necessitates that

s ≤ 2 + br

rĈ1

.

When both conditions, (S.84) and (S.85), on s are satisfied, the
remaining feasibility requirements (Q13≤1, π≥0) are also satisfied,
hence we have shown that vector (p∗i ) is a local maximum. It remains
to prove that these are globally optimum prices.
p∗1 is optimal. While we remain in Region 3, we know p∗1 is

optimal. By increasing p1, we remain in Region 3 until we reach
the boundary with region 1, at which point from (S.19), Q13 = 0
(recall p∗3 = 0), hence Q1 = 0, π1 = 0 and this profit remains
zero remains so as we increase p1 further (c.f. (S.5) final condition).
Now consider what happens when we decrease p1 below p∗1. If we
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decrease p1 sufficiently, then we potentially enter Region 2. For this
to happen, since p2 =p∗2, it follows from (S.15) that

p1 < p∗2 −
b

Ĉ1

=
1− br + rĈ1s

3rĈ1

.

But then, to have a higher profit than that corresponding to the prices
given in (30), (30) we require

1− br − 2rĈ1s

3rĈ1

>
(2 + br − rĈ1s)

2

9rĈ1(1+br)

which is clearly impossible for s>0 (recall that b>1, r>0, c>0).
Hence p∗1 is optimal.
p∗2 is optimal. As we increase p2 and remain in Region 3 (holding

p3 =0 and p1 =p∗1), the profit for network 2 remains suboptimal (less
than π∗

2 ), until we enter Region 2. But network 2 has zero profit in
Region 2. Hence network 2 cannot increase its profit by increasing its
price. If network 2 were to decrease its price from p∗2, then again its
profit would be suboptimal while in Region 3. If it were to decrease
its price further to enter Region 1; then at the boundary of region
and 1 and 3, from (S.20) Q13 = 0 (recall p∗3 = 0) and hence Q2=1.
The profit at this point is less than π∗

2 , and decreasing pi2 further
decreases the profit further.
p∗3 is optimal. Since p∗3 =0, the Content Provider can only increase

its price, which potentially takes it to Region 1 where the Content
Provider has no users and zero profit. Hence the Content Provider
cannot increase its profit by changing its price.

Hence we have shown that p∗ is indeed a Nash equilibrium, thus
proving the subcase 2(a).

Now consider case 2(b) of the theorem where

s >
2 + br

rĈ1

.

Proof. Proof of subcase 2(b) of Theorem III.11 With the pi given by
p∗1 = s, p∗2 = s− 1

rĈ1
, p∗3 = 0, we are in Region 3 with Q2 = 1 .

We now show that this is indeed a Nash equilibrium. If the
Content Provider were to lower its price it would become negative and
potentially move the scenario to Region 2. However, p3<0 violates
Region 2 feasibility condition (S.13). If the Content Provider were to
raise its price, this could potentially move the scenario to Region 1,
but in that case the Content Provider still receives zero profit. Thus
the Content Provider will not change its price.

Network 2 has no incentive to lower its price, since network 2
already has all the users, and this could only result in lowering its
profit. network 2 has no incentive to raise its price either, since this
would potentially move the scenario to Region 2, but in Region 2 we
have Q2 =0, and so network 2 would have no profit. Thus network 2
will not change its price.

If network 1 were to decrease its price below s, this would
potentially move the scenario to Region 2; but Region 2 feasibility
condition (S.14) is p1 − s(1− p3) ≥ 0, which reduces here to
p1 − s ≥ 0, a contradiction, since p1−s < 0. If network 1 were to
increase its price, this would potentially move the scenario to Region
1; but in this case, (S.10) and (S.5) imply Q1 = 0, and network 1
would still get no profit. Thus network 1 will not benefit by changing
its price.

3) t > 0:
Proof. When p1 = 0 and we are in Region 3, then from (7), π1 =
tQ13, and using (S.19) and (S.21)

∂π1

∂p1
= Q1 + t

∂Q13

∂p1
= Q1 − t

rĈ1

1 + br

=
1 + p3(b− 1− rĈ1) + rĈ1(p2 − t)

1 + br
.

For p1 =0 to be a Nash equilibrium for network 1, it must first be a
local maximum within Region 3, which requires

π1 ≥ 0 and
∂π1

∂p1
< 0. (S.86)

In addition p2 and p3 need to be local maxima, and hence solve

∂π2

∂p2
= 0,

∂π3

∂p3
= 0 with p1 =0. (S.87)

Using equations (S.19), (S.20), then (S.87) becomes

b+ (1 + Ĉ1 − b)p3 = 2Ĉ1p2

2p3(1 + r + rĈ1) = 1 + t(1 + r + rĈ1) + rĈ1p2.

Solving these equations gives (S.70) and (S.71) which is a local
optimum since the πi(pi) are convex. Substituting into (S.86) and
using algebraic manipulation gives the conditions (S.66) and (S.67)
on b, r, Ĉ1, t in the proposition, which also enure that p∗2 > 0 and
p∗3 > 0. The profit for network 1 is then

1 + r(1 + Ĉ1)

1 + br
t(p∗3 − t). (S.88)

For this to be Nash equilibrium, it must a be global optimum: in the
case of network 1, network 1 can increase its price, and move the
solution into Region 1. If does so, it has an optimum response to
network 2 setting its price to p∗2, namely the price

p1 =
(1 + r + rĈ1)(4 + 2br + (1− b+ Ĉ1)rt)

2rĈ1(4 + [b+ 3(1+Ĉ1)]r)
.

The condition that the resulting profit for network 1 at this value
(calculated from (S.7)) does not exceed (S.88) gives (S.68).

4) No other degenerate Nash equilibria exist: To complete
the proof of the theorem, we need only show that there cannot be a
Nash equilibrium under any of the remaining boundary conditions,
all of which must be in Region 3. We will have a Nash equilibrium
at the point p∗ = (p∗1, p

∗
2, p

∗
3) provided that the point p∗ is feasible

and, for each i, πi(pi) is maximized at p∗. But as we have seen,
from (S.39), that the profit functions πi(pi) are strictly concave,
hence the only possible Nash equilibria in this case occur either at
a unique interior point of the feasible region or at the boundaries
of their support. The boundaries of the region are characterized
in Corollary III.3 (the corresponding intervals for each πi(pi) are
generated by the intersection of the lines formed by fixing pj , j 6= i
in the boundaries). The boundaries correspond to the hyperplanes
p1 = 0, p2 = 0 p3 = 0, and Q11 = 0, Q13 = 0, Q2 = 0 (and since
by construction Q11 +Q13 +Q2 = 1 holds, we also consider the
constraints Q2 = 1). In addition, when t ≥ 0 we have the boundary
p3 = t corresponding to π3(p3) = 0 (note that π1 = 0, π2 = 0 are
covered by other boundaries). When t ≤ 0, there is the additional
constraint boundary π1 =0.

Condition π1 =0. No Nash equilibrium can exist in this case, since
if π1 = p1Q11 + (p1 +t)Q13 = 0, we must have p1 + t < 0 (the
degenerate case Q11 = 0 = Q13 is covered by subcases below), then
from from (7)

∂π1

∂p1
= Q1 + (p1 + t)

∂Q13

∂p1
> 0

and network 1 can increase its profit away from 0 by increasing p1.

Condition Q13 =0. When Q13 = 0, then from (7)

∂π3

∂p3
= p3

∂Q13

∂p3
< 0
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unless p3 = 0. Hence we can decrease p3, thereby increasing the
Content Provider’s profit away from zero, unless either p3 = 0 or
t >0 and p3 = t. We treat each of these special cases below.

Condition p2 =0. Here, to maximize π2 we must have ∂π2
∂p2

∣∣
p2=0

≤
0. From (7), ∂π2

∂p2

∣∣
p2=0

=Q2, hence Q2 =0. Then from (12) and (13),
p1 +p3< 0, which implies at least one price is negative, and hence
there is no feasible Nash equilibrium.

Condition Q2 =0. (7) When Q2 = 0, π2 = 0 then to be in case 3
requires that p2>0, while from (7)

∂π2

∂p2
= p2

∂Q2

∂p2
< 0

and hence network 2 can decrease its price and generate positive
profit. Thus Q2 =0 cannot be a Nash equilibrium for network 2.

Condition p3 =t .
From (7), when p3 = t, ∂π3

∂p3
=Q13, and if Q13>0, then this cannot be

a Nash equilibrium for the Content Provider, since it could increase
its profit by increasing t. The only possibility is that both p3 = t and
Q13 = 0, which is included as a particular special case of Theorem
III.11 part 1.

F. Proof of Theorem III.13 and Corollary III.14
Proof. Theorem III.13 is a special case of Theorem III.9 where
t = 0, proved using Lemmas S.1 and S.2. Now (S.43), which gives
conditions for prices and profits to be non-negative, is automatically
satisfied when t = 0. This leaves Lemma S.2; when t = 0, the
conditions of Lemma S.2 simplify: the conditions for p∗1 to be positive
and p∗1 to be optimal are satisfied, leaving the conditions for π2 to
be optimal, ((S.54) or (S.58)), which reduce to

br[2 + (1+b+Ĉ1)r] ≤ 4(1+r+Ĉ1r)
2 OR (S.89)

4(2 + r(2 + 2Ĉ1 + b(4 + [b+ 3(1+Ĉ1)]r)))2

1 + br
≥(

4 + r
(
b2r + 4(1+Ĉ1)[2 + r(1+Ĉ1)] + b(4 + 3(1+Ĉ1)r)

))2

1 + r + Ĉ1r
.

(S.90)

We roll Theorem III.13 and Corollary III.14 into the following
Lemma.

Lemma S.3. When t = 0, sufficient conditions for a Nash equilib-
rium to exist are

b ≤ 2(1+Ĉ1) +
1

r
. (S.91)

Sufficient conditions for a Nash equilibrium not to exist are

r > 1 AND b > 4(1+Ĉ1) +
1

r
(S.92)

Proof. Proof of Lemma The first condition (S.89) is clearly satisfied
if b ≤ 1 + Ĉ1. By writing b = 2 + kĈ1, expanding the second
inequality, taking out a factor of (b − 1 − Ĉ1) and equating the
coefficients of ri in the remaining quartic to ensure that the resulting
polynomial is always positive , then we can show that resulting
inequality will always be satisfied provided k ≤ 2. That is, if
b ≤ 2(1+Ĉ1), a Nash equilibrium will always exist. A more detailed
line of reasoning will produce a broader sufficient condition:

b ≤ 2(1+Ĉ1) or r ≤ 1

b− 2(1+Ĉ1)
.

which can be combined into the single condition (S.91).
By substituting and simplifying, we can also show that when the

condition (S.92) holds then neither (S.89) nor (S.90) are true, and
hence (S.92) is a sufficient condition for a Nash equilibrium not to
exist.

G. Proof of Theorem IV.1
We provide here a slightly more detailed presentation of Theorem

IV.1 than is given in Section IV.

THEOREM IV.1 There exists a unique Nash equilibrium in the
two-stage game. This occurs in one of two mutually exclusive cases,
where in each case network 1 sets a positive transfer price t∗. In the
first case all three parties make a positive profit; the second case is
degenerate, where the Content Provider is shut out of the market.
Specifically, either:

1) All three parties make a positive profit. The prices, user masses,
and profits for this case are given by Theorem III.5 with t =
tBor tO , where:
a) tO solves the first-order profit maximization conditions. This

is the value of t satisfying first order conditions, namely

∂

∂t
π1(p∗1(t), p∗2(t), p∗3(t)) = 0.

This will yield an affine equation in t, with solution tO .
Here tO is the value of t that maximizes a concave profit
function and hence can in principle be found in a straight-
forward way by network 1.

b) tB is the point at which network 2 is indifferent between
competing with the Content Provider or lowering its price to
drive it out of the market. Here tB < tO , where tB is the
feasible solution to the equation in t derived from (S.58),
that is the positive solution to(

1 + Ĉ1 + Ĉ1p
∗
1(t)

2Ĉ1

)2
1

1 + r(1+Ĉ1)
=

1

1+br
(p∗2(t))2

(S.93)
a quadratic in t, where the p∗i are given in (20),(21). Note
that from Theorem III.9, equation (26), we must have tB <

2+br
3+r+2br

.
Sufficient conditions for this case to exist are that b∗(r, Ĉ1) ≤
b ≤ 1 + Ĉ1 OR (1 + Ĉ1 < b ≤ 2(1 + Ĉ1) + 1/r

2) The equilibrium is degenerate, with the two networks making
positive profit, and the Content Provider shut-out of the market.
The prices, user masses and profits are given in Theorem
III.11,with t∗ ≥ tA, where tA is defined in Theorem III.11
and tA is given explicitly in (S.83), and satisfies tA ≥ 1. There
are two subcases:
a) b is small, satisfying 1 ≤ b ≤ b∗(r, Ĉ1) where b∗ is the

root of a cubic equation, with the bound b∗ < 1 + Ĉ1. In
this case network 1 makes strictly greater profit than having
a positive transfer price.

b) b is large, for which sufficient conditions are b > 4(1+
Ĉ1) + 1/r and r > 1 (c.f. Corollary III.14). In this instance
network 1 cannot attain the higher profits that could be gained
by setting a positive transfer price.

Proof. Proof We consider two subcases separately: b ≤ 1 + Ĉ1 and
b > 1 + Ĉ1 . The statements of the theorem follow by combining
the results from the subcases.

Subcase: When b ≤ 1 + Ĉ1 Recall that in this case the profit for
network 1 is smaller with t = 0 than without the Content Provider.

i) First note that on calculating the profits from (7) using the
prices and user masses from Theorem III.5, we can see that
π1(p∗1(t), p∗2(t), p∗3(t)) is quadratic in t. By direct calculation, it
is straightforward to see that

∂2

∂t2
π1(p∗1(t), p∗2(t), p∗3(t)) < 0

for 1 ≤ b ≤ 1+ Ĉ1 hence any local optimum satisfying the first
order conditions will be a global optimum if staying within the
feasible region of Case 3.
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ii) The value of t satisfying first order conditions is

tO = (br + 2)(Ĉ1r + r + 1)
(
b2r + 2b− Ĉ1(r + 1)− r − 2

)
÷
[
16Ĉ3

1r
2(br + 1) + Ĉ2

1r(r(4b((b+ 8)r + 10)− r + 30) + 35)

+ 2Ĉ1(r + 1) (r([b(b+ 9)− 1]r + 11b+ 7) + 9)

−(b− 1)2r(r + 1)2] (S.94)

iii) For 1 ≤ b <
√

Ĉ1r2+Ĉ1r+r2+2r+1
r2

− 1
r

, then
∂
∂t
π1(p∗1(t), p∗2(t), p∗3(t))|t=0 < 0, so network 1 can indeed

increase revenue by reducing the transfer price from zero,
setting a negative transfer price, thereby effectively subsidizing
the Content Provider. However, network 1 can do even
better by raising the transfer price to such a level that the
Content Provider is shut out of the market—for example,
by setting t = 1. The latter follows by first showing that
∂
∂t
π1(p∗1(t), p∗2(t), p∗3(t))|

t=− −2+br

3+r(3+4Ĉ1)

> 0, hence the value

of t0 is a potential Nash equilibrium (c.f. Theorem 5.3));
second, proving that ∂

∂b
π1(p∗1(tO), p∗2(tO), p∗3(tO)) > 0 in this

region, i.e., profits for network 1 increase with b; and third,

showing that when b =

√
Ĉ1r2+Ĉ1r+r2+2r+1

r2
− 1

r
, network 1

is better shutting the Content Provider out of the market, hence
is it better offer adopting this policy for all b in this range.

iv) For
√

Ĉ1r2+Ĉ1r+r2+2r+1
r2

− 1
r
< b ≤ Ĉ1 + 1, then the optimal

choice of strategy depends upon the values of b, Ĉ1, r, or on a
value b∗ = b∗(r, Ĉ1), where b∗ is the root of a cubic equation
involving r and Ĉ1. This is the value of b at which network 1 is
indifferent between choosing the optimal value of t∗ = tO and
choosing t∗ = 1 to shut-out the Content Provider.

a) If
√

cr2+Ĉ1r+r2+2r+1
r2

− 1
r
< b < b∗ then optimal for

network 2 to shut-out the Content Provider, by raising t, eg
t = 1.

b) If b∗ ≤ b ≤ 1+Ĉ1 then network 1 announces t∗ = tO given
by (S.94).

Note that b∗ is very “close”to 1+Ĉ1 (informally; i.e., the region
is small)

v) These are the only possibilities: if a value of t is chosen so that
Case 3 of Theorem III.11 introduces a possible degenerate Nash,
network 1 can increase profits by setting t = 1.

Subcase: When b > 1 + Ĉ1

i) First note that when a Nash equilibrium exists in Case 3, i.e., in
Region 3, it is always advantageous for network 1 to have the
Content Provider use its network. That is, the profit for network 1
is greater with t = 0 than shutting the CP out.

ii) Straightforward to show that given b > 1 + Ĉ1,
∂
∂t
π1(p∗1(t), p∗2(t), p∗3(t))|t=0 > 0 and hence if a Nash equi-

librium exists with t set, t should be strictly positive.

iii) In this case (i.e., Nash equilibrium and in Region 3) there are
two possible cases
a) t can be t∗ = tO , i.e., solution to first order conditions

b) t∗ = tB is on the boundary of the Nash equilibrium
boundary, the critical point at which network 2 is indifferent
between competing with the Content Provider, or lowering its
price to drive out the Content Provider.

Sufficient condition for one of these two cases to exist is 1+c <
b ≤ 2(1+c)+ 1

r
, (which follows from combining Theorem III.13

with this subcase).

iv) We know from Cor. III.10 than an ε−equilibrium exists in this
(where b > 1 + Ĉ1) in the second stage game if t = 0), and
hence an “optimal” ε−equilibrium also exists -i.e.from above,

it follow that t∗ = tO is always an optimal ε−equilibrium in
Stackelberg game.

v) Under certain conditions, no Nash equilibrium exists in the
multistage game with the Content Provider involved —i.e., the
transfer price is raised to such a high level that it is shut out of the
market, (cf Theorems III.9 and III.11 which discuss equilibria
for when the Content Provider involved). Cor. III.14 gives a
sufficient condition for no Nash equilibrium to exist with t = 0,
and this implies the only Nash equilibrium is when t is raised to
such a level as to shut the Content Provider out of the market.

H. Proof of Theorem V.1
THEOREM V.1 For quadratic congestion costs and equal capacities,

the optimal strategy for network 1 is to set a negative transfer price
t∗ = tO(b, Ĉ1).

Proof. We will show that d
dt
π∗

1(t)|t=0 < 0, and that π∗
1(t) is

concave. When in Case 3 of Lemma III.1, putting r = 1/b, gives the
defining conditions as(

bQ2

Ĉ1

)2

−
(
Q11 + bQ13

Ĉ1

)2

+ p2 − p1 = p3 (S.95)

and Q11 = p3, hence Q13 is the solution to the quadratic(
b(1− p3 −Q13)

Ĉ1

)2

−
(
p3 + bQ13

Ĉ1

)2

+ p2 − p1 = p3 (S.96)

which reduces to a linear equation, with solution

Q13 =
b2(1− p3)2 − p2

3 − Ĉ2
1 (p1 − p2 + p3)

2b(b(1− p3) + p3)
. (S.97)

We have seen that π1(p1) and π2(p2) are concave when r = 1/b, and
that π3(p3) is in general concave (or quasi-concave), hence we can
find the optimum by considering the first order conditions. Equating
to zero the derivatives

∂πi
∂pi

for i = 1, 2, 3, and substituting for the
partial derivatives by implicitly differentiating (S.96) or (S.97) gives,
after simplifying, the equations

2b(p3 +Q13) =
Ĉ2

1 (p1 + t)

b(1− p3) + p3

2bQ2 =
Ĉ2

1p2

b(1− p3) + p3

(b+ t− bt)Q13 =

(
Ĉ2

1 + 2p3

)
(p3 − t)

2b
+ b(p3 − t)(1− p3),

(S.98)

whose solution give p∗i , and Q∗
i . Eliminating p1 and p2, and noting

that Q2 = 1 − p3 − Q13, enables us to reduce the set of equations
{(S.97), (S.98)} to a pair of simultaneous linear equations in Q13,
i.e.,

b2(1− p3)(3− 5p3 − 6Q13 − Ĉ2
1 (p3 − t)

= p3(b(4p3 + 6Q13 − 2) + p3)

(
Ĉ2

1 + 2p3

)
(p3 − t)

= 2b (b [(1− t)Q13 − (1− p3)(p3 − t)] +Q13t) . (S.99)

Eliminating Q13 reduces the equations to a cubic in p3, where p∗3 is
the real root in [0, 1]. Explicitly the cubic is

6(b− 1)2(b+ 1)p3
3 − (b− 1)

(
17b2 + 7b+ 3Ĉ2

1

)
p3

2

+ 2b
(

7b2 − b+ 2Ĉ2
1

)
p3 − 3b3 = 0.
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To show that d
dt
π∗

1(t)|t=0 < 0 involves
i) Writing π∗

1(t) = p∗1(t) (p∗3(t) +Q∗
13(t)) + tQ∗

13(t) and differ-
entiating to obtain d

dt
π∗

1(t)|t=0

ii) Differentiating (S.98) and (S.97) implicitly w.r.t t, and setting
t 7→ 0

iii) Showing that when t = 0 the resulting set of equations for
{π∗

1(t)|t=0, (p
∗
i (0), Q∗

i (0)), ( d
dt
p∗i (t)|t=0

d
dt
Q∗
i (t))|t=0)} do

not have a consistent solution unless d
dt
π∗

1(t)|t=0 < 0. This is
proved using Mathematica [18].


